12 United States Patent

Yamamoto

US008250501B2

US 8.250,501 B2
Aug. 21, 2012

(10) Patent No.:
45) Date of Patent:

(54)

(75)
(73)

(%)

(21)
(22)

(65)

(63)

(1)

(52)
(58)

(56)

DYNAMIC RECONFIGURATION COMPUTER
PRODUCT, APPARATUS, AND METHOD

Inventor: Tatsuya Yamamoto, Kawasaki (IP)

Assignee: Fujitsu Limited, Kawasaki (JP)

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 240 days.

Notice:

Appl. No.: 12/656,531

Filed: Feb. 2, 2010
Prior Publication Data
US 2010/0146257 Al Jun. 10, 2010

Related U.S. Application Data

Continuation of application No. PCT/JP2007/065913,
filed on Aug. 15, 2007.

Int. Cl.

GO6l' 17/50 (2006.01)

US.CL ..., 716/101; 716/104; 716/113
Field of Classification Search 716/101,

716/104, 113
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

FOREIGN PATENT DOCUMENTS

JP 10-320376 12/1998

JP 11-232081 8/1999

JP 2004-362446 12/2004

JP 2006-215592 8/2006

WO 01/95099 12/2001
OTHER PUBLICATIONS

International Preliminary Report on Patentability, mailed Mar. 18,
2010, 1n corresponding International Application No. PCT/JP2007/
065913 (6 pp.).

International Search Report for PCT/JP2007/065913, mailed Sep.
11, 2007.

* cited by examiner

Primary Examiner — Thuan Do
(74) Attorney, Agent, or Firm — Staas & Halsey LLP

(57) ABSTRACT

A computer-readable recording medium stores therein a
dynamic reconfiguration program that switches process by
process, execution of a series of processes for which recon-
figuration 1s to be performed, from execution by solftware
over to execution by hardware. The dynamic reconfiguration
program causes a computer to execute detecting in an order
reverse to that in which the series of processes 1s executed, a
process that1s among the series ol processes and under execu-
tion by the software; building on the hardware, a logic circuit
realizing a function of the detected process; and switching
execution of the process from execution by the software over
to execution by the built logic circuat.

5,751,967 A * 5/1998 Raabetal. 709/228

2003/0140222 Al 7/2003 Ohmi et al. 12 Claims, 12 Drawing Sheets

START

DETECT PROCESS S501

BUILD LOGIC CIRCUIT 5502

SWITCH TO EXECUTION BY LOGIC 3503
CIRCUIT

IS S504

PROCESS UNDER
EXECUTION BY SOFTWARE
F’RE%ENT

YES

NO
END

US 8,250,501 B2

Sheet 1 of 12

Aug. 21, 2012

U.S. Patent

JNIL

MH

L Old

.I__.__I_-__I.Il.'..'..__..l-.ll-l-._l._ll..ll.ll.ll.l.llll.il.__.'...l_.tl..._l_llll'.lll't.i.‘.‘.."-l.‘l_ll

ALITVNO

U.S. Patent Aug. 21, 2012 Sheet 2 of 12 US 8,250,501 B2

F1G.2

211; 221 222 223

~— (———
220

US 8,250,501 B2

Sheet 3 of 12

Aug. 21, 2012

U.S. Patent

LINN

ONININGS140

401>

Ot

LINN
ONIHOLIMS

c0t

£ Old

LINN
ONIa1INg

LINN
ONILO3130

L OE

US 8,250,501 B2

Sheet 4 of 12

Aug. 21, 2012

U.S. Patent

V.ivd
1Nd.LNO

a O d \
SS300¥d | 5S300dd S5S300dd §$§300Hd
MH MS MS MS

7 Ol

VivQ
1NdNI

U.S. Patent Aug. 21, 2012 Sheet 5 of 12 US 8,250,501 B2

FIG.5

DETECT PROCESS

S501

BUILD LOGIC CIRCUIT

SWITCH TO EXECUTION BY LOGIC 3503
CIRCUIT

5504

S502

1S

PROCESS UNDER

EXECUTION BY SOFTWARE

PRESENT
?

YES

US 8,250,501 B2

Sheet 6 of 12

Aug. 21, 2012

U.S. Patent

viva
O4dIA

H
AHONW3N ° 1001

NOILVZILNVNO

S3SHINASY

9 Ol

dIA

1A

d444Nd

WVIHLS
1ig

U.S. Patent

gk

g R e B e e L L VN T TR S

-'!'!"-"'I"F"I-"F"l'-l-ll--ll'll'llrll'llrllr_llr#'_#lhllllllllllhlll-d'lll""illll-:- WA NS NNk E N

A

R e ey e ek b

)
Rty g R
[3 ' | |
% WY
:: .# L "; ;.-. - .. -li.ilqi:.im-; '-'.'.'I- L :
. '
Yo : N porvele N ' $
:' ' v " L A + '
" .: oy % o o :__ o * '
1: I l--t :} * - I" {" k I'- . * { :
e -l . e R e W aaw b o, 3
'v"&;" W L A L) K + .
o PO SR ok i
L] - n [e - . LI q -l'.-,.
i LI L} ¥ AR -‘ i"l ¥ | 4 b
-k ¥ r ! My y M
:.- % r o e ;! 1 M +
g i [} r g L “!.. ¥ u "
S) ¥ i [M
:. e e] *'I"-"-"I-".'.'._'.'.'I-". - ...- '!'-.-.-q.l ¥
i-'i. :
Lo
¥
:‘:.
b
o
LI
i
. - a
e
T
F':'-_ At -\.a.:- . "| L
. T N o |-J- . \-J-:“' N .i'.'.-.""" no-
-1‘|'-. ¥
| L
L]
e
LR
L]
:.
n
oo e,

[

- :‘ l'i- ."
' +
1% N g g e e o e T T e e e e e -E'l-

e L L L L L ST T A A ol ol ol ol ol ol ol ol ol

- - - L N [
LT O O Y, P T

. . .
%'I"'-'-'I'-'-'-'-'-'l it E L I’_-i'_'_...-".’-.;-’q;-.”.‘_-%
. . .

I

Pl A L AL A K ‘-

'-"lll-.ll"-r b AL R L U AL R R R A L

=
- r'e

.'.‘ .
4, i

’ T T T Ty T

£

3 L]
5 LN A
e

Voot . - k

S N 3 '

- L] N k

. | M k

; SN
:"- :'] : : ¥ II‘.- :
l' & 1 . . - .‘l- L]
. wwu ! w W 1
) e 1 A
" » b L u
2 ¥ L
4 : - il
':'.. - e .-’ .ir_qr_a—_ar_-- r.

1
L S L |
.""\i- ----Ir-"l-.-.-bbirq.-i-qr' LR E N NN NN N

i
et

¥

Aug. 21, 2012

:-a@-.-.-.-

]
] i
: i
k il i i | i
+ N
: :
¥ |
A 4
X - i L]

[

et :
L]
o ’
I]
L)
L]

. U o
W

-~ LA E RN KRR]
=N e A & i S ok i L
LI R H‘I‘J?IL‘I‘ .

Ta o ra
f = b s &

-i“.‘?.fh* r‘l.'.-*
- . - []
L) ‘-.": 5 : i ‘m } o
- r
* n . '.f
N

. WY
W"""" TR U S A A oA A A A A A o m m mm ""\"%'.
ST e

- R
[AL
a s

N S A

.

%

'—'

l‘-l'-l".. 1 i-.l—l-l'l, = ..'....:l :

. L] s [}

i . L] :

" : H : :

. i T, : - i' . i

Pioni TG Gt b

' 5 S A

-“-‘N-":?% 1 b @'.. ::: "':t‘ 2 . st | ':. i.e.
- P v 'k oy - - = e i—— . . -

;‘ -:J _: 1, .-,l-_n - |: '.'.._‘- :,.n.*-n.*- : -I't:l] = ‘h..-. :. '.

] } W Lok v d "y L - e R

AL R R b P

A f ¥ i A . ' - :

"o 4 : - ‘j - . H .E »

i) SRR R R ‘4-4-4-4-4- L F E) :

i i .r".."'..".."-."-’

¥

| " .
R B O B NN N e o o o o w -..-i.-i.-.-.-.-.l.-.i.,i.,l.i,l,l,w‘,ﬁﬁiﬁ-ﬁwﬁhhhhhl'l'l'u'1'.‘.'_.-,--, RN EE RN B A i e e e dy o e e o e e W W W,

Sheet 7 of 12

-

‘WWWWWMEWW
L] e P .
L] LI
. Hy - > .
H X
' H
]
H TERFy L
. " M
' ! :
; i []
. v ' ¥
F) &
: ? ﬂ i :),
W E.q.-l | ']

3 * M
LS 3 , %
¥ " o B - k " L] L |
k .: . W [] b "-. " 1‘
£ on I 'y r 2
[] % Y ¥ b,
E : & ¥ . o
! r |] r,
ey Ve e
.-----r---r---i--i--i--i--i--ir-r-ir-i--r-ir-ir-r-ir-r-r-ir#-t-tlr'-i-'f:rl-'ﬂp'-rl-"a—:r'l-_'a-' - '-u.' 't;b:i L

-"""i-‘-"\-'"-‘-"'-"-"r"q-"'-‘-"'\ll-"'-"-'- N P R P, iy O P :]’

oy i
RE- 1 W
i E \ i
LA L1 L]
. L T ' '
S TR I«._:. i) Wy o, [[
e T ¥ A i

R il L) o

N . ¥ - -

b ¥ ._. - '.I i '. i

) I i
:': “. .. | N | : r:
- i '
-4] ' A
+ . [] [|
et ; & LA R R A ?
"“'""“-j-‘ T . -’-"-' - EEEEEEEEENEENEEN& B B J

"'-F"H-"i-"i-"-'-'-‘-'-'-"-"-'-'-'-'--lr-lr----------bbhq.l-ipi-ipipip--—---—--

US 8,250,501 B2

Ly 53

LW R W ARttty gty gty ey Yyt T e e T T TR TR T R R R RS R R R B o BB e ke e e o s oy o oy o oy oy oy Ay oy Ay Ay A N N W W W W W W W W X L E R E R EEE NN AT NN N |

O e 0 0 0 0 bbb g i g g g i g e i g Y

U.S. Patent Aug. 21, 2012 Sheet 8 of 12 US 8,250,501 B2

E
il
=
_ F
' v
c,_‘Tz.
' 2 =3
%L w o
%5 ;
OEL e
/ *****
V

0 ' . 3
O s 03
—— « (X b
L. c: 2)
B

.
us
~e) i
zolag D
)
03] %
| Sl

Y/

QUALITY [fps]
30
18
9
5
5

U.S. Patent Aug. 21, 2012 Sheet 9 of 12 US 8,250,501 B2

FIG.9

HAS
RECONFIGURATION
START NOTICE BEEN
RECEIVED?

YES
EXECUTE SERIES OF PROCESSES BY S902
SOFTWARE
n=n+1 SA03
—
NG S905

RECONFIGURATION
NEEDED?

YES

S906 READ OUT RECONFIGURATION
DATA

S807 BUILD LOGIC CIRCUIT

S908

RECONFIGURATION
COMPLETED?

NO

YES
|

>9809 RAISE COMPLETION FLAG

S910~ ISSUE INTERRUPTION HANDLER

END

U.S. Patent

Aug. 21, 2012 Sheet 10 of 12

FIG.10

1000

{_J

apphi({

while()¥{
S1();
S2();
S3();
S4();
Yiwhile

FIG.11

1100

~Hodone [0
~Hadone | 0
~adone | 0

US 8,250,501 B2

U.S. Patent Aug. 21, 2012 Sheet 11 of 12 US 8,250,501 B2

FIG.12

1200

r)

appli(){
MAN_start();

while(){
if(H1-done){
n1_start();
exit();
lelse(
S1();
If(H2-done){
h2_start();
h2_wait();
lelse
S2();
if(H3-done){
h3_start();
h3_wait();
lelse{
S3().
if(H4-done){
hd_start();
h4_wait();
Jelse{
S4();
}

;
}

}
} /iwhile

US 8,250,501 B2

JNIL
4 M "
i
MH .
|
!
............ R R (X
s | h
- ~2 ALITVND
o Y4
g “
72 N1 & |
_
a .
y—
~ MH .
s _
~ .
o 1
= —eee e e p
< | b
» ALIIVND

U.S. Patent
0N
A
O
LL

US 8,250,501 B2

1

DYNAMIC RECONFIGURATION COMPUTER
PRODUCT, APPARATUS, AND METHOD

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a U.S. Continuation Application filed
under 35 U.S.C. §111(a) claiming priority benefit of Interna-
tional Application PCT/JP2007/065913, filed on Aug. 15,

2007, the disclosures of which are incorporated herein by
reference.

FIELD

The embodiments discussed herein are related to a
dynamic reconfiguration computer product, apparatus, and
method.

BACKGROUND

Generally, software enables flexible design change to offer
high versatility, but consumes much processing time in
executing a task, iviting increased power consumption.
Dedicated hardware, such as an application specific inte-
grated circuit (ASIC), achieves high-speed processing to
shorten the processing time required for executing a task and
thus can reduce power consumption, but lacks versatility in
that design change 1s difficult.

Reconfigurative hardware, such as a field programmable
gate array (FPGA), falls between the above software and
dedicated hardware. Reconfigurative hardware has features
of high-speed processing and low power consumption, and
turther offers a software-oriented feature of enabling circuit
configuration rewriting.

In recent years, techniques using such reconfigurative
hardware have been provided, by which hardware 1s pro-
grammed during the execution of a task to dynamically recon-
figure a circuit configuration (see, e.g., Japanese Laid-Open
Patent Publication Nos. 2006-215592 and H10-320376).
According to these techmiques, circuit configuration 1s
dynamically reconfigured to realize many functions using
tew hardware resources and configure a circuit offering vari-
ous functions to speed up processing.

However, with the conventional techmques described in
the above patent documents, hardware reconfiguration 1tself
consumes much time resulting 1 a time lag until the execu-
tion of a task begins, leading to a problem of a drop 1n output
response.

A problem of the conventional techmiques will be
described 1n detail with respect to moving 1mage reproduc-
tion as an example. FIG. 13 1s an explanatory diagram depict-
ing a problem of the conventional techniques. In FIG. 13, a
graph 1310 and a graph 1320 depict a change i quality (e.g.,
image quality) that results upon reproduction of a moving
image. In the graphs 1310 and 1320, the vertical axis repre-
sents quality and the horizontal axis represents time.

The graph 1310 depicts a change 1n the quality of a moving
1mage 1n a case where sequential reconfiguration of hardware
(“HW” 1n FIG. 13) 1s necessary. In this case, a blank screen
continues from the i1ssue of a moving 1mage reproduction
instruction to the completion of hardware reconfiguration,
and then a clear moving image “quality q,” 1s reproduced at a
time t,.

In other words, a blank screen 1s displayed for a while after
the 1ssue of the reproduction instruction, which results 1n a
drop 1n output response. As a result, the user views a blank

10

15

20

25

30

35

40

45

50

55

60

65

2

screen for a while after the 1ssue of the reproduction 1nstruc-
tion, thus may experience stress because of the delay in the
display of the moving image.

The graph 1320 depicts a change 1n the quality of a moving,
image 1n a case where reproduction 1s alternatively executed
by software (“SW” 1n FIG. 13) before the completion of
hardware reconfiguration. In this case, a low-quality moving
image “quality q,” 1s reproduced from the 1ssue of a moving
image reproduction mstruction until the completion of hard-
ware reconfiguration, and then a clear moving 1image “quality
q,” 1s reproduced at the time t,.

In other words, the low-quality moving image 1s displayed
for a while after the 1ssue of the reproduction instruction,
which results 1n a drop 1n output response. Consequently, the
user views the low-quality moving image for a while atter the
1ssue of the reproduction instruction and thus may experience
stress because the display of the moving image 1s difficult for
the user to see.

SUMMARY

According to an aspect ol an embodiment, a computer-
readable recording medium stores therein a dynamic recon-
figuration program that switches process by process, execu-
tion of a series of processes for which reconfiguration 1s to be
performed, from execution by soltware over to execution by
hardware. The dynamic reconfiguration program causes a
computer to execute detecting 1n an order reverse to that 1n
which the series of processes 1s executed, a process that 1s
among the series ol processes and under execution by the
soltware; building on the hardware, a logic circuit realizing a
function of the detected process; and switching execution of
the process from execution by the software over to execution
by the built logic circuat.

The object and advantages of the invention will be realized
and attained by means of the elements and combinations
particularly pointed out 1n the claims.

It 1s to be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory and are not restrictive of the invention,
as claimed.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 1s a schematic of an embodiment.

FIG. 2 1s a schematic of a hardware configuration of a
dynamic reconfiguration apparatus according to the embodi-
ment.

FIG. 3 1s a block diagram of a functional configuration of
the dynamic reconfiguration apparatus.

FIG. 4 1s an explanatory diagram of an example of a series
of processes for which reconfiguration 1s to be performed.

FIG. 5 1s a flowchart of a dynamic reconfiguration proce-
dure by the dynamic reconfiguration apparatus.

FIG. 6 1s a block diagram of a series of functions of a
decoder.

FIG. 7 1s a schematic of dynamic reconfiguration.

FIG. 8 1s a graph depicting changes in the quality of a
moving image.

FIG. 9 1s a flowchart of an exemplary dynamic reconfigu-
ration procedure.

FIG. 10 1s an explanatory diagram of an example of a
program for executing a series of processes by software.

FIG. 11 1s an explanatory diagram of an example of a status
register.

US 8,250,501 B2

3

FIG. 12 1s an explanatory diagram of an example of a
program for executing the dynamic reconfiguration proce-
dure.

FIG. 13 1s an explanatory diagram depicting a problem of
the conventional techniques.

DESCRIPTION OF EMBODIMENTS

Preferred embodiments of the present invention will be
explained with reference to the accompanying drawings.

FI1G. 1 1s a schematic of an embodiment. In FIG. 1, a graph
100 depicts a change 1n quality that results upon reproduction
of a moving 1mage (vertical axis represents quality while
horizontal axis represents time). As depicted in the graph 100,
the quality upon reproduction of the moving 1image gradually
improves over time. The quality 1s, for example, an index
indicative of 1image quality, bit rate, etc.

For example, prior to reconfiguration, the moving image 1s
reproduced only by software, so that a low-quality moving
image (quality q,) 1s reproduced. Subsequently, first stage
reconiiguration 1s completed at a time t,, after which the
moving image 1s reproduced with a quality q, (q-.>q,). Sec-
ond stage reconfiguration 1s then completed at a time t,, after
which the moving 1mage 1s reproduced with a quality g,
(q:>q,). Finally, third stage reconfiguration 1s completed at a
time t,, after which the moving 1image 1s reproduced with a
quality q4 (44>93).

According to the embodiment, a series of processes under
execution by software are executed by hardware process by
process through process-by-process switching from software
over to hardware, thereby gradually improving the quality of
the moving image (q,—=q.—>q;—>q,). Hence, the quality at
time t in the graph 100 becomes higher than the quality at the
time t 1n the graphs 1310 and 1320 depicted 1n the description
of the conventional techmque (see FI1G. 13).

FIG. 2 1s a schematic of a hardware configuration of a
dynamic reconfiguration apparatus 200 according to the
embodiment.

As depicted 1n FIG. 2, the dynamic reconfiguration appa-
ratus 200 includes a computer 210, an 1mput device 220, and
an output device 230 and 1s connectable to a network 240 such
as a local area network (LAN), wide area network (WAN), or
the Internet via a router or a modem (not depicted).

The computer 210 includes a central processing unit
(CPU), amemory, and an interface. The CPU governs overall

control of the dynamic reconfiguration apparatus 200. The
memory includes a read-only memory (ROM), a random
access memory (RAM), ahard disk (HD), an optical disk 211,
and a flash memory. The memory i1s used as a work area of the
CPU.

The memory stores various programs, which are loaded
according to an instruction from the CPU. The reading and
writing of data with respect to the HD and the optical disk 211
are controlled by a disk drive. Further, the optical disk 211
and the tlash memory are removable from the computer 210.
The interface controls input from iput device 220, output to
the output device 230, and communication with the network
240.

The 1nput device 220 includes a keyboard 221, a mouse
222, and a scanner 223. The keyboard 221 includes keys for
the input of text, numerals, and various istructions. Further,
the input device 220 may be a touch panel type device. The
mouse 222 moves a cursor, determines an area, moves a
window, changes the dimensions of a window, etc. The scan-
ner 223 optically scans an image. The scanned 1image 1s taken

5

10

15

20

25

30

35

40

45

50

55

60

65

4

in as 1mage data and stored 1n the memory of the computer
210. The scanner 223 may have an optical character recogni-
tion (OCR) function.

The output device 230 includes a display 231, a speaker
232, and a printer 233. The display 231 displays a cursor,
icons, toolboxes, and data such as documents, 1mages, and
function information. The speaker 232 outputs sound such as
a sound effect, a text-to-voice converted sound, and the like.
The printer 233 prints image data and text data.

FIG. 3 1s a block diagram of a functional configuration of
the dynamic reconfiguration apparatus 200. As depicted in
FIG. 3, the dynamic reconfiguration apparatus 200 includes a
detecting unit 301, a building umt 302, a switching unit 303,
and a determining unit 304.

Functions of the functional umts 301 to 304 are imple-
mented by causing the CPU to execute relevant programs
stored 1n a memory area. Data output from the functional
units 301 to 304 1s saved to the memory area. Functions of the
functional units 301 to 304 at connection destinations 1ndi-
cated by arrows 1n FIG. 3 are implemented by causing the
CPU to read from the memory, data output from the func-
tional unit 301 to 304 at the connection origin and by further
by causing the CPU to execute a relevant program.

The dynamic reconfiguration apparatus 200 has a function
of switching, process by process, the execution of a series of
processes for which reconfiguration 1s to be performed, from
execution by software to execution by hardware. Execution
by software means execution of a program(s) realizing vari-
ous functions, the execution being by the CPU. Execution by
hardware means execution by a dedicated logic circuit(s)
prepared to realize the various functions.

The above hardware 1s a semiconductor integrated circuit
whose circuit configuration i1s rewritable, and may be, for
example, an FPGA, a complex programmable logic device
(CPLD), etc. Each process making up a series of processes 1s
executable by both software and such hardware.

The detecting unit 301 detects a process under execution by
soltware, among a series of processes for which reconfigura-
tion 1s to be performed. A series of processes 1s a group of
processes that are executed in a predetermined order. The
detected process 1s a process under execution by software,
and may be singular or plural.

FIG. 4 1s an explanatory diagram of an example of a series
of processes for which reconfiguration 1s to be performed. In
the example depicted 1n FIG. 4, the series of processes for
which reconfiguration 1s to be performed 1s a group of pro-
cesses A to D, arranged 1n the order of execution. Prior to
reconiiguration, the processes A, B, and C among the series of
processes A to D are executed by software (“SW” 1in FIG. 4),
whereas the process D 1s executed by hardware (“HW” 1n
FIG. 4).

Because hardware for executing the processes A, B, and C
has not been prepared, these processes A, B, and C are instead
executed by software prior to reconfiguration. In contrast,
because dedicated hardware for executing the process D has
been prepared, the process D 1s executed by hardware from
the beginning.

The detecting unit 301 detects a process(es) under execu-
tion by software, among the series ol processes A to D. In this
example, the detecting unit 301 detects any one among “pro-
cess A7, “process B”, “process C”, “processes A and B”,
“processes B and C”, and “processes A and C” under execu-
tion by software.

The reference of the description now returns to FI1G. 3. The
building unit 302 builds on hardware, a logic circuit that
realizes the function of the process detected by the detecting
unit 301. For example, a logic circuit realizing the function of

US 8,250,501 B2

S

the process may be built by writing to hardware, hardware
description information for realizing the function of the pro-
CEeSS.

Hardware description information describes circuit hard-
ware operation at a language level, 1.e., in a hardware descrip-
tion language, such as VHDL and Verilog. For example, hard-
ware description information 1s loaded into a memory
clement of a SRAM-type memory cell structure built in the
hardware to cause the built logic circuit to operate as the

design-based logic circuit.

Hardware description information for realizing the func-
tion of each process making up the series ol processes 1s
stored 1n advance to a memory area, such as ROM and RAM.
The building unit 302 reads from the memory area, hardware
description information corresponding to the process
detected by the detecting unit 301, and writes the hardware
description information to hardware.

For example, 11 the process A, which 1s under execution by
soltware, 1s detected among the series of processes A to D
depicted 1n FIG. 4, hardware description information for real-
1zing the function of the process A 1s read from the memory
area, and 1s written to hardware.

Following the building of the logic circuit by the building
unit 302, the switching unit 303 switches execution of the
detected process from execution by software over to execu-
tion by the logic circuit built on hardware. This means that
during execution of the series of processes, the function real-
1zed by the detected process 1s switched from being a sofit-
ware-dependent function to a hardware-dependent function.

An example of the switching process by the switching unit
303 will be described. The apparatus body 1s provided with a
switch for switching execution of a detected process. The
switching unit 303 controls the switch to switch execution of
the process from execution by software over to execution by
a logic circuit built on hardware.

For example, if a logic circuit for realizing the function of
the process A of FIG. 4 1s built, the above switch 1s controlled
to switch execution of the process A from execution by soft-
ware over to execution by a logic circuit built on hardware. As
a result, among the series of processes A to D, the processes
A and D are executed by hardware, whereas the processes B
and C are executed by software.

When execution of the process A 1s switched from execu-
tion by soitware over to execution by hardware, execution of
the process A by software 1s suspended and the program(s)
stored 1n the RAM {for executing the process A may be
deleted.

Following execution of the switching by the switching unit
303, the determining unit 304 determines whether a process
under execution by the software 1s present among the series of
processes. For example, the determining unit 304 may deter-
mine whether a process (under execution by soiftware) not
detected by the detecting unit 301 1s present.

If the determining unit 304 determines that a process under
execution by software 1s present, the detecting process by the
detecting unit 301, the building process by the building unit
302, and the switching process by the switching unit 303 may
be executed, e.g., aprocess 1s detected from among remaining,
processes under execution by software and a sequence of
processes 15 executed repeatedly until no processes under
execution by software remain.

For example, 1n executing the series of processes A to D of
FIG. 4, a case 1s assumed where execution of the process A 1s
switched from execution by soitware over to execution by
hardware. In this case, the determining unit 304 determines
the presence of the processes B and C under execution by

10

15

20

25

30

35

40

45

50

55

60

65

6

soltware, thereby causing the detecting unit 301, the building,
umt 302, and the switching unit 303 to repeat various pro-
cesses, respectively.

Examples of the detecting process by the detecting unit 301
will be described. In a first example, the detecting unit 301
may detect processes 1n the order of execution of the series of
processes. Information for identitying the order of execution
1s stored 1n the memory area, such as ROM and RAM. For
example, information for identitying the order of execution 1s
read from the memory area, and processes are detected in the
order of execution identified from the read information.

For example, 1n executing the series of processes A to D of
FIG. 4, the processes A, B, and C under execution by the
soltware are detected 1n ascending order of “process A, pro-
cess B, and process C”. This simplifies control over the trans-
mission/reception of calculation data among the processes
included 1n the series of processes (e.g., control over the
above switch) to reduce overhead for hardware reconfigura-
tion.

In a second example, the detecting unit 301 may detect
processes 1n the reverse order of execution. For example,
information for identifying the order of execution 1s read from
the memory area, and the processes are detected 1n the reverse
order of execution identified from the read information.

For example, 1n executing the series of processes A to D of
FIG. 4, the processes A, B, and C under execution by the
software are detected i descending order of “process A,
process B, and process C”. This simplifies control over trans-
mission/reception of calculation data among the processes
included 1n the series of processes to reduce overhead for
hardware reconfiguration.

In a third example, the detecting unit 301 may detect pro-
cesses 1n a predetermined order of detection. This order of
detection can be set by a user. For example, among the series
ol processes, a process consuming relatively more time for
execution by software may be detected preferentially, thereby
ecnabling a process prone to cause bottlenecking to be
detected first 1n sequentially detecting the series of processes.

A process having a large effect on the quality of a function
realized by executing the series of processes may be detected
preferentially with consideration of control over transmis-
sion/reception of calculation data among processes and a
tradeoll effect on execution time. A process consuming rela-
tively less time for reconfiguration (the building process by
the building unit 302) may be detected preferentially.

Information for identifying the order of detection may be
input directly to the dynamic reconfiguration apparatus 200,
or may be acquired from an external computer. Information
for 1dentitying the acquired or input order of detection 1is
stored to the memory area. The detecting unit 301 reads this
information from the memory area to detect processes 1n the
order of detection 1dentified from the read information.

A logic circuit built on hardware by the building unit 302
may be deleted when the series of processes are finished. In
executing the series of processes, 1f a logic circuit for realiz-
ing a different function has already been built on the hard-
ware, the logic circuit (unless 1n the process of being built)
may be deleted using the time for reconfiguring the hardware
to realize the function of a detected process.

FIG. 5 15 a flowchart of a dynamic reconfiguration proce-
dure by the dynamic reconfiguration apparatus 200.

As depicted 1n the flowchart of FIG. 5, the detecting unit
301 detects a process under execution by software among a
series of processes for which reconfiguration 1s to be per-
formed (step S301). Subsequently, the building umt 302
builds on hardware, a logic circuit that realizes the function of
the process detected by the detecting unit 301 (step S502).

US 8,250,501 B2

7

Following the building of the logic circuit by the building
unit 302, the switching unit 303 switches execution of the
process from execution by software over to execution by the
logic circuit built on hardware (step S503). The determining
unit 304 then determines whether a process under execution
by software 1s present among the series ol processes (step
S504).

If a process under execution by software 1s determined to
be present (step S504: YES), the procedure returns to step
S501, from which processes at steps S301 to S503 are
repeated. If no process under execution by software 1s deter-
mined to be present (step S504: NO), a sequence of the
processes 1n the flowchart ends.

According to the embodiment described above, execution
ol a process 1s switched from execution by software over to
execution by hardware during execution of the series of pro-
cesses. As a result, the speed of execution of the processes 1s
increased process by process while execution of the series of
processes continues.

Hardware reconfiguration 1s executed until there are no
longer any processes under execution by software. As a resullt,
the execution of each process included in the series of pro-
cesses 1s switched process by process from execution by
software over to execution by hardware.

Execution of a process may be switched from execution by
soltware over to execution by hardware 1n the order of execu-
tion or in the reverse order of execution of the series of
processes. This simplifies control over transmission/recep-
tion of calculation data among processes included i the
series ol processes, and reduces overhead for hardware recon-
figuration.

Execution of a detected process may be switched from
execution by software over to execution by hardware 1n a
predetermined order of detection. For example, reconfigura-
tion 1s executed preferentially for a process having a large
eifect on the quality of a function realized by executing the
series ol processes, such as a process prone to cause bottle-
necking. This achieves more effective improvement 1n qual-
ity.

An example of the above embodiment will be described 1n
which a decoding process of decoding coded moving image
data 1s used to describe dynamic reconfiguration. FIG. 6 1s a
block diagram of a series of functions of a decoder. As
depicted 1n FIG. 6, the decoder includes functions of variable
length decoding (VLD), reverse quantization, mverse dis-
crete cosine transform (IDCT), and motion compensation
(MC).

For example, a series of processes (a VLD process, a
reverse quantization process, an IDCT process, an MC pro-
cess) for realizing the above functions (VLD, reverse quan-
tization, IDCT, MC) are executed on a bit stream for each
frame read from a butfer. As a result, decoded video data 1s
output from a memory. Prior to reconfiguration, the above
functions are realized by software.

First, the series of processes for realizing the above func-
tions 1s started by software and hardware reconfiguration 1s
also started. When hardware reconfiguration 1s completed,
the execution of the corresponding process 1s then switched
from execution by soltware over to execution by the hard-
ware. In this manner, execution of the series of processes for
realizing the functions of the decoder 1s switched process by
process from execution by the software over to execution by
the hardware to realize the functions of the decoder ultimately
by the hardware.

In this case, the detecting process by the detecting unit 301
of FIG. 3 1s executed in the order (MC process—IDCT

process—reverse quantization process—VLD process)

5

10

15

20

25

30

35

40

45

50

55

60

65

8

reverse to the order of execution of the series of processes
(VLD process—reverse quantization process—IDCT
process—MC process) for realizing the above functions.

FIG. 7 1s a schematic of dynamic reconfiguration. At [step
S1] 1in FIG. 7, the series of processes (VLD process, reverse
quantization process, IDCT process, MC process) for realiz-
ing the above functions (VLD, reverse quantization, IDCT,
MC) are executed by software.

At [step S2], the detecting unit 301 detects the MC process
among the series of processes for which reconfiguration 1s to
be performed (VLD process, reverse quantization process,

IDCT process, MC process), and the building unit 302 builds

on hardware, a logic circuit that realizes the function of the
MC process. The switching unit 303 switches execution of the
MC process from execution by software over to execution by
the logic circuit built on hardware.

As a result, among the series of processes (VLD process,
reverse quantization process, IDCT process, MC process) for
realizing the functions of the decoder, the VLD process, the
reverse quantization process, and the IDCT process are
executed by software, while the MC process for which recon-
figuration has been completed 1s executed by hardware. The
program for executing the MC process 1s deleted at the point
of completion of reconfiguration.

At [step S3], the detecting unit 301 detects the IDCT pro-
cess among the series of processes for which reconfiguration
1s to be performed (VLD process, reverse quantization pro-
cess, IDCT process, MC process), and the building unit 302
builds on hardware, a logic circuit that realizes the function of
the IDCT process. The switching unit 303 switches execution
of the IDCT process from execution by software over to
execution by the built logic circuit.

As a result, among the series of processes (VLD process,
reverse quantization process, IDCT process, MC process) for
realizing the functions of the decoder, the VLD process and
the reverse quantization process are executed by software,
while the MC process and the IDCT process for which recon-
figuration has been completed are executed by hardware. At
this point, the program for executing the IDCT process and
for which reconfiguration has been completed 1s deleted.

At [step S4], the detecting unit 301 detects the reverse
quantization process among the series of processes for which
reconfiguration 1s to be performed (VLD process, reverse
quantization process, IDCT process, MC process), and the
building unit 302 builds on hardware, a logic circuit that
realizes the function of the reverse quantization process. The
switching umt 303 switches execution of the reverse quanti-
zation process from execution by software over to execution
by the built logic circuit.

As a result, among the series of processes (VLD process,
reverse quantization process, IDCT process, MC process) for
realizing the functions of the decoder, the VLD process 1s
executed by software, while the MC process, the IDCT pro-
cess, and the reverse quantization process for which recon-
figuration has been completed are executed by hardware. At
this point, the program for executing the reverse quantization
process and for which reconfiguration has been completed 1s
deleted.

At [step S5], the detecting unit 301 detects the VLD pro-
cess among the series of processes for which reconfiguration
1s to be performed (VLD process, reverse quantization pro-
cess, IDCT process, MC process), and the building unit 302
builds on hardware, a logic circuit that realizes the function of
the VLD process. The switching unit 303 switches execution
of the VLD process from execution by software over to execu-
tion by the built logic circuit.

US 8,250,501 B2

9

As a result, the entire series of processes (VLD process,
reverse quantization process, IDCT process, and MC process)
for realizing the functions of the decoder are executed by
hardware. At this point, the program for executing the VLD
process 1s deleted at the point of completion of reconfigura-
tion

FIG. 8 1s a graph depicting changes in the quality of a
moving image. In FIG. 8, a graph 800 depicts the quality of
the moving 1image at [step S1] to [step S35] of FIG. 7. In the
graph 800, the vertical axis represents quality [{ps] and the
horizontal axis represents time [T]. The quality 1s expressed
by the number of frames per unit time, 1.¢., as the quality
improves, the number of frames per unit time increases, thus
leading to display of a smoother moving image.

For example, the quality of the moving image 1s 5 [ips] at
[step S1] at which hardware reconfiguration realizing the
function of MC 1s 1n progress. The quality of the moving
image 1s 6 [Ips] at [step S2] at which hardware reconfigura-
tion realizing the function of IDCT 1is in progress, 1.¢., real-
1zing the function of MC by hardware raises the quality from
S [Ips] at [step S1] to 6 [1ps].

Further, the quality of the moving 1image 1s 9 [Ips] at [step
S3] at which hardware reconfiguration realizing the function
of reverse quantization 1s 1n progress, 1.€., realizing the func-
tion of IDCT by hardware raises the quality from 6 [ips] at
[step S2] to 9 [Ips].

Further, the quality of the moving 1image 1s 18 [1ps] at [step
S4] at which hardware reconfiguration realizing the function
of VLD 1s 1n progress, 1.e., realizing the function of reverse
quantization by hardware raises the quality from 9 [ips] at
[step S3] to 18 [1ps].

The quality of the moving image 1s 30 [ips] at [step S3] at

which hardware reconfiguration realizing the series of func-
tions (VLD, reverse quantization, IDCT, MC) 1s completed,
1.¢., realizing the function of VLD by hardware raises the
quality from 18 [1ps] at [step S4] to 30 [1ps].
In this manner, hardware realizing the series of functions
(VLD, reverse quantization, IDCT, MC) 1s reconfigured pro-
cess by process for each function. This gradually shortens
processing time consumed for decoding each frame and thus,
improves the quality of the moving image.

FIG. 9 1s a flowchart of an exemplary dynamic reconfigu-
ration procedure. As depicted in the flowchart of FIG. 9,
whether a reconfiguration start notice has been received 1s
determined (step S901). A reconfiguration start notice 1s a
moving 1mage reproduction instruction, etc., from a user. For
example, the user may operate the mput device 220, such as
the keyboard 221 and the mouse 222, of FIG. 2 to mput a
reconiiguration start notice, which 1s recerved by the appara-
tus.

Reception of the reconfiguration start notice 1s waited for
(step S901: NO), and upon reception of the reconfiguration
start notice (step S901: YES), the series of processes (VLD
process, reverse quantization process, IDCT process, MC
process) for realizing the functions of the decoder (VLD,
reverse quantization, IDCT, MC) are executed by software
(step S902).

For example, a program(s) relevant to the above functions
(VLD, reverse quantization, IDCT, MC) 1s executed by the
CPU. FIG. 10 1s an explanatory diagram of an example of a
program for executing the series of processes by software. As
depicted 1n FIG. 10, the program 1000 includes written
source codes for executing the series of processes (VLD
process, reverse quantization process, IDCT process, and MC
Process).

The CPU, following a While statement in the program
1000, executes the series of processes (VLD process, reverse

10

15

20

25

30

35

40

45

50

55

60

65

10

quantization process, IDCT process, MC process). In FIG.
10, S1 represents the VDL process, S2 represents the reverse
quantization process, S3 represents the IDCT process, and S4
represents the MC process. Details of the program for execut-
ing the processes are omitted in depiction and description.
An iteger n (1nitial value: n=0) for identitying the above
functions (VLD, reverse quantization, IDCT, MC) 1s
increased by 1 (step S903). Values of the integer n correspond
to the respective functions (VLD, reverse quantization, IDCT,

MC) such that n=1 corresponds to VDL, n=2 to reverse quan-
tization, n=3 to IDCT, and n=4 to MC.

Subsequently, whether the integer n 1s smaller than an
integer N 1s determined (step S904). The integer N represents
the total number of the functions (VLD, reverse quantization,
IDCT, MC). In this example, the integer N takes a value of
“4”. 11 the integer n 1s determined to be smaller than the
integer N (step S904: YES), whether hardware reconfigura-
tion realizing the function identified from the integer n 1s

necessary 1s determined (step S9035).

For example, hardware reconfiguration may be determined
to be unnecessary for a process that does not consume much
processing time when executed by software. A function
requiring hardware reconfiguration may be set in advance,
and by referring to such setting, whether hardware reconfigu-
ration to realize the function 1dentified from the integer n1s to
be performed may be determined.

If reconfiguration 1s determined to be unnecessary at step
S90S (step S905: NO), the procedure returns to step S903. It
it 1s determined that reconfiguration 1s to be performed (step
S905: YES), reconfiguration data for reconfiguring hardware
to realize the function identified from the integer n 1s read
from the memory area (step S906), and a logic circuit realiz-
ing the function identified from the integer n 1s built on the
hardware (step S907). Reconfiguration data 1s equivalent to
the above hardware description information.

Subsequently, whether reconfiguration of the hardware
realizing the function identified from the integer n has been
completed 1s determined (step S908). Completion of the
reconfiguration 1s waited for (step S908: NO), and when
reconfiguration has been completed (step S908: YES), a
completion flag for the function 1dentified from the integer n
1s raised 1n a status register (step S909).

FIG. 11 1s an explanatory diagram of an example of the
status register. A status register 1100 of FIG. 11 holds a
completion flag indicative of whether hardware reconfigura-
tion realizing the above functions (VLD, reverse quantiza-
tion, IDCT, MC) has been completed.

In the status register 1100, H1 denotes hardware realizing
the function oI VLD, H2 denotes hardware realizing the func-
tion of reverse quantization, H3 denotes hardware realizing
the function of IDCT, and H4 denotes hardware realizing the
tfunction of MC. The CPU refers to the status register 1100 to
determine whether hardware reconfiguration realizing each
ol the functions has been completed. In the example depicted
in FIG. 11, the CPU refers to the status register 1100 and
determines that, among the functions (VLD, reverse quanti-
zation, IDCT, MC), hardware reconfiguration realizing the
function of VLD has been completed.

The reference of the description now returns to FIG. 9.
Following step S909, an interruption handler for the function
indicated by a completion flag raised in the status register
(e.g., status register 1100) 1s 1ssued (step S910), and the
procedure returns to step S903, 1.e., execution ol a process
realizing the function identified from the integer n 1s switched
from execution by software over to execution by the logic
circuit built at step S907.

US 8,250,501 B2

11

If the integer n 1s determined to be larger than the integer N
at step S904 (step 904: NO), a sequence of processes of the
flowchart 1s ended.

The process at step S903 1s equivalent to the detecting
process by the detecting unit 301 of FIG. 3, the processes at
steps S906 and S907 are equivalent to the building process by
the building unit 302, the process at step S909 1s equivalent to
the switching process by the switching unit 303, and the
process at step S904 1s equivalent to the determining process
by the determining unit 304.

FIG. 12 1s an explanatory diagram of an example of a
program for executing the dynamic reconfiguration proce-
dure. As depicted i FIG. 12, the program 1200 includes
written source codes for realizing the dynamic reconfigura-
tion procedure of FIG. 9.

According to the written contents of the program 1200, the
dynamic reconfiguration apparatus 200 determines for each
process mcluded a series of processes whether hardware has
been reconfigured. IT hardware has been reconfigured, the
process 1s executed by the hardware. If hardware has not been
reconiigured, the process 1s executed by software 1nstead.

For example, the dynamic reconfiguration apparatus 200
operates according to a logical configuration 1n which the
dynamic reconfiguration apparatus 200 determines whether
hardware reconfiguration realizing the function of MC has
been completed. If reconfiguration has been completed, the
dynamic reconfiguration apparatus 200 causes the hardware
to execute the MC process and waits for the process. If recon-
figuration has not been completed, the dynamic reconfigura-
tion apparatus 200 causes the software to execute the MC
process. The dynamic reconfiguration apparatus 200 per-
forms such control for each of the functions until hardware
reconiiguration realizing all the functions 1s completed.

In the example described above, execution of a process 1s
switched from execution by soitware over to execution by
hardware during execution of the series of processes (VLD
process, reverse quantization process, IDCT process, MC
process) realizing the functions of the decoder. As aresult, the
speed of the processes can be increased process by process
while the decoding process 1s executed continuously.

In this manner, the execution of each process included in
the series of processes 1s switched process by process from
execution by software over to execution by hardware, thereby
reducing overhead for hardware reconfiguration, thus speed-
ing up the decoding process and improving the quality of the
moving image.

For example, the number of frames per unit time 1s gradu-
ally increased during reproduction of a moving 1mage to
improve output (video data) response. As a result, during
reproduction of the moving 1mage, the quality of the moving,
image gradually improves over time, thereby relieving the
user of stress experienced from viewing a low-quality moving,
image.

With respect to devices having fewer hardware resources
available, such as a cellular phone, 1n particular, application
of the dynamic hardware reconfiguration according to the
embodiment improves the output response of such devices,
enabling provision of adequate services (TV phone, 1-seg
broadcasting, etc.).

As described, according to the embodiment, a software-
dependent function 1s switched process by process over to a
hardware-dependent function to reduce overhead for hard-
ware reconfiguration and achieve improved output response
and lower power consumption.

The dynamic reconfiguration method described in the
present embodiment may be implemented by executing a
prepared program on a computer such as a personal computer

10

15

20

25

30

35

40

45

50

55

60

65

12

and a workstation. The program 1s stored on a computer-
readable recording medium such as a hard disk, a flexible
disk, a CD-ROM, an MO, and a DVD, read out from the
recording medium, and executed by the computer. The pro-
gram may be a transmission medium that can be distributed
through a network such as the Internet.

The dynamic reconfiguration apparatus 200 described 1n
the present embodiment can be realized by an application
specific integrated circuit (ASIC) such as a standard cell or a
structured ASIC, or a programmable logic device (PLD) such
as a field-programmable gate array (FPGA). Specifically, for
example, functional units (301 to 304) of the dynamic recon-
figuration apparatus 200 are defined in hardware description
language (HDL), which 1s logically synthesized and applied
to the ASIC, the PLD, etc., thereby enabling manufacture of
the dynamic reconfiguration apparatus 200.

All examples and conditional language recited herein are
intended for pedagogical purposes to aid the reader 1n under-
standing the mvention and the concepts contributed by the
inventor to furthering the art, and are to be construed as being
without limitation to such specifically recited examples and
conditions, nor does the organization of such examples in the
specification relate to a showing of the superiority and infe-
riority of the invention. Although the embodiment of the
present invention has been described in detail, 1t should be
understood that the various changes, substitutions, and alter-
ations could be made hereto without departing from the spirit
and scope of the invention.

What 1s claimed 1s:
1. A non-transitory computer-readable recording medium
storing therein a dynamic reconfiguration program that
switches process by process, execution of a series of pro-
cesses for which reconfiguration 1s to be performed, from
execution by software over to execution by hardware, the
dynamic reconfiguration program causing a computer to
execute:
detecting in an order reverse to that in which the series of
processes 1s executed, a process that 1s among the series
of processes and under execution by the software;

building on the hardware, a logic circuit realizing a func-
tion of the detected process; and

switching execution of the process from execution by the

soitware over to execution by the built logic circuit.

2. The computer-readable recording medium according to
claim 1 and storing therein the dynamic reconfiguration pro-
gram that further causes the computer to execute:

determining, subsequent to the switching, whether a pro-

cess under execution by the solitware 1s present among
the series of processes, wherein

the detecting, the building, and the switching are executed

by the computer when, at the determining, a process
under execution by the software 1s determined to be
present.

3. The computer-readable recording medium according to
claim 1, wherein

the detecting includes detecting 1n a preset order.

4. The computer-readable recording medium according to
claim 1, wherein

the building includes writing, to the hardware, hardware

description information for realizing the function of the
process to build the logic circuit.

5. A dynamic reconfiguration apparatus that switches pro-
cess by process, execution of a series of processes for which
reconiiguration 1s to be performed, from execution by soft-
ware over to execution by hardware, the dynamic reconfigu-
ration apparatus comprising:

US 8,250,501 B2

13

a detecting unit that detects 1n an order reverse to that in
which the series of processes 1s executed, a process that
1s among the series of processes and under execution by
the software;

a building unit that builds on the hardware, a logic circuit
realizing a Tunction of the detected process; and

a switching unit that switches execution of the process
from execution by the software over to execution by the
built logic circuit.

6. The dynamic reconfiguration apparatus according to

claim 5 and further comprising:

a determining unit that, subsequent to execution switching,
by the switching unit, determines whether a process
under execution by the software 1s present among the
series ol processes, wherein

the detecting unit detects a process among the series of

processes remaining under execution by the software,
when the determining umt determines that a process
under execution by the software 1s present.
7. The dynamic reconfiguration apparatus according to
claim 5, wherein
the detecting unit detects the series of processes in a preset
order.
8. The dynamic reconfiguration apparatus according to
claim 5, wherein
the building unit writes, to the hardware, hardware descrip-
tion information for realizing the function of the process
to build the logic circuat.
9. A dynamic reconfiguration method that switches process
by process, execution of a series of processes for which recon-

14

figuration 1s to be performed, from execution by software
over to execution by hardware, the dynamic reconfiguration
method comprising:
detecting, by using a computer and 1n an order reverse to
that 1n which the series of processes 1s executed, a pro-
cess that 1s among the series of processes and under
execution by the software;
building on the hardware, a logic circuit realizing a func-
tion of the detected process; and
switching execution of the process from execution by the
soltware over to execution by the built logic circuat.
10. The dynamic reconfiguration method according to
claim 9 and further comprising:
determiming, subsequent to the switching, whether a pro-
cess under execution by the software 1s present among,
the series of processes, wherein
the detecting, the building, and the switching are executed
by the computer when, at the determining, a process
under execution by the software 1s determined to be
present.
11. The dynamic reconfiguration method according to
claim 9, wherein
the detecting includes detecting 1n a preset order.
12. The dynamic reconfiguration method according to

25 claim 9, wherein

the building includes writing, to the hardware, hardware
description information for realizing the function of the
process to build the logic circuait.

	Front Page
	Drawings
	Specification
	Claims

