US008255922B1

12 United States Patent (10) Patent No.: US 8.255.922 B1
Fresko et al. 45) Date of Patent: Aug. 28, 2012
(54) MECHANISM FOR ENABLING MULTIPLE 2003/0217092 A1* 11/2003 Veselovccccveeven.n... 709/106
2003/0217248 Al* 11/2003 Nohletal.cccooeor....... 712/208
PROCESSES TO SHARE PHYSICAL 2004/0054994 Al* 3/2004 Demsey et al. 717/148
MEMORY 2005/0183077 Al* 872005 Langdaleetal. ... 717/148
2005/0223005 Al* 10/2005 Shultzetal. ..o.ccccovvoven.... 707/8
(75) Inventors: Nedim Fresko, San Francisco, CA (US); 2005/0262512 A1* 11/2005 Schmidtetal. 719/310
Jiangli Zhou, San Jose, CA (US); Dean 2005/0278790 A__: 12/2005 Bl_l‘l(etal. ..o, 726/26
R. E. Long, Boulder Creck, CA (US) 2006/0190932 Al* 8/2006 Gilbertococevveven.... 717/140

OTHER PUBLICATIONS

(73) Assignee: Oracle America, Inc., Redwood City,
CA (US)

Joisha et al. A Framework for Efficient Reuse of Binary Code. Pro-

ceedings of the 157 international conference on Supercomputing
[online] (Jun. 21, 2001). ACM, pp. 440-453. Retrieved From the

(*) Notice: Subject to any disclaimer, the term of thus Internet <http://portal.acm.org/citation.ctm?1d=377792.377902>.*

patent 1s extended or adjusted under 35

U.S.C. 154(b) by 1765 days. (Continued)
(21) Appl. No.: 11/328,965 Primary Ixaminer — Emerson Puente
Assistant Examiner — Jonathan R Labud
(22) Filed: Jan. 9, 2006 (74) Attorney, Agent, or Firm — Osha Liang LLP
(51) Int.CL. (57) ABSTRACT
gggﬁ ;;gg 88828; A mechanism 1s di 5}310 sed for fa.'nabling multiple processes to
GO6F 9/46 (2006.O:L) ishare the same portion of physical memory. The first time an
GO6F 13/00 (2006:035) 1nstanf:e of a process 1s execgted,, a hst. of COmMMON Compo-
GO6F 15/167 (2006 O:h) nents 1s compiled. The compiled code 1s then written into a
ey newly created mappable data structure, which 1s stored into
(52) US.CLooo... 719/312; 709/213; 709/214; 709/215; persistent storage. The next time an instance of that process 1s
_ _ _ 71097216 executed, the mappable data structure 1s mapped 1nto a por-
(58) Field of Classification Search None tion of the process instance’s virtual memory space. This

See application file for complete search history. enables the process instance to invoke the compiled code for

the common components. Multiple instances of the process
may have their virtual memory spaces mapped to the same
mappable data structure in this way. Thereafter, 1t 1s up to the
operating system to load the contents of the mappable data

(56) References Cited

U.S. PATENT DOCUMENTS

0,046,546 B © 42003 Van Doorn i ’ 5"7/1 14 structure 1nto a portion ol physical memory, and to ensure that
0,694,346 B1* 2/2004 Amanetal. ... 718/104 : .
6,738,977 B1* 5/2004 Berry et al 719/339 all ot the process instances share that physical memory por-
6,845,437 B2* 1/2005 Bormanetal. 711/173 tion.
6,973,646 Bl1* 12/2005 Bordawekaretal. 717/146
7,574,705 B2* 8/2009 Taivalsaari etal. 717/162 19 Claims, 8 Drawing Sheets
402(1) 402(2) 402(n)
’ £ /
JVM 1 JVM 2 JVMn
204(1) 204{2) 204(n)
Z ‘ ¢ e ’
CODE CACHE CODE CACHE CODE CACHE
|
V, Vi V; V, Vi Vy
MAPPABLE «
DATA STRUCTURE

214

US 8,255,922 B1
Page 2

OTHER PUBLICATIONS

Noble, Seth B., “Memory Mangement-How Much Memory,?” UNIX
Memory Management, located on the internet at <http;//dataexpedi-
titon.com/~sbnoble/ Tips/memory html>, retrieved on May 3, 2006, 5
pages.

Vandry, Phillip, “Solaris Shared Library FAQ,” Nov. 20, 1995,
located on the internet at <http://www.tzone.org/~vandry/shared-
lib>, retrieved on May 30, 2006, 8 pages.

Wikipedia, “Library—Shared Library,” located on the internet at
<http://en.wikipedia.org?wiki/Shared__ library#Shared_ library>,
retrieved on May 30, 2006 5 pages.

XEmacs, “Dumping,” XEmacs Internals Manual, Chapter 39-Dump-

ing, retrieved from the internet at http://666.com/xemacs-internals/
internals_ 39 html, retrieved on May 30, 2006.

* cited by examiner

[‘b

901 AdOW3N

TVOISAHd

JOVd0LS
1N31SIS¥4d

US 8,255,922 B1

| (S)¥0SS300Md
¢01-

70l

S (SO) WILSAS ONILYH3dO
3 o
=
79
NOILYINHOZNI ddldddydlN|
- ONIAZILNIA] VAVP
— 8¢l 74 —
=
5 MINIWNOD | |
ob d3ZFIVILINI e
M 9| 44 -

4

001

U.S. Patent

U.S. Patent Aug. 28, 2012 Sheet 2 of 8 US 8,255,922 B1

202
INITIAL JVM

204

CODE CACHE

208 A

210

212~ | M M2 M3

MAPPABLE
DATA STRUCTURE

STORE IN
PERSISTENT STORAGE

214

Fig. 2

U.S. Patent Aug. 28, 2012

306

| COMPILE LIST
OF COMPONENTS

308

CREATE
MAPPABLE

DATA SRUCTURE
310

WRITE COMPILED
CODE INTO
MAPPABLE

DATA STRUCTURE

312

STORE MAPPABLE
DATA STRUCTURE

IN PERSISTENT
STORAGE

Sheet 3 of 8

DOES
COMPATIBLE
MAPPABLE DATA
STRUCTURE
ALREADY EXIST?

NO

YES

MAP MAPPABLE
DATA STRUCTURE
TO PORTION OF
VIRTUAL MEMORY
SPACE

US 8,255,922 B1

302

304

US 8,255,922 B1

Sheet 4 of 8

Aug. 28, 2012

U.S. Patent

1434

JHNLONHLS VLIVQ

N> A

A 'A

318Vddv T’j
s_>/ N

N/ .

\
JHOVYD 300D E
E&N (202
U INAP ¢ WAP
(u)eov (2)207

JHOVD 3002

%

(1)¥02

L AT
N

(1)20Y

¢y

Ple 0vS

US 8,255,922 B1

J4NLONYLS V1VQ NOILYOd

318VddVYN AHOWIW TVIISAHd
m '/
7 N | 7 W | Z m |
S A A A A A A ZA AT A
i
P,
g\
= (U)802 (2)802
gl
& .
&S \ \ \
m_u E JHOV) 300D 3HOVD 300D
(2)v02 ::&N
¢ NAl L WAl
(u)zoy (2)20P Emﬁq

U.S. Patent

US 8,255,922 B1

Sheet 6 of 8

Aug. 28, 2012

U.S. Patent

vid

JHNLONYLS Vivd
318VddVIA

3JHOVO 4000

(Uiy0z

U AP

(U)Z0¥

OvS

NOILHOd
AHOWIN TYOISAHJ

9 b1y
N A
(1)802
._
3HOVYD 300D
E_&m
| WAP
(1)20Y

/ ‘hp

1474 0vS

JANLONYLS ViVA NOIL30d

US 8,255,922 B1

318VddVIN AHOW3N TVIISAHd

m N> _>_> —> N> _>_> _‘> N> _>_> _‘>
I
2
7
o (2)802Z (1)802
~
o N/ \] \]
b E JHOVD 3A0D JHOVD 300D
A ® ® ¢ — ..Il\

(2)¥02 (1)¥02

¢ NAP L INAF

(u)zov (2)20% EN_ 0

U.S. Patent

US 8,255,922 B1

008
m 818 —
- “ JOV443LNI vos
3 m NOILVDINNIWNOD ¥0SSID0Yd
j m
7 |
0Z8 e . _
_ 08
= P _ sne
x ﬂ
X m e
= m
<« 8C8 M
m 018 308 908
— _ 30IA3A AMOWIN
058 “ NOY

U.S. Patent

__-----—----——————-——-'l'l—q--__'-J

e e e e o e ————

918
1O4LINOD

d0SHNO

718
40IA30 LNdNI

C\8
AV1dSId

US 8,255,922 Bl

1

MECHANISM FOR ENABLING MULITITPLE
PROCESSES TO SHARE PHYSICAL
MEMORY

BACKGROUND

In a typical Java implementation, whenever a Java appli-
cation 1s executed, an instance of a Java virtual machine
(JVM) 1s also started to support the execution of the Java
application. If x Java applications are run concurrently, there
would be x JVM instances. Typically, each JVM instance 1s an
independent process that 1s unaware of the other JVM’s. As a
result, the various JVM instances typically do not share any-
thing with each other.

One of the structures managed by each JVM 1s a code
cache. The code cache contains compiled code for the meth-
ods that have been compiled by that JVM. In Java, when a
method has been executed repeatedly, the JTVM compiles that
method from Java bytecodes down to native code that can be
executed by a processor (this compilation process 1s typically
referred to as just-in-time or JIT compilation). By doing so,
the JVM enables the method to be executed faster (rather than
using a Java interpreter to execute the Java bytecodes of the
method, the method 1s executed directly by the processor,
which 1s faster). Once a method 1s compiled, the compiled
code for that method is 1nserted 1nto the code cache for that
IVM. The JVM thereafter executes the method by accessing
its code cache.

The code cache of a VM occupies a portion of the IVM’s
virtual memory space. This portion of the JVM’s virtual
memory space 1s mapped by the operating system to a portion
of physical memory. It 1s 1n the physical memory where the
compiled code for the code cache 1s actually stored. As noted
above, a JVM 1nstance typically does not share anything with
other JVM 1nstances. As a result, the compiled code 1n the
code caches of different JVM’s 1s typically stored 1n different
portions of physical memory. For example, the compiled code
tor the code cache of JVM 1 may be stored 1n a first portion of
physical memory, while the compiled code for the code cache
of JVM 2 may be stored 1n a different portion of physical
memory.

It has been observed that there are many common methods
that are compiled by every JVM. These methods may be, for
example, core JVM methods that are invoked over and over
again by every JVM. Because each JVM manages its own
code cache, and because each code cache 1s mapped to a
different portion of physical memory, there are multiple cop-
ies of the compiled code for the common methods residing 1n
different portions of physical memory. This redundancy leads
to an unnecessary and wasteful consumption of the physical
memory. In implementations where physical memory 1s quite
limited (e.g. personal digital assistants, cellular phones, etc.),
this 1nefficiency can be a significant problem. To optimize
eificiency and performance, it would be better to store the
compiled code for the common methods 1n only one portion
of physical memory and have all of the JVM 1nstances share
(1.e. have their code caches map to) that same portion of
physical memory.

One approach that has been implemented to enable mul-
tiple JVM 1nstances to share the same physical memory por-
tion 1s known as “cloning”. With cloning, a master JVM 1s
first mstantiated. The master JVM then compiles a list of
common methods and inserts the compiled code for these
common methods into the master JVM’s code cache. That
code cache (more specifically, the virtual memory range that
makes up the code cache) 1s then mapped by the operating,
system to a portion of physical memory, and the compiled

10

15

20

25

30

35

40

45

50

55

60

65

2

code for the common methods 1s stored into that portion of
physical memory. Then, one or more “clones” of the master

JIVM are made (this may be done, for example, by using a
“fork” mstruction in Unix). Created 1n this way, each clone 1s
still an 1ndependent JVM 1nstance, but the code caches of all
of the clones will be mapped to the portion of physical
memory 1n which the compiled code for the common meth-
ods 1s already stored. In thus way, the code caches of the
master JVM and the JVM clones will all share the same
portion of physical memory.

While cloning does enable multiple JVM’s to share the
same physical memory portion, 1t does have some significant
drawbacks. One of the drawbacks 1s that cloning 1s operating
system dependent. Only a few operating systems, such as
Unix, have a “fork” or equivalent instruction. Thus, cloming
can be mmplemented only on those operating systems.
Another drawback 1s that cloning requires the master JVM to
compile the common methods every time the master JVM 1s
instantiated. If the list of common methods is relatively long,
this compilation process may take a significant amount of
time to carry out. This 1n turn will slow down execution and
performance. For these and other reasons, cloning i1s not a
wholly satisfactory method for enabling JVM’s to share
physical memory.

SUMMARY

In accordance with one embodiment of the present inven-
tion, there 1s provided an improved mechanism for enabling
multiple processes (e.g. multiple JVM instances) to share the
same portion of physical memory. According to this mecha-
nism, the first time a set of code (e.g. a set of JVM code) 1s
executed to give rise to a process 1nstance, a list of common
components (e.g. common Java methods) 1s compiled to
derive the compiled code for the common components. The
compiled code 1s then written 1nto a newly created mappable
data structure (such as a file, for example), and the mappable
data structure 1s stored into a persistent storage for subsequent
access. The next time (and all subsequent times thereatter)
that set of code 1s executed to give rise to a process 1nstance,
the common components will not be recompiled. Instead, 1t
will be determined that the mappable data structure already
exists 1n the persistent storage, and the mappable data struc-
ture will be mapped 1nto a portion of the process 1nstance’s
virtual memory space (e.g. the process instance’s code
cache). Doing so will enable the process instance to mvoke
the compiled code for the common components. The set of
code may be executed multiple times concurrently to give rise
to multiple process 1nstances, and each process instance will
have a portion of its virtual memory space mapped to the
mappable data structure 1n this way.

When each of the process instances accesses its virtual
memory space to invoke the compiled code for one of the
common components for the first time, an underlying oper-
ating system detects this invocation. Realizing that this por-
tion of the process mstance’s virtual memory space 1s mapped
to the mappable data structure (which 1s stored 1n persistent
storage), the operating system checks to see 1t the contents of
the mappable data structure have already been loaded from
the persistent storage 1into physical memory. If the contents
have not been loaded into physical memory, then the operat-
ing system will load the contents into a portion of physical
memory, and will map the portion of the process instance’s
virtual memory space to that portion of physical memory. On
the other hand, if the contents of the mappable data structure
have already been loaded 1into a portion of physical memory,
then the operating system will not load the contents of the

US 8,255,922 Bl

3

mappable data structure into another portion of physical
memory. Rather, the operating system will map the portion of
the process mstance’s virtual memory space to the portion of
physical memory into which the contents of the mappable
data structure have already been loaded. By doing this, the
operating system ensures that, if multiple process instances
are concurrently executing, all of those process instances will
have a portion of their virtual memory space mapped to the
same portion of physical memory. In this manner, the mul-
tiple process instances are able to share the same portion of
physical memory.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a functional block diagram of an apparatus in
which one embodiment of the present mmvention may be
implemented.

FI1G. 2 1s a functional block diagram showing the mapping
between a code cache, a portion of virtual address space, a
portion of physical address space, and a mappable data struc-
ture, 1n accordance with one embodiment of the present
invention.

FIG. 3 1s a flow diagram 1illustrating the operation of a
process 1nitializer, in accordance with one embodiment of the
present invention.

FI1G. 4 1s a functional block diagram showing the mapping
between the virtual address spaces of a plurality of processes
and a single mappable data structure, 1n accordance with one
embodiment of the present invention.

FIGS. 5-7 are functional block diagrams showing the map-
ping between the virtual address spaces of a plurality of
processes and a single physical memory portion, 1 accor-
dance with one embodiment of the present invention.

FIG. 8 1s a block diagram of a general purpose computer
system 1n which one embodiment of the present invention
may be implemented.

DETAILED DESCRIPTION OF
EMBODIMENT(S)

Apparatus Overview

With reference to FIG. 1, there 1s shown a functional block
diagram of an apparatus 100 1n which one embodiment of the
present invention may be implemented. For the sake of illus-
tration, an embodiment of the present mmvention will be
described with reference to a JVM. It should be noted,
though, that the mvention 1s not so limited. Rather, the con-
cepts taught herein may be applied generally to any type of
process 1n which 1t 1s desirable for multiple nstances of the
process to share physical memory. For purposes of the present
invention, the apparatus 100 may be any type of computing
device, including but not limited to handheld computing
devices (e.g. personal digital assistants), mobile phones, por-
table computers, personal computers, server computers, etc.

As shown, the apparatus 100 comprises a set of one or more
processors 102, physical memory 104, and persistent storage
106. For purposes of the present invention, the processor(s)
102 may be any type of processor capable of executing com-
puter code, the physical memory 104 may be any type of
read/write memory (e.g. volatile RAM, flash memory, etc.),
and the persistent storage 106 may be any type of nonvolatile
storage (e.g. magnetic media, flash memory, optical media,
etc.) that does not lose 1ts data when the apparatus 100 1s
turned off.

The apparatus 100 further comprises a set of code 110 that
constitutes an operating system, and a set of code 120 that

5

10

15

20

25

30

35

40

45

50

55

60

65

4

constitutes a JVM. The apparatus 100 may further comprise
other sets of code (not shown) that constitute one or more Java
applications. The operating system code 110, when executed
by the processor(s) 102, provides the underlying platiorm for
supporting all of the programs that are executed on the appa-
ratus 100, and the JVM code 120, when executed, provides
the platform for supporting the execution of the Java applica-
tions. For purposes of the present ivention, the operating
system 110 may be any type of operating system, including
but not limited to Solaris, Unix, Linux, Windows, DOS, and
MacOs. The operating system code 110, the JVM code 120,
and other code and data may be maintained 1n a file system
that 1s stored within the persistent storage 106.

The JVM code 120 comprises a JIT compiler 122 and a
Java interpreter 124. In Java, a method of a Java class may be
executed 1n one of two ways. First, a method may be executed
interpretively. When a method 1s executed interpretively, the
Java interpreter 124 1s mnvoked to interpret and to execute the
Java bytecodes that make up the method. As an alternative, a
Java method may be executed natively. To do so, the JIT
compiler 122 1s mvoked to compile the bytecodes of the
method down to native executable code. The native code 1s
then executed directly by the processor(s) 102.

In addition to the JIT compiler 122 and the Java interpreter
124, the JVM code 120, in one embodiment, further com-
prises an initializer 126. When the JVM code 120 1s executed,
it 1s the in1tializer 126 that performs many of the tasks needed
to prepare the JVM instance for operation. As will be
explained further in a later section, these tasks include tasks
implemented for purposes of enabling multiple JVM
instances to share physical memory.

In one embodiment, the JVM code 120 has a set of 1denti-
tying information 128 associated therewith. The set of 1den-
tifying information 128 comprises information that uniquely
or semi-uniquely 1dentifies the JVM code 120. The 1dentity-
ing information may be as simple as a version number or any
other number that identifies the JVM code 120. It may also be
as sophisticated as a binary signature of the JVM code 120.
This binary signature may be derived, for example, by pro-
cessing the JVM code 120 through a hashing algorithm and
deriving a hash code therefrom. This hash code can be used to
identify the IVM code 120. I the JVM code 120 1s changed 1n
any way, the hash code generated by processing the JVM code
120 through the same hashing algorithm would most likely be
difterent. Thus, the hash code can be used to differentiate one
version of the JVM code 120 from another. The significance
and use of this identiiying information 128 will be elaborated
upon 1n a later section. For purposes of the present invention,
any information that uniquely or semi-uniquely identifies the
IVM code 120 may be used as the 1dentifying information
128. In one embodiment, the identifying information 128 1s
determined at the time the JVM code 120 1s built (1.e. at “build
time”), and 1s provided with the JVM code 120 (either embed-
ded within the JVM code 120 or as additional information).

In operation, the processor(s) 102 execute the operating
system code 110 to provide an overall operating platiorm or
environment. The processor(s) 102 may also execute the IVM
code 120 one or more times to support the execution of one or
more Java applications. Each time the JVM code 120 1s
executed, it gives rise to a JVM 1nstance. Thus, if the JVM
code 120 15 executed multiple times concurrently, then there
would be multiple concurrent JVM 1nstances. Executed in
this way, each JVM instance would be 1ts own process having
its own process space. Put another way, each JVM 1nstance
would have 1ts own virtual memory space. Because each JVM
instance 1s 1ts own process, each instance 1s generally
unaware of the presence of the other JVM 1nstances. As noted

US 8,255,922 Bl

S

previously, different JVM instances generally do not share
anything between them. To enable sharing (for example, of
physical memory), some additional operations need to be
performed. These operations, i accordance with one
embodiment of the present invention, will now be described
with reference to an example.

Execution of Initial Process Instance

Suppose for the sake of illustration that JVM code 120 has
been loaded onto apparatus 100, but has never been executed.
Suppose further that the JVM code 120 1s now executed by the
processor(s) 102 for the very first time on the apparatus 100.
This execution gives rise to an mnitial JVM instance 202, as
shown 1n FIG. 2 (note: 1n one embodiment, an assumption 1s
made that each time the JVM code 120 15 loaded for execu-
tion, 1t 1s always loaded at the same virtual address). When

this JVM i1nstance 202 1s executed, the initializer 126 1s
invoked to mitialize the JVM instance 202 to prepare it for
normal operation. As part of this preparation process, the
initializer 126 performs a variety of operations. Some of these
operations are performed for purposes of enabling different
IVM 1nstances to share physical memory. One embodiment
of these operations 1s shown 1n the tlow diagram of FIG. 3.

In one embodiment, one of the tasks performed by the
iitializer 126 1s to mitialize a code cache 204 for the JVM
instance 202. In one embodiment, the code cache 204 occu-
pies a portion 206 of the JVM instance’s virtual memory
space. To mmtialize the code cache 204, the mitializer 126
assigns a predetermined virtual address range to the code
cache 204. As shown in FIG. 2, this virtual address range
ranges from virtual memory address V1 to virtual memory
address Vz (where V1 and Vz may be any desired virtual
memory addresses). In one embodiment, the predetermined
virtual address range 1s 1n a virtual address region that 1s not
used by the operating system 110 for any of its conventions
(e.g. program loading, shared library loading, native heap,
native stacks, etc.).

After the code cache 204 1s in1tialized, the in1tializer 126, in
one embodiment, determines (block 302 of F1G. 3) whether a
mappable data structure compatible with the JVM instance
202 already exists 1n the persistent storage 106. The particu-
lars of this determination will be discussed 1n greater detail 1n
a later section, but for now, since this 1s the first time the JVM
code 120 1s executed on the apparatus 100, 1t 1s assumed that
there 1s no such existing data structure. Thus, the mitializer
126 proceeds to block 306 to compile a list of common
components. These common components may be, for
example, common Java methods that are typically invoked
repeatedly by many or all JVM’s.

In one embodiment, to carry out this compilation opera-
tion, the mitializer 126 requests a physical memory allocation
from the operating system 110, and 1nstructs the operating
system 110 to map this physical memory to the virtual
memory addresses of the code cache 204. In one embodi-
ment, the size of this requested memory allocation 1s the same
as the size of the code cache, which, 1n this example, would be
Vz-V1 (as an alternative, the mitializer 126 may request
smaller chunks of physical memory and mstruct the operating
system 110 to map each of those chunks to certain portions of
the virtual memory space; hence, the physical memory need
not be contiguous). In response to the allocation request, the
operating system 110 allocates an appropriate portion 212 of
physical memory (this portion 212 of physical memory 1s a
portion of the physical memory 104 shown 1n FIG. 1), and
maps this portion 212 to the portion 206 of virtual memory

5

10

15

20

25

30

35

40

45

50

55

60

65

6

space assigned to the code cache 204. In this manner, virtual
addresses V1 through Vz are mapped to physical memory
portion 212.

Thereatter, the initializer 126 accesses a specific data struc-
ture (e.g. a file) 1n the persistent storage 106. This data struc-
ture may be stored at a specific path name in the file system,
and this path name may be programmed 1nto the JVM code
120 so that the IMV process 202 knows where to find the data
structure. This data structure, which may be created and
maintained by an administrator, contains a list of all of the
common components that the initializer 126 should compile.
After accessing the data structure, the mitializer 126 1terates
through the list of components, and compiles each compo-
nent. To compile a component, the initializer 126 invokes the
JI'T compiler 122. In response, the JIT compiler 122 generates
the compiled code for that component. As the compiled code
for each component 1s generated, it 1s stored nto the code
cache 204. This 1n turn causes the compiled code to be stored
into the portion 206 of the virtual memory space that corre-
sponds to the code cache 204, and into the portion 212 of the
physical memory 104 that corresponds to that portion 206 of
virtual memory space. As shown in the example of FI1G. 2, the
compiled code for methods M1, M2, M3, etc. are stored into
portions 206, 212. In one embodiment, as each set of com-
piled code1s stored 1nto the code cache 204, the initializer 126
notes the name of the component to which that compiled code
corresponds, and the virtual memory address in portion 206 at
which the compiled code starts. In the example of FIG. 2, the
initializer 126 notes that the compiled code for method M1
starts at virtual memory address V1, the compiled code for
method M2 starts at virtual memory address V2, the compiled
code for method M3 starts at virtual memory address V3, and
so forth. After all of the components on the list have been
compiled, the imtializer 126 provides information pertaining
to the code cache 204 to the JVM instance 202. In one
embodiment, this information includes: (1) the address range
(e.g. V1 to Vz) of the entire code cache 204; (2) the address
range (e.g. V1 to Vm) within the code cache which has
already been used to store compiled code; and (3) component
reference information (which includes the name of each com-
piled component and a reference or pointer (e.g. the virtual
address) to the starting virtual address of the compiled code
for that component). Given this information, the JVM
instance 202 may thereafter use the code cache to invoke the
compiled code for the compiled components.

After the common components are compiled, the initializer
126 proceeds to create (block 308) a new mappable data
structure 214, and to write (block 310) the compiled code
from the physical memory portion 212 into the mappable data
structure 214. These operations may be carried out by making
one or more calls to the operating system 110. For purposes of
the present invention, the mappable data structure 214 may be
any data structure (e.g. a file) that can be mapped to a portion
ol a process’s virtual memory space. In the current example,
the virtual memory space portion 206 has been filled from
virtual memory address V1 to virtual memory address Vm
with compiled code. The actual compiled code corresponding
to this virtual address range 1s stored 1n the mappable data
structure 214 (hence, the mappable data structure 214 1s
approximately Vm-V1 1n size).

Thereatter, the imtializer 126 stores (block 312) the map-
pable data structure 214 into the persistent storage 106.
Again, this may be achieved by making one or more calls to
the operating system 110. In one embodiment, the mappable
data structure 214 1s stored 1nto the persistent storage 106 at a
predetermined path name, which 1s programmed into the
IVM code 120. Because this path name 1s programmed into

US 8,255,922 Bl

7

the JVM code 120, each JVM 1nstance will know where to
find this mappable data structure 214. In one embodiment, as

part of this storing process, the mnitializer 126 obtains the
identifying information 128 associated with the JVM code
120, and associates this information with the mappable data
structure 214 (this association may be made, for example, by
tagging the mappable data structure 214 with the identifying,
information 128, by incorporating the identifying informa-
tion 128 into the mappable data structure 214, or by any other
means). Doing so associates the mappable data structure 214
with the JVM code 120. Put another way, the i1dentifying
information 128 indicates that 1t was the JVM code 120 that
created the mappable data structure 214. As will be explained
in a later section, this information can be used to determine
whether the mappable data structure 214 1s compatible with a
later-executed JVM 1nstance.

After the imitializer 126 stores the mappable data structure
214 1nto persistent storage 106, the mitial JVM instance 202
may continue execution or it may terminate. In fact, the entire
apparatus 100 may be shut down, 1t so desired. Since the
mappable data structure 214 1s stored 1n persistent storage, it
can be accessed at any later time, even after the apparatus 100
has been shut down and restarted. In the manner described,
the common components are compiled the very first time the
IVM code 102 1s executed on the apparatus 100, and the
compiled code for the common components 1s stored into
persistent storage 106 for subsequent access.

Mapping Multiple Code Caches to the Mappable
Data Structure

Suppose now that at some later time, the processor(s) 102
execute the JVM code 120 again. This gives rise to another
JVM imstance. In FIG. 4, this JVM i1nstance 1s shown as
instance 402(1). When this instance 402(1) 1s started, the
mitializer 126 1s mvoked to prepare the mstance 402(1) for
operation. As described previously in connection with the
initial JVM instance 202, one of the operations performed by
the mitializer 126 1s to mitialize a code cache 204(1) for the
instance 402(1). To do so, the imtializer 126 assigns a prede-
termined virtual address range to the code cache 204(1). In
one embodiment, this virtual address range 1s the same as that
previously described in connection with the mitial JVM
instance 202, namely, from virtual memory address V1 to
virtual memory address Vz.

After the code cache 204(1) 1s initialized, the initializer 126
determines (block 302 of FIG. 3) whether a mappable data
structure compatible with this istance 402(1) already exists
in the persistent storage 106. To make this determination, the
initializer 126 checks to see 1f amappable data structure exists
at the predetermined path name programmed into the JVM
code 120. In the current example, since the initial JVM
instance 202 created and stored the mappable data structure
214 1nto the persistent storage 106 at the predetermined path
name, the mitializer 126 should find the mappable data struc-
ture 214. Belore 1t uses the mappable data structure 214,
however, the 1nitializer 126, 1n one embodiment, first deter-
mines whether the mappable data structure 214 1s compatible
with the JVM 1nstance 402(1). In one embodiment, the 1ni-
tializer 126 makes this determination as follows. First, 1t
obtains the identifying information 128 associated with the
IVM code 120. Then, 1t obtains the 1dentifying information
associated with the mappable data structure 214 (recall that
when the mappable data structure 214 was stored, a set of
identifying information was associated therewith). The 1ni-
tializer 126 then compares these two sets of information to
determine whether they match. If they do match, then it 1s

10

15

20

25

30

35

40

45

50

55

60

65

8

known that the mappable data structure 214 was created by
the same set of JVM code 120 as that used to give rise to
instance 402(1); hence, 1t can be concluded that the mappable
data structure 214 1s compatible with the imnstance 402(1). On
the other hand, 1t the two sets of information do not match,
then 1t means that another set of JVM code created the map-
pable data structure 214. In such a case, the imtializer 126
concludes that the mappable data structure 214 i1s not com-
patible with instance 402(1), and proceeds to blocks 306-312
to recompile the common components, and to create and store
a new mappable data structure (this can be done 1n the same
manner as that described above 1n connection with the 1nitial
IVM 1nstance 202). By checking for compatibility in this
way, the in1tializer 126 detects new versions of the JVM code
120 and recreates the mappable data structure to ensure com-
patibility and proper operation.

In the current example, the mappable data structure 214 1s
compatible with mstance 402(1); thus, the initializer 126 uses
the mappable data structure 214. To do so, the mitializer 126
maps (block 304 of FI1G. 3) the mappable data structure 214 to
a portion 208(1) of the instance’s virtual memory space. This
portion 208(1) of the instance’s virtual memory space (from
virtual memory address V1 to virtual memory address Vm)
corresponds to the size of the mappable data structure 214.
This mapping may be achieved by making one or more map-
ping calls to the operating system 110. In this manner, the
mappable data structure 214 1s mapped into a portion of the
instance’s code cache 204(1).

Recall from previous discussion that, in one embodiment,
whenever a JVM 1nstance 1s started, the JVM code 120 1s
loaded at the same virtual address. This helps to facilitate the
mapping ol the mappable data structure 214 into the virtual
memory space of a JVM 1nstance. To elaborate, because the
IVM code 120 1s always loaded at the same virtual address, all
data structures inside all JVM instances will remain at the
same virtual addresses. Because of this, all virtual address
pointers in the code stored 1n the mappable data structure 214
will be valid for all JVM instances (assuming of course that
the mappable data structure 214 1s compatible with the JVM
instance). As a result, the mappable data structure 214 can be
sately mapped into a JVM 1nstance’s virtual address space.

In one embodiment, 1n addition to mapping the mappable
data structure 214 1nto a portion of the instance’s code cache,
the mnitializer 126 reads and processes the contents of the
mappable data structure 214 to extract therefrom the names of
the components that have been compiled. Also, given certain
oflsets set forth in the mappable data structure 214, the 1ni-
tializer 126 correlates the sets of compiled code 1n the map-
pable data structure 214 with the proper virtual memory
addresses. For example, 1n the current example, the mappable
data structure 214 contains compiled code for methods M1,
M2, M3, etc. Based upon specified ofisets, the imnitializer 126
determines that the compiled code for method M1 should
start at virtual memory address V1, the compiled code for
method M2 should start at virtual memory address V2, the
compiled code for method M3 should start at virtual memory
address V3, and so forth. After the initializer 126 determines
the names of the compiled components and the references
(e.g. pointers) to the virtual memory addresses at which the
compiled code for these components start, the imitializer 126
provides information pertaining to the code cache 204(1) to
the JVM instance 402(1). In one embodiment, this informa-
tion includes: (1) the address range (e.g. V1 to Vz) of the
entire code cache 402(1); (2) the address range (e.g. V1 to
Vm) within the code cache which has already been used to
store compiled code; and (3) component reference informa-
tion (which includes the name of each compiled component

US 8,255,922 Bl

9

and a reference or pointer (e.g. the virtual address) to the
starting virtual address of the compiled code for that compo-

nent). Given this information, the JVM instance 402(1) may
thereatter use the code cache 204(1) to mnvoke the compiled
code for the compiled components. In this manner, the 1ni-
tializer 126 maps the mappable data structure 214 into a
portion 208(1) of the instance’s virtual memory space.
Suppose now that while instance 402(1) 1s running, the
processor(s) 102 execute the JVM code 120 again, thereby
giving rise to another JVM 1nstance, shown as instance 402(2)
in FIG. 4. When this imnstance 402(2) 1s started, the mitializer
126 1s invoked to prepare the instance 402(2) for operation. In
the same manner as that described above 1n connection with
instance 402(1), the mitializer 126 nitializes the code cache
204(2) for instance 402(2), and maps a portion 208(2) of 1t to
the mappable data structure 214. Both instances 402(1), 402
(2) now have a portion 208(1), 208(2) of their code cache
204(1), 204(2) mapped to the mappable data structure 214.
The same process may be carried out to map a portion 208(7)
of the code cache 204(») of an nth instance 402(») to the
mappable data structure 214. In the manner described, mul-
tiple processes (e.g. multiple JVM 1nstances) may have a

portion of their code cache mapped to the same mappable data
structure 214.

Physical Memory Sharing Among Multiple
Processes

Thus far, the code caches of the JVM instances 402 are
mapped to just a logical entity (the mappable data structure
214). None of the code caches are yet mapped to physical
memory. To 1llustrate how the code caches may be mapped to
and share physical memory, reference will now be made to the
following example.

Suppose that JVM instance 402(1) accesses portion 208(1)
of 1ts code cache 204(1) to mvoke the compiled code for one
of the compiled components. When this access 1s made, the
operating system 110 detects the access. As part of processing
the access, the operating system 110 determines that that
portion 208(1) of the instance’s virtual memory space 1s
currently mapped to a logical entity, namely, mappable data
structure 214. The operating system 110 also knows that this
logical entity 1s stored 1n persistent storage 106; hence, the
operating system 110 knows that 1t may need to load the
contents of the mappable data structure 214 from persistent
storage 106 1nto a portion of the physical memory 104. Before
it does so, however, the operating system 110 first determines
whether the contents of the mappable data structure 214 have
already been loaded 1nto a portion of physical memory. If 1t
has, then the operating system 110 will not reload the contents
into another portion of physical memory. In the current
example, however, the contents of the mappable data struc-
ture 214 have not yet been loaded into physical memory.
Thus, the operating system 110 allocates a portion 540 (see
FIG. 5) of physical memory 104, loads the contents of the
mappable data structure 214 into that portion 540, and maps
the portion 208(1) of the JVM instance’s virtual memory
space (a portion of code cache 204(1)) to that physical
memory portion 540. Therealter, accesses to portion 208(1)
of code cache 204(1) will result 1n accesses to physical
memory portion 540. At this point, only instance 402(1) 1s
mapped to physical memory portion 540. Instances 402(2)
and 402(») are still mapped to the mappable data structure
214, as shown 1n FIG. 5.

Suppose now that JVM 1nstance 402(2) accesses portion
208(2) of 1ts code cache 204(2) to invoke the compiled code
for one of the compiled components. When this access 1s

10

15

20

25

30

35

40

45

50

55

60

65

10

made, the operating system 110 detects the access. As part of
processing the access, the operating system 110 determines

that portion 208(2) of the mstance’s virtual memory space 1s
currently mapped to a logical entity, namely, mappable data
structure 214. The operating system 110 also knows that this
logical entity 1s stored 1n persistent storage 106; hence, the
operating system 110 knows that 1t may need to load the
contents of the mappable data structure 214 from persistent
storage 106 1nto a portion of the physical memory 104. Before
it does so, however, the operating system 110 first determines
whether the contents of the mappable data structure 214 have
already been loaded 1nto a portion of physical memory. In the
current example, 1t has; thus, the operating system 110 will
not reload the contents of the mappable data structure 214 1nto
another portion of physical memory. Instead, the operating
system 110 locates the portion 540 of physical memory nto
which the contents of the mappable data structure 214 have
already been loaded. The operating system 110 then maps the
portion 208(2) of the JVM 1nstance’s virtual memory space (a
portion of code cache 204(2)) to that physical memory por-
tion 540, as shown 1n FIG. 6. Thereatter, accesses to portion
208(2) of code cache 204(2) will result 1n accesses to physical
memory portion 540. At this point, only instances 402(1) and
402(2) are mapped to physical memory portion 540. Instance
402(») 1s st1ll mapped to the mappable data structure 214.
Suppose now that JVM 1nstance 402(7) accesses portion
208(7») of 1ts code cache 204(#) to imnvoke the compiled code
for one of the compiled components. When this access 1s
made, the operating system 110 detects the access. As part of
processing the access, the operating system 110 determines
that portion 208(7) of the mstance’s virtual memory space 1s
currently mapped to a logical entity, namely, mappable data
structure 214. The operating system 110 also knows that this
logical entity 1s stored 1n persistent storage 106; hence, the
operating system 110 knows that 1t may need to load the
contents of the mappable data structure 214 from persistent
storage 106 1nto a portion of the physical memory 104. Before
it does so, however, the operating system 110 first determines
whether the contents of the mappable data structure 214 have
already been loaded 1nto a portion of physical memory. In the
current example, it has; thus, the operating system 110 does
not reload the contents of the mappable data structure 214 1nto
another portion of physical memory. Instead, the operating
system 110 locates the portion 540 of physical memory nto
which the contents of the mappable data structure 214 have
already been loaded. The operating system 110 then maps the
portion 208(7) of the IVM 1nstance’s virtual memory space (a
portion of code cache 204(7)) to that physical memory por-
tion 540, as shown 1n FIG. 7. Thereatter, accesses to portion
208(») of code cache 204(72) will result 1n accesses to physical
memory portion 540. In this manner, all of the instances
402(1), 402(2), and 402(») are made by the operating system
110 to share the physical memory portion 540. Notice that
this sharing 1s transparent to the instances 402(1), 402(2),
402(»). The instances 402(1), 402(2), 402(7) are not aware
that they are sharing physical memory portion 540, and they
need not do anything additional to achieve the sharing. As a
result, other than adding some functionality 1n the form of
initializer 126, few 11 any changes need to be made to the

general JVM code 120.

Hardware Overview

In one embodiment, the operating system 110, JVM 120,
IIT compiler 122, Java interpreter 124, and mitializer 126
take the form of sets of instructions that are executed by one
or more processors. FIG. 1 shows a simplified block diagram

US 8,255,922 Bl

11

of an apparatus 100 on which these instructions may be
executed. FIG. 8 shows one possible embodiment of the appa-
ratus 100 1n greater detail. Computer system 800 includes a
bus 802 for facilitating information exchange, and one or
more processors 804 coupled with bus 802 for processing
information. Computer system 800 also includes a main
memory 806, such as a random access memory (RAM) or
other dynamic storage device, coupled to bus 802 for storing
information and instructions to be executed by processor 804.
Main memory 806 also may be used for storing temporary
variables or other intermediate information during execution
of instructions by processor 804. Computer system 800 may
turther include a read only memory (ROM) 808 or other static
storage device coupled to bus 802 for storing static informa-
tion and 1nstructions for processor 804. A storage device 810,
such as a magnetic disk or optical disk, 1s provided and
coupled to bus 802 for storing information and instructions.

Computer system 800 may be coupled via bus 802 to a
display 812 for displaying information to a computer user. An
input device 814, including alphanumeric and other keys, 1s
coupled to bus 802 for communicating information and com-
mand selections to processor 804. Another type of user input
device 1s cursor control 816, such as a mouse, a trackball, or
cursor direction keys for communicating direction informa-
tion and command selections to processor 804 and for con-
trolling cursor movement on display 812. This mput device
typically has two degrees of freedom 1n two axes, a first axis
(e.g., X) and a second axis (e.g., v), that allows the device to
specily positions 1n a plane.

In computer system 800, bus 802 may be any mechanism
and/or medium that enables information, signals, data, etc., to
be exchanged between the various components. For example,
bus 802 may be a set of conductors that carries electrical
signals. Bus 802 may also be a wireless medium (e.g. air) that
carries wireless signals between one or more of the compo-
nents. Bus 802 may further be a network connection that
connects one or more of the components. Any mechanism
and/or medium that enables information, signals, data, etc., to
be exchanged between the various components may be used
as bus 802.

Bus 802 may also be a combination of these mechanisms/
media. For example, processor 804 may communicate with
storage device 810 wirelessly. In such a case, the bus 802,
from the standpoint of processor 804 and storage device 810,
would be a wireless medium, such as air. Further, processor
804 may communicate with ROM 808 capacitively. Further,
processor 804 may communicate with main memory 806 via
a network connection. In this case, the bus 802 would be the
network connection. Further, processor 804 may communi-
cate with display 812 via a set of conductors. In this instance,
the bus 802 would be the set of conductors. Thus, depending,
upon how the various components communicate with each
other, bus 802 may take on different forms. Bus 802, as shown
in FIG. 8, functionally represents all of the mechanisms and/
or media that enable information, signals, data, etc., to be
exchanged between the various components.

The mvention 1s related to the use of computer system 800
for implementing the techniques described herein. According
to one embodiment of the mmvention, those techniques are
performed by computer system 800 in response to processor
804 executing one or more sequences ol one or more 1nstruc-
tions contained in main memory 806. Such instructions may
be read 1into main memory 806 from another machine-read-
able medium, such as storage device 810. Execution of the
sequences ol istructions contained 1n main memory 806
causes processor 804 to perform the process steps described
herein. In alternative embodiments, hard-wired circuitry may

10

15

20

25

30

35

40

45

50

55

60

65

12

be used 1n place of or in combination with software instruc-
tions to implement the mvention. Thus, embodiments of the
invention are not limited to any specific combination of hard-
ware circultry and software.

The term “machine-readable medium™ as used herein
refers to any medium that participates in providing data that
causes a machine to operation 1n a specific fashion. In an
embodiment implemented using computer system 800, vari-
ous machine-readable media are mvolved, for example, 1n
providing instructions to processor 804 for execution. Such a
medium may take many forms, including but not limited to,
non-volatile media, volatile media, and transmission media.
Non-volatile media includes, for example, optical or mag-
netic disks, such as storage device 810. Volatile media
includes dynamic memory, such as main memory 806. Trans-
mission media includes coaxial cables, copper wire and fiber
optics, including the wires that comprise bus 802. Transmis-
s1ion media can also take the form of acoustic or light waves,
such as those generated during radio-wave and infra-red data
communications.

Common forms of machine-readable media include, for
example, a tloppy disk, hard disk, magnetic tape, or any other
magnetic storage medium, a CD-ROM, DVD, or any other
optical storage medium, punchcards, papertape, any other
physical storage medium with patterns of holes, a RAM, a
PROM, and EPROM, a FLASH-EPROM, any other memory
chip or cartridge, or any other storage medium from which a
computer can read.

Various forms of machine-readable media may be involved
1n carrying one or more sequences ol one or more instructions
to processor 804 for execution. For example, the instructions
may 1nitially be carried on a magnetic disk of a remote com-
puter. The remote computer can load the mstructions nto its
dynamic memory and send the instructions over a telephone
line using a modem. A modem local to computer system 800
can recerve the data on the telephone line and use an infra-red
transmitter to convert the data to an infra-red signal. An
inira-red detector can receive the data carried 1n the infra-red
signal and appropriate circuitry can place the data on bus 802.
Bus 802 carries the data to main memory 806, from which
processor 804 retrieves and executes the instructions. The
instructions received by main memory 806 may optionally be
stored on storage device 810 either before or after execution
by processor 804.

Computer system 800 also includes a communication
interface 818 coupled to bus 802. Communication interface
818 provides a two-way data communication coupling to a
network link 820 that 1s connected to a local network 822. For
example, communication interface 818 may be an integrated
services digital network (ISDN) card or a modem to provide
a data communication connection to a corresponding type of
telephone line. As another example, communication interface
818 may be alocal area network (LAN) card to provide a data
communication connection to a compatible LAN. Wireless
links may also be implemented. In any such implementation,
communication interface 818 sends and receives electrical,
clectromagnetic or optical signals that carry digital data
streams representing various types of information.

Network link 820 typically provides data communication
through one or more networks to other data devices. For
example, network link 820 may provide a connection through
local network 822 to a host computer 824 or to data equip-
ment operated by an Internet Service Provider (ISP) 826. ISP
826 1n turn provides data communication services through the
world wide packet data communication network now com-
monly referred to as the “Internet” 828. Local network 822
and Internet 828 both use electrical, electromagnetic or opti-

US 8,255,922 Bl

13

cal signals that carry digital data streams. The signals through
the various networks and the signals on network link 820 and
through communication interface 818, which carry the digital
data to and from computer system 800, are exemplary forms
of carrier waves transporting the information.

Computer system 800 can send messages and receive data,
including program code, through the network(s), network
link 820 and communication interface 818. In the Internet
example, a server 830 might transmit a requested code for an
application program through Internet 828, ISP 826, local
network 822 and communication interface 818.

The received code may be executed by processor 804 as 1t
1s received, and/or stored in storage device 810, or other
non-volatile storage for later execution. In this manner, com-
puter system 800 may obtain application code in the form of
a carrier wave.

At this point, 1t should be noted that although the invention
has been described with reference to a specific embodiment,
it should not be construed to be so limited. Various modifica-
tions may be made by those of ordinary skill in the art with the
benefit of this disclosure without departing from the spirit of
the invention. Thus, the invention should not be limited by the
specific embodiments used to illustrate 1t but only by the
scope of the 1ssued claims and the equivalents thereof.

What 1s claimed 1s:

1. A method implemented by a computer, wherein a first
process 1s executing on the computer, the method comprising;:

initializing, 1n response to executing a first virtual machine

(VM) mstance on the computer, a first code cache asso-
ciated with the first VM 1nstance, wherein the computer
comprises a persistent storage, a first virtual memory
space, and a physical memory;

assigning the first virtual memory space to the first code

cache;

obtaining, from the first VM instance, a persistent storage

location;

determining that a mappable data structure does not exist at

the persistent storage location;

obtaining, in response to the determining that the mappable

data structure does not exist, a first component associ-
ated with the first VM 1nstance and a second component
associated with the first VM 1nstance;

compiling the first component to obtain first compiled code

stored 1n the first virtual memory space;

compiling the second component to obtain second com-

piled code stored 1n the first virtual memory space;
creating, at the persistent storage location, the mappable
data structure;

storing the first compiled code and the second compiled

code 1n the mappable data structure;

initializing, 1 response to executing a second virtual

machine (VM) instance on the computer, a second code
cache associated with the second VM 1instance, wherein
the computer further comprises a second virtual memory
space;

assigning the second virtual memory space to the second

code cache;

obtaining, from the second VM instance, the persistent

storage location;

determining that the mappable data structure exists at the

persistent storage location;

determining that the mappable data structure 1s compatible

with the second VM instance; and

mapping, in response to the determining that the mappable

data structure 1s compatible with the second VM
instance, the mappable data structure into the second
virtual memory space.

5

10

15

20

25

30

35

40

45

50

55

60

65

14

2. The method of claim 1, wherein determining that the
mappable data structure 1s compatible with the second VM
instance comprises:

obtaining a first set of information associated with the

mappable data structure;

obtaining a second set of information associated with the

second VM 1instance; and

comparing the first set of information to the second set of

information to obtain an indication that the mappable
data structure i1s compatible with the second VM
instance.

3. The method of claim 1, wherein storing the mappable
data structure comprises:

obtaining a set of information associated with the first VM

instance; and

storing the set of information with the mappable data struc-

ture.

4. The method of claim 1, further comprising:

providing component reference information to the second

VM instance to enable the second VM 1nstance to invoke
the first compiled code, wherein the component refer-
ence mformation includes information identifying the
first component, and a reference to the first compiled
code.

5. The method of claim 4, further comprising:

processing the mappable data structure to derive the com-

ponent reference information therefrom.

6. The method of claim 1, wherein the first VM 1nstance 1s
a Java virtual machine (JVM), and wherein the component-is
a Java method.

7. The method of claim 1, wherein the first VM 1nstance
and second VM 1nstance are created by executing the same set
of code.

8. A machine readable storage medium comprising a set of
instructions which, when executed by one or more proces-
sors, causes the one or more processors to perform the fol-
lowing operations:

imitializing, 1n response to executing a first virtual machine

(VM) 1nstance on the computer, a first code cache asso-
ciated with the first VM 1nstance, wherein the computer
comprises a persistent storage, a first virtual memory
space, and a physical memory;

assigning the first virtual memory space to the first code

cache;

obtaining, from the first VM 1nstance, a persistent storage

location;

determining that amappable data structure does not exist at

the persistent storage location;

obtaining, in response to the determiming that the mappable

data structure does not exist, a first component associ-
ated with the first VM 1nstance and a second component
associated with the first VM 1nstance;

compiling the first component to obtain first compiled code

stored 1n the first virtual memory space;

compiling the second component to obtain second com-

piled code stored 1n the first virtual memory space;
creating, at the persistent storage location, the mappable
data structure;

storing the first compiled code and the second compiled

code 1n the mappable data structure;

imitializing, in response to executing a second virtual

machine (VM) mstance on the computer, a second code
cache associated with the second VM 1nstance, wherein
the computer further comprises a second virtual memory
space;

assigning the second virtual memory space to the second

code cache:

US 8,255,922 Bl

15

obtaining, from the second VM instance, the persistent

storage location;

determining that the mappable data structure exists at the

persistent storage location;

determining that the mappable data structure 1s compatible

with the second VM 1nstance; and

mapping, in response to the determining that the mappable

data structure 1s compatible with the second VM
instance, the mappable data structure into the second
virtual memory space.

9. The machine readable storage medium of claim 8,
wherein determining that the mappable data structure 1s com-
patible with the second VM instance comprises:

obtaining a first set ol information associated with the

mappable data structure;

obtaining a second set of information associated with the

second VM 1instance; and

comparing the first set of information to the second set of

information to obtain an indication that the mappable
data structure 1s compatible with the second VM
instance.

10. The machine readable storage medium of claim 8,
wherein storing the mappable data structure comprises:

obtaining a set of information associated with the first VM

instance; and

storing the set of information with the mappable data struc-

ture.

11. The machine readable storage medium of claim 8,
wherein the set of 1nstructions causes the one or more pro-
cessors to further perform the following operation:

providing component reference information to the second

VM instance to enable the second VM 1nstance to invoke
the first compiled code, wherein the component refer-
ence information includes information identifying the
first component, and a reference to the first compiled
code.

12. The machine readable storage medium of claim 11,
wherein the set of 1nstructions causes the one or more pro-
cessors to further perform the following operation:

processing the mappable data structure to derive the com-

ponent reference iformation therefrom.

13. The machine readable storage medium of claim 8,
whereimn the first VM 1nstance 1s a Java virtual machine
(JVM), and wherein the component-1s a Java method.

14. An apparatus, comprising:

a persistent storage;

ONe Or MOre Processors;

a first virtual memory space;

a second virtual memory space;

a physical memory; and

a set of instructions, which when executed by the one or

more processors, causes the one or more processors 1o

perform the following operations:

initializing, in response to executing a first virtual
machine (VM) instance on the apparatus, a first code
cache associated with the first VM 1instance:

assigning the first virtual memory space to the first code
cache:

obtaining, from the first VM 1nstance, a persistent stor-
age location;

determining that a mappable data structure does not
exist at the persistent storage location;

10

15

20

25

30

35

40

45

50

55

60

16

obtaining, 1n response to the determining that the map-
pable data structure does not exist, a first component
associated with the first VM 1nstance and a second
component associated with the first VM instance;

compiling the first component to obtain first compiled
code stored 1n the first virtual memory space;

compiling the second component to obtain second com-
piled code stored 1n the first virtual memory space;

creating, at the persistent storage location, the mappable
data structure;

storing the first compiled code and the second compiled
code 1n the mappable data structure;

iitializing, 1n response to executing a second virtual
machine (VM) instance on the apparatus, a second
code cache associated with the second VM 1nstance;

assigning the second virtual memory space to the second
code cache;

obtaining, from the second VM 1nstance, the persistent
storage location;

determining that the mappable data structure exists at
the persistent storage location;

determining that the mappable data structure 1s compat-
ible with the second VM instance; and

mapping, 1n response to the determining that the map-
pable data structure 1s compatible with the second VM
instance, the mappable data structure ito the second
virtual memory space.

15. The apparatus of claim 14, determining that the map-
pable data structure 1s compatible with the second VM
instance comprises:

obtaining a first set of mformation associated with the

mappable data structure;

obtaining a second set of information associated with the

second VM 1nstance; and

comparing the first set of information to the second set of

information to obtain an indication that the mappable
data structure i1s compatible with the second VM
instance.

16. The apparatus of claim 14, wherein storing the map-
pable data structure comprises:

obtaining a set of information associated with the first VM

instance; and

storing the set of information with the mappable data struc-

ture.

17. The apparatus of claim 14, wherein the set of nstruc-
tions caused the one or more processors to further perform the
following operation:

providing component reference information to the second

VM instance to enable the second VM instance to mnvoke
the first compiled code, wherein the component refer-
ence mformation includes information identifying the
first component, and a reference to the first compiled
code.

18. The apparatus of claim 17, wherein the set of instruc-
tions causes the one or more processors to further perform the
following operation:

processing the mappable data structure to derive the com-

ponent reference information therefrom.

19. The apparatus of claim 14, wherein the first VM
istance 1s a Java virtual machine (JVM), and wherein the
component-1s a Java method.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

