US008249850B2

a2 United States Patent (10) Patent No.: US 8.249.850 B2
Kato et al. 45) Date of Patent: *Aug. 21, 2012

(54) METHOD AND AN APPARATUS FOR 2002/0129329 Al 9/2002 Nishioka et al.
2003/0121010 A1* 6/2003 AubUIY .oovovveeeeerecnnn.. 716/4
EXECUTING SIMULATION FOR SYSTEM 2005/0261884 Al* 11/2005 Sakamotoetal. 703/13

PERFORMANCE EVALUATION 2007/0271080 Al 11/2007 Tatsuoka et al.
2008/0306721 ALl* 12/2008 YANE .oovvvovovereeereeeeenen. 703/14
(75) Inventors: Tomoki Kato, Kawasaki (JP); Noriyasu 2009/0150136 AL* 6/2009 Yangccoeevevininin, 703/13
Nakayama K awasaki (_]p)- Hiroyuki 2009/0204380 Al1* 82009 Katoetal.ocovvvvinvninil. 703/13
Hieda 1 O o (JP) ’ 2010/0204975 Al* 82010 Nakayamaetal. ... 703/20
» TLYOS 2011/0184713 AL* 7/2011 YANE orovvoveeoeoreereerrnn. 703/13

(73)

(%)

Assignee: Fujitsu Limited, Kawasaki (JP)

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 732 days.

Notice:

This patent 1s subject to a terminal dis-
claimer.

(21) 12/393,155

(22)

Appl. No.:
Filed: Feb. 26, 2009

Prior Publication Data

US 2009/0313001 Al Dec. 17, 2009

(65)

(30) Foreign Application Priority Data

Jun. 11, 2008 2008-153505

(1)

(52)
(58)

(JP)

Int. CI.
GO6F 17/50 (2006.01)

US.CL e 703/14; 703/13

Field of Classification Search 703/13,
703/14

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,366,647 B2* 4/2008 Arayaetal. 703/14
2002/0022942 Al 2/2002 Nakamura
2002/0066082 Al* 5/2002 Arayaetal. 717/135

SoftWare

FOREIGN PATENT DOCUMENTS

JP 2001-318812 11/2001

JP 2002-215423 8/2002

JP 2006-59108 3/2006

JP 2007-310449 11/2007

KR 10-0812938 3/2008
OTHER PUBLICATIONS

Korean Intellectual Property Office Action 1ssued Dec. 30, 2010 for
corresponding Korean Patent Application 10-2009-0024890.

* cited by examiner

Primary Examiner — Mary C Jacob
Assistant Examiner — Aniss Chad
(74) Attorney, Agent, or Firm — Staas & Halsey LLP

(57) ABSTRACT

The present invention relates to a technique for executing
performance evaluation simulation of a system to be imple-
mented by solftware or hardware. A simulation apparatus
includes a first acquisition section for executing existing ten-
tative soltware to acquire a first execution log, a division
section for dividing the first execution log into a plurality of
basic processing units, a basic processing execution log pro-
duction section for modifying some of the plural basic pro-
cessing units to produce a basic processing execution log to
be used for simulation, and a simulation execution section for
inputting the basic processing execution log to a hardware
model to execute the simulation to acquire information
required for the performance evaluation.

9 Claims, 14 Drawing Sheets

START
51
[“spEctricamions |~

v ta

rdWere

|

——
[——

——
p—

PAST SOQFTWARE
| INCLUDING RTOS)

!

PN

EXECUTION ON
TARGET CPU

¢

=l

h—

| EXECUTION LOG

‘

NEW SOFTWARE
DESIGN

BASIC PROGESSING
UNIT DIVISION

-—
AGTUAL MAGHINE +

EMULATOR OR IG5

fE?‘

—r’ -

g
< SW/HW DIVISION

?

B2

a8”

S8

FRODUCTION OF

=49
¥ S42
COMPILE FOR f MODIFICATION Mo
TARGET CPU ORTION?
4' Yes

FUNCTION MOCULE

s —

EXECUTION BINARY |
J« 544
’N

EXTRACTION OF BASIC
PROGESS GF
MODIFICATION PORTION

s

EXECUTION ON
TARGET CPL

¥
TENTATIVE

S48

__EXEGUTION LOG |
i P

INSERTION OF TENTATIVE
EXECUTION LOG INTO
EXTRAGTED PORTION

5S40

S48°

v

» CURRECTICH OF

v

315

SYNTHESIS

ol

p

FUNCTION MODULE

¥

BASIC PRGCESSING

__EXECUTION LOG__

f515

e
GPEFM.HDH Mnna

!

EVALUATION SIMULATION

PERFORMANCE

f51?

U.S. Patent Aug. 21, 2012 Sheet 1 of 14 US 8,249,850 B2

SECTION

SECTION

O SEGOND

ACQUISITION
SECTION 12

SYNTHESIS
SECTION

10

FIG. 1
- N e - < T
TENTATIVE STATISTICAL
SPECIFICATIONS SOFTWARE 1
2| BASIC PROCESSING SIMULATION
DIVISION SECTION EXECUTION LOG EXECUTION SECTION
2 | PRODUCTION SEGTION
FLAG PROCESSING
EASY SOFTWARE 20
MODEL

DIVISION SECTION

FUNCTION MODULE |/6

FRODUCTION

SECTION
13

U.S. Patent Aug. 21, 2012 Sheet 2 of 14 US 8,249,850 B2

F1G. 2

#include <stdio.h>
void ex testO(int A);
void test1(int num) {

if(num == example)|
DT READ(addr1,offset data):

HEZE D
DT READ(addr2, offset,data):
DT READ(addr3,offset.data):

ex testO(num):

}

elsel
DT READ(addrd, offset data):

U.S. Patent Aug. 21, 2012 Sheet 3 of 14 US 8,249,850 B2

FIG. 3

. time type Object(¥line) Address
30939 Instr test A ¥#398..#405 0x000080B4
30542 Instr test_A. ¥#405 0x000080B8
30557 Instr test A. ¥#406 0x000080A4
30572 Instr test B.¥#174 0x00008114
30575 Instr test B.¥#175..#196 0x00008118
30578 Instr test B.¥#196 0x0000811C
30581 Instr test B.¥#196 0x00008120
30584 Instr test B.¥#196 0x00008124
30601 R Data
30601 Instr test B.¥#196 0x00008128
30602 Instr test_B. ¥#196 0x0000812C
30613 W Data

30613 Instr test B.¥#196 0x00008130

’

EXECUTION LOG

U.S. Patent Aug. 21, 2012 Sheet 4 of 14 US 8,249,850 B2

FIG. 4

Ete.

»
*

Test_A

3053
30639

-
+f
e 4
-
-

#398

#404
30542 | 4405

llllllllllllllllllllllllll

30557 #406

SaEE B EEEGEEEENE F-BS NEFRE

30572 = #174

Ill‘.tl.i‘l'."l’.-ll-.l:l-l'l.'-‘ LA g g4]
™

30575 5 #175

=
D

=
R PP FER A A {13 d P L FEFAFF RO PR NEEY FREFLRFIEIEEREFRRFRE R

#1095

[3
-
=
o
i & -3 hﬂll:l““ll Lt L EFELEELI] LY LS 05 4493
=
-
*

#196

o] Lo
o O
1§ O
o o~d

Co

1

Cad
-
1
Qo
o

2] GO
o | O
Yy | OO
- | &
R | —

l

3061

OBJECT SEQUENGE TABLE

U.S. Patent Aug. 21, 2012 Sheet 5 of 14 US 8,249,850 B2

FIG. ©

SIMPLIFIED SEQUENGE DIAGRAM IMAGE

. Fn[1]

FOS0D6EQ |
FOS0D6E4 |
20003018 D W
2000301C D W

FOS0D6ES |
20001000 D R

EXECUTION LOG OF
BASIC PROCESSING UNIT

US 8,249,850 B2

Sheet 6 of 14

Aug. 21, 2012

U.S. Patent

PLL

NOILOJS
ONISS300dd V1vd

NOILO4S
ONITT0H1LNOD

oLl

SOld

L1

13A0ON u3Sn

qlLl

TdAOW MS ASVH

el l

U.S. Patent

26

Aug. 21, 2012 Sheet 7 of 14

FIG. 7

21

CPU 23

EVENT CONTROL |-
INFORMATION

BASIC PROCESSING -—--—-—‘N—1
E '

XECUTION LOG =

25

SCHEDULER SECTION

31
32

EXTERNAL
RAM 93

PERIPHERAL

HW. 34

s L

24
AGGESS PROCESSING SECTION ‘

US 8,249,850 B2

27

STATISTICAL
INFORMATION

U.S. Patent Aug. 21, 2012 Sheet 8 of 14 US 8,249,850 B2

CPU PROCESS PRIORITY ORDER
AMOUNT SETTING
222 22—4
FUNCTION FUNCTION

MODULE

BASIC
PROCESS

MODULE
BASIC
PROCESS
22—

FUNGCTION
MODULE

FUNCTION

MODULE
BASIC
PROGCESS

EVENT A EVENT B

TIME

U.S. Patent

Aug. 21, 2012

Sheet 9 of 14

FIG. ©

US 8,249,850 B2

— S
SPECIFICATION

v

PAST SOFTWARE
(INCLUDING RTOS)

FLAG EMBEDDING

EXECUTION ON
TARGET CPU

EXECGUTION LOG

BASIC PROCESSING
UNIT DIVISION

HardWare

SW/HW DIVISION

S4 So

S5
S6

—
ACTUAL MACHINE -

EMULATOR OR ISS
S7

S8

PRODUGCTION OF S8°

"| FUNCTION MODULE

SY

MODIFICATION PORTION?

Yes

EASY SW MODEL
__PRODUCTION

COMPILE FOR
TARGET GPU

| EXECUTION BINARY
EXECUTION ON
TARGET GPU

TENTATIVE

EXEGUTION LOG

SYNTHESIS

BASIC PROCESSING
EXEGUTION LOG

tl

S10

S11

S14
S13

S15

S16

PERFORMANCE
EVALUATION SIMULATION

END

| PRODUCTION OF |/S10°
FUNCTION MODULE

53

OPERATION MODEL

S17

U.S. Patent Aug. 21, 2012 Sheet 10 of 14 US 8,249,850 B2

FIG. 10

START

ACQUIRE PERTAINING PORTION S20
FROM EXECUTION LOG DIVIDED
INTO BASIC PROCESSING UNITS

EXTRACT ONLY S21
INSTRUCTION LIES
OBJECT SEQUENCE S22
PRODUCTION
- . -823
EXTRACT CALLING FUNCTION WITHIN
OBJECT PROCESSING TIME
S24

USER MODEL/ RTOS
RTOS SEPARATION

S27

USER MODEL

ADD DESCRIPTION OF BRANCHING EXTRACT OBJECT BEFORE S25
PROCESS, ETC., BEFORE AND AFTER AND AFTER CALLING
CALLING FUNCTION PROCESS FUNCTION PROCESS

S28
ADD main FUNCTION: main (),

INITIAL VALUE SETTING

!

COMPILE FOR TARGET CPU

| P

529

S30
EXECUTION ON ISS

' 551
| TENTATIVE EXECUTION LOG
S32

CONTROLLING
SECTION

DATA PROCESSING SECTION/
CONTROLLING SEGTION
SEPARATION

DATA PROCESSING
SECTION

CALCULATE GENERATION| /~S26
RATIO OF EXTRACTED
OBJECT PATTERN

S33
EASY SOFTWARE MODEL

(TENTATIVE EXECUTION LOG)

C TO STEP S15 >

US 8,249,850 B2
7
i
|
i
|
|
|

Sheet 11 of 14
~
T -
I .
! -
o

Aug. 21, 2012
-
-
R

L

& EEESeligls e & sl & Sspgey & II'I.I.I'.I_II_III s ¢ Spispep ¢ TEEEEE ¥

dlL L DId

U.S. Patent

* mhERENy § EEEER

o°g} oz4 | ourew; [oy

Wlpligk 4+ nllassis & P

N o & S ¢ f ek) A § W

? IS ¢ IS T S F s I > TS I 0 A
»

ViL DI

U.S. Patent Aug. 21, 2012 Sheet 12 of 14 US 8,249,850 B2

(START)
S
SPECIFICATIONS
SoftWare HardWare

l — SW/HW DIVISION
PAST SOFTWARE S4 3\ S0
(INCLUDING RTOS)

| S6

EXECUTIONON |42
TARGET CPU ACTUAL MACHINE -

EMULATOR GR ISS

—— S7
EXECUTION E?Ejf S8°

S8
| NEW SOFTWARE S471 |BASIC PROCESSING .| PRODUCTION OF
| DESIGN UNIT DIVISION FUNCTION MODULE |
- S9
S42
COMPILE FOR MODIFICATION No
TARGET CPU PORTION?
- S43 y Yes 40
EYECUTION BINARY EXTRACTION OF BASIC
a44 PROCESS OF |
I MODIFICATION PORTION
EXECUTIONON |q¢—u
TARGET CPU ISS
T e 1 a6 .
TENTATIVE

_EXEGUTION LOG

! INSERTION OF TENTATIVE

EXECUTION LOG INTO

| CORRECTION OF
FUNGTION MODULE

EXTRACTED PORTION

S15

SYNTHESIS -
—

BASIC PROGCESSING
EXECUTION LOG

S16

U.S. Patent Aug. 21, 2012 Sheet 13 of 14 US 8,249,850 B2

FIG. 13

(START)

—— S4—1 : Q4A—2
PAST SOFTWARE X1 PAST SOFTWARE Y1
6—2
S6—1 EXECUTION ON
ACTUAL MAGCHINE 3

cr—1 1 ACTUAL MACHINE +

EMULATOR
EXECUTION LOG X2 EXECUTION LOG Y2
S7—2

EXEGUTION ON
ACTUAL MACHINE

BASIC PROCESSING BASIC PROCESSING | /S8~ 2
UNIT DIVISION UNIT DIVISION

BASIC PROCESS S92
No EXTRACTION OF
REPLACEMENT
DIVERSION PORTION CASE WHEREIN EASY
RPN SW MODELING IS
s [o ARRIED OUT
BASIC PROCESS S5 :
EXTRACTION OF ' _ |
REPLACEMENT | ; I
PORTION | coMPILEFOR |/7ST1
. |__TARGET CPU :
| v |
! EXECUTIO:N BINARY [* s |
I : |
- | EXECUTION ON)
| TARGET cPU '
' : ISS
i - i
| | TENTATIVE |
S53 l EXEGUT;ON LOG | ~S14 i
REPLACEMENT OF BASIC | BN P ottt m ettt |
PROCESSING UNIT

S15
SYNTHESIS
h.

/‘S‘l 6
BASIC PROCESSING
EXECUTION LOG

(Cewo)

U.S. Patent Aug. 21, 2012 Sheet 14 of 14 US 8,249,850 B2

FIG. 14
RELATED ART

121
SPECGIFICATIONS

122 120

e —-
STATISTICAL

INFORMATION 100

N

110 CPU 112

as DATA TOTALIZATION
SECTION 107
111
ACCESS PROCESSING SECTION
103

104
105 106
EXTERNAL RAM PERIPHERAL HW

US 8,249,850 B2

1

METHOD AND AN APPARATUS FOR
EXECUTING SIMULATION FOR SYSTEM
PERFORMANCE EVALUATION

CROSS-REFERENCE TO RELATED
APPLICATION(S)

This application 1s based upon and claims the benefit of the
priority of the prior Japanese Application No. 2008-1335035
filed on Jun. 11, 2008 1n Japan, the entire contents of which
are hereby incorporated by reference.

FIELD

The embodiments discussed herein are related to a tech-

nique for executing performance evaluation simulation of a
system to be implemented by software and hardware.

BACKGROUND

In recent years, a semiconductor device to be used with an
clectronic equipment such as, for example, a Large Scale
Integration (LLSI) 1s integrated 1n a large scale, and a proces-
sor, a bus, a memory and so forth which are conventionally
used individually as individual elements can be incorporated
on one chip.

Generally, the object of the integration into one chip
resides 1n downsizing, cost down and reduction 1 power
consumption. Such a semiconductor device as described
above 1s called system LSI or System on Chip (SoC).

However, increase of functions to be incorporated in such
a semiconductor device (heremafter referred to sometimes as
LSI or system LLSI) as described above gives rise to a demerit
that 1t increases the difficulty of the design. Most part of the
difficulty originates from the fact that, by integration into one
chip, a hardware architecture determined once cannot be eas-
i1ly changed later.

Particularly, 1n order to press onward with downsizing and
cost down, reduction of the processing load to the system LSI
and reduction of the margin on the design are required, and a
performance verification technique at a first stage of the
design 1s important to solve the problem described above.

The performance verification of a system LSI or the like 1s
carried out after provisional decision 1s carried out regarding
whether a function which a system has i1s to be implemented
by hardware or software.

Generally, the software 1s described 1n the C language, an
assembly language or some other language, and operation of
the software can be simulated by execution on an actual
apparatus model including a target processor or an Instruction
Set Simulator (ISS) for a target processor.

Further, regarding operation of the hardware, simulation
can be carried out by description using the Register Transter
Level (RTL), the Transaction Level Model (TLM), or both of
the RTL and the TLM. It 1s to be noted that a representative
RTL 1s the Verilog-HDL and a representative TLM 1s the
System C.

In this manner, evaluation of a performance such as a
processor load ratio can be carried out by simulating the entire
system 1ncluding both of the software and the hardware.

It 1s to be noted that also a technique 1s conventionally
available wherein simulation 1s executed 1n order to create
soltware (application) (for example, refer to Japanese Patent

Laid-Open No. 2002-215423 and Japanese Patent Laid-Open
No. 2006-59108).

An example of a conventional performance evaluation
simulation apparatus for a semiconductor device 1s shown 1n

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 14. In the conventional simulation apparatus 100, a
Central Processing Unit (CPU) 101, an I-cache (instruction
cache) 102, a D-cache (data cache) 103, a bus 104, an external
RAM (Random Access Memory) 105 and peripheral HW
(HardWare) 106 are implemented by a hardware model.

It 1s to be noted that the CPU 101 includes an ISS 110 for
executing software, an access processing section 111 for
executing access to the outside and a data totalization section
112 for totalizing statistical information 120 as a result of
simulation.

However, the conventional simulation apparatus 100
executes software 122 to be actually incorporated 1n the pro-
cessor and based on specifications 121 as described above on
the ISS 110. Therefore, 1n order to carry out the verification
with high accuracy, a suificient degree of completeness of the
software 122 1s required, and examination for optimization,
that 1s, performance evaluation simulation, cannot be carried
out at an early stage of the design.

Further, where the simulation 1s executed, there 1s a prob-
lem that the ISS 110 occupies the greater part of the simula-
tion and the execution time becomes very long.

Therefore, a technique 1s conventionally available wherein
soltware to be executed on a processor 1s modeled using a
UML analysis to produce soitware so as to allow verification
at an early stage of the design. Also another technique 1is
conventionally available wherein a function model and soft-
ware are produced from requested specifications or a concep-
tual model (refer to, for example, Japanese Patent Laid-Open
No. 2001-318812 and Japanese Patent Laid-Open No. 2007 -
310449, hereinafter referred to as Patent Documents 3 and 4,
respectively).

However, since such techniques as disclosed in Patent
Documents 3 and 4 involve modeling of an application pro-
gram from a document of requested specifications, a consid-
erable number of man-hours are required before production
ol software and much time 1s required.

Further, since estrangement from soitware to be actually
incorporated, or i other words, accuracy of a performance
verification environment, 1s not known 1n such techniques as
disclosed in Patent Documents 3 and 4, 1t 1s not known
whether produced software 1s rehable.

SUMMARY

According to an aspect of the embodiment, there are pro-
vided a simulation apparatus and a simulation method
wherein a first acquisition section executes existing tentative
soltware to acquire a first execution log and a division section
divides the first execution log into a plurality of basic pro-
cessing units. Then, a basic processing execution log produc-
tion section modifies some of the plural basic processing units
to produce a basic processing execution log to be used for
simulation. Then, a simulation execution section inputs the
basic processing execution log to a hardware model to
execute the simulation to acquire information required for the
performance evaluation.

According to a further aspect of the embodiment, there 1s
provided a recording medium on or in which a simulation
program for causing a computer to function as the first acqui-
sition section, division section, basic processing execution
log production section and simulation execution section
described above 1s recorded.

The above and other objects, features and advantages ol the
present mvention will become apparent from the following
description and the appended claims, taken 1n conjunction

US 8,249,850 B2

3

with the accompanying drawings in which like parts or ele-
ments are denoted by like reference characters.

BRIEF DESCRIPTION OF THE DRAWINGS

FI1G. 1 1s a block diagram showing a configuration of essen-
tial part of a sitmulation apparatus as an embodiment;

FIG. 2 1s a view 1llustrating a process by a tlag processing,
section of the simulation apparatus as the embodiment;

FIG. 3 1s a view illustrating an example of an execution log
acquired by a first acquisition section of the simulation appa-
ratus as the embodiment;

FIG. 4 1s a view 1illustrating an example of an object
sequence produced by an easy soltware model production
section of a basic process execution log production section of
the simulation apparatus as the embodiment;

FI1G. 5 1s a view illustrating an example of an easy sequence
diagram corresponding to part of the object sequence 1llus-
trated 1n FIG. 4;

FIG. 6 1s a view showing an easy soitware model produced
by the easy software model production section of the basic
process execution log production section of the simulation
apparatus as the embodiment;

FIG. 7 1s a block diagram showing an example of a con-
figuration of a simulation target implemented by a sitmulation
execution section of the stmulation apparatus as the embodi-
ment;

FIG. 8 1s a diagrammatic view 1illustrating an example of
execution ol periodical events 1n simulation by the simulation
execution section of the stmulation apparatus as the embodi-
ment;

FI1G. 9 1s a flow chart illustrating a processing procedure of
a simulation method as the embodiment;

FI1G. 10 1s a flow chart 1llustrating an example of an opera-
tion procedure of the easy software model production section
ol the basic process execution log production section of the
simulation apparatus as the embodiment;

FIGS. 11A and 11B are views 1llustrating an example of a
process of the easy software model production section of the
basic process execution log production section of the simu-
lation apparatus as the embodiment, and wherein FIG. 11A
illustrates a basic process before the easy soltware model
production section carries out the process and FIG. 11B car-
ries out a basic process alter a process for producing an
abstraction model is carried out in the basic process shown 1n
FIG. 11A;

FI1G. 12 1s a flow chart 1llustrating a processing procedure
of the simulation method as a first modification;

FIG. 13 1s a flow chart 1llustrating a processing procedure
of the simulation method as a second modification; and

FIG. 14 1s a block diagram showing an example of a con-
figuration of a conventional performance evaluation simula-
tion apparatus for a semiconductor device.

DESCRIPTION OF THE PR
EMBODIMENTS

L1

FERRED

In the following, embodiments of the present invention are
described with reference to the drawings.

[1] Embodiment of the Present Invention

First, a configuration of a performance evaluation simula-
tion apparatus (hereinafter referred to as present simulation
apparatus) 1 as an embodiment of the present mvention 1s
described with reference to a block diagram shown in FIG. 1.

The present simulation apparatus 1 1s used for evaluating a
performance of hardware (for example, a CPU) to be 1incor-
porated 1n a semiconductor device such as, for example, an

10

15

20

25

30

35

40

45

50

55

60

65

4

L.SI. The simulation by the present simulation apparatus 1 1s
executed based on an execution log which 1s an execution
history obtained by executing software without using an ISS.

In particular, the present simulation apparatus 1 relates to
modeling of software and hardware for evaluating a perfor-
mance of the hardware and provides modeling of the software
wherein soltware design assets 1n the past can be practically
used so that architecture verification of a target CPU can be
carried out with a degree of abstraction with which cash
analysis can be carried out without the necessity for an ISS.

Here, the execution log (execution mstruction sequence) 1s
a history of 1nstructions actually executed when software 1s
executed by an ISS for a target CPU or the like.

The present simulation apparatus 1 includes an SW (Soft-
Ware)/HW (HardWare) division section 2, a flag processing
section 3, a first acquisition section 4, a division section 5, a
function module production section 6, a basic process execu-
tion log production section 10 and a simulation execution
section 20.

The SW/HW division section 2 divides, based on specifi-
cations of a system which 1s a simulation target, a process
determined depending upon the specifications or the specifi-
cations 1nto a process of software and another process of
hardware.

The flag processing section 3 embeds a branch line of a
source code and/or a flag which indicates a function line for
calling an object 1n existing tentative software produced 1n
advance and to be used for production of a basic process
execution log herematfter described by the basic process
execution log production section 10 into a position of the
tentative software just 1n front of or just behind the line.

For example, where the tentative soitware 1s configured 1n
such a manner as illustrated 1n FIG. 2, the flag processing
section 3 embeds a flag for carrying out read accessing to a
predetermined address ito a position just behind an “if”
statement and an “else” statement which indicate a branch
line of a source code. The flag processing section 3 here

inserts, as tlags, “DT_READ(addrl,offset,data)” for reading
“addrl+otiset”, “D'T_READ(addr2,oifset,data)” for reading
“addr2+ofiset” and “(DT_READ(addrd,offset,data)” {for

reading “addrd+ofiset”.

Further, the flag processing section 3 here inserts
“DT_READ(addr3,oflset,data)” for reading “addr3+ofiset”
as a flag into a position just 1n front of a function line for
calling an object such as “ex_testO(num);”.

By inserting the flag by means of the tlag processing sec-
tion 3 1n this manner, the read access to a designated address
can be acquired as flag information in an execution log
obtained by executing the tentative software on actual
machine or an ISS. Then, automatic extraction of an object
transition graph (object sequence diagram) and a source code
between tlags of objects i1llustrated 1in FIG. 6 and heremafter
described can be carried out based on the flag information. As
a result, an easy software model production section 11 here-
inafter described can produce easy soitware.

It 1s to be noted that the flag processing section 3 automati-
cally specifies a branch line, for example, based on “if” or
“else” 1n the tentative soltware and automatically embeds a
flag. Further, the flag processing section 3 automatically
specifies a predetermined function based on regularity (for
example, a naming method for a function) where the function
for calling an object has some regularity, in the example of
FIG. 2, based on “ex”. Then, the flag processing section 3
automatically embeds the flag into a position just in front of or
just behind the specified function.

US 8,249,850 B2

S

The first acquisition section 4 executes the tentative soft-
ware for diversion produced in advance on an actual machine
or an ISS to acquire an execution log (first execution log) of
the tentative software.

Here, an example of an execution log to be acquired by the
first acquisition section 4 1s illustrated 1n FIG. 3.

Information of the execution log 1n FIG. 3 includes, prin-
cipally for each process, a time stamp as execution time
information (“time” 1 FIG. 3), a designation of istruction/
data access (“‘type” 1n FIG. 3), a designation of read/write 1n
the case of data access, an object 1n the case of an 1nstruction
(“Object(¥#line)”; object file), and an address. It 1s to be noted
that, 1t this object 1s referred to, then 1t 1s recognized what
source file the processing executes.

Further, the first acquisition section 4 acquires also execu-
tion information (the number of execution lines of source
codes) of the calling function between actual objects of the
processes 1n order to produce an easy software model here-
mafter described. A popular itegrated development tool
including an emulator and an ISS has the nformation
acquired by the first acquisition section 4 as a debug function.

It 1s to be noted that, since, where the tentative software 1s
communication processing software, the number of mstruc-
tion address strings and data access strings which indicate a
processing amount of the execution log 1s varied also by
changing the transfer rate, attention must be paid to a simu-
lation condition on a target processor.

The division section 5 divides the execution log acquired
by the first acquisition section 4 into a plurality of basic
processing units. It 1s to be noted that the basic processing unit
1s an execution unit of a process to be executed by a software
model. In particular, a basic processing unit 1s 1llustrated in
FIG. 6 as heremafter described.

Since, for example, in the case of an application of a mul-
timedia process or a communication process, one process 1s in
most cases carried outrepetitively, the division section 3 finds
out a task starting point of the OS from a pattern of a cyclical
process and carries out division in a unit of a task based on the
found out task starting point. Or, the division section 5 moni-
tors a flow of a process between object files from an 1nstruc-
tion address column and finds out a delimiter of a task and
then performs the division.

Here, the division section 5 produces an object sequence as
illustrated 1n FIG. 4 and extracts a pattern of a periodical
process so that the execution log 1s divided into a plurality of
basic processing units.

FIG. 5 1s a view 1llustrated an example of the object
sequence table illustrated in FIG. 4. In FIG. 5, “xxx.0”,
“vyy.0” and “zzz.0” individually indicate an object.

As seen 1n FIG. 5, each basic processing unit Fn[1] 1s
extracted as one mterval from a starting point to an ending
point of the access between object files.

The function module production section 6 produces a func-
tion module to be used for the stmulation to be executed by the
simulation execution section 20 1n response to the basic pro-
cessing units divided by the division section 5. Details of the
function module are described with reference to FIG. 7 here-
inafter described.

The basic process execution log production section 10
modifies some of the plural basic processing units to produce
the basic process execution log to be used for the simulation.

In particular, the basic process execution log production
section 10 1includes the easy software model production sec-
tion 11, a second acquisition section 12 and a synthesis sec-
tion 13.

The easy software model production section 11 extracts a
basic processing unit (changing target basic processing unit)

10

15

20

25

30

35

40

45

50

55

60

65

6

which 1s a modification target from among the plural basic
processing units obtained by the division section 3 based on
the 1nstruction from the operator and produces the easy soft-
ware model based on the extracted modification target basic
processing unit.

In particular, the easy software model production section
11 extracts a basic processing unit (imodification target basic
processing unit) corresponding to a process to be modified
from the tentative software and modifies the extracted basic
processing unit to produce a basic processing unit corre-
sponding to new software to be applied to the target CPU.

A configuration of easy soltware (easy software model)
11a 1s 1llustrated 1in FIG. 6. The easy software model 11a 1s
configured roughly from a user model 115 and a real-time OS
(RTOS) 11c¢. The user model 115 1s configured from a data

processing section 114 for carrying out succession, repetition
and selection processes of a data structure started 1n response
to an event flag and including data access to a RAM and a
controlling section 11e such as an mitialization sequence and
a processing sequence to be called by a system call during
data processing.

The easy software model production section 11 extracts
and modifies a portion corresponding to the user model 115 as
a modification target.

It 15 to be noted that more detailed contents of operation of
the easy software model production section 11 are hereinafter
described with reference to a tlow chart of FI1G. 10.

The second acquisition section 12 executes the easy soft-
ware model 11a produced by the easy software model pro-
duction section 11 on an actual machine or an ISS to acquire
an execution log (tentative execution log) which 1s the execu-
tion history of the easy software model 11a.

The synthesis section 13 synthesizes basic processing units
other than the modification target basic processing units from
among the plural basic processing units divided by the divi-
s1on section 5 and the tentative execution log to produce a
basic process execution log.

The simulation execution section 20 carries out stmulation
using the basic process execution log produced by the basic
process execution log production section 10 to acquire statis-

tical information for performance evaluation of the target
CPU.

In particular, the stmulation execution section 20 inputs the
basic process execution log to the hardware to execute the
simulation to acquire the information (statistical information)
required for the performance evaluation.

A target (hardware model) of the performance evaluation
simulation to be implemented by the stmulation section 20 1s
described with reference to FIG. 7.

In particular, all of the CPU 21, I-cache (1nstruction cache)
30, D-cache (data cache) 31, bus 32, external RAM 33 and
peripheral hardware (HardWare; represented as “peripheral
HW” 1 FI1G. 7) 34 are a target of the performance evaluation
simulation.

The CPU 21 1s a target processor which 1s a target of the
performance evaluation. By checking the hardware perior-
mance when the software 1s executed on the CPU 21, perfor-
mance verification of the CPU 21 can be carried out.

The CPU 21 1s configured from function modules 22-1 to
22-n (here, n indicates an integer of 3 or more) configured
from the basic process unit, a scheduler section 23 and an
access processing section 24.

The tunction modules 22-1 to 22-r (hereinafter referred to
as Tunction modules 22 where the function modules 22-1 to
22-n are not distinguished from each other) receive an mput

US 8,249,850 B2

7

of the basic process execution log 25 which 1s a log analysis
file of a basic processing unit extracted from the execution
log.

The function modules 22 individually function 1n CPU 21
as a basic processing unit which 1s an actual unit of a process
to be executed on the software model divided by the access
processing section 24 based on the execution log.

In particular, the mputted basic process execution log
belongs to one of the function modules 22, and a basic pro-
cessing execution log 1s selected upon execution where a
plurality of logs belong to one function block.

The scheduler section 23 reads event controlling informa-
tion 26 and requests process processing to the corresponding,
function module 22 based on the event controlling informa-
tion.

The event controlling information 26 1s obtained from the
execution log acquired by the first acquisition section 4 and 1s
formed from a file including a parameter representing that a
specific event occurs at a specific time.

Then, the scheduler section 23 mputs the basic process
execution log to the corresponding function module 22 based
on the event controlling information 26.

In particular, the simulation execution section 20 inputs the
basic process execution log to the hardware model based on
the event controlling information 1n the execution log.

Then, the scheduler section 23 produces statistical infor-
mation 27 to be used for performance evaluation from the
simulation process executed by the access processing section
24.

For example, the scheduler section 23 acquires and pro-
duces struction execution time (ns), istruction fetch time
(ns), data access time (ns) and a CPU load factor (%) as the
statistical information 27 for each basic processing unit, that
1s, for each function module 22. In particular, since the execu-
tion log has an instruction address string and an address string,
for data access, the simulation execution section 20 can
execute bus access through the instruction cache and the data
cache, and as a result, the instruction execution time, instruc-
tion fetch time, data access time and so forth can be monitored
to produce statistical data of the CPU load factor and so forth.

The access processing section 24 executes access to the
I-cache 30 or the D-cache 31 1n response to an 1nstruction
fetch or data access process from the function module 22.

Here, the I-cache 30 1s an instruction cache for shortening,
the acquisition time of an 1nstruction existing on the external
RAM 33. Also the D-cache 31 1s a data cache for shortening
the time for data access similarly to the I-cache 30. The
D-cache 31 1s different from the I-cache 30 1n that 1t 1s ready
not only for readout but also for writing.

The I-cache 30 and the D-cache 31 are connected to the bus
32. In the present embodiment, also the external RAM 33 and
the peripheral HW 34 are connected to the bus 32. It 1s to be
noted that the external RAM 33 1s connected to the outside of
the CPU 21 through the bus 32. The peripheral HW 34 1s an
external I/'F, exclusive hardware for a specific application or
the like.

The simulation execution section 20 constructs a portion
other than the mput of the basic process execution log, for
example, with a transaction level using the System C lan-
guage.

Here, a manner wherein the CPU 21 (CPU model) periodi-

cally carries out an event 1n the stmulation by the simulation
execution section 20 1s 1llustrated 1n FIG. 8.

Process processing ol each event 1s configured from a
plurality of basic processes. For example, if a periodical event
A occurs 1n accordance with a frequency applied 1n advance
as a parameter, then the scheduler section 23 1n the CPU 21

10

15

20

25

30

35

40

45

50

55

60

65

8

calls the function module 22-2 together with the function
module 22-1 1n response to the occurrence of the periodical
event A.

The called function modules 22-1 and 22-2 individually
execute the execution log of a corresponding basic process. A
priority order 1s applied in advance to events and basic pro-
cesses by requested specifications or the like so that time
collision between the events or the basic processes 1s avoided.
In the example 1 FIG. 8, the scheduler section 23 carries out

control so that the event A and the succeeding event B do not
collide with each other.

It1s to be noted that the function module 22 not only carries
out a common process for collecting statistical information
data such as instruction fetch, memory access instruction time
consumption and so forth necessary for performance evalua-
tion but also carries out description of a function unique to
cach module 1n accordance with the degree of completeness
of hardware.

Next, an outline of an operation procedure of the present
simulation apparatus 1, that 1s, a simulation method as the

embodiment of the present invention, 1s described with ret-
erence to a flow chart (steps S1 to S17, S8', S10") of FIG. 9.

First, the present simulation apparatus 1 receives an input
of requested specifications of a system relating to hardware
(hereinafter referred to as target CPU) which 1s a performance
evaluation target and software to be incorporated 1n the target
CPU (step S1). It 1s to be noted that, while a function model
for verilying functions is sometimes produced, description of
production of a function model 1s omitted here.

Next, the SW/HW division section 2 divides a process
generated based on the requested specifications into a process
for the software and another process for the hardware (a
soltware model and a hardware model) (step S2).

Here, the simulation execution section 20 produces an
operation model relating to the hardware (step S3). It 1s to be

noted that the operation model 1s produced by description
which includes the RTL, the TLM having a high degree of

abstraction, or both of the RTL and TLM.

On the other hand, as the software in the embodiment,
existing soitware (software in the past) produced in the past as
tentative soltware capable of producing a suflicient load for
performance evaluation 1s used (step S4). In particular, a
source code of an existing model which 1s a diversion design
source 1s utilized. Here, a case wherein a real-time OS
(RTOS) 1s utilized 1s described.

Then, the flag processing section 3 embeds a flag into the
tentative software as described hereinabove with reference to
FIG. 2 (step S5; flag processing step).

Then, the first acquisition section 4 compiles the tentative
soltware as software for a target processor and produces an
execution binary. An ISS on an actual machine or a calculator
through an emulator and a calculator including an OS for
acquiring an execution history (execution log) of instructions
are used as a software execution environment to actually
execute the software so that the execution log i1s acquired
(steps S6 and S7; first acquisition step).

Next, the division section 4 divides the acquired execution
log 1nto basic processing units (step S8; division step).

It 1s to be noted that, together with the extraction of the
basic processing units, the function module production sec-
tion 6 produces a corresponding function module 1n the hard-
ware (step S8').

Then, the easy software model production section 11 of the
basic process execution log production section 10 selects a
processing portion to be modified from existing functions of
the tentative software regarding the execution log divided into

US 8,249,850 B2

9

the basic processing units (step S9), and produces the easy
software model 11a regarding the modification portion (Yes
route of step S9) (step S10).

Here, the easy software model 11a 1s a model wherein the
degree of abstraction where functions to be described in the
request specifications are incorporated as they are 1s
described, and particularly, the easy software model 11a 1s a
model wherein processes such as a branching process for
error detection, internal state transition, internal variable
retention and so forth are omitted.

A detailed procedure for producing the easy software
model 11a from the execution log 1s hereinafter described
with reference to FIG. 10.

It 1s to be noted that, at this time, the function module
production section 6 carries out correction of the function
module of the hardware when necessary in conformity with
the easy software model produced by the easy software model
production section 11 (step S10").

Then, the second acquisition section 12 compiles the pro-
duced easy software model as a model for the target processor
(step S11) and produces an execution binary (step S12).
Thereatter, the second acquisition section 12 executes the
execution binary on the ISS for the target processor (step S13)
and acquires an execution history (tentative execution log) of
actually executed 1nstructions (step S14).

Then, the synthesis section 13 synthesizes the execution
log on the basic processing unit of an existing portion which
1s not selected as the modification portion at step S9 and the
tentative execution log (step S15) and produces the basic
process execution log (step S16).

Finally, the simulation execution section 20 executes the
performance evaluation simulation of the target CPU 21
using the basic process execution log and the operation model
(step S17; simulation execution step) and then the processing
ends. Here, the simulation execution section 20 applies the
execution log of the basic processing unit as an 1mput to the
operation model together with parameter setting such as a
frequency to execute the performance evaluation simulation.

Now, a more detailed operation procedure (tlow of an easy
soltware model) of the easy soitware model production sec-
tion 11 1s described with reference to a flow chart (steps S20
to S33) of FIG. 10.

The easy software model production section 11 extracts
and acquires a processing portion to be newly modified from
among the plural basic processing units obtained by dividing
the execution log of the tentative soitware by the division
section 1n accordance with the procedure illustrated 1n FIGS.
3 to 3 (step S20).

Then, the easy software model production section 11
extracts only an instruction processing line other than the data
access Irom the execution log to produce data (step S21).
Further, the easy soiftware model production section 11 pro-
duces the object sequence table shown 1 FIG. 4 based on
object information added 1n advance (step S22).

Or, the easy software model production section 11 can
produce an object sequence also by adding object information
from an 1nstruction address string.

Then, the easy software model production section 11
extracts a calling function to be executed during processing
time of each object from the execution log 1n accordance with
an object sequence and a time stamp (“time” 1n FIG. 4) (step
S23).

Thereafter, the easy software model production section 11
classifies whether the extracted function relates to the user
model 11a or the RTOS 115 in response to the object to which
cach function 1s to be accessed (step S24). In particular, the
casy software model production section 11 refers to the object

10

15

20

25

30

35

40

45

50

55

60

65

10

to which each calling function accesses to decide whether the
function relates to the user model 11a or the RTOS 1154.

Regarding the function relating to the RTOS 115, the easy
soltware model production section 11 extracts objects 1in front
of and behind the calling function process (step S25) and
calculates a pattern generation ratio of the extracted objects
(step S26).

Since the processes described are included 1n the execution
log similarly to the user model 114, logs at similar portions
are connected to each other referring to existing portions. In
particular, the easy soiftware model production section 11
extracts RTOS objects 1n front of and behind the calling
function process based on the time stamp of the execution
process of the basic process and calculates a generation ire-
quency ol an object pattern from the execution log acquired
by the first acquisition section 4 and then applies a coetficient
for determining the generation ratio of each object to produce
the pattern generation ratio.

It 1s to be noted that the pattern generation ratio 1s used as
part of the event controlling information 26 for control of the
schedule section 23.

On the other hand, regarding the user model 115, the easy
software model production section 11 extracts necessary
description from source codes of the existing tentative soft-
ware which 1s a diversion source regarding the data process-
ing section 114 and the controlling section 11e of the user
model 115 based on a correlation of the object sequence of
FIG. 4 and the execution information of the calling function to
produce an abstracted model of a function level (steps S27
and S28).

Here, the necessary description 1s complementation of the
processes of the calling function and of portions in front of
and behind of a line from which the calling function 1s read
out and a flow of a branch (step S27), and an “1f”” statement for
anomaly detection and an 1nternal state transition process are
omitted.

For example, the easy software model production section
11 carries out the complementation for portions just behind a
function “#100” of a time stamp “30530” and just 1n front of
a Tunction “#398” of a time stamp “30539” in the object
sequence table shown 1n FIG. 4. Further, the easy software
model production section 11 carries out the complementation
for portions just behind a function “#406 of a time stamp
“30557” and just in front of a function “#174” of a time stamp
“30572”.

Further, the easy software model production section 11
adds a “main” function for controlling the start and the end of
the cut out basic process to the source codes of the abstracted
model produced in accordance with the procedure described
above (step S28). For example, the easy software model pro-
duction section 11 adds a “main” function “main.o” between
functions “f1.0” and *“12.0” 1n the basic processes 1 and 2
illustrated in FI1G. 11A as seen 1n FIG. 11B. Consequently, the
basic processes can be utilized as an abstracted model 11/
which operates independently without carrving out data
cooperation with a layer of a peripheral process.

In this manner, the easy software model production section
11 produces the data processing section 114 of the easy soit-
ware model 11a from the object sequence of the execution
log.

It 1s to be noted that the easy soitware model production
section 11 sets not only calling of the basic process described
above but also an address and data of RAM access to be called
in an object and a variable to be incorporated 1n an object
other than the basic process as initial values in the “main”
function. Consequently, the accurate number of istructions
and data accesses of the basic processing portion can be

US 8,249,850 B2

11

grasped by the second acquisition section 12 by removing the
processes of the object “main.o” from the execution log
extracted by compiling the basic process and executing the
compiled basic process on the target processor.

It 1s to be noted that, regarding the address of the RAM
access, the easy software model production section 11 allo-
cates a suitable address in the RAM region based on the
memory map of the existing tentative software which 1s a
diversion source. Further, the easy software model produc-
tion section 11 allocates a suitable value as a variable other
than that relating to the basic process similarly to the address
Just described.

In this manner, the basic process execution log production
section 10 modifies the basic processing unit obtained by the
tentative soltware based on the tentative software to acquire

the execution log corresponding to new soltware to be 1mcor-
porated in the target CPU.

Then, the second acquisition section 12 carries out a com-
pile process (step S29) and execution (step S30) to acquire a
tentative execution log (step S31).

Then, the basic process execution log production section
10 divides the tentative execution log mto a portion of the
tentative execution log relating to the data processing section
114 and another portion of the tentative execution log relating
to the controlling section 11e (step S32).

Here, the basic process execution log production section 10
decides, based on the time stamp of the tentative execution
log, that a periodical portion of the tentative execution log
relates to the data processing section 114 and that a non-
periodical portion of the tentative execution log relates to the
controlling section 11e.

Then, similarly to the RTOS 11¢ described hereinabove,
the basic process execution log production section 10 calcu-
lates a pattern generation ratio of the portion relating to the
controlling section 11e and outputs the calculated pattern
generation ratio (step S26).

In particular, the portion relating to the controlling section
11e 1s called out by system call and 1s executed. Since the
processing timing of the portion 1s determined 1n accordance
with the software requested specifications, the processing
timing may not possibly be determined upon architecture
examination at an early stage of development. Therefore, the
basic process execution log production section 10 calculates
a generation frequency of an object pattern, that 1s, a ratio of
the number of 1nstructions of the object to the number of all
istructions, and an execution period of the object from the
existing execution log and applies a coellicient for determin-
ing the generation ratio of each object to produce the pattern
generation ratio of the controlling section 11e.

Then, the tentative execution log acquired at step S31 1s
outputted to the synthesis section 13. In particular, the basic
process execution log production section 10 outputs the por-
tions relating to the data processing section 114 and the con-
trolling section 11e collectively as a tentative execution log
(step S33), and the processing advances to a process at step
S15 m FIG. 9.

In this manner, with the simulation apparatus 1 and the
simulation method as the embodiment of the present inven-
tion, the first acquisition section 4 executes the tentative soft-
ware produced 1n advance to acquire a first execution log and
the division section 5 divides the acquired first execution log
into a plurality of basic processing umts. Then, the basic
process execution log production section 10 modifies some of
the basic processing units to produce a basic process execu-
tion log to be used for simulation. Then, the simulation execu-
tion section 20 inputs the basic process execution log to the

10

15

20

25

30

35

40

45

50

55

60

65

12

hardware model to execute the stmulation to acquire infor-
mation necessary for performance evaluation.

Accordingly, by utilizing tentative software at a stage
wherein actual software to be actually incorporated 1n a target
CPU 1s not completed, performance evaluation of a target
CPU can be executed with high accuracy. In particular, the
basic process execution log production section 10 modifies an
execution log of the tentative software to produce an execu-
tion log corresponding to the actual software. Therefore, even
il new soitware to be actually incorporated in the target CPU
1s not completed, the simulation can be executed with high
accuracy at an early stage of the design by practically using
soltware design assets in the past and architecture examina-
tion of the target CPU can be carried out. Further, since the
ex1sting tentative software 1s used, modeling of an application
program from a document of requested specifications need
not be carried out and also the number of steps until the
tentative software 1s produced can be decreased.

Further, by applying a configuration wherein software 1s
divided for each basic function and a load 1s applied to the
hardware model, the degree of abstraction of each function
can be changed 1n response to the degree of progress of the
design of the software and the accuracy of the performance
evaluation can be further enhanced.

Further, the simulation execution section 20 executes the
simulation using the basic process execution log without
executing soitware on an ISS upon simulation. Accordingly,
the number of steps relating to the simulation can be
decreased and time required for the simulation can be
reduced.

In this manner, with the present simulation apparatus 1, the
architecture of the system LSI (target CPU) can be examined
with high accuracy at an early stage of development and the
present invention can greatly contribute to that the processing
load and the design margin are suppressed to achieve cost
down and downsizing.

Further, in the basic process execution log production sec-
tion 10, particularly the easy software model production sec-
tion 11 produces an easy software model and the second
acquisition section 12 acquires the tentative execution log of
the easy software model. Then, the synthesis section 13 syn-
thesizes a unmodified portion and the tentative execution log,
and as a result, an execution log corresponding to the actual
soltware can be produced with certainty and with a reduced
number of steps from the existing tentative software.

Further, the flag processing section 2 automatically
embeds a tlag into the tentative software and the easy software
model production section 11 produces an easy software
model based on the flag information 1n the execution log.
Therefore, the easy software model production section 11 can
carry out production of an object sequence and extraction of
a source code at a high speed and with certainty.

Further, since the simulation execution section 20 mnputs
the basic process execution log to the hardware model based
on the event controlling mmformation 1n the execution log
acquired by the first acquisition section 4, the simulation
using the basic process execution log can be executed with
certainty using the existing resources.

[2] Modifications of the Present Invention

It 1s to be noted that the present mnvention 1s not limited to
the embodiment specifically described above, and variations
and modifications can be made without departing from the
scope of the present invention.

For example, the configuration 1s applied 1n the embodi-
ment described above wherein the basic process execution
log production section 10 changes the contents of the basic
processing units divided by the division section 5 to acquire

US 8,249,850 B2

13

the execution log corresponding to mounting software based
on the tentative software. However, the present invention 1s
not limited to this, and an alternative configuration may be
applied wherein the basic process execution log production
section 10 replaces the basic processing units divided by the
division section 5 with different basic processing units pre-
pared separately to acquire the execution log corresponding,
to the mounting soitware.

Here, a case wherein the different basic processing units
are replaced based on newly produced soitware (a case 1llus-
trated 1n FIG. 12 heremafter described) and another case
wherein the different basic processing units are replaced
based on different tentative soitware (another case 1llustrated
in FIG. 13 hereinatter described) are available.

For example, the case wherein the basic processing units
are replaced based on newly produced software 1s described
with reference to a tlow chart (steps S1 to S4, S6 to S9, S8',
S15 to S17, S40 to S46, and S46') of FIG. 12. It 1s to be noted
that like elements to those in FIG. 12 are denoted by like
reference characters and overlapping detailed description of
them 1s omitted herein. Further, the flag embedding process
(process at step S5 1n FI1G. 9) 1s omitted for stmplified 1llus-
tration 1n FIG. 12 and also in FIG. 13 heremaftter described.

In particular, in the first modification to the present
embodiment shown in FIG. 12, the basic process execution
log production section 10 extracts a basic process of a modi-
fication portion as a modification target (step S40). Then, the
basic process execution log production section 10 deletes the
extracted basic process or substitutes a different basic process
into a portion of the extracted basic process at step S36
hereinaiter described.

In particular, the basic process execution log production
section 10 acquires a new software design relating to the
modification portion in this mstance separately from the ten-
tative software (step S41), and the second acquisition section
12 compiles the acquired software design into a design for the
target CPU (step S42) and acquires an execution binary (step
S43). Then, the second acquisition section 12 executes the
execution binary on the target CPU using an ISS to acquire a
tentative execution log relating to the modification portion
(second execution log) (step S44).

Then, the basic process execution log production section
10 replaces the basic processing unit of the modification
portion extracted at step S40 with the tentative execution log
acquired at step S45 (step S46) In particular, the basic process
execution log production section 10 inserts the tentative
execution log imto the extracted portion. At this time, the
tfunction module production section 6 produces a function
module corresponding to the mserted tentative execution log,
(step S46').

Thereafter, the synthesis section 13 synthesizes the
unmodified portion and the tentative execution log (step S135),
and the basic process execution log production section 10
produces a basic process execution log (step S16).

In this manner, the basic process execution log production
section 10 of the simulation apparatus 1 as the first modifica-
tion to the present invention substitutes the tentative execu-
tion log of new software separately prepared by the operator
into part of the execution log of the tentative software to
produce a basic process execution log (software model). Con-
sequently, a working effect similar to that 1n the embodiment
described hereinabove can be obtained.

Now, a case 1s described with reference to a flow chart
(steps S4-1, S4-2, S6-1 to S8-1, S6-2 to S8-2, S135, S16, S50
to S33, and S60) of FIG. 13 wherein a basic processing unit 1s
replaced based on tentative software different from that to be
diverted at step S4. It 1s to be noted that like elements to those

10

15

20

25

30

35

40

45

50

55

60

65

14

in FI1G. 13 are denoted by like reference characters and over-
lapping detailed description of them 1s omitted herein.

In particular, 1n a second modification to the present imnven-
tion shown 1n FIG. 13, the first acquisition section 4 acquires
two pieces X1 and Y1 of existing tentative soltware (steps
S4-1 and S4-2) and executes the acquired software on an
actual machine (steps S6-1 and S6-2) and then acquires
execution logs X2 and Y2 (first and second execution logs)
(steps S7-1 and S7-2).

Then, the division section 5 carries out division of the
execution logs X2 and Y2 into basic processing units (steps
S8-1 and S8-2).

Then, the basic process execution log production section
10 selects a replacement portion 1n the basic processing unit
ol the tentative software X1 which 1s to be used as a base from
between the two pieces X1 and Y1 of the tentative software
(step S50) and extracts a basic process of the replacement
portion (step S51).

On the other hand, the basic process execution log produc-
tion section 10 extracts a basic processing unit of a diversion
portion from the basic processing unit of the tentative soft-
ware Y1 (step S52).

Then, the basic process execution log production section
10 replaces the extracted basic processing unit with the basic
processing unit at the diversion portion (step S33).

Consequently, the basic process execution log production
section 10 processes a basic process execution log corre-
sponding to the mounting software from the plurality pieces
X1 and Y1 of the existing tentative software.

It 1s to be noted that, where alteration or addition must be
carried out for the function of the diversion portion, an easy
soltware modeling process S60 (steps S10 to S14) indicated
by an alternate long and two short dashes line 1n FIG. 13 1s
executed to carry out abstraction of the diversion portion to
carry out easy software modeling and then the produced easy
soltware model 1s executed on the target processor to produce
a tentative execution log.

Further, the RTOS section extracts execution logs of pre-
ceding and succeeding RTOS objects based on execution time
of the individual basic processes from the software execution
log which 1s the diversion source. Then, parameters of a
generation frequency and an order are applied to the basic
process execution logs and the execution logs of the RTOS
section produced 1n accordance with the procedure described
above to produce a software load. Consequently, the model-
ing can be easily carried out at an early stage of the develop-
ment when some functions of software in the past are trans-
planted or two or more pieces of software having functions
different from each other are integrated.

In this manner, the basic process execution log production
section 10 of the simulation apparatus 1 as the second modi-
fication to the present invention uses and combines the plural
pieces X1 and Y1 of the existing tentative software to produce
a basic process execution log (software model). Conse-
quently, working effects similar to those of the embodiments
described above can be obtained.

Further, the function module production section 6 and the
basic process execution log production section 10 are sepa-
rately provided 1n the embodiments described above. How-
ever, the present invention 1s not limited to this, and the
function module production section 6 may be implemented as

part of the function of the basic process execution log pro-
duction section 10.

It 1s to be noted that the functions as the SW/HW division
section 2, flag processing section 3, {irst acquisition section 4,
division section 5, function module production section 6,
basic process execution log production section 10, easy soft-

US 8,249,850 B2

15

ware model production section 11, second acquisition section
12, synthesis section 13 and simulation execution section 20
may be implemented by a computer (including a CPU, an
information processing apparatus and various kinds of termi-
nals) by executing a predetermined application program
(stmulation program).

The program 1s provided 1n a state wherein i1t 1s recorded on

a computer-readable recording medium such as, for example,
a tlexible disk, a CD (CD-ROM, CD-R, CD-RW or the like),

a DVD (DVD-ROM, DVD-RAM, DVD-R, DVD-RW, DVD+
R, DVD+RW or the like). In this instance, a computer reads
out the simulation program from the recording medium and
transters the read out program to an internal storage apparatus
or an external storage apparatus so that the program 1s stored
and used. Further, the program may be recorded 1n advance on
a storage apparatus (recording medium) such as, for example,
a magnetic disk, an optical disk, a magneto-optical disk or the
like such that the program 1s provided from the storage appa-
ratus to the computer through a communication line.

Here, the computer 1s a concept including hardware and an
OS (operating system) and s1gnifies the hardware which oper-
ates under the control of the OS. Further, where no OS 1s
required and hardware 1s operated only by an application
program, the hardware itself corresponds to a computer. The
hardware at least includes a microprocessor such as a CPU
and a means for reading out the computer program recorded
on the recording medium.

The application program as the simulation program
described above includes program codes for causing such a
computer as described above to implement the functions as
the SW/HW division section 2, flag processing section 3, first
acquisition section 4, division section 5, function module
production section 6, basic process execution log production
section 10, easy software model production section 11, sec-
ond acquisition section 12, synthesis section 13 and simula-
tion execution section 20. Further, some of the functions may
be implemented not by an application program but by an OS.

What 1s claimed 1s:

1. A simulation apparatus for executing simulation for
performance evaluation of a system to be implemented by
software and hardware using a hardware model, the simula-
tion apparatus comprising a processor, wherein the processor
executes a process including: first acquiring a first execution
log representing a history of an instruction executed when
ex1isting tentative software 1s executed;

dividing the first execution log into a plurality of basic

processing units;

modilying some of the plural basic processing units to

produce a basic processing execution log to be used for
the simulation; and

inputting the basic processing execution log to the hard-

ware model to execute the simulation to acquire nfor-
mation required for the performance evaluation,
wherein the moditying comprises:

extracting a modification target basic processing unit from

among the plural basic processing units and producing a
soltware model based on the extracted modification tar-
get basic processing unit;

second acquiring a tentative execution log based on the

software model; and

synthesizing the plural basic processing units other than

the modification target basic processing unit and the
tentative execution log to produce the basic processing
execution log.

2. The simulation apparatus as claimed in claim 1, wherein:

the processor further executes a process including

10

15

20

25

30

35

40

45

50

55

60

65

16

embedding a flag representative of a branch line of a source
code or a function row for calling an object in the tenta-
tive software 1nto the tentative software; and

the first acquiring comprises executing the tentative sofit-
ware 1n which the flag 1s embedded to acquire the first
execution log, and

the producing comprises producing an object sequence 1n
the modification target basic processing unit based on
flag information corresponding to the flag in the modi-
fication target basic processing unit and extracting the
source code to produce the software model.

3. The stmulation apparatus as claimed in claim 1, wherein
the mputting comprises mputting the basic processing execu-
tion log to the hardware model based on event control infor-
mation 1in the first execution log.

4. A simulation method for executing simulation for per-
formance evaluation of a system to be implemented by soft-
ware and hardware using a hardware model, comprising:

a first acquisition step of acquiring a first execution log
representing a history of an instruction executed when
ex1isting tentative software 1s executed;

a division step of dividing the first execution log into a
plurality of basic processing units;

a basic processing execution log production step of modi-
tying some of the plural basic processing units to pro-
duce a basic processing execution log to be used for the
simulation; and

a stmulation execution step of inputting the basic process-
ing execution log to the hardware model to execute the
simulation to acquire information required for the per-
formance evaluation,

wherein the basic processing execution log production step
includes:

a software model production step of extracting a modifica-
tion target basic processing unit from among the plural
basic processing units and producing a soitware model
based on the extracted modification target basic process-
ing unit;

a second acquisition step of acquiring a tentative execution
log based on the software model; and

a synthesis step of synthesizing the plural basic processing,
units other than the modification target basic processing
unit and the tentative execution log to produce the basic
processing execution log.

5. The simulation method as claimed 1n claim 4, further

comprising;

a flag processing step of embedding a tlag representative of
a branch line of a source code or a function row for
calling an object 1n the tentative software 1nto the tenta-
tive software; and wherein,

at the first acquisition step, the tentative soitware in which
the flag 1s embedded 1s executed to acquire the first
execution log, and

at the software model production step, an object sequence
in the modification target basic processing unit 1S pro-
duced based on flag information corresponding to the
flag 1n the modification target basic processing unit and
the source code 1s extracted to produce the software
model.

6. The simulation method as claimed in claim 4, wherein, at
the simulation execution step, the basic processing execution
log 1s inputted to the hardware model based on event control
information in the first execution log.

7. A non-transitory computer-readable recording medium
in which a simulation program 1s recorded for causing a
computer to implement a function for executing simulation
for performance evaluation of a system to be implemented by

US 8,249,850 B2

17

software and hardware using a hardware model, the simula-
tion program causing the computer to function as:

a first acquisition section adapted acquire a first execution
log representing a history of an instruction executed
when existing tentative soltware 1s executed;

a division section adapted to divide the first execution log
into a plurality of basic processing units;

a basic processing execution log production section
adapted to modily some of the plural basic processing
units to produce a basic processing execution log to be
used for the stmulation; and

a simulation execution section adapted to mput the basic
processing execution log to the hardware model to
execute the simulation to acquire information required
for the performance evaluation,

wherein, when the computer 1s caused to function as the
basic processing execution log production section, the
simulation program causes the computer to function as:

a software model production section adapted to extract a
modification target basic processing umt from among
the plural basic processing units and producing a soft-
ware model based on the extracted modification target
basic processing unit;

a second acquisition section adapted to acquire a tentative
execution log based on the software model; and

a synthesis section adapted to synthesize the plural basic
processing units other than the modification target basic

10

15

20

25

18

processing unit and the tentative execution log to pro-
duce the basic processing execution log.

8. The non-transitory computer-readable recording
medium on or 1n which a simulation program 1s recorded as
claimed 1n claim 7, wherein the simulation program causes
the computer to function as a flag processing section adapted
to embed a tlag representative of a branch line of a source
code or a function row for calling an object 1n the tentative
software 1nto the tentative software;

the first acquisition section executing the tentative software

in which the tlag 1s embedded to acquire the first execu-
tion log;

the software model production section producing an object

sequence 1n the modification target basic processing unit
based on flag mnformation corresponding to the flag 1n
the modification target basic processing unit and extract-
ing the source code to produce the software model.

9. The non-transitory computer-readable recording
medium on which a simulation program 1s recorded as
claimed 1n claim 7, wherein the simulation program causes
the computer to function so that the simulation execution
section mputs the basic processing execution log to the hard-
ware model based on event control information in the first
execution log.

	Front Page
	Drawings
	Specification
	Claims

