US008250457B2
a2y United States Patent (10) Patent No.: US 8.250.457 B2
Fainberg et al. 45) Date of Patent: Aug. 21, 2012
(54) ACCELERATION AND OPTIMIZATION OF 6,067,565 A 5/2000 Horvitz
WEB PAGES ACCESS BY CHANGING THE 6,085,226 A 7/2000 Horvitz

ORDER OF RESOURCE LLOADING 0,098,064 A 8/2000 Prrolli et al.

6,272,534 Bl 8/2001 Guha
: : . 6,338,096 Bl 1/2002 Ukelson
(75) Inventors: Leonid Fainberg, Qiryat Gat (IL); Ofir 6.385.641 Bl 5/2002 Jiang et al.
Ehrlich, Tel Aviv (IL); Gil Shai, 6,578,073 B1* 6/2003 Starnesetal. 709/219
Givataim (IL); Ofer Gadish, Raanana 6,834,297 Bl 12/2004 Peiffer et al.
(IL); Amitay Dobo, Kibbutz Lahav (IL); 6,993,591 Bl 1/2006 Klemm
Ori Berger, New York, NY (US) 7,007,237 Bl 2/2006 Sharpe
7,084,877 B1* 8/2006 Panusopone etal. 345/474

7,113,935 B2 9/2006 Saxena et al.

(73) Assignee: Limelight Networks, Inc., Tempe, AZ 7.243.309 B2 7/2007 Koay et al

(US) 7,249,196 Bl1* 7/2007 Pefferetal. 709/246
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 0 days. OTHER PUBLICATIONS
(21) Appl. No.: 13/245,841 Gardner et al., DOM: Towards a Formal Specification, ACM 2008,
pp. 1-10.%*
(22) Filed: Sep. 26, 2011 _
(Continued)
(65) Prior Publication Data
US 2012/0079057 Al Mar. 29,J 2012 Prfma}ﬂy Fyxaminer — Cong_LaC Huyn_h
Related U.S. Application Data (74) Attorney, Agent, or Firm — Kilpatrick Townsend &
Stockton LLP
(63) Continuation of application No. 12/848,559, filed on
Aug. 2, 2010.
(57) ABSTRACT

(60) Provisional application No. 61/213,959, filed on Aug.
3, 2009, provisional application No. 61/308,951, filed

A method for acceleration of access to a web page. The
on Feb. 28, 2010.

method comprises receiving a web page responsive to a

(51) Int.CL request by a user; analyzing the received web page for pos-

GO6F 17/00 (2006.01) sible acceleration improvements; generating a modified web
(52) US.CL oo, 715/205 Page ol the received web page using at least one of a plurality
(58) Field of Classification Search ... 715/205 O acceleration techniques; providing the moditied web page

to the user, wherein the user experiences an accelerated

S lication file £ let h history.
~v SPpHtALOR TIE SO COTpIe et el access to the modified web page resulting from the execution

(56) References Cited of the at least one of a plurality of acceleration techniques;
and storing the modified web page for use responsive to future
U.S. PATENT DOCUMENTS user requests.

5,802,292 A 9/1998 Mogul
0,023,726 A 2/2000 Saksena
0,055,572 A 4/2000 Saksena 18 Claims, 5 Drawing Sheets

(START) j}ﬂ

O, T
[/

£330
B

Ceche received web pige & |
the back-ond cache i

i 810

! Anziven nege for pogurbie |
| seceleraiion bnprovements |

% Arply apotlenrion i !
L] methods o cmodified web |
l sage <f the reveived wob pape!

@ 'i 8360
Prowide modified
page to nEor novie

l 8370,

Store modificd web page in
front-end cache

US 8,250,457 B2

Page 2
U.S. PATENT DOCUMENTS 2009/0240698 Al1* 9/2009 Shuklaetal. 707/10
1 *
7308490 B2 12/2007 Peiffer et al. 200970300111 AL™ 12/2009 Ranaccoovvvvvvnns 709/203
2010/0149091 Al 6/2010 Kotaetal. 345/156
7.483,941 B2 1/2009 Carlson et al. - .. -
. 2010/0169455 Al 7/2010 Gorhamc.ceve, 709/218
7,594,003 B2 9/2009 Davidson et al. . . s . -
2010/0269050 Al1* 10/2010 Kirkbyetal. 715/744
7,594,013 B2 9/2009 Wang et al. - - .
7620 663 B 19010 Ki . 2010/0281357 Al1™ 11/2010 Fuetal.o 715/234
el ege By 10010 Connan et al 2010/0299589 Al* 11/2010 Yamadaco........... 715/235
e8] By 199010 Hacelden of 4l 2010/0306643 A1* 12/2010 Chabotetal. 715/234
St Lo paselden et al 2011/0066676 Al* 3/2011 Kleyzit et al. 709/203
7,886,218 B2 2/2011 Watson - - .
7041 483 B 59011 N ol 2011/0113000 Al 5/2011 Marlowcoooovviiinninnnnnn, 706/47
05893 B1* 89011 Coltcnotal -00/774 2011/0289486 Al* 11/2011 Revinskaya et al. 717/129
C0E0S18 B2 115011 Timmars 2012/0030224 Al* 2/2012 Cohenetal. 707/758
’ : 11 : 1 . .
$112.703 B2 29017 Kumar et al 715734 2012/0054595 Al 3/2012 Mylroie et al. 715/234
2002/0078087 A__h 6/2002 Stone OTHER PUBIICATIONS
2002/0078165 Al 6/2002 Genty et al.
2004/0030717 Al* 2/2004 Caplin 707/103 R Bogdanov et al., A Prototype of Online Privacy-Preserving
2004/0088375 Al 5/2004 Sethi et al. S N
2004/07 15665 A- 10/2004 Edgar et al. Questionaire System, Google 2010, pp. 1-6.
2005/0138143 Al 6/2005 Thompson Seifert et al., Identification of Malicious Web Pages with Static Heu-
2005/0154781 Al 7/2005 Carlson et al. ristics, IEEE 2008, pp. 91-96.%
2005/0198191 Al 9/2005 Carlson et al. Chenetal., Building a Scalable Web Server with Global Object Space
2006/0093030 A g 5/2006 Francoisetal. 375/240.01 Support On Heterogeneous Clus’[ersj Goog]e 2001, Pp. 1-8 . *
2007/0022102° Al 1/2007 Saxena Jing et al., Client-Server Computing in Mobile Environments, ACM
2007/0156845 Al 7/2007 Devanneaux et al. 1999, pp. 117-157.%
2007/0256003 Al1* 11/2007 Wagoner et al. 715/501.1 T | , .
2007/0260748 Al* 11/2007 Talkington 700/246 Wikipedia, “Web accelerator”, Retrieved on Mar. 14, 2012, from
2008/0005672 ALl* 1/2008 Mestres et al. 715/700 http:/en.wikipedia.org/wiki/Web_accelerator, Jan. 11,2012, p. 1-3.
2008/0139191 Al* 6/2008 Melnyk et al. 455/419 U.S. Appl. No. 12/848,611, Restriction Requirement mailed Apr. 13,
2008/0155425 Al1* 6/2008 Murthyetal. 715/738 2012, 6 pages.
2008/0228772 Al 9/2008 Plamondon U.S. Appl. No. 13/245,711, Notice of Allowance mailed Apr. 24,
2008/0228911 Al* 9/2008 Mackeycccooeevvveeennnn 709/224 2012, 10 pages.
2009/0037454 Al1* 2/2009 Sampsonetal. 707/102 _ _
2009/0125481 Al* 5/2009 Mendes da Costa et al. 707/3 * cited by examiner

U.S. Patent Aug. 21, 2012 Sheet 1 of 5 US 8,250,457 B2

et Bt N

;;ffffalrl
ol o i i o i ot il

Al o ol ol o ol o i

Wb Pago e,

SOEVET frf

f IP Network

i F pF F F F ar

B

&
8 12

)
)

.{}"!—1»\‘

Web Pape

NErVEeT

Web Page Access |
Ageclierator

®
i P g 0 Pl e i i, iy r gl

P gy gl i ek

o LGN

120 14D

Ny :
N
N
[

g g B ng g 0 By g . e T Y

LS = o g R o

Wab Page

N ETVEOT

Accsieration
Server el £t c
bnd &
B

LEQE{ E |
End |

{acho] -~

{38

X FXFEr

ool ol ol ol ol ol o ol ol FFES FFe F o f p)

{ ache |
(FEO) i

5
g

Web Page M

=g - — -
AT ¥l 3
t}ulﬂ:‘r ‘Js.*E !

& $ 200

N
|
]

T ¥
L BT

Wi

b

Py EE PR P EE N

o LC N

U.S. Patent Aug. 21, 2012 Sheet 2 of 5 US 8,250,457 B2

i STAaRT) K}

(:F |
l“*ﬁ.u M
E’/"
L)
gl
{;::'I

3

m}q..mzc pags for sosabio
lorgtion mprovenents

= 1]
Apply soonleration ‘
: o g
smnthods 16 2 modified web 5
> ; y
page of the reveived web page] |

‘,;.-"‘ m""*’-"% etk J'un-.-:ﬁ q e ATy ey

fory %

~ A 3 2360

/ Provide modified I’

DA W RSAT DS /
fmw PRI

ul'l. ALAANTEERLE

Store modified web page in
front- end cache

ot o, e s, Al T B 0 0 T I Bl B, e, T B

Yo

U.S. Patent

Aug. 21, 2012

<HROTIU
var PaUCurrantfos = un

L

defined:

w

A O e

'1

var stariBlem = dovmpend sei Blement By startPlomidy,
var nodeTolutAdior = dm:.‘zmz;m eothlomeniEvid] barge Tilem iy
var nede TeAdd = slanBlesinextSinhing;
war parentNode = sianblen peremiNode;
whide { modeTodAdd = mdl && fmﬁ“hf-& A ad b= emdbilomic
Vi R Shode = pode TodAdd ﬂ:&im :
fnodeToAdd pgMName = E{ RJ‘T’E

paceaiNode oo veCidnods ’i aAGA)

.I“

;,f’{-s'sﬂr;iﬂ'"i“:;a.:‘f'u%ﬁ,g LRI A Tsﬂmm}-ﬁ«, Taoharne) |
vay cinldBoripia = w }ﬁLTmﬁu‘i{: jeia0 Bl
ﬁ!{' hidBert ‘ G "hL-.:l (a‘i ;

L {var serotingex = 0w

seritindoy+y

sodeToPutAlior = pode’T oaddy;

:
[
b
1)
[3
*
*
*
]
»,
n
,
k
»
n
b,
™
K
n
™
Iy
[]
N
:
iy
™

3
3

nnde ToAdd = meaiNoke

A sormetiTnes errors REppen whien o

cagd, w0 s sulenced,

nENGade removet
2

e gﬂm_ SR Lt 3 AT

-I‘]: ‘i"
:: J-.
w,

Tuld{nodeToAddy
hi hf{&‘ﬁl‘" Elemid,

L

R LN TOTROYE

AL EAETITTITTEIE

i, 4A

Sheet 3 of 5

_ ReCopnyW aitmf}:m = TunehiondstartRicmld, endfiomid, Sacpetilembdy §

neRiSiblngd

. o -I'. - LT ._h .1.‘ .11_ - ._:'1| - Ch .
S EANX < eRaidenIE. wngliy

var oladdae *ig*}t SRR IR Y ?}tﬂfh{.,ﬁﬁih‘*(

Wy,
u"r-"n.-..fil‘j -

¢hitdSernt parentNade revanveUhid{ohikdSenpty,

y
4
;
if fnode ToPutADer noxa o §
nodeToPatAlier pi*i‘t:*ﬂ mode, msertBeiore{uode Tnsdd,
e ToPaiallens
P oatsg |

node ToPatafier parentMode appendihaddiuodeToAdd);

e

frors dorn, The o

aoval froan e

US 8,250,457 B2

et By Tagihame{ SURIFT)

)

B P s e e A A 2 A o Al S A A A T T R T T T T R T e Y S A e S ol b A o B A A P A e e

U.S. Patent Aug. 21, 2012 Sheet 4 of 5 US 8,250,457 B2

A R T R R Ry e e e o o et o o el o e e o o e o ol ol o ol ol o i o iy

N NP P PR rFF R rF R Ry . ww

‘‘‘‘‘‘

3

 Belessepe hhﬁ*iﬂ‘"ﬁ"“li wCurrentPosition = fimetion]
Goeirtent Wit iy ids ‘“mﬁ wTemphon: ma-:m s mh""" X
mﬁ”““m&()m:r:&ﬂrhm:ﬁ s('__fwTempSentinenty
wET on ;1:-:.-:: dineat = docirsent. xetBlenend i}*‘ih P TompBents ult‘h
ipmpSentinent parentNdde re ﬂ‘fe{i“inh‘iit*z pReninent);

b

s, u. e e i e, gl e e e ol il e e pie il it e phe the plierlie e pie ol ikl i lie pliorlie Bk oo Bl
"1

B s }f* s Blenmats = nction
S0e8 e, wr*ff:i odiv e §

|
R

PoropSentinent</dhee"y
var erapSentinen = document g Flementh ﬁi" P Templentinont’);

varg Clorn = tampderginent; *}.n-t:*aﬂam.
Whiks fein il gikarne = ’B()i?ﬁ”} {
documnent weiied < + clomisgName + 1,

X

LE o i;:i.{':_m.;..E}Mﬂ:ﬁﬁNﬁi &y

H 3
%Y

rr#'

Semplemtinent pareniiNode romoveChsid{icmpScntineni);

-

1
4
F
P
""'""""‘.' .
..
IJ'J'_I'
af‘:, :
r-"q
lc.r
;p‘r
r'r-i
-n.-l..
'..1‘1-.._
r'.,.-,-‘"

"I

A A B A g e P it i i o pincrn i . gh e i s g A e e g e e e B e e e e e O s A e A A A A K A I S S

FIG. 4R

g,y 4, oy Al iy Sy Py M g g g oy T T T T T T T T

sifive S st stvlesdisplayamoneddiveisenpt =" SOLERGR >

isiripts o

ceerint fwllosOpenedtioments Ry CurrentPositiond e ripts _ _
by =T end stvieidaniavaone ><iliv-soript> | AaCopyWrittenDaw 1D stot’, 1Y end’,
T esorints

FIG. 4C

U.S. Patent Aug. 21, 2012 Sheet 5 of 5 US 8,250,457 B2

LR

<ghv =D st shlssdisplay oone i - gurimts
CODTTENT,
LRt
et Hw losed pencdFlemenByCurnrmiPossiond jvdsonpis
<odiv 13718 end styin=dsolgy e ™>Udeecgaripts> BellomyWritenbDatadTEY «tard®, “11 ond,
HEY pimirpds

“t.

~

HG. 4D

US 8,250,457 B2

1

ACCELERATION AND OPTIMIZATION OF
WEB PAGES ACCESS BY CHANGING THE
ORDER OF RESOURCE LOADING

CROSS-REFERENCES TO RELAT
APPLICATIONS

L1

D,

This patent application 1s a continuation of and claims

priority to U.S. patent application Ser. No. 12/848,559, filed
on Aug. 2, 2010, which claims priority both to U.S. provi-

sional patent application 61/213,959 filed Aug. 3, 2009, and
turther to U.S. provisional patent application 61/308,951 filed
Feb. 28, 2010. All three of these applications are incorporated
by reference 1n their entirety.

FIELD OF THE INVENTION

The present invention relates generally to accesses to web
pages, and more specifically to the acceleration and/or opti-
mization of access speed to such web pages from the user’s
experience perspective.

BACKGROUND OF THE INVENTION

The traffic over the world-wide-web (WWW) using the
Internet 1s growing rapidly as well as the complexity and size
of the information moved from sources of information to
users of such information. Bottlenecks 1n the movement of
data from the content suppliers to the users, delays the passing
of imnformation and decreases the quality of the user’s expe-
rience. Traffic 1s still expected to increase faster than the
ability to resolve data transiers over the Internet.

Prior art suggests a variety of ways 1n an attempt to accel-
erate web page content delivery from a supplier of the content
to the users. However, there are various deficiencies in the
prior art still waiting to be overcome. It would be advanta-
geous to overcome these limitations, as 1t would result 1n a
better user experience and reduction of traific load throughout
the WWW. It would be further advantageous that such solu-
tions be applicable with at least all popular web browsers
and/or require neither a plug-1n nor a specific browser con-
figuration.

BRIEF SUMMARY OF THE INVENTION

Certain embodiments of the invention include a system for
acceleration of access to web pages. The system comprises a
network interface enabling communication of one or more
user nodes with one or more web servers over a network for
accessing web pages stored 1n the one or more web servers; an
acceleration server coupled to the network interface for modi-
tying web pages retrieved from the one or more web servers
using at least one acceleration technique, the modified web
pages accelerating access to the web page to one or more user
nodes; a first cache connected to the acceleration server and
the one or more user nodes and operative to cache information
associated with requests directed from the one or more the
user nodes to the acceleration server; a second cache con-
nected to the acceleration server and the one or more web
servers and operative to cache imformation associated with
requests directed from the one or more web servers to the
acceleration server; and amemory coupled to the acceleration
server and containing a plurality of instructions respective of
the at least one acceleration technique.

Certain embodiments of the mvention further include a
method for acceleration of access to a web page. The method
comprises recerving a web page responsive to a request by a

10

15

20

25

30

35

40

45

50

55

60

65

2

user; analyzing the received web page for possible accelera-
tion 1improvements; generating a modified web page of the
received web page using at least one of a plurality of accel-
eration techmques; providing the modified web page to the
user, wherein the user experiences an accelerated access to
the modified web page resulting from the execution of the at
least one of a plurality of acceleration techmiques; and storing
the modified web page for use responsive to future user
requests.

BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter that 1s regarded as the invention 1s
particularly pointed out and distinctly claimed 1n the claims at
the conclusion of the specification. The foregoing and other
objects, features, and advantages of the mvention will be
apparent from the following detailed description taken in
conjunction with the accompanying drawings.

FIG. 1 1s a schematic block diagram of a system for accel-
eration of web pages access;

FIG. 2 15 a schematic diagram of the data flow 1n a system
for acceleration of web pages access;

FIG. 3 1s a flowchart of the processing performed for the
purpose ol generating web pages that accelerate access; and

FIGS. 4A, 4B, 4C and 4D are exemplary scripts of an
acceleration technique.

DETAILED DESCRIPTION OF THE INVENTION

The embodiments disclosed by the invention are only
examples of the many possible advantageous uses and imple-
mentations of the mnovative teachings presented herein. In
general, statements made 1n the specification of the present
application do notnecessarily limit any of the various claimed
inventions. Moreover, some statements may apply to some
inventive features but not to others. In general, unless other-
wise 1ndicated, singular elements may be 1n plural and vice
versa with no loss of generality. In the drawings, like numer-
als refer to like parts through several views.

In an exemplary embodiment of the invention, a web
access acceleration system 1s placed 1n the path between the
user nodes and the web servers and 1s responsible for inte-
grating the acceleration mechanisms to the web pages
selected for acceleration. The methods for web access accel-
eration include, for example, parallel loading of a Cascading
Style Sheets (CSS) style of a web page, postponement of
execution of Javascript code of a web page, maintaiming script
context when modifying the DOM, causing items to be pre-
fetched into a browser’s cache, web-site and browser trans-
parent pre-fetching, pre-fetching of resources of subsequent
or other pages of a web site, pre-fetching of resources of the
same web page, fetching linked pages on demand prior to link
access, a path dependent delivery of a web page to a user,
automatic generation of combined 1image containers, caching
of dynamic data, intelligent caching of resources, processing
links 1n the background, and postponing of 1frames.

FIG. 1 depicts an exemplary and non-limiting schematic
block diagram of a system 100 for acceleration of web pages
access 1n accordance with an embodiment of the invention. To
a network 110 there are connected one or more web page
servers 120, each providing content typically using formatted
documents using, for example, the hypertext markup lan-
guage (HIML). The network may be a local area network
(LAN), a wide area network (WAN), a metro area network
(MAN), the Internet, the world-wide-web (WW W), the like,
and any combination thereof. One or more user nodes 130
that are viewers of such web pages content are also connected

US 8,250,457 B2

3

to the network. A user of a user node 130 typically browses
the content using a web browser that 1s enabled to display the
web pages. By using, for example but not by way of limita-
tion, a uniform resource locator (URL) the browser 1s capable
of accessing a desired web page.

The network 110 1s also connected a web page access
accelerator (WPAA) 140. In accordance with the invention
instead of providing web page content directly from a web
page server, for example, a web page server 120-1, to a user
node, for example, a user node 130-1, traffic 1s directed
through the WPAA 140, when applicable, 1.e., when config-
ured for accelerated access. Accordingly, a request for web
page content 1s directed through the WPAA 140 that 1s
equipped with various acceleration mechanisms as further
detailed herein below. In one embodiment of the disclosed
invention, the web servers 120 are part of a server farm (not
shown). In a further embodiment thereof, the WPAA 140 1s
provided as part of the server farm. In yet another embodi-
ment of the mvention, the WPAA 140 1s integrated as an
integral part of a web page server 120.

FIG. 2 shows an exemplary and non-limiting schematic
diagram of the data flow 1n a system for acceleration of web
pages access 1 an embodiment of the invention. In addition,
the details of the structure of the WPAA 140 are also shown.
For simplicity reasons and without limiting the scope of the
invention, the network intertace 1s removed. However, a net-
work type interface 1s the typical way for components of the
network to communicate with each other.

The WPAA 140 comprises an acceleration server 142 that
1s connected to the storage 148. The storage 148 typically
holds 1nstructions for the execution of methods, described
herein below 1n more detail, that result 1n accelerating the
transier of web pages content to a user wishing to access such
content. Under the control of the acceleration server 142,
there 1s a hack-end cache (BEC) 144 connected to the accel-
eration server 142 and to the one or more web page servers
120-1 through 120-7. The BEC 144 handles requests directed
from the acceleration server 142 to the one or more web page
servers 120-1 through 120-». By caching information asso-
ciated with web servers’ requests in the BEC 144, the overall
access to web page content 1s accelerated. Under the control
of the server 142, there 1s a front-end cache (FEC) 146,
connected the acceleration server 142 and to the one or more
user nodes 130-1 through 130-m. The FEC 146 handles
requests directed from the one or more user nodes 1304
through 130-m to the acceleration server 142. By caching
information associated with user nodes’ requests 1n the FEC
146, the overall access to web page content 1s Turther accel-
crated.

FI1G. 3 shows an exemplary and non-limiting tflowchart 300
of the processing performed for the purpose of generating
web pages that accelerate access 1n accordance with an
embodiment of the invention. In 3310, a page 1s received, for
example by the WPAA 140, in response to a request to receive
a web page from, for example, web page server 120. Option-
ally, 1n 5320, the recerved web page 1s stored 1n a cache, for
example, 1n the BEC 144. In 5330, the received web page 1s
analyzed by the acceleration server 142 to determine whether
acceleration 1mprovements may be achieved. In 5340, it 1s
checked whether improvements were determined to be
achievable, and 1f so execution continues with 5350; other-
wise execution continues with S360. In 5350, the recerved
web page 1s modified 1into a modified web page that contains
one or more acceleration techniques discussed herein below
in more detail. In S360, the modified or the received web page
1s provided to the user node 120 that requested the web page.
Optionally, 1n S370 the modified web page or the recerved

10

15

20

25

30

35

40

45

50

55

60

65

4

web page, as may be appropriate, 1s stored 1n a cache, for
example FEC 146. In S380, it 1s checked whether additional
pages are to be handled, and 11 so execution continues with
S310; otherwise, execution terminates.

While reference 1s made hereinabove to web pages, 1t can
equally refer to portions of web pages, resources ol a web
page, and the like, without departing from the scope of the
imnvention. In one embodiment of the invention, the method
disclosed above may be performed by the WPAA 140. In
other embodiments of the invention, the method can be inte-
grated 1n a web page server such as web page server 120.

While the description hereinabove was made with respect
to one particular system, other systems may be deployed to
benefit from the teachings hereinabove and herein below. In
one exemplary and non-limiting embodiment of the mven-
tion, a system that works as a plug-in/filter/extension to one or
more web servers 1s used. The flow of data through the system
1s the same as described with respect of the system 1n FIG. 1,
however, it may also utilize knowledge about the data stored
on the web site, such as but not limited to, page templates and
images. In yet another exemplary and non-limiting embodi-
ment of the invention, the system i1s a plug-in for web site
integrated development environment (IDE). Using the plug-
in, the mventions herein are integrated 1nto the web site dur-
ing 1ts development. The plug-in therefore enables at “com-
pilation” or “build” process of the IDE, changes to the web
site coding made by the user of the web site developer accord-
ing to the inventions. This may take place during development
or automatically implemented during development. In yet
another exemplary and non-limiting embodiment a utility
containing, for example and without limitation, a command
line component, a user interface (UI) component or any other
interface, 1s run on the designed web site code after 1t 1s ready,
and/or 1n one or more points-in-time during the development
thereol, to transform the web site code by employing the
inventions herein.

Following are descriptions of acceleration techniques used
with respect to, for example, S350, discussed above. How-
ever, the use of such techniques may be a part of other
embodiments which are specifically included herein.

I. Parallel Loading of a CSS Style of a Web Page

Web pages may include one or more style parts, which
allow the separation of the content of the web page from 1ts
presentation. The style can be changed and cause the page to
look entirely differently, despite the fact that 1t contains the
exact same content. The Cascading Style Sheet (CSS) 1s the
mechanism that allows doing so in HIML documents. CSS 1s
a “language” that a browser can interpret to render the display
the page. Attaching a style to a HI'ML page can be done by
either embedding the text of the style inside the HI'ML docu-
ment, 1n one place or dividing the text to several parts and
embedding them 1n different places of the HTML document
or putting the text of the style 1n an external file and putting a
directive 1nside the HI'ML document to load this file and to
use the style definitions 1n 1t. Style definitions can be very
large (e.g., hundreds of kilobytes), especially 1t a third-party
standard file 1s used and both abovementioned ways have the
same disadvantage. While the data of the style 1s being
loaded, the parsing and processing of the page 1s halted and
resumed only after the style data has been loaded and pro-
cessed. Separating style definitions to several parts helps to
spread this delay all over the document, but the overall delay
remains.

In accordance with certain aspects of the invention, the
problem 1s overcome by forcing the style data to load in
parallel to the rest of the data. This 1s achieve by moving the
style data from their original position, embedded into the

US 8,250,457 B2

S

HTML and/or taken from external file(s), to one or more
external files which can be located anywhere. The HTML 1s
then changed to load these new external files 1n any asynchro-
nous way, as further discussed 1in “Techniques of bringing
Items to the Browser’s Cache” herein below. During the
loading process, aiter such a change, the browser of a user
node 130, 1s unaware that the external files contain style data
and treats the external files as merely containing raw data. For
every one of these external files, after its loading 1s finished,
which 1s determined differently for every fetch alternative, a
new tag 1s dynamically iserted into the document. The tag 1s
not iserted into the text of the document, but into the logical
representation thereof, which 1s kept by the browser as a
document object model (DOM). This tag nstructs the
browser to apply a new style, which 1s located 1n the same file
loaded previously, 1n parallel to other loads, thereby saving on
access time. It should be noted that the application of the style
remains serial, however, as this file was already loaded and
resides 1n the browser’s cache on user node 130, it 1s being
read from there and a new request 1s not being sent to fetch 1t.
This way, the loading of the style data 1s done 1n parallel to
tetching other data 1tems and, though 1t does occupy some of
the bandwidth, 1t does not delay the loading and processing of
the HITML page and 1ts resources, by increasing parallelism
ol the operation. Resources of an HTML page include, but are

not limited to, stylesheet files, Javascript and other script files,
images, video and any other parts of the pages which are not
embedded 1n the HTML.
In one embodiment of the invention, a post processing tool
parses a web page prepared by a developer and transforms it
into a parallel loading capable web page based on the prin-
ciple described above. In another embodiment, the WPAA
140 1ntercepts the web page and parses it prior to sending it
out to the user. The original web page may reside 1n the BEC
144. The acceleration server 142 based on instructions con-
tained 1n the storage 148 parses the web page 1n accordance
with the invention described above and provides to the user a
parallel loading capable web page, which may also be stored
in FEC 146 for future use by other user nodes 130.
I1. Postponing Execution of Javascript Code 1n a Web Page
Typical web browsers are capable of handling scripting
languages which allow them to make the web pages more
interactive, rather than just contain text and media. One of the
more popular scripting languages, supported by practically
all known browsers, 1s Javascript. Javascript code may be
embedded 1into the HI' ML page 1n one or more places, and/or
loaded from one or more external files. Just like with
stylesheets, discussed hereinabove, loading and running
Javascript 1s done serially to the rest of the processing of the
web page. Thus, loading and running Javascript code
decreases the speed 1n which the whole webpage 1s loaded.
Realizing that most of the Javascript code 1s used for
“behind the scenes™ functionality and does not contribute to
the way the webpage looks like. Thus, it would be better to
load and run the Javascript after the visible portion of the web
page has been downloaded and shown. According to an
embodiment of the invention, the HTML page 1s scanned for
script tags and then moved to a later place 1n the HTML page.
This location can be at the end of the document, but 1s not
limited thereto. Moving of the tags can be done by actually
moving them, or otherwise, adding a “defer” attribute on the
tags, which defers the respective Javascript execution to a
later point. When moving the tags, 1t 1s important to keep the
order between them to ensure proper execution. Many times
a Javascript tag relies on pieces of code that were defined or
executed in one or more of the tags before 1t.

10

15

20

25

30

35

40

45

50

55

60

65

6

It should be noted that the Javascript code may be sensitive
to 1ts location i the HI'ML page, thus a straightforward
movement of the script tag may not be suitable. In such a case,
the original position of the script 1n the page 1s marked by
either a tag with a unique “1d” attribute or in any other way. At
a later position 1n the page, the respective code 1s “injected”
into 1ts original position, 1.e., 1n the DOM.

A non-limiting sequence for postponing the execution of
Java script code would be: while processing the page, for
example, by the WPAA 140, marking the script tag location
by a marker and moving the script tag content, which can be
a code or a link to an external file containing the code, to a
later position, wrapped by additional code, and while main-
taining the order of the tags; and when the page 1s processed
by the browser of a user node 130, the original position of the
script 1s processed without a delay and when the browser
reaches the new position of the code, 1t triggers the wrapper
previously inserted there. The wrapper writes the original
code at 1ts original position 1n the DOM. This automatically
causes the browser to run the code, but in the context of its
original position.

In one embodiment of the invention, a post-processing tool
parses a web page prepared by a developer for Javascripts and
moves them in accordance with the principle described
above. In another embodiment, the WPAA 140 intercepts the
web page and parses 1t prior to sending 1t out to a user node
130. The original web page may reside in the BEC 144. The
acceleration server 142 based on instructions contained 1n the
storage 148 parses the web page 1n accordance with the inven-
tion described above and moves Javascripts of the modified
web page, which may also be stored 1n the FEC 146 for future
use by other user nodes 130.

While the description above was made with respect to
Javascript, 1t should not be viewed as restricting the scope of
the mvention which 1s relevant for any browser scripting
language, including but not limited to, VBscript, Silver-
ligh>™, and Flash.

II1. Maintaining Script Context when Modifying the DOM

Executing scripts may introduce new content into the web
page by modifying the respective DOM. Many times this 1s
performed under the assumption that when the script runs, the
parsing of the page by the browser reached only the script’s
position. Thus, the script may use browser functions like
“document.write()” and “document.writeInO” to mtroduce
the new content. Typically, these functions write the new
content to the current parsing position of the browser just after
the position of the script tag which 1s reached. However, i
these functions are executed from another location, they
modity the DOM 1n a different way than originally intended.
If they are run after the web page has finished loading, they
overwrite the entire web page, as the parsing position these
functions use 1s brought to the beginning of the page once 1t
fimshed loading.

According to an embodiment of the ivention, the prob-
lematic functions are overwritten so that instead of writing the
new content into the current parsing position, the new func-
tions write 1t 1nto, or aiter if applicable, the original position
of the script tag. Inside these new functions, the text passed to
the function 1s converted to a subtree of the DOM. The origi-
nal document.write() and other similar functions do it them-
selves. Then, the new sub-tree 1s inserted into the DOM to the
required location previously marked, for example, by a
unique “1d” attribute. For some browsers, the original script
content 1s inserted but not executed, so 1n one embodiment an
additional step 1s required where the browser 1s 1nstructed to
execute the code.

US 8,250,457 B2

7

In one embodiment of the invention, a post-processing tool
parses a web page prepared by a developer for tagging the
scripts 1 accordance with the principle described above. In
another embodiment, the WPAA 140 intercepts the web page
and parses 1t prior to sending 1t out to a user node 130. The
original web page may reside 1n the BEC 144. The accelera-
tion server 142 based on instructions contained 1n the storage
148 parses the web page 1n accordance with the invention
described above and tags scripts 1n the modified web page,

which may also be stored in the FEC 146 for future use by
other user nodes 130

IV. Acceleration Technique for Running Scripts Outside of
Their Positions in a Web Page File

One of the web time loading acceleration techniques 1s to
move <script> tags to the end of the document. This way
running of scripts, which can take a long time, does not
slowdown the rendering of the page. Many scripts are written
to be aware of their position 1n the web page. For example,
some scripts create images and Flash components at the same
place where they are located. Thus, moving such scripts to
another location, thereby stopping them from slowing down
the page loading, causes these components to be written to the
page 1n the wrong place.

According to an embodiment of 1nvention, the script writes
everything to the new position and then copies everything that
was written 1n this new location to the original location. Part
of what 1s written can contain additional scripts that can write
data of their own, this data should also be copied to 1ts correct
position.

Following 1s an example of the principles of the invention
that parses an HITML page and postpones the script to the end
of the page, while making sure anything the scripts writes to
the web page 1s then written to the original position. With this
aim, the exemplary script code provided in FIGS. 4A and 4B
1s added at the end of the <body> tag. In addition, every
<script> tag in the page 1s identified. If the <script> tag 1s an
external script, 1.e., 1t has a “src” attribute, then this attribute
1s saved to the variable SOURCE and deleted from the ele-
ment. If the <script>tag already includes an “1d” attribute, the
“1d” attribute 1s saved to the variable I1D. The SOURCE and
ID vaniables are kept in the memory when and where the page
1s being processed. If not, a umique 1d 1s generated, the “1d”
attribute 1s set to be this value and saved to the varniable ID.
Then, the exemplary code shown in FIG. 4C 1s added at the
end of the <body>tag. For an internal script, 1.e., the script has
content and does not have a “src” attribute, then the script’s
content 1s saved to the variable CONTENT and then deleted.
I1 the script tag already includes an “1d” attribute, 1t 1s saved 1n
the variable ID. If not, a unique i1d 1s generated, the “1d”
attribute 1s set to the generated value and then saved 1n the
variable ID. Then, the exemplary code shown 1n FIG. 4D 1s
added at the end of the <body> tag.

V. Acceleration Technique for Causing Items to be Fetched
into a Browser’s Cache

By having data pre-stored 1n a browser’s cache access time
to the data 1tem 1s reduced. Therefore, a need arises, at times,
to bring data i1tems to the browser’s cache in advance or in
anticipation of their future use. This pertains, for example and
without limitation, to prefetching/preloading of a subsequent
page or resources thereol, fetching resources of the same page
carlier or fetching resources in parallel to the loading of the
page, and the likes. Once the resources are 1n the cache of the
browser, the browser rather than accessing the data item
remotely could fetch them from the browser’s cache without
connecting to an external server to read data times, hence be
exposed to delays.

10

15

20

25

30

35

40

45

50

55

60

65

8

A couple of solutions are shown to achieve the desired
results. A first approach 1s used with respect to AJAX, which
1s a mechanism supported by typical browsers to read from a
server asynchronously. The code which imitiates an AJAX
request recerves an event once a page’s resource 1s loaded or,
otherwise, 1 case of an error. Using this mechanism, any
resource required 1n the future or that needs to load 1n parallel
can be fetched. If the purpose 1s to load the resource 1n
parallel, the resource 1s used upon the completion event.
While appropriate 1n some cases, this mechanism 1s limited to
fetching resources from the original domain only, that is,
resources located 1n a different domain cannot be fetched. A
second approach 1s to use HI'ML tags which load external
resources. These tags are placed 1n the text of the HITML, or
any referenced external resource, or otherwise inserted
dynamically 1into the DOM using a scripting language. The
tags can be, but are not limited to, “link™, *“script” and
“mmage”. If anything needs to be done when a resource {in-
ishes loading, an event handler, e.g., “onload” or “onerror”
handlers, respective of these tags 1s used. When using a tag to
load aresource it was designed to use, e.g., using SCRIPT tag
to load a Javascript file or using a LINK tag to load a
stylesheet, the tags must be configured to load only that
resource and do nothing else. For a script tag, i1t can be
achieved, among others, using 1ts TYPE attribute; for a link
tag, 1its MEDIA attribute, and others, may be used. Some of
these tags stop the processing of the document when used, so
they are inferior when used for the required purpose. How-
ever, all these tags let the page load a resource from any
domain and 1s therefore a more flexible solution. Instead of
creating tags, the same technique may be used by creating
script objects. For example, instead of creating an “image”
tag, a new Image object can be created. Pointing the Image
source to the relevant file achieves the same purpose without
actually introducing new tags to the DOM.

In one embodiment of the invention, a post-processing tool
parses a web page prepared by a developer for tagging the
scripts 1n accordance with the principle described above. In
another embodiment, the WPAA 140 intercepts the web page
and parses 1t prior to sending 1t out to a user node 130. The
original web page may reside 1n the BEC 144. The accelera-
tion server 142 based on instructions contained in the storage
148 parses the web page 1n accordance with the imnvention
described above and tags the scripts in a modified web page,
which may also be stored i1n the FEC 146 for future use by
other user nodes 130.

V1. Pre-Fetching Resources of the Same Page

The sequence of loading a web page, along with 1ts
resources 1s nelficient. The protocols do not utilize the net-
work to use the entire available bandwidth at all times. Thus,
as the page 1s parsed and scripts executed, every resource 1s
read from the network only immediately prior to its use.
However, 1n many cases it 1s possible to bring data much
carlier 1n the page load process. This 1s specifically useful
during periods where the network’s bandwidth 1s not fully
utilized.

In accordance with the principles of the invention, the web
page’s resources are fetched earlier during the load sequence
of the web page using one or more of the “Techniques of
Bringing Items to the Browser’s Cache” discussed herein.
This way, the network 1s better utilized and when the resource
1s needed, it 1s already 1n the cache, thus 1t 1s not necessary to
read it from the network again.

In one embodiment of the invention, a post-processing tool
parses a web page prepared by a developer and 1nserts the
code which loads page’s resources to the cache earlier 1n the
page 1n accordance with the principle described above. The

US 8,250,457 B2

9

decision about which resources to prefetch and where 1n the
HTML to put the prefetch code can be hard coded, config-
urable, or deduced by the tool. In another embodiment, the
WPAA 140 intercepts the web page and parses 1t prior to
sending 1t out to a user node 130. The original web page may
reside 1n the BEC 144. The acceleration server 142 based on
instructions contained in the storage 148 parses the web page
in accordance with the invention described above and inserts
the code which loads 1t to the cache earlier 1n the page, which
may also be stored 1n the FEC 146 for future use by other user
nodes 130.

VI1I. Automatic Generation of Image Containers

In many web pages, most of the requests to the server are
made to bring 1images. As every request includes a “hand-
shake’ with the web server and many times TCP connection
time, every such a request has an overhead. One way to deal
with the problem 1s to combine two or more 1mages 1n a single
image container, then a browser can fetch the two or more
images using only one request. One known technique to cre-
ate such a container 1s typically referred to as CSS sprite. This
technique 1s to combine several images into one “tapestry”™
image, referred to as a “sprite” and to bring 1t in a single
request. Then, a CSS 1s used to define different regions 1n the
combined image and enable the use of each such a region as
a standalone 1image. This technique has been used till today 1n
several ways: a) manually combining 1mages into a sprite as
part of the design on a web site; or, b) there are web sites
which allow a user to upload a series of images and download
the combined 1mage and the CSS file which the browser will
use to separate it back to the original 1mages. Combining
images can be also done by using the MHTML, format (un-
derstood by the Microsoit Internet Explorer browser), the
data:ur format (understood by most web-kit based browsers
such as Mozilla Firefox), and others.

Existing solutions automatically combine every a few
images 1n a web page into a sprite. This combination 1is
created by 1n the web server, thus the web page 1s transformed
betfore 1t ever leaves the server on 1ts way to the end-user.
There are two problems with the mechanism: a) for web pages
with dynamic data, many times only part of the 1mages 1s
common to all the instances of the web page and other images
change. For example, the home page of Facebook contains
different images for different users, but the images that create
the background are always the same. Thus, 1mages cannot be
blindly combined. When designing a web site, sprites can be
designed to automatically separate between the different
kinds of images (as 1t knows the structure of the web site). A
system which 1s placed outside the web server does not have
this knowledge; and b) there 1s a contlict between the need to
put as many images as possible 1 the sprite (to reduce
latency) and the fact that no 1image will be displayed until the
entire sprite 1s brought from the server and thus there 1s a need
to put fewer 1images in the sprite.

In accordance with the principles of the mvention, the
solution 1s a mechanism that decides which images should be
placed 1n every image container. The factors are, but not
limited to, which images are common to all instances ofa web
page and what 1images are visible on a common display when
the web page 1s loaded. In the case of images that are common
to every instance of a page a hard coded approach may be
used, a configuration notification, or otherwise learned by the
system over time by analyzing the web pages passing though
it and/or 1mages passing through 1t. In the case of 1images
visible on a display the size of the display can be determined
automatically by analyzing the incoming headers, heuristi-
cally, by assuming common display sizes or both. Once the
display size was determined, one or more containers can be

10

15

20

25

30

35

40

45

50

55

60

65

10

generated. For example, one container may be generated for
the visible 1tems and one container for the 1items outside the
immediate or mitial display boundaries, 1.¢., those display
items that the user needs to scroll to. Alternatively, a container
may be generated for the visible images and no container at all
for the ones outside the visible area. Other criteria may be
used, for example, all the images which create the back-
ground should be part of one container and all the other
images may be divided between other containers/left alone
(even 1f other images are common to all instances of the page
and are in the visible area). Another embodiment may use a
criterion of placing the 1mages common to all users 1n one
container and then placing the 1images which change among
requests from different users ito another container.

In one embodiment of the invention, a post-processing tool
parses a web page prepared by a developer for creating the
sprites 1n accordance with the principles described above. In
another embodiment, the WPAA 140 intercepts the web page
and parses 1t prior to sending 1t out to a user node 130. The
original web page may reside inthe BEC 144. The server 142
based on instructions contained 1n the storage 148 parses the
web page 1n accordance with the invention described above
and generates the sprites for the modified web page. The
modified web page may also be stored in the FEC 146 for
future use by other user nodes 130.

VIII. Postponing of iframes

iframes are pieces of a HTML page which are other HTML
pages. Every i1frame has 1ts own address, so every iframe
requires one or more requests, 1frames are supposed to load
and run 1n parallel to the parent document, but 1n practice 1t 1s
not always so and many time they introduce a delay to the
loading of the page.

In most cases, the content inside the iframe i1s not the
primary content of the web site, and many times not even in
the area that 1s visible when the site 1s loaded. Thus, the iframe
tags 1 the <html> tag can be replaced by placeholders, for
example without limitations, tags with a unique 1d, and a code
can be mserted further 1n the html which puts an iframe tag
into 1ts original placeholder. The placeholder can be an empty
iframe tag and the code just directs the tag to the address the
original 1frame pointed.

In one embodiment of the invention, a post-processing tool
parses a web page prepared by a developer for tagging the
iframes 1n accordance with the principles described above. In
another embodiment, the WPAA 140 intercepts the web page
and parses 1t prior to sending 1t out to a user node 130. The
original web page may reside 1n the BEC 144. The accelera-
tion server 142 based on instructions contained 1n the storage
148 parses the web page 1n accordance with the mvention
described above and for tagging the 1frames for the modified
web page. The modified web page may also be stored 1n the
BEC 146 for future use by other user nodes 130.

IX. Splitting Combined Web Page Resources

Many of web page load time optimization techniques
include combining web page’s resources such as, but not
limited to, 1images, style sheets, Javascripts, and others. The
aim 1s to reduce the impact of latency and server side request
processing time. However, the farther a client 1s from a server,
the worse the bandwidth between them 1s. Theretfore, though
the impact of latency and request processing time 1s reduced,
the entire data may be transferred more slowly than 1t would
otherwise be sent 1n i1ts non-combined state.

According to an embodiment of the mvention, the com-
bined resource 1s split into several, but not many, containers
that are downloaded at the same time. The number of con-
tainers 1s between a predefined range (upper limit and lower
limit) that 1s set to a value to overcome a connection-per-

US 8,250,457 B2

11

domain limit of a user’s browser. In some cases, the contain-
ers should be downloaded from different domains/sub-do-
main to overcome the browser’s connection-per-domain
limit. For example, combining two hundred small images into
four CSS sprites would be more efficient than either leaving
the two hundred 1mages as 1s or combining all of them 1nto
one big sprite. It should be noted that this embodiment may be
performed by a post-processing tool or the WPAA 140.

X. Viewport Prioritization

Once a webpage 1s loaded, only a part of 1t 1s immediately
visible. The visible part 1s called “viewport”, which basically
1s everything that 1s viewable “above the fold”, and to increase
the speed a web page 1s loaded, as far as the user experience
1s concerned, this part should be tully loaded before the
invisible part starts loading. Many times, the order of page’s
resources, ¢.g., iframes, Javascript files, CSS files, images,
and so on, as they are defined inthe HI ML web page, does not
correspond to their actual location on the screen. The browser
requests the resources in the order they are placed in the
HTML file, due to the sequential nature of the parsing of the
HTML file. However, 1n many cases, this causes resources
appearing lower 1n the screen, and typically resources that do
not appear 1n the viewport at all, to be fetched betore they are
needed. This causes some resources in the viewport to be
tetched later than actually would be beneficial to the user,
reduces utilization of bandwidth, and unnecessarily uses con-
nections whose number 1s limited by the browser.

According to an embodiment of the invention, the viewport
prioritization solution consists of two parts. The first part1s a
script that runs on the web page and collects information
about the location of every element of the web page, including
clements that are defined inside iframes. This script reports to
the server the collected data, in either raw or processed form.
The second part 1s a component which analyzes the collected
data. For the combined resources, the order of the resources in
the combined files 1s defined according to their position 1n the
screen, sorted by their position with respect of the Y-axis. For
the regular resources, a script 1s added to the beginning of the
web page which asynchronously preloads the resources
according to their position in the screen. Thus, when the
browser tries to fetch the resource during rendering, the
resource 1s already 1n the cache. Also, all the resources which
are not 1n the viewport are postponed until all the resources 1n
the viewport are loaded. The viewport 1s typically determined
separately for every user during the rendering of the page, or
defined heuristically for all clients/groups of clients. It should
be noted that this embodiment may be performed by the
post-processing tool or the WPAA 140.

XI. Background Image Management for Web Pages

On a typical web page, part of the images are actual 1images
defined by tags on a page and part of the images are
background 1mages defined 1n various styles. All the images
from the tags are fetched when the page 1s loaded, but
not all the images defined in the style are fetched. Only when
an element uses the style is the image fetched. When statically
analyzing the web page (for pre-fetch, image combining or
any other purpose), it 1s difficult to understand which 1images
are actually part of the page and which images are just defined
in the styles but are not actually used by the page.

The solution 1s based on a client side script (Javascript, for
example) which scans, according to predefined criteria, some
or all elements 1n the DOM. This script reads the effective
style of every such element and checks whether this style
contains a background 1mage and 11 1t does which 1image 1s 1t.
Then, the script sends the gathered information to the server
where 1t can be used for optimization techniques, such as
image combining, sorting image loading according to the

10

15

20

25

30

35

40

45

50

55

60

65

12

visual position on the page and pre-fetching. It should be
noted that this embodiment may be performed by a post-
processing tool or the WPAA 140.

XII. Progressive Loading of Combined Resources of a Web
Page

When combining resources trivially, every one of these
resources 1s available only once the entire combined resource
1s loaded. This postpones the rendering of the first resource 1n
the file until later resources are loaded.

According to an embodiment of the mnvention, the com-
bined file 1s loaded progressively. For example, when loading
a resource using AJAX, browsers read the resource chunk by
chunk, returning the control to the AJAX callback function
after each chunk. Thus, the following process can be used 1n
the AJAX callback function to achieve progressively loading;:

1) Checking that the function is called after a chunk and not
because of an error;

2) Adding the new chunk to the existing chunks’ buiffer;

3) Parsing the chunks’ builer;

4) ITf new resources were found 1n the updates buffer then:
4a) For every one of the new resources:

Finding all elements which use the new resource, for
example, image tags which point to the resource,
now a part of the combined file; and

Replacing the address the elements point to by the
new resource 1s fully loaded and 1s now 1in the
cache.

One example of using such a method 1s for the data:uri
mechanism 1n modern browsers. Using 1t naitvely causes the
browser to wait until the entire combined file 1s loaded. When
applying the disclosed method, every time a resource finishes
loading, 1t can be used by any elements, and placed by the
script for use.

An addition to the process 1s to progressively load back-
ground 1mages. Background images do not include any ele-
ment, thus cannot be used 1n the manner described above.
However, the following process can be applied:

1) Combining the style sheet definitions that contain back-
ground URLs to, for example one combined file, which
also contains the data of the images. It should be noted
that in some cases several combined files may be cre-
ated;

2) Reading the combined file using AJAX;

3) Every time the control returns to the AJAX callback
function the following 1s performed:
3a) Adding the new chunk to the read data array;
3b) Parsing the read data array to identify if any new

classes were added; and

3c¢) For every new class added, preferably in full, the new
class 1s applied to the web page.

It should be noted that this embodiment may be performed by
a post-processing tool or the WPAA 140.

The principles of the mvention can be implemented as
hardware, firmware, software or any combination thereof.
Moreover, the software 1s preferably implemented as an
application program tangibly embodied on a program storage
unit, a non-transitory computer readable medium, or a non-
transitory machine-readable storage medium that can be 1n a
form of a digital circuit, an analogy circuit, a magnetic
medium, or combination thereof. The application program
may be uploaded to, and executed by, a machine comprising
any suitable architecture. Preferably, the machine 1s imple-
mented on a computer platform having hardware such as one
or more central processing units (“CPUs”’), a memory, and
input/output interfaces. The computer platform may also
include an operating system and microinstruction code. The
various processes and functions described herein may be

US 8,250,457 B2

13

either part of the microinstruction code or part of the appli-
cation program, or any combination thereof, which may be
executed by a CPU, whether or not such computer or proces-
sor 1s explicitly shown. In addition, various other peripheral
units may be connected to the computer platform such as an
additional data storage unit and a printing unit.

The foregoing detailed description has set forth a few of the
many forms that the invention can take. It 1s intended that the
foregoing detailed description be understood as an 1llustra-
tion of selected forms that the invention can take and not as a
limitation to the definition of the mvention. It 1s only the
claims, including all equivalents that are intended to define
the scope of this invention.

What 1s claimed 1s:

1. A system for acceleration of access to web pages, com-
prising;:

a network interface enabling communication of one or
more user nodes with one or more web servers over a
network for accessing web pages stored 1n the one or
more web servers;

an acceleration server coupled to the network interface for
modilying web pages retrieved from the one or more
web servers using at least one acceleration technique,
the modified web pages accelerating access to the web
page to one or more user nodes;

a first cache connected to the acceleration server and the
one or more user nodes and operative to cache informa-
tion associated with requests directed from the one or
more the user nodes to the acceleration server;

a second cache connected to the acceleration server and the
one or more web servers and operative to cache infor-
mation associated with requests directed from the one or
more web servers to the acceleration server; and

a memory coupled to the acceleration server and contain-
ing a plurality of instructions respective of the at least
one acceleration technique,
wherein the at least one acceleration technique com-

prises:

forcing style data of a web page of the web pages to
load overlapping in time with the rest of the data of
the web page by moving the style data from the web
page 1nto at least an external file to the web page;
and

loading the at least external file asynchronously to
loading of the web page.

2. A system for acceleration of access to web pages, com-
prising:

a network interface enabling communication of one or
more user nodes with one or more web servers over a
network for accessing web pages stored 1n the one or
more web servers;

an acceleration server coupled to the network interface for
moditying web pages retrieved from the one or more
web servers using at least one acceleration technique,
the modified web pages accelerating access to the web
page to one or more user nodes;

a first cache connected to the acceleration server and the
one or more user nodes and operative to cache informa-
tion associated with requests directed from the one or
more the user nodes to the acceleration server;

a second cache connected to the acceleration server and the
one or more web servers and operative to cache inifor-
mation associated with requests directed from the one or
more web servers to the acceleration server; and

a memory coupled to the acceleration server and contain-
ing a plurality of instructions respective of the at least
one acceleration technique,

10

15

20

25

30

35

40

45

50

55

60

65

14

wherein the at least one acceleration technique comprises:

scanning a web page of the web pages for embedded
scripts;

adding a script tag at each embedded script location; and

moving each embedded script to an external file,
wherein upon processing of the web page on a
browser the original position of the script 1s processed
without delay and when reaching execution of the
script, the script1s being written at its original position
in a digital object model (DOM) of the web page.

3. The system of claim 2, wherein the at least one accel-

cration technique further comprises:

identitying functions that when executed from a new loca-
tion 1n the web page cause erroneous behavior;

replacing the 1dentified functions with new functions; and

converting text passed to the identified functions into a
sub-tree of the DOM; and 1nserting the sub-tree 1nto the
DOM at a marked location.

4. A system for acceleration of access to web pages, com-

prising;:
a network interface enabling communication of one or
more user nodes with one or more web servers over a
network for accessing web pages stored 1n the one or
more web servers;
an acceleration server coupled to the network interface for
modifying web pages retrieved from the one or more
web servers using at least one acceleration technique,
the modified web pages accelerating access to the web
page to one or more user nodes;
a first cache connected to the acceleration server and the
one or more user nodes and operative to cache informa-
tion associated with requests directed from the one or
more the user nodes to the acceleration server;
a second cache connected to the acceleration server and the
one or more web servers and operative to cache infor-
mation associated with requests directed from the one or
more web servers to the acceleration server; and
a memory coupled to the acceleration server and contain-
ing a plurality of instructions respective of the at least
one acceleration technique,
wherein the at least one acceleration technique based on
the capability of a respective browser comprises:
initiating remotely by the acceleration server at page
download time, loading items of a web page of the
accessed web pages into a browser’s cache by per-
forming at least one of: fetching the 1tems into the
browser’s cache in parallel to the loading of the web
page; fetching, into the browser’s cache, the 1items that
are 1n a same domain of the web page; and asynchro-
nous loading the items that are not in the same domain
of the web page 1nto the browser’s cache by using tags
of loading external resources, and remotely

causing by the acceleration server a post-processing
parsing tool to mnsert into the web page a pre-fetch
code that when executed by the browser on a user
node causes the pre-fetch of items 1n the web page into
the browser’s cache.

5. A system for acceleration of access to web pages, com-

prising:

a network interface enabling communication of one or
more user nodes with one or more web servers over a
network for accessing web pages stored 1n the one or
more web servers;

an acceleration server coupled to the network interface for
moditying web pages retrieved from the one or more
web servers using at least one acceleration technique,

US 8,250,457 B2

15

the modified web pages accelerating access to the web
page to one or more user nodes;

a first cache connected to the acceleration server and the
one or more user nodes and operative to cache informa-
tion associated with requests directed from the one or
more the user nodes to the acceleration server;

a second cache connected to the acceleration server and the
one or more web servers and operative to cache inifor-
mation associated with requests directed from the one or
more web servers to the acceleration server; and

a memory coupled to the acceleration server and contain-
ing a plurality of instructions respective of the at least
one acceleration technique,

wherein the at least one acceleration technique comprises:
splitting a combined resource of the web page mto a

plurality of containers, wherein the number of con-
tainer 1s above a predefined lower limit and below a
predefined upper limat.
6. The system of claim 5, wherein the predefined lower
limit and the predefined upper limit 1s determined to over-
come a connection-per-domain limit of a user’s browser.
7. A system for acceleration of access to web pages, com-
prising:
a network interface enabling communication of one or
more user nodes with one or more web servers over a
network for accessing web pages stored in the one or
more web servers;
an acceleration server coupled to the network interface for
modifying web pages retrieved from the one or more
web servers using at least one acceleration technique,
the modified web pages accelerating access to the web
page to one or more user nodes;
a first cache connected to the acceleration server and the
one or more user nodes and operative to cache informa-
tion associated with requests directed from the one or
more the user nodes to the acceleration server;
a second cache connected to the acceleration server and the
one or more web servers and operative to cache infor-
mation associated with requests directed from the one or
more web servers to the acceleration server; and
a memory coupled to the acceleration server and contain-
ing a plurality of instructions respective of the at least
one acceleration technique,
wherein the at least one acceleration technique comprises:
collecting elements of a web page including elements
defined inside at least iframe tags;

sorting of resources to be displayed on a user node from
the collected elements with respect of the Y axis of the
display and postponing resources that are not 1n the
viewport of the display;

moditying the web page by adding a script to the web
page to asynchronously load elements which are 1n
the viewport; and

storing the modified web page 1n the second cache.

8. A system for acceleration of access to web pages, com-
prising;:

a network interface enabling communication of one or
more user nodes with one or more web servers over a
network for accessing web pages stored 1n the one or
more web servers;

an acceleration server coupled to the network interface for
moditying web pages retrieved from the one or more
web servers using at least one acceleration technique,
the modified web pages accelerating access to the web
page to one or more user nodes;

a first cache connected to the acceleration server and the
one or more user nodes and operative to cache informa-

10

15

20

25

30

35

40

45

50

55

60

65

16

tion associated with requests directed from the one or
more the user nodes to the acceleration server;
a second cache connected to the acceleration server and the
one or more web servers and operative to cache infor-
mation associated with requests directed from the one or
more web servers to the acceleration server; and
a memory coupled to the acceleration server and contain-
ing a plurality of instructions respective of the at least
one acceleration technique,
wherein the at least one acceleration technique comprises:
determining if a page style of a web page contains a
background image by analyzing the digital object
model (DOM) of the web page using a client side
script executed on one of the user nodes; and

informing the acceleration server about the background
image for the purpose of use of such information for
tuture optimizations of the web page.

9. A system for acceleration of access to web pages, com-

prising;:

a network interface enabling communication of one or
more user nodes with one or more web servers over a
network for accessing web pages stored 1n the one or
more web servers;

an acceleration server coupled to the network interface for
moditying web pages retrieved from the one or more
web servers using at least one acceleration technique,
the modified web pages accelerating access to the web
page to one or more user nodes;

a first cache connected to the acceleration server and the
one or more user nodes and operative to cache informa-
tion associated with requests directed from the one or
more the user nodes to the acceleration server;

a second cache connected to the acceleration server and the
one or more web servers and operative to cache infor-
mation associated with requests directed from the one or
more web servers to the acceleration server; and

a memory coupled to the acceleration server and contain-
ing a plurality of instructions respective of the at least
one acceleration technique,

wherein the at least one acceleration technique comprises:
parsing the web page to detect embedded scripts; and
replacing the embedded scripts of the web page with

replacement scripts, thereby postponing execution of
the embedded scripts after the web page has been
downloaded, wherein upon execution of replacement
scripts any data written by the replacement scripts 1s
written for the embedded scripts at their original posi-
tions 1n the web page.

10. A method for acceleration of access to a web page,

comprising;

receving a web page responsive to a request by a user;

analyzing the recerved web page for possible acceleration
improvements;

generating a modified web page of the recerved web page
using at least one of a plurality of acceleration tech-
niques;

providing the modified web page to the user, wherein the
user experiences an accelerated access to the modified
web page resulting from the execution of the at least one
of a plurality of acceleration techniques; and

storing the modified web page for use responsive to future
user requests,

wherein the at least one of the plurality of acceleration
techniques comprises:

US 8,250,457 B2

17

forcing a style data of the web page to load overlapping in
time with the rest of the data of the web page by moving
the style data from the web page 1nto at least an external
file to the web page; and

loading of the at least an external file asynchronously to

loading of the web page.

11. A non-transitory computer readable medium having
stored thereon instructions for causing one or more process-
ing units to execute the method according to claim 10.

12. A method for acceleration of access to a web page,
comprising;

receiving a web page responsive to a request by a user;

analyzing the received web page for possible acceleration

improvements;

generating a modified web page of the received web page

using at least one of a plurality of acceleration tech-
niques;

providing the modified web page to the user, wherein the

user experiences an accelerated access to the modified
web page resulting from the execution of the at least one
of a plurality of acceleration techniques; and

storing the modified web page for use responsive to future

user requests,

wherein the at least one of the plurality of acceleration

techniques comprises:

scanning the web page for embedded scripts;

adding a script tag at a representation of each embedded

script location, the representation being 1n a document
object model (DOM) of the web page; and

moving each embedded script to an external file, wherein

upon processing of the web page on a browser the origi-
nal position of the script 1s processed without delay and
when reaching execution of the script, the script 1s being
written at 1ts original position in the digital object model
(DOM) of the web page.

13. A method for acceleration of access to a web page,
comprising;

receiving a web page responsive to a request by a user;

analyzing the recerved web page for possible acceleration

improvements;

generating a modified web page of the received web page

using at least one of a plurality of acceleration tech-
niques;

providing the modified web page to the user, wherein the

user experiences an accelerated access to the modified
web page resulting from the execution of the at least one
of a plurality of acceleration techniques; and

storing the modified web page for use responsive to future

user requests,

wherein the at least a one of the plurality of acceleration

techniques comprises:
scanning the web page for embedded scripts;
adding a script tag at each embedded script location; and
moving each embedded script to an external file, wherein
upon processing of the web page on a browser the origi-
nal position of the script 1s processed without delay and
when reaching execution of the script, the script 1s being
written at 1ts original position 1n a digital object model
(DOM) of the web page;

identifying functions that when executed from a new loca-
tion 1n the web page cause erroneous behavior;

replacing the identified functions with new functions;

converting text passed to the identified functions into a

sub-tree of the DOM; and

inserting the sub-tree mto the DOM at a marked location.

14. A method for acceleration of access to a web page,
comprising;

10

15

20

25

30

35

40

45

50

55

60

65

18

receving a web page responsive to a request by a user;

analyzing the recerved web page for possible acceleration

improvements;

generating a modified web page of the received web page

using at least one of a plurality of acceleration tech-
niques;

providing the modified web page to the user, wherein the

user experiences an accelerated access to the modified
web page resulting from the execution of the at least one
of a plurality of acceleration techniques; and

storing the modified web page for use responsive to future

user requests,

wherein the at least one of the plurality of acceleration

technique based on the capability of a respective
browser comprises:
imitiating by a server remotely from a browser during page
download time loading items of the web page nto a
browser’s cache by performing at least one of: fetching
the items into the browser’s cache in parallel to the
loading of the web page; fetching, into the browser’s
cache, the items that are 1n a same domain of the web
page; and asynchronous loading the 1tems that are not in
the same domain of the web page 1nto the browser’s
cache by using tags of loading external resources, and

inserting remotely by the server into the web page a pre-
fetch code that when executed by the browser on a user
node causes the pre-fetch of items 1n the web page nto
the browser’s cache.

15. A method for acceleration of access to a web page,
comprising;

receving a web page responsive to a request by a user;

analyzing the received web page for possible acceleration

improvements;

generating a modified web page of the recerved web page

using at least one of a plurality of acceleration tech-
niques;

providing the modified web page to the user, wherein the

user experiences an accelerated access to the modified
web page resulting from the execution of the at least one
of a plurality of acceleration techniques; and

storing the modified web page for use responsive to future

user requests,

wherein the at least one of the plurality of acceleration

techniques comprises:

splitting a combined resource of the web page 1nto a plu-

rality of containers, wherein the number of containers 1s
above a predefined lower limit and below a predefined
upper limat.

16. The method of claim 15, wherein the predefined lower
limit and the predefined upper limit 1s determined to over-
come a connection-per-domain limit of a user’s browser.

17. A method for acceleration of access to a web page,
comprising;

receving a web page responsive to a request by a user;

analyzing the recetved web page for possible acceleration

improvements;

generating a modified web page of the received web page

using at least one of a plurality of acceleration tech-
niques;

providing the modified web page to the user, wherein the

user experiences an accelerated access to the modified
web page resulting from the execution of the at least one
of a plurality of acceleration techniques; and

storing the modified web page for use responsive to future

user requests,

wherein the at least one of the plurality of acceleration

techniques comprises:

US 8,250,457 B2

19

collecting elements of the web page including elements
defined inside at least 1frame tags;

sorting of resources to be displayed on a user’s screen from
the collected elements with respect of the Y axis of the
display and postponing resources that are not in the
viewport of the display;

modilying the web page by adding a script to the web page
to asynchronously load elements which are 1n the view-
port; and

storing the modified web page 1n a cache memory.

18. A method for acceleration of access to a web page,

comprising;

receiving a web page responsive to a request by a user;

analyzing the received web page for possible acceleration
improvements;

generating a modified web page of the received web page
using at least one of a plurality of acceleration tech-
niques;

10

15

20

providing the modified web page to the user, wherein the
user experiences an accelerated access to the modified
web page resulting from the execution of the at least one
of a plurality of acceleration techniques; and

storing the modified web page for use responsive to future
user requests,

wherein the at least one of the plurality of acceleration
techniques comprises:

parsing the web page to detect embedded scripts; and

replacing the embedded scripts of the web page with
replacement scripts, thereby postponing execution of the
embedded scripts after the web page has been down-
loaded, wherein upon execution of a replacement script
of the replacement scripts any data written by the
replacement script 1s written for the embedded script at
its original position 1n the web page.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

