12 United States Patent
Bybell

US008245016B2

US 8.245,016 B2
*Aug. 14, 2012

(10) Patent No.:
45) Date of Patent:

(54) MULTI-THREADED PROCESSING

(75) Inventor: Anthony J. Bybell, Carrboro, NC (US)

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 713 days.

This patent 1s subject to a terminal dis-
claimer.

(21) Appl. No.: 11/863,452

(22) Filed: Sep. 28, 2007

(65) Prior Publication Data
US 2009/0089553 Al Apr. 2, 2009

(51) Int.Cl.
GO6F 7/00 (2006.01)

(52) US.ClL e, 7127217

(58) Field of Classification Search None
See application file for complete search history.

302

CREATE PROCESS

304 ~ LOAD PROCESS

306 ~ FETCH INSTRUCTION

308 ~ DECODE INSTRUCTION

110 — IDENTIFY THREAD OF
SOURCE REGISTER

(56) References Cited
U.S. PATENT DOCUMENTS
7,584,342 B1* 9/2009 Nordquistetal. 712/22
2004/0215892 Al* 10/2004 Fluhretal. 711/137
2004/0268093 Al* 12/2004 Samraetal. 712/217

* cited by examiner

Primary Examiner — Eddie P Chan
Assistant Examiner — John Lindlof

(74) Attorney, Agent, or Firm — Patrick J. Daugherty;
Driggs, Hogg, Daugherty & Del Zoppo Co., LPA

(57) ABSTRACT

A system includes a multi-threaded processor that executes
an 1nstruction of a process of an executing program. The
multi-threaded processor includes at least a first and a second
thread. First and second sets of source registers are respec-
tively allocated to the first and second threads, and first and
second sets of destination registers are respectively allocated
to the first and second threads. A resource prefix configuration
register includes mappings between each of the source and
destination registers and the threads. The multi-threaded pro-
cessor, during execution of the istruction by one of the first
or the second threads of execution, accesses the source and
destination registers based on the mapping, wherein at least

one of the accessed registers 1s allocated to the other of the
first or the second thread of execution.

18 Claims, 2 Drawing Sheets

READ SOURCE REGISTER }— 312

PERFORM OPERATION }— 314

IDENTIFY THREAD OF 316

DESTINATION REGISTER

WRITE TO DESTINATION 318
REGISTER

U.S. Patent

Aug. 14, 2012 Sheet 1 of 2

US 8,245,016 B2

B — 116
STORAGE
— 118 — 120 122
PROGRAM
PROCESSES CODE DATA
— _
4
124 —| PROCESS
SCHEDULER
106 R [SE— PROCESS
PROCESS 104 m‘ [10 -\ RESOURCES
— 110,
REGISTERS
— 110,

114
PRIORITY {~

FIGURE 1

206 —4 208 4 210 —
THRE;AD ID THREA_b ID | THREAD ID
REGISTER ID | REGISTER ID | REGISTER ID

FIGURE 2

B REGISTERS |

EEE——

212“‘

THREAD ID
REGISTER ID

U.S. Patent Aug. 14, 2012 Sheet 2 of 2 US 8,245,016 B2
302
READ SOURCE REGISTER }— 312

304 N LOAD PROCESS

306 —~ FETCH INSTRUCTION

308

DECODE INSTRUCTION

314

PERFORM OPERATION

IDENTIFY THREAD OF | — 316
DESTINATION REGISTER

210 — | IDENTIFY THREAD OF WRITE TO DESTINATION | _ 218
SOURCE REGISTER REGISTER
FIGURE 3
— 400
COMPUTER SYSTEM 402
MEMORY
102 12
RCPR
PROCESSES
RESOURCES CT
110
o | 406 REGISTERS PROGRAM CODE

408

EXTERNAL DEVICE(S)

FIGURE

410

4

US 8,245,016 B2

1
MULITI-THREADED PROCESSING

FIELD OF THE INVENTION

The following generally relates to multithreaded process-
ing and, more particularly, to a system and method for using
thread resources of an 1nactive thread, 1n addition to the thread
resources of an active thread, when executing an instruction
with the active thread of the multithreaded processor.

BACKGROUND OF THE INVENTION

With a multi-threaded processor, multiple threads of
execution exist within the context of each process. The
threads of a particular process are executed 1n a manner in
which the processor quickly switches between different
threads such that 1t appears that threads are being simulta-
neously executed. A simple type of multi-threading 1s where
one thread runs until an event, such as a cache-miss that has to
access olf-chip memory, which might create a long latency.
Rather than waiting, the processor switches to another thread
that 1s ready to run. When the data for the previous thread
arrives, the previous thread i1s placed back on the list of
ready-to-run threads. In another type of multi-threading, the
processor switches threads every CPU cycle.

Each process 1s allocated resources such as registers by the
operating system, and such resources are allocated to the
process’ threads such that each thread owns 1ts own resources,
which are used when a thread i1s employed to execute an
istruction. When a process 1s created, it 1s stored 1n main
memory. Once the kernel assigns the process to a processor,
the process 1s loaded into the processor and the processor
executes the process’s mstructions using its resources.

A thread arbiter and/or thread priority determines which
thread of execution to use to execute an instruction, and a
thread i1dentifier (ID) 1s associated with and follows the
instruction through its various states of execution. The
instruction 1s executed using the resources, such as the regis-
ters, of the thread that corresponds to the thread I1D. When
switching threads, the thread arbiter or thread priority deter-
mines the next thread to employ, and a thread ID of the next
thread 1s associated with and follows the next instruction
through 1ts various states of execution. Likewise, the mstruc-

tion 1s executed using the resources of the thread that corre-
sponds to the thread ID of the next thread.

SUMMARY OF THE INVENTION

In one aspect, a system includes a multi-threaded processor
that executes an instruction of a process ol an executing
program. The multi-threaded processor includes at least a first
thread of execution and a second thread of execution. The
system further includes a plurality of source and destination
registers, wherein a first set of the source registers 1s allocated
to the first thread of execution, a second set of the source
registers 1s allocated to the second thread of execution, a first
set of the destination registers 1s allocated to the first thread of
execution, and a second set of the destination registers 1s
allocated to the second thread of execution. The system fur-
ther includes a resource prefix configuration register that
includes mapping between each of the source and destination
registers and the threads of execution. The multi-threaded
processor, during execution of the instruction by one of the
first or the second threads of execution, accesses the source
and destination registers based on the mapping, wherein at
least one of the accessed registers 1s allocated to the other of
the first or the second thread of execution.

5

10

15

20

25

30

35

40

45

50

55

60

65

2

In another aspect, a multi-threading method includes using,
a first of a plurality of threads of a processor to execute an
instruction of a process, providing a first mapping between a
source register identified 1n the instruction and a second of the
plurality of threads, reading an operand from the register
identified 1n the instruction in the second of the plurality of
threads, and performing an operation identified 1n the mnstruc-
tion on the operand.

In another aspect, a multi-threaded processor includes at
least two threads of execution, wherein the multi-threaded
processor uses one of the at least two threads of execution to
execute an istruction of a process, and the one of the at least
two threads of execution utilizes resources allocated to the
one of the at least two threads of execution and utilizes
resources allocated to the other of the at least two threads of
execution to execute the mstruction.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features will be more readily understood
from the following detailed description of various examples
taken 1n conjunction with the accompanying drawings in

which:

FIG. 1 illustrates a system that includes a multi-threaded
Processor;

FIG. 2 1llustrates a mapping between source and destina-
tion thread registers and a particular thread of execution for an
mnstruction;

FIG. 3 1llustrates a multi-threading method; and

FIG. 4 illustrates an example of a computer system 1n
which the multi-threading method can be employed.

The drawings are merely representations and are not
intended to portray specific elements. The drawings are
intended for explanatory purposes and should not be consid-
ered as limiting scope.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1 illustrates part of a computing system 100 such as a
computer or other system that includes one or more proces-
sors, which may reside on the same or different dies. For sake
of brevity and clarity, the illustrated system 100 1s shown with
a single, multithreaded processor 102. The processor 102 can
perform various functions, such as, but not limited to, execut-
ing instructions, exchanging data with the system’s memory
and/or peripherals, managing the system’s other components,
etc.

The 1llustrated processor 102 includes N threads of execu-
tion 104, thread_0, thread_1, . . ., thread_N. The processor
102 may use one or more of the threads of execution 104 when
executing an 1nstruction. For instance, the processor 102 may
be run 1 single thread mode in which only one of the N
threads 1s active. In another istance, the processor 102 may
be run 1n multi-thread mode 1n which two to N threads are
active. As discussed 1n greater detail below, active threads can
use their respective resources as well as the resources of
inactive threads when executing an 1instruction. In one
instance, this allows access to the resources of the threads 104
in a non-orthogonal fashion and may increase the number of
registers available to an active thread.

For each process, the operating system allocates resources
108, which include, but are not limited to, various registers,
file handles, security attributes, processor state, etc. Such
resources 108 are shared across the threads 104 of a process.
As shown, the resources 108 include multiple registers 110,
wherein a first set of registers 110, has been allocated to the

US 8,245,016 B2

3

thread_0 a second set of registers 110, has been allocated to
the thread_1, and an Mth set of registers 110,, has been

allocated to the thread N.

As will be appreciated, the registers 110 may include one
or more of general purpose registers (GPR’s), floating point
registers (FPR’s), special purpose registers (SPR), etc. In
addition, the number of the registers 110 and the number of
bytes in each of the registers 110 may vary. For example, in
one 1instance, at least one of the sets of registers 110,,
110,, ..., 110,,1includes thirty-two, 64-bit registers. More-
over, the registers 110 may be physical registers or copies of
registers.

A storage component 116, which may include or be part of
main memory, stores information such as one or more created
processes 118 for an executing program, program code 120,
data 122, as well as other computer readable information.

A process scheduler 124 schedules the one or more pro-
cesses 118 for execution by the processor 102. As shown 1n
this example, the process scheduler 124 has scheduled a pro-
cess 106 for execution and, as such, the process 106 1s loaded
into the processor 102. As noted above, when multiple pro-
cessors are available the kernel first determines which pro-
cessor will handle the process and then the process 1s loaded
to the respective processor.

A resource prefix configuration register (RPCR) 128,
which may be a single register as shown or a set of registers,
provides a mapping between the register(s) in an instruction
and one or more of the threads of execution 104. Such a
mapping 1s used to prepend a thread ID to the resource speci-
fied by a given opcode field 1n an mnstruction. Using such a
mapping, a thread can use its resources and/or the resources
ol one or more 1nactive threads when executing the mstruc-
tion. As such, the total number of registers available to an
active thread may be increased.

It 1s to be appreciated that this mapping may override the
single thread ID that 1s typically generated 1n a system that
does not employ the RPCR 128. For example, a thread arbiter
112 may be used to determine which thread 104 1s used by the
processor 102 when the processor 102 executes an 1nstruc-
tion. As shown, the thread arbiter 112 may use a thread
priority 114 to facilitate identifying the thread 104 to be
employed by the processor 102 for a particular instruction.
The system can be configured so that the mapping provided
by the RCPR 128 selectively overrides the arbiter 112.

An application programming interface (API) 130 provides
an interface that allows a user to define the mapping 1n the
RCPR 128. It 1s to be appreciated that the complier may
alternatively be used to define the mapping.

In operation, once the kernel has i1dentified the processor
102 and the process 106 1s loaded 1n the processor 102, the
processor 102 executes the process’ instructions. This
includes fetching an instruction of the process and decoding
the mstruction. Generally, such an instruction may include
the operation to be performed and, 1f any, the source register
ol the operand(s) to be operated on and/or the destination
register for the result. The operation may include, for
example, an arithmetic operation, data copying operation, a
logical operation, a program control operation, etc. The pro-
cessor 102 then executes the decoded instruction.

As can be appreciated, in some instances executing the
instruction may include reading data from one or more reg-
isters, operating on the data, and/or writing the results of the
operation to one or more reglsters In such instances, the
processor 102 utilizes the mapping from the RCPR 128 to
determine which thread and which thread register to read
from and/or write to.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 2 illustrates a non-limiting example of such a map-
ping. In FIG. 2, a row 204 includes a plurality of fields for
identifying a register via a register identifier (REGISTER ID)
and a row 202 includes a plurality of fields for identifying a
thread via a thread identifier (THREAD ID). E

FEach column
206,208,210, ...,212 maps aREGISTER ID toa THREAD
ID.

By way of example, the process 106 may include the fol-
lowing 1nstruction: XOR RA, RS, RB, wherein XOR repre-
sents the exclusive OR logical operation, RA represents the
destination or result general purpose register, and RS and RB
represent the source or operand general purpose registers.
Execution of this instruction includes retrieving the operands
from the RS and RB registers, XORing them together, and
storing the result in the RA register. With reference to the
example mapping 1n FIG. 2 and the above example struc-

tion, a possible mapping for the instruction 1s depicted in
Table 1 below.

TABL.

1

(Ll

Example RCPR mapping.

Thread ID:
Register ID:

00
RT

00
RS

01
RA

00
RB

With this mapping, the general purpose source registers RS
and RB are mapped to thread_0 (Thread ID 00) and the
general purpose destination register RA 1s mapped to
thread_1 (Thread ID 01). As such, the mstruction will result in
reading the operands from the general purpose source regis-

ters RS and RB of thread_0 (Thread ID 00), performing the
XOR operation with the operands, and writing the result of

the XOR operation to the general purpose destination register
RA of thread_1 (Thread ID 01). It 1s to be appreciated that the

above 1s only an example. In another implementation the
source registers RS and RB may be from different threads,

one of the source registers RS or RB may be from the same
thread as the destination register RA, etc. Of course, other
instructions are also contemplated herein.

In the above example, the general purpose registers RS,
RA, and RB are utilized. With other mstructions, other gen-
eral purpose registers such as RT, floating point registers such
as FRT, FRA, FRB, FRC, etc., and/or special purpose regis-
ters such as SPR may additionally or alternatively be used.

When operating 1n single thread mode, the processor 102
executes the instruction via one thread (e.g., thread_0), which
reads and/or writes to the registers ol one or more of the
threads 104, including its registers and/or one or more of the
registers ol one or more of the iactive threads thread_1,
thread_N. In this mode, the processor 102 1s provided with a
copy of and/or access to the mapping 1n the RCPR 128. As
noted above, 1n one example each thread has thirty-two (32)
64-bit registers. By overloading the thread ID using the map-
ping, the active thread of a two-threaded processor may use
up to sixty-four (64) registers, the active thread of a four-
threaded processor may use up to one hundred and twenty-
cight (128) registers,

In multi-thread mode, each active thread includes a copy of
and/or has access to the mapping in the RCPR 128. For
example, assume that the processor 102 includes four (N=4)
threads of operation, thread_ 0, thread 1, thread_ 2, and
thread_3. Also assume that only two (2) of the threads,
thread_0 and thread 3, are active, and that thread_0 uses the
" thread_0, thread 1 and thread 2, and that

resources of
thread_3 only uses the resources of thread_3. Both of the
active threads, thread_ 0 and thread_3 would be provided with
a copy of and/or access to the mapping in the RCPR 128. Such
information can be used by the software and/or hardware to

US 8,245,016 B2

S

mitigate attempts by thread_0 to access the resources used by
thread_3 (the resources of thread_3), and attempts by
thread_3 to access the resources used by thread 0 (the
resources of thread_0, thread_1 and thread_2).

In another example, active thread_0 only uses the resources

of 1nactive thread_2, and active thread_1 only uses the
resources ol inactive thread_3. In this instance, both of the
active threads, thread_ 0 and thread_1 would be provided with
a copy of and/or access to the mapping in the RCPR 128. Such
mapping may be used when one or more of the resources of
thread_0 and thread_are corrupt. Various other permutations
are also contemplated herein.

FIG. 3 1llustrates a multi-threading method. The following,
1s described 1n the context of a multi-threaded processor
executing 1n single thread mode and an instruction that
includes an operation, at least one operand source register,
and at least one destination register. However, in other
examples, more than one processor may be used, one or more
of such processors may alternatively be ran in multi-threaded
mode, and the struction may alternatively only include a
data copying operation, a program control operation, etc.

At reference numeral 302, a process i1s created, for
example, for an executing program. At 304, the process 1s
loaded 1n the processor. As noted above, with a multiproces-
sor system, the kernel first selects the processor that waill
execute the process. At 306, the processor fetches an istruc-
tion of the process. The schedule processor 124 or other
technique may be used to determine process ordering. At 308,
the processor decodes the mstruction, including determining
any operations, source registers and/or destination registers.
At 310, the processor utilizes a mapping between the source
registers and the threads of execution to 1dentily which of the
threads to read from to obtain an operand(s).

At 312, the processor reads the operand(s) from the source
register(s) of the identified thread(s). At 314, the processor
performs the operation on the operand(s). At 316, the proces-
sor utilizes a mapping between the destination registers and
the threads of execution to identify which thread’s register to
write the result. At 318, the processor writes the result in the
identified register of the 1dentified thread. The processor the
tetches the next instruction, for example, as determined by the
process scheduler 124, 11 any, and repeats 306 through 318.
Otherwise, a next process, i any, 1s loaded 1n the processor.

Referring now to FIG. 4, an exemplary computer system
400 1n which the system 100 can be utilized with 1s 1llustrated.
As shown, the computer system 400 includes the multi-
threaded processor (CPU) 102, memory 402, a bus 404, and
input/output (I/0) mterfaces 406. The memory 402 includes
the RCPR 128 or a copy of the RCPR 128, the processes 118,
the data 122, the program code 120, and the process resources
108, including the registers 110.

Further, the computer system 400 1s shown in communi-
cation with external devices 408 and an external storage sys-
tem 410. The external devices 408 can comprise any devices
(e.g., keyboard, pointing device, display, etc.) that enable a
user to interact with computer system 400 and/or any devices
(e.g., network card, modem, etc.) that enable computer sys-
tem 400 to communicate with one or more other computing
devices. The external storage system 410 includes memory
such as a hard disk, a floppy disk, portable memory, etc.

In general, the CPU 102 executes instructions of processes.
While executing such instructions, the CPU 102 can read
and/or write data to/from the memory 402, such as to/from the
registers 110 of the process resources 108. As discussed

above, different sets of the registers 110 allocated to a process
are allocated to each of the threads of the CPU 102. The CPU

102 accesses the RCPR 128 or the copy of the RCPR 128 to

10

15

20

25

30

35

40

45

50

55

60

65

6

obtain a mapping between the registers i1dentified in the
instruction and the different threads of execution. The map-
ping provides an override that allows a thread of execution
executing an instruction to use the resources 108, including
the registers 110, of mnactive threads of execution, along with
1ts own resources, to facilitate execution of the instruction.

The foregoing description of various aspects of the imven-
tion has been presented for purposes of illustration and
description. It 1s not intended to be exhaustive or to limait the
invention to the precise form disclosed, and obviously, many
modifications and variations are possible. Such modifications
and variations that may be apparent to a person skilled 1n the
art are intended to be included within the scope of the mven-
tion as defined by the accompanying claims.

I claim:
1. A multi-threading processing method, the method com-
prising:

mapping respective identitying fields of each of a plurality
of source registers and of a plurality of destination reg-
isters to different respective identifying fields of each of
a plurality of threads of instruction; wherein a first of the
source registers and a first of the destination registers are
mapped to a first thread; wherein a second of the source
registers and a second of the destination registers are
mapped to a second thread; and wherein the first thread
1s different from the second thread, and each of the first
and second source registers and the first and second
destination registers are different from each other of the
first and second source registers and the first and second
destination registers; and

executing an instruction of the first thread via a processor
when the second thread 1s 1nactive by:

providing access by the first thread to the mapping of the
second thread to the second source register and the sec-
ond destination register 1f the second thread 1s iactive;

using the mapping of the second thread to the second
source register and the second destination register to
execute the istruction of the first thread by reading from
the second source register and writing to the second
destination register;

using the mapping of the first thread to the first source
register and the first destination register to execute the
instruction of the first thread by reading from the first
source register and writing to the first destination regis-
ter; and

mitigating any attempt by the second thread to read from
the second source register or write to the second desti-
nation register still mapped to the second thread while
the first thread 1s using said second source register to
execute the instruction of the first thread.

2. The method of claim 1, further comprising:

storing the mapping in a resource prefix configuration reg-
ister 1n communication with the processor; and

wherein the using the mapping to read from the second
source register and write to the second destination reg-
1ster comprises using the mapping stored 1n the resource
prefix configuration register.

3. The method of claim 2, further comprising:

providing an interface that allows a user to define the map-
ping 1n the resource prefix configuration register.

4. The method of claim 2, further comprising:

using a compiler to define the mapping in the resource
prefix configuration register.

5. The method of claim 1, further comprising:

using a thread priority to identily via a thread arbiter the
first thread executed by the processor; and

US 8,245,016 B2

7

selectively overriding via the thread arbiter the mapping of
the second source register and the second destination
register to the second thread and mitigating the any
attempt by the second thread to read from the second

figuration register, wherein the compiler defines the
mapping in the resource prefix configuration register.

8

11. The system of claim 7, further comprising:

a thread arbiter in communication with the processor,
wherein the thread arbiter determines which thread 1s
used by the processor when the processor executes an

source register or write to the second destination register instruction; and
still mapped to the second thread while the first thread 1s wherein the thread arbiter uses a thread prionity to facilitate
using said second source register and said second thread identifying the first thread executed by the processor;
1S 1nactive. and
6. The method of claim 1, wherein the pluralities of source wherein the thread arbiter selectively overrides the map-
and destination registers include one or more of a general 10 ping during the executing of the instruction of the first
purpose register, a floating point register, and a special pur- thread via the processor when the second thread 1s 1nac-
pose register. tive.
7. A multi-threading system, the system comprising: 12. The system of claim 7, wherein the pluralities of source
a multithreaded processor that maps via respective identi- .. and destination registers include one or more of a general
tying fields of each of a plurality of source registers and purpose register, a floating point register, and a special pur-
of a plurality of destination registers to diflerent respec- pose register.
tive identitying fields of each of a plurality of threads of 13. A computer program product for multi-threaded pro-
instruction; wherein a first of the source registers and a cessing, the computer program product comprising;:
first of the destination registers are mapped to a first 20 a non-transitory computer readable storage medium:;
thread; wherein a second of the source registers, and a first program 1nstructions to map respective identifying
second of the destination registers are mapped to a sec- fields of each of a plurality of source registers and of a
ond thread; and wherein the first thread 1s different from plurality of destination registers to diflerent respective
the second thread, and each of the first and second source identifying fields of each of a plurality of threads of
registers and the first and second destination registers are 25 instruction; wherein a first of the source registers and a
different from each other of the first and second source first of the destination registers are mapped to a first
registers and the first and second destination registers; thread; wherein a second of the source registers, and a
and second of the destination registers are mapped to a sec-
wherein the processor executes an instruction of the first ond thread; and wherein the first thread 1s different from
thread when the second thread 1s mnactive by: S the second thread, and each of the first and second source
providing access by the first thread to the mapping of the registers and the first and second destination registers are
second thread to the second source register and the sec- different from each other of the first and second source
ond destination register 1f the second thread 1s inactive; registers and the first and second destination registers;
using the mapping ot the second thread to the second . and
source register and the second destination register to second program 1instructions to execute an instruction of
execute the mstruction of the first thread by reading from the first thread when the second thread is 1nactive by:
the second source register and writing to the second providing access by the first thread to the mapping of the
destination register; second thread to the second source register and the sec-
using the mapping of the first thread to the first source 4q ond destination register 1f the second thread 1s mnactive;
register and the first destination register to execute the using the mapping of the second thread to the second
instruction of the first thread by reading from the first source register and the second destination register to
source register and writing to the first destination regis- execute the mstruction of the first thread by reading from
ter; and the second source register and writing to the second
mitigating any attempt by the second thread to read from 45 destination register;
the second source register or write to the second desti- using the mapping of the first thread to the first source
nation register still mapped to the second thread while register and the first destination register to execute the
the first thread 1s using said second source register to instruction of the first thread by reading from the first
execute the mstruction of the first thread. source register and writing to the first destination regis-
8. The system of claim 7, further comprising;: 50 ter; and
a resource prelix configuration register in communication mitigating any attempt by the second thread to read from
with the processor, wherein the resource prefix configu- the second source register or write to the second desti-
ration register stores the mapping; nation register still mapped to the second thread while
wherein the processor uses the mapping stored in the the first thread 1s using said second source register to
resource prefix configuration register to read from the 55 execute the instruction of the first thread; and
second source register and write to the second destina- wherein the first and second program instructions are
tion register. stored on the computer readable storage medium.
9. The system of claim 8, further comprising: 14. The computer program product of claim 13, wherein
an application programming interface i communication the first program 1nstructions are further to store the mapping
with the resource prefix configuration register, wherein 60 1n a resource prefix configuration register in communication
the application programming interface provides an with the processor and to use the mapping stored in the
interface that allows a user to define the mapping 1n the resource prelix configuration register to read from the second
resource prefix configuration register. source register and write to the second destination register.
10. The system of claim 8, further comprising;: 15. The computer program product of claim 14, wherein
a compiler in communication with the resource prefix con- 65 the first program instructions are further to provide an inter-

tace that allows a user to define the mapping 1n the resource
prefix configuration register.

US 8,245,016 B2
9 10

16. The computer program product of claim 14, wherein thread during the executing of the instruction of the first
the first program 1nstructions are further to use a compiler to thread when the second thread 1s 1nactive and to mitigate
define the mapping 1n the resource prefix configuration reg- the any attempt by the second thread to read from the
1ster. second source register or write to the second destination

17. The computer program product of claim 13, wherein 5 register still mapped to the second thread while the first
the first program instructions are further to provide a thread thread 1s using said second source register and said sec-
arbiter that determines which thread 1s used by the processor ond thread 1s 1nactive.
when the processor executes an istruction and uses a thread 18. The computer program product of claim 13, wherein
priority to identify the first thread executed by the processor; the pluralities of source and destination registers include one
and 10 ormore of a general purpose register, a floating point register,

wherein the second program instructions are further to and a special purpose register.

selectively override the mapping of the second source
register and the second destination register to the second * ok ok % ok

	Front Page
	Drawings
	Specification
	Claims

