US008244839B2

a2 United States Patent (10) Patent No.: US 8.244.839 B2
Beaty et al. 45) Date of Patent: Aug. 14, 2012
(54) NETWORK PROBLEM DETERMINATION 2010/0057860 Al* 3/2010 Fryetal. ...ccocooevnnnn... 709/206
2010/0216475 Al* &/2010 Hooleoovviiiviiniiinnnn, 455/436
(75) Inventors: Kirk A. Beaty, Goldens Bridge, NY 2011/0235518 Al* 9/2011 Halabietal. 370/237

(US); Michael R. Head, Tarrytown, NY OTHER PUBLICATIONS
(L{S); Anca Saller,; Scarsdale, NY (US); David A. Wheeler, “Why Open Source Software / Free Software
Hidayatullah Shaikh, Shrub Oak, NY (OSS/FS, FLOSS, or FOSS)? Look at the Numbers!”, available at
(US) http://www.dwheeler.com/oss_ fs_ why html#tco Revised as of Apr.

12, 2007,
(73) Assignee: International Business Machines Gillen et al., The role of Linux in reducing cost of enterprise com-
Corporation, Armonk, NY (US) puting, IDC white paper, Jan. 2002

Sadtler et al. WebSphere Application Server V6 Problem Determi-

(*) Notice: Subject to any disclaimer, the term of this nation for Distributed Platforms. S(324-6798-00, Redbook, Nov. 20,

. ded g 4 und 2005.

patent 1s extended or adjusted under 35 Baragoin et al. DB2 Warchouse Management: High Availability and

U.S5.C. 154(b) by 213 days. Problem Determination Guide. $G24-6544-00, Redbook, Mar. 22,
2002.

(21) Appl. No.: 12/826,915 Laadan et al. DejaView: A Personal Virtual Computer Recorder, Jan.
2007.

(22) Filed: Jun. 30, 2010 Wang et al, Peer Pressure for Automatic Troubleshooting, Jun. 29,

2004. Reimer et al. Opening Black Boxes: Using Semantic Informa-
tion to Combat Virtual Machine Image Sprawl, Jan. 2008.

(65) Prior Publication Data Concurrent Versions System. http://www.nongnu.org/cvs/, Dec. 3,
US 2012/0005318 A1 Jan. 5, 2012 cmo.
GIT, http://git-scm.conmy/, Jun. 11, 2009.
IBM Support Assistant. http://www-01.1bm.com/software/support/
(51) Int. Cl. isa/, Jul. 27, 2007.
GO6F 15/16 (2006.01) U.S. Appl. No. 12/872,095, filed Aug. 31, 2010, titled Modular Cloud
(52) US.CL ... 709/221; 709/224; °709/206; 709/223; Computing System.

709/229; 370/237;370/231; 370/235; 370/229;
3°70/230; 726/22;°726/23; 726/11; 726/5

(58) Field of Classification Search 709/221, Primary Examiner — Jude Jean Gilles

o 709/223,206, 224,229 (74) Attorney, Agent, or Firm — Ryan, Mason & Lewis, LLP
See application file for complete search history.

* cited by examiner

56 Ref Cited (57) ABSTRACT
(0) CIeTEnees A Techniques for problem determination are provided. The
U.S PATENT DOCUMENTS techniques 1nclude identitying one or more configuration

items 1n two or more systems connected to one or more

5,928,509 A 7/1999 Keyser et al. networks, performing a comparison of one or more common

7,475,387 B2 1/2009 Chandane

7,606,229 B1* 10/2009 Foschiano etal. 370/392 COIlﬁngl‘ ation 1items from the one or more Conﬁguration 1tems
7,978,607 B1* 7/2011 Halabietal. 370/235 in the two or more systems connected to one or more net-
2005/0138463 Al1* 6/2005 Boltetal. ..., 714/4 works, and using the comparison to detect deviation between
2006/0123226 A * 6/2006 Kumaretal. ... 713/154 one or more configuration items of one of the two or more
2006/0167871 Al1* 7/2006 Sorensonetal. 707/6 : . .
2007/0223502 Al* 9/2007 Green ... 370/401 SYStemS Ellld OIC Or IMMorc I'eSPECtIVE? COnﬁguratIOIl 1tems 1n the
2008/0154600 Al* 6/2008 Tianetal. ...ccoovvvnn... 704/251 other one or more systems.
2009/0228963 Al* 9/2009 Pearceetal.coovvvvvinn.... 726/5
2010/0050229 A1* 2/2010 Overby, Jr.c.cceviiinnnn, 726/1 23 Claims, 6 Drawing Sheets

IDENTIFY ONE OR MORE CONFIGURATION
ITEMS IN ONE OR MORE SYSTEMS 602
CONNECTED TO ONE OR MORE NETWORKS

PERFORM A COMPARISON OF THE ONL OR MORE
CONFIGURATION ITEMS FROM THE ONE OR MORE
SYSTEMS CONNECTED TO ONE OR MORE NETWORKS

604

USE THE COMPARISON TO DETECT DEVIATION BETWEEN
ONE OR MORE CONFIGURATION ITEMS OF ONE OF THE | 506

ONE OR MORE SYSTEMS AND ONE OR MORE RESPECTIVE
CONFIGURATION [TEMS IN THE OTHER ONE OR MORE SYSTEMS

US 8,244,839 B2

Sheet 1 of 6

Aug. 14, 2012

U.S. Patent

AN

- —
i

¢ N3l NOILVHNIIINOD -
¢ N3l NOILVENOIINQD -
| WALl NOLLVANOIINOD -

- g
b ™

g

UL

¢ 41INAD V1VQ

00
L[]

¢ 41IN3D VIVQ

B |

AdOLISOd Y
LINAL LK

N3(4109

53300dd
AdIA0JSIC

201 7/
;o

30}

$51004d
NOILI3110

SNSNISNOD

§5100dd
NOILYOI4110N
EN|

801 o1/

U.S. Patent Aug. 14, 2012 Sheet 2 of 6 US 8,244,839 B2

238

234

214

U.S. Patent Aug. 14, 2012 Sheet 3 of 6 US 8,244,839 B2

riG. 3

COLLECT CONFIGURATION ITEMS 310
GET THt GOLDEN TEMPLATE 190
COMMON CONFIGURATION

DETECT RESOURCE DEVIATION
FROM THE GOLDEN TEMPLATE 530
COMMON CONFIGURATION

FIND CONSENSUS OF
CONFIGURATION CHANGES 340
(e.g., PAXOS CONSENSUS ALGORITHM)

UPDATE GOLDEN TEMPLATE -
COMMON CONFIGURATION
FIX CONFIGURATION(S) 360

IF PROBLEM 1S NOT SOLVED OR

WORSENED. FIX THE GOLDEN TEMPLATE [~ °'C

U.S. Patent Aug. 14, 2012 Sheet 4 of 6 US 8,244,839 B2

FIG. 4

ORDER CONFIGURATION ITEMS 410

IDENTIFY THE COMMON 120
CONFIGURATION ITEMS

FIND CONSENSUS OF COMMON
CONFIGURATION ITEM VALUES
(e.g., PAX0S CONSENSUS ALGORITHM)

450

DECIDE WHAT CONFIGURATION
ITEMS WITH DIFFERENT 440
VALUES NEED TO BE FIXED

UPDATE THE VALUE OF THE
CONFIGURATION ITEMS THAT 450
NEED TO BE FIXED

REMOVE THE CONFIGURATION {TEMS 160
WITHOUT IDENTICAL VALUES
GET THE GOLDEN TEMPLATE 170
COMMON CONFIGURATION

U.S. Patent Aug. 14, 2012 Sheet 5 of 6 US 8,244,839 B2

riG. o

COLLECT CONFIGURATION ITEMS 310

ORDER CONFIGURATION ITEMS 320

FIND CONSENSUS OF COMMON
CONFIGURATION ITEM VALUES
(8.g., PAXOS CONSENSUS ALGORITHM)

230

DECIDE WHAT CONFIGURATION
ITEMS WITH DIFFERENT
VALUES NEED TO BE FIXED

240

UPDATE THE VALUE OF THE
CONFIGURATION ITEMS THAT 330
NEED TO BE FIXED

UPDATE THE GOLDEN TEMPLATE 560
COMMON CONFiGURATION

U.S. Patent Aug. 14, 2012 Sheet 6 of 6 US 8,244,839 B2

FIG. 6

"IDENTIFY ONE OR MORE CONFIGURATION
TEMS IN ONE OR MORE SYSTEMS 502
CONNECTED TO ONE OR MORE NETWORKS

PERFORM A COMPARISON OF THE ONE OR MbRE
CONFIGURATION ITEMS FROM THE ONE OR MOREL 604
SYSTEMS CONNECTED TO ONE OR MORE NETWORKS

USE THE COMPARISON TO DETECT DEVIATION BETWEEN

ONE OR MORE CONFIGURATION ITEMS OF ONE OF THE 506

ONE OR MORE SYSTEMS AND ONE OR MORE RESPECTIVE
CONFIGURATION ITEMS IN THE OTHER ONE OR MORE SYSTEMS

FIG. 7
712
™ 10/FROM
7024 PROCESSOR | 710 | NETWORK I/F COMPUTER
NETWORK
704 MEMORY MEDIA 1/F MEDIA
I _ 716 718

706~ DISPLAY |

708~ KEYBOARD |

US 8,244,839 B2

1
NETWORK PROBLEM DETERMINATION

FIELD OF THE INVENTION

Embodiments of the invention generally relate to informa-
tion technology, and, more particularly, to network cloud
environments.

BACKGROUND OF THE INVENTION

In many instances, a significant portion of total cost of
operation (1CO), which 1n turn can be five to ten times the
purchase price of the system hardware and software, 1s spent
resolving problems or preparing for imminent problems in
the system. Hence, the cost of problem determination and
resolution (PDR) represents a substantial part of operational
COSTs.

Consequently, making PDR cost effective has posed a chal-
lenge 1n traditional information technology (IT) environ-
ments. The I'T resources being dedicated to a particular cus-
tomer and his or her applications lead to a diversity of
configuration among I'T environments and applications that
can make it challenging to programmatically reuse scripts,
workflows, lessons learned from one environment to another.
This heterogeneity 1s one aspect of the problem determination

and resolution replication 1ssue.

Existing approaches in the area of problem determination
and resolution provide methodology restricted to particular
products address only potential problems that have been iden-
tified 1n the product pre-production phase and have been
categorized 1n error codes integrated in the product.

SUMMARY OF THE INVENTION

Principles and embodiments of the invention provide tech-
niques for network problem determination. An exemplary
method (which may be computer-implemented) for problem
determination, according to one aspect of the mnvention, can
include steps of 1dentifying one or more configuration items
in two or more systems connected to one or more networks,
performing a comparison of one or more common configu-
ration 1items from the one or more configuration i1tems 1in the
two or more systems connected to one or more networks, and
using the comparison to detect deviation between one or more
configuration items of one of the two or more systems and one
or more respective configuration 1tems in the other one or
more systems.

One or more embodiments of the mvention or elements
thereol can be implemented 1n the form of a computer product
including a tangible computer readable storage medium with
computer useable program code for performing the method
steps 1ndicated. Furthermore, one or more embodiments of
the invention or elements thereof can be implemented 1n the
form of an apparatus including a memory and at least one
processor that 1s coupled to the memory and operative to
perform exemplary method steps. Yet further, in another
aspect, one or more embodiments of the invention or elements
thereol can be implemented 1n the form of means for carrying
out one or more of the method steps described herein; the
means can include (1) hardware module(s), (1) software mod-
ule(s), or (111) a combination of hardware and software mod-
ules; any of (1)-(i11) implement the specific techniques set
torth herein, and the software modules are stored 1n a tangible
computer-readable storage medium (or multiple such media).

These and other objects, features and advantages of the
present invention will become apparent from the following

5

10

15

20

25

30

35

40

45

50

55

60

65

2

detailed description of illustrative embodiments thereof,
which 1s to be read in connection with the accompanying
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram illustrating an exemplary
embodiment, according to an aspect of the invention;

FIG. 2 1s a diagram 1llustrating a data structure defining a
hierarchy of configuration items, according to an embodi-
ment of the present invention;

FI1G. 3 1s aflow diagram 1llustrating techmques for problem
determination and resolution, according to an embodiment of
the present invention;

FIG. 4 15 a flow diagram 1illustrating techniques for per-
forming a commonality identification process, according to
an embodiment of the present invention;

FIG. 5 15 a flow diagram illustrating techniques for per-
forming a periodical comparison process, according to an
embodiment of the present invention;

FIG. 6 1s a flow diagram 1llustrating techmiques for problem
determination, according to an embodiment of the invention;
and

FIG. 7 1s a system diagram of an exemplary computer
system on which at least one embodiment of the invention can
be implemented.

DETAILED DESCRIPTION OF EMBODIMENTS

Principles of the invention include consensus-based proac-
tive problem determination and resolution in cloud environ-
ments. One or more embodiments of the mvention include
pre-detection of failures of systems connected to one or more
networks, as well as incipient failure detection on network
cloud environments. Additionally, one or more embodiments
of the invention advantageously consider configuration
troubleshooting knowledge related to fixing uncategorized
failures 1n a production environment.

The techniques detailed herein also include controlling
information technology (IT) resources over a network envi-
ronment, providing a systematic approach to problem deter-
mination resolution (PDR), as well as facilitating a decrease
in the cost of detecting system failures. Additionally, one or
more embodiments of the invention include facilitating the
decrease of the cost of incident and problem management
methodology through systematizing existent data, knowl-
edge, and expertise for reusability, as well as the avoidance of
cost associated with problem determination by allowing for
proactive problem resolution through knowledge based early
notification of configuration 1ssues.

As noted herein, the emergence of I'T cloud environments
brings with it a shift from the traditional heterogeneous envi-
ronment towards more homogenous ones through resource
virtualization, dynamic allocation, image technology. One or
more embodiments of the mvention including providing a
consensus-based PDR process that covers the operations nec-
essary for detecting configuration anomalies 1n a virtual sys-
tem and providing assistance to automatically recover from
the cause of the problem into a stable state. In one or more
embodiments of the mvention, for example, the virtual sys-
tems considered for PDR are part of a cluster of resources
expected to perform similar operations and thus to expose
similar configuration. Also, one or more embodiments of the
invention can include similar resources in different point of
deployment (POD) clouds (for example, 1n this instance, the
customer I'T resources), which are expected to perform simi-
lar operations for those clouds.

US 8,244,839 B2

3

FIG. 1 1s a block diagram illustrating an exemplary
embodiment, according to an aspect of the invention. By way
ofillustration, FIG. 1 depicts a cloud operation center 102 that
handles the request for any service from users and orches-
trates the end-to-end workflow to facilitate that request. The
cloud operation center 102 includes a user notification pro-
cess component 104, a discovery process component 108, a
consensus detection process component 106 and a golden
template repository component 110. FIG. 1 also depicts auser
interface (UI) 112, as well as data centers 114, 116, 118,
which can each include configuration item components such
as component 120.

As 1llustrated 1n FIG. 1, 1n each data center, a collection of
software and hardware systems exists. A discovery process
component 108 extracts the relevant configuration items for
comparison with those 1n the golden template (that 1s, best
practices configurations supported by a service provider)
repository 110. The consensus detection process component
106 determines 11 the 1tems are 1n sync. If not, the notification
process component 104 informs the administrator via the Ul
112 of a possible impending error.

As described herein, one or more embodiments of the
invention relates to proactive failure detection in I'T clouds,
(that 1s, early detection of mis-configurations that can lead to
issues 1 not addressed). I'T management infrastructure and
applications that are similar are identified from a cloud
deployment to another, such as, for example, among private
clouds dedicated to an industry or the same customer types.
As also detailed herein, a discovery process traverses the
deployed 1tems and their configurations for each cloud, and
the discovered items are matched against a comprehensive
cloud configuration and hierarchical configuration golden
templates are built for each industry or groups of similar
customer types (that 1s, with similar cloud configurations).

One or more embodiments of the invention can include
periodically comparing each cloud’s discovered items
against the corresponding golden template, level by level 1n
the hierarchy, to detect misalignments. The comparisons can
be performed, by way of example, 1n all aspects, installed
soltware (text comparison), numerical and textual configura-
tions. Additionally, one or more embodiments of the inven-
tion include providing a process to 11X the 1ssues by realigning
to the golden template or updating the golden template. Fur-
ther, presentation of the early detection of mis-configurations
via an interface or graphical user interface (GUI) can be used
for discoverability as well.

In the 1mstance, for example, of similar resources expected
to perform similar operations in different POD clouds, the
first step 1n the discovery process detailed above (based upon
which the hierarchical configuration golden templates are
built) has to be performed over all the resources considered
for PDR, and not only a couple them. Being 1n different
Clouds, these resources are not expected to be completely
identical. The ratio of common configuration items expected
to have 1dentical values versus common configuration items
expected to differ in value can be used as an indicator whether
or not that particular resource 1s or 1s not a good candidate for
this PDR methodology.

FIG. 2 1s a diagram 1illustrating a data structure defining a
hierarchy of configuration items, according to an embodi-
ment of the present invention. By way of illustration, FIG. 2
depicts example configuration items 202, 204, 206, 208, 210,
212, 214, 216, 218, 220, 222, 224, 226, 228, 230, 232, 234,
236, 238, 240, 242, 244, 246, 248, 250,252, 254 and 256 in a
defined hierarchy. As also depicted 1n FIG. 2, dashed lines
indicate cumulative dependencies, such as, for example, ran-
dom access memory (RAM). For instance, if two applications

10

15

20

25

30

35

40

45

50

55

60

65

4

cach require 1 Gb RAM, one or more embodiments of the
invention can add 1+1 and provide 2 Gb. Additionally, as
depicted i FIG. 2, solid black-lines can indicate, for
example, that two applications are dependent on Windows,
and they can be installed on the same Win instance. Further
depicted 1n FI1G. 2, the heavy ovals (versus the thin ovals) can
indicate supported configurations or best practices.

As detailed herein, a golden template stores constraints and
dependencies that retlect the best practices configuration tem-
plates supported by a specific service provider. By way of
example and not limitation, an example of a constraint that
reflect best practices configurations can include “Web appli-
cation server M version a.b.c works with database server N
version X.v.Z.” A special type of configuration constraint can
include the classes of equivalence rules that indicate which
products provide similar functionality. Software conflicts are
another potential type of constraint. The constraints may also
include performance and resource utilization rules such as,
for example, “For low resource utilization requirements, the
application server and the database are to be installed on the
same machine.” Those skilled in the art will appreciate, how-
ever, that these are example constraints only, and that any IT
constraints and dependencies may be used without departing
from the spirit of the present invention.

FIG. 3 1s aflow diagram 1llustrating techmiques for problem
determination and resolution, according to an embodiment of
the present invention. Step 310 includes collecting configu-
ration items (for example, from PODs). Step 320 includes
obtaining the golden template of common configurations. In
a cluster of similar resources operating normally, one or more
embodiments of the invention include comparing resources,
extracting the common configuration 1tems that have ident-
cal values, and storing them as a configuration tree (for
example, 1 extensible markup language (XML) format) 1n a
local repository.

Step 330 includes detecting resource deviation from the
golden template configurations. One or more embodiments of
the invention include publishing the golden template of com-
mon configuration to the cluster resources. On each resource,
the golden template of common configuration 1s compared to
the current resource configuration with a high frequency (for
example, each few minutes as to make 1t relevant to a proac-
tive PDR context). Such comparison can be performed, for
example, using hash values at different levels 1n the configu-
ration tree.

Step 340 includes finding a consensus of configuration
changes (for example, via the Paxos consensus algorithm). As
detailed herein, if difterences/deviations are detected, one or
more embodiments of the invention will trigger a consensus
algorithm to run, comparing the detected differences among a
subset of the collected resources. In one or more embodi-
ments of the invention, the subset 1s bigger than the double of
the number of resources found with different configurations.

Step 350 includes updating the golden template of com-
mon configuration. If the differences/deviations are consis-
tent among resources, one or more embodiments of the inven-
tion 1infer cluster updates and generate new golden template of
common configuration. Step 360 includes fixing configura-
tions. If the differences/deviations are not consistent among
resources, one or more embodiments of the invention include
notilying an admimistrator to confirm the update/re-image of
the problematic resources with the configuration of the most
resources (that 1s, the collected resources). Further, 1f the
problem 1s not solved or 1s worsened, step 370 includes fixing
the golden template of common configuration and re-imaging
the resources. By way of example, 11 a configuration param-
cter has a wrong value 1n the template, one or more embodi-

US 8,244,839 B2

S

ments of the invention include correcting the value and propa-
gating the change to all atfected PODs. Also, 11 an 1mage 1s
available, one or more embodiments of the invention include
re-imaging the affected VMs.

FIG. 4 1s a flow diagram illustrating techniques for per-
forming a commonality identification process, according to
an embodiment of the present invention. Step 410 includes
ordering configuration items (for example, from PODs). Step
420 1ncludes identifying the common configuration items.
Step 430 includes finding a consensus of common configu-
ration item values (for example, via use of the Paxos consen-
sus algorithm). Step 440 includes deciding what configura-
tion 1tems with different values need to be fixed. When
differences are detected, one or more embodiments of the
invention include triggering a consensus algorithm to run,
comparing the detected differences among a subset of
resources. Further, in one or more embodiments of the inven-
tion, the subset 1s bigger than the double of the number of
resources found with different configurations.

Step 450 includes updating the value of the configuration
items that need to be fixed. Step 460 includes removing the
configuration items without identical values. Further, step
4’70 1includes obtaining the golden template of common con-
figuration.

FIG. 5 1s a flow diagram illustrating techniques for per-
forming a periodical comparison process, according to an
embodiment of the present imnvention. Step 510 includes col-
lecting configuration 1tems. Step 520 includes ordering con-
figuration 1tems. Step 330 includes finding a consensus of
common configuration 1tem values (for example, via use of
the Paxos consensus algorithm).

Step 540 1ncludes deciding what configuration items with
different values need to be fixed. Step 550 includes updating
the value of the configuration 1tem values that need to be
fixed. Additionally, step 560 includes updating the golden
template ol common configuration.

FI1G. 6 1s a flow diagram 1llustrating techniques for problem
determination, according to an embodiment of the present
invention. Step 602 includes identifying one or more configu-
ration items in two or more systems (for example, similar
systems) connected to one or more networks. This step can be
carried out, for example, using a discovery process module.

The configuration 1tems can include, for example, virtual
machine class properties (such as, for example, CPU speci-
fications, RAM specifications, on/oif status, hard drive speci-
fications, etc.), virtual machine operating system properties
(such as, for example, name, version, update level, etc.),
operating system application properties (such as, {for
example, name, version, update level, etc.), operating system
library properties (such as, for example, name, version,
update level, etc.) and application soitware configurations of
one or more application programs running on a respective
virtual machine. Also, the one or more configuration 1tems
can be orgamized 1n a hierarchy.

Step 604 includes performing a comparison of one or more
common configuration items from the one or more configu-
ration 1tems 1n the two or more systems connected to one or
more networks (for example, using hash values at different
levels 1n the configuration tree). This step can be carried out,
for example, using a consensus detection process module.

Step 606 includes using the comparison to detect deviation
between one or more configuration items ol one of the two or
more systems and one or more respective configuration 1items
in the other one or more systems. This step can be carried out,
for example, using a consensus detection process module.

The techniques depicted 1n FIG. 6 can also include 1denti-
tying a template of common configurations. The configura-

10

15

20

25

30

35

40

45

50

55

60

65

6

tion items that are in common with all the similar systems and
the configuration item values that are i1dentical for all the
similar systems are stored 1n a template data structure (for
example, a golden template of common configurations).
Identifying a template of common configurations (for
example, 1n a cluster of similar resources operating normally)
can include comparing the systems, extracting common con-
figuration 1tems that have identical values, and storing the
common configuration items as a configuration tree (for
example, 1 extensible markup language (XML) format) 1n a
local repository.

Additionally, one or more embodiments of the mvention
can include detecting deviation between the configuration
items from the two or more systems and the template of
common configurations. Detecting deviation between the
configuration items from the systems and the template of
common configurations can include publishing the template
of common configuration to one or more points of deploy-
ment (which can include, for example, the two or more sys-
tems).

The techniques depicted in FIG. 6 can also include deter-
mining a consensus of configuration changes (via, for
example, use of the Paxos consensus algorithm). Determin-
ing a consensus of configuration changes can include running
a consensus algorithm comparing detected deviations among
a subset of the configuration items. By way of example, 1n one
or more embodiments of the invention, the subset can be
bigger than the double of the number of resources found with
different configurations.

One or more embodiments of the invention can addition-
ally include generating a new template of common configu-
rations 11 one or more deviations are consistent among the two
or more systems. Also, one or more embodiments of the
invention include notifying an administrator to update con-
figuration items with detected deviations 11 the deviations are
not consistent among the two or more systems.

The techniques depicted in FIG. 6 can also include per-
forming a commonality 1dentification process, wherein the
commonality 1dentification process determines which of the
configuration 1items are common and 1dentical across all of
the systems. Performing a commonality identification pro-
cess can 1nclude the steps of ordering one or more configu-
ration i1tems, identiiying one or more common configuration
items, {inding a consensus of common configuration 1tem
values, determining which configuration items with deviating
values are to be fixed, updating the value of the configuration
items to be fixed, removing configuration items without 1den-
tical values, and obtaining a template ol common configura-
tions.

Additionally, the techniques depicted 1n FIG. 6 can include
performing a periodical comparison process, wherein the
periodical comparison process 1dentifies a configuration item
on one of the systems that has a value different than a respec-
tive identical value. Performing a periodical comparison pro-
cess can include the steps of collecting one or more configu-
ration items, ordering one or more configuration items,
finding a consensus of common configuration 1tem values 1n
the configuration items, determining which configuration
items with deviating values are to be fixed, updating the value
of the configuration 1tem values to be fixed, and updating a
template ol common configurations.

One or more embodiments of the invention can also
include performing a discovery process, wherein the discov-
ery process discovers one or more configuration items and
respective values of the configuration 1tems from all of the
twO or more systems.

US 8,244,839 B2

7

The techniques depicted 1 FIG. 6 can also, as described
herein, include providing a system, wherein the system
includes distinct software modules, each of the distinct soft-
ware modules being embodied on a tangible computer-read-
able recordable storage medium. All the modules (or any
subset thereol) can be on the same medium, or each can be on
a different medium, for example. The modules can 1nclude
any or all of the components shown in the figures. In one or
more embodiments, the modules include a user intertace
module, a user notification process module, a discovery pro-
cess module, a consensus detection process module and a
golden template repository module. The modules can run, for
example on one or more hardware processors. The method
steps can then be carried out using the distinct software mod-
ules of the system, as described above, executing on the one or
more hardware processors. Further, a computer program
product can include a tangible computer-readable recordable
storage medium with code adapted to be executed to carry out
one or more method steps described herein, including the
provision of the system with the distinct software modules.

Additionally, the techniques depicted 1n FIG. 6 can be
implemented via a computer program product that can
include computer useable program code that 1s stored 1n a
computer readable storage medium 1n a data processing sys-
tem, and wherein the computer useable program code was
downloaded over a network from a remote data processing
system. Also, 1n one or more embodiments of the mvention,
the computer program product can include computer useable
program code that 1s stored 1n a computer readable storage
medium 1n a server data processing system, and wherein the
computer useable program code are downloaded over a net-
work to aremote data processing system for use 1n a computer
readable storage medium with the remote system.

As will be appreciated by one skilled 1n the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module™ or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
or more computer readable medium(s) having computer read-
able program code embodied thereon.

One or more embodiments of the invention, or elements
thereol, can be implemented 1n the form of an apparatus
including a memory and at least one processor that 1s coupled
to the memory and operative to perform exemplary method
steps.

One or more embodiments can make use of software run-
ning on a general purpose computer or workstation. With
retference to FIG. 7, such an implementation might employ,
for example, a processor 702, a memory 704, and an mput/
output interface formed, for example, by a display 706 and a
keyboard 708. The term ““processor” as used herein 1s
intended to include any processing device, such as, for
example, one that includes a CPU (central processing unit)
and/or other forms of processing circuitry. Further, the term
“processor’ may refer to more than one individual processor.
The term “memory” 1s mtended to include memory associ-
ated with a processor or CPU, such as, for example, RAM
(random access memory), ROM (read only memory), a fixed
memory device (for example, hard drive), a removable
memory device (for example, diskette), a flash memory and
the like. In addition, the phrase “input/output interface” as
used herein, 1s intended to include, for example, one or more

10

15

20

25

30

35

40

45

50

55

60

65

8

mechanisms for inputting data to the processing unit (for
example, mouse), and one or more mechanisms for providing
results associated with the processing unit (for example,
printer). The processor 702, memory 704, and input/output
interface such as display 706 and keyboard 708 can be inter-
connected, for example, via bus 710 as part of a data process-
ing umt 712. Suitable interconnections, for example via bus
710, can also be provided to a network interface 714, such as
a network card, which can be provided to interface with a
computer network, and to a media interface 716, such as a
diskette or CD-ROM drive, which can be provided to inter-
face with media 718.

Accordingly, computer software including instructions or
code for performing the methodologies of the mvention, as
described herein, may be stored 1n one or more of the asso-
ciated memory devices (for example, ROM, fixed or remov-
able memory) and, when ready to be utilized, loaded in part or
in whole (for example, into RAM) and implemented by a
CPU. Such software could include, but 1s not limited to,
firmware, resident software, microcode, and the like.

A data processing system suitable for storing and/or
executing program code will include at least one processor
702 coupled directly or indirectly to memory elements 704
through a system bus 710. The memory elements can include
local memory employed during actual implementation of the
program code, bulk storage, and cache memories which pro-
vide temporary storage of at least some program code 1n order
to reduce the number of times code must be retrieved from
bulk storage during implementation.

Input/output or I/O devices (including but not limited to
keyboards 708, displays 706, pointing devices, and the like)
can be coupled to the system either directly (such as via bus
710) or through intervening 1/O controllers (omitted for clar-
ity).

Network adapters such as network interface 714 may also
be coupled to the system to enable the data processing system
to become coupled to other data processing systems or remote
printers or storage devices through intervening private or
public networks. Modems, cable modem and Ethernet cards
are just a few of the currently available types of network
adapters.

As used herein, including the claims, a “server’” includes a
physical data processing system (for example, system 712 as
shown 1n FIG. 7) running a server program. It will be under-
stood that such a physical server may or may not include a
display and keyboard.

As noted, aspects of the present invention may take the
form of a computer program product embodied in one or more
computer readable medium(s) having computer readable pro-
gram code embodied thereon. Any combination of one or
more computer readable medium(s) may be utilized. The
computer readable medium may be a computer readable sig-
nal medium or a computer readable storage medium. A com-
puter readable storage medium may be, for example, but not
limited to, an electronic, magnetic, optical, electromagnetic,
infrared, or semiconductor system, apparatus, or device, or
any suitable combination of the foregoing. Media block 718
1s a non-limiting example. More specific examples (a non-
exhaustive list) of the computer readable storage medium
would include the following: an electrical connection having
one or more wires, a portable computer diskette, a hard disk,
a random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), an optical fiber, a portable com-
pact disc read-only memory (CD-ROM), an optical storage
device, a magnetic storage device, or any suitable combina-
tion of the foregoing. In the context of this document, a

US 8,244,839 B2

9

computer readable storage medium may be any tangible
medium that can contain, or store a program for use by or in
connection with an instruction execution system, apparatus,
or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that 1s not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or 1n connection with an mnstruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, radio
frequency (RF), etc., or any suitable combination of the fore-
going.

Computer program code for carrying out operations for
aspects of the present invention may be written 1n any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone soitware package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described herein with
reference to flowchart 1llustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the mvention. It will be
understood that each block of the tlowchart i1llustrations and/
or block diagrams, and combinations of blocks 1n the tlow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program 1nstructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored 1n the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified 1n the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the mstructions which execute on the com-
puter or other programmable apparatus provide processes for

10

15

20

25

30

35

40

45

50

55

60

65

10

implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams 1n the figures 1llustrate
the architecture, functionality, and operation ol possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, component, segment, or
portion of code, which comprises one or more executable
istructions for 1mplementing the specified logical
function(s). It should also be noted that, 1n some alternative
implementations, the functions noted 1n the block may occur
out of the order noted in the figures. For example, two blocks
shown 1n succession may, 1n fact, be executed substantially
concurrently, or the blocks may sometimes be executed in the
reverse order, depending upon the functionality mvolved. It
will also be noted that each block of the block diagrams
and/or flowchart i1llustration, and combinations of blocks in
the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems
that perform the specified functions or acts, or combinations
of special purpose hardware and computer instructions.

It should be noted that any of the methods described herein
can include an additional step of providing a system compris-
ing distinct software modules embodied on a computer read-
able storage medium; the modules can include, for example,
any or all of the components shown 1n FIG. 1. The method
steps can then be carried out using the distinct software mod-
ules and/or sub-modules of the system, as described above,
executing on one or more hardware processors 702. Further,
a computer program product can include a computer-readable
storage medium with code adapted to be implemented to
carry out one or more method steps described herein, includ-
ing the provision of the system with the distinct software
modules.

In any case, 1t should be understood that the components
illustrated herein may be implemented in various forms of
hardware, software, or combinations thereof; for example,
application specific integrated circuit(s) (ASICS), functional
circuitry, one or more appropriately programmed general pur-
pose digital computers with associated memory, and the like.
Given the teachings of the invention provided herein, one of
ordinary skill 1n the related art will be able to contemplate
other implementations of the components of the invention.

The terminology used herein 1s for the purpose of describ-
ing particular embodiments only and 1s not intended to be
limiting of the invention. As used herein, the singular forms
“a,” “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
turther understood that the terms “comprises” and/or “com-
prising,” when used 1n this specification, specity the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
clements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements 1n the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present mvention has been presented for purposes of
illustration and description, but 1s not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described 1n order to best explain the principles of the mnven-

US 8,244,839 B2

11

tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.
At least one embodiment of the invention may provide one
or more beneficial effects, such as, for example, considering
configuration troubleshooting knowledge related to fixing
uncategorized failures 1n a production environment.
It will be appreciated and should be understood that the
exemplary embodiments of the invention described above can
be implemented 1n a number of different fashions.
Given the teachings of the invention provided herein, one
of ordinary skill in the related art will be able to contemplate
other implementations of the mmvention. Indeed, although
illustrative embodiments of the present invention have been
described herein with reference to the accompanying draw-
ings, 1t 1s to be understood that the 1nvention 1s not limited to
those precise embodiments, and that various other changes
and modifications may be made by one skilled in the art.
What 1s claimed 1s:
1. A method for problem determination, wherein the
method comprises:
identifying one or more configuration items 1n two or more
systems connected to one or more networks;

performing a comparison of one or more common configu-
ration items from the one or more configuration items 1n
the two or more systems connected to one or more net-
works; and

using the comparison to detect deviation between one or

more to configuration items of one of the two or more
systems and one or more respective configuration items
in the other one or more systems.

2. The method of claim 1, further comprising identifying a
template ol common configurations.

3. The method of claim 2, wherein identifying a template of
common configurations comprises comparing the two or
more systems, extracting one or more common configuration
items that have i1dentical values, and storing the one or more
common configuration items as a configuration tree in a local
repository.

4. The method of claim 2, further comprising detecting
deviation between the one or more configuration 1tems from
the two or more systems and the template of common con-
figurations.

5. The method of claim 4, wherein detecting deviation
between the one or more configuration 1tems from the two or
more systems and the template of common configurations
comprises publishing the template of common configuration
to one or more points of deployment.

6. The method of claim 1, further comprising determining
a consensus ol configuration changes.

7. The method of claim 6, wherein determining a consensus
of configuration changes comprises running a consensus
algorithm comparing one or more detected deviations among
a subset of the one or more configuration 1tems.

8. The method of claim 1, turther comprising generating a
new template of common configurations 1f one or more devia-
tions are consistent among the two or more systems.

9. The method of claim 1, further comprising notifying an
administrator to update one or more configuration 1tems with
one or more detected deviations 11 the one or more deviations
are not consistent among the two or more systems.

10. The method of claim 1, wherein the one or more con-
figuration 1tems comprise at least one of one or more virtual
machine class properties, one or more virtual machine oper-
ating system properties, one or more operating system appli-
cation properties, one or more operating system library prop-

10

15

20

25

30

35

40

45

50

55

60

65

12

erties and one or more application software configurations of
one or more application programs running on a respective
virtual machine.

11. The method of claim 1, wherein the one or more con-
figuration 1tems are organized in a hierarchy.

12. The method of claim 1, further comprising performing
a commonality 1dentification process, wherein the common-
ality 1dentification process determines which of the one or
more configuration items are common and identical across all
of the two or more systems.

13. The method of claim 12, wherein performing a com-
monality 1dentification process comprises the steps of:

ordering one or more configuration items;

1dentifying one or more common configuration items;

finding a consensus of common configuration item values;

determiming which configuration items with deviating val-
ues are to be fixed;

updating the value of the configuration items to be fixed;

removing one or more configuration items without 1denti-

cal values; and

obtaining a template of common configurations.

14. The method of claim 1, further comprising performing
a periodical comparison process, wherein the periodical com-
parison process identifies a configuration 1tem on one of the
two or more systems that has a value different than a respec-
tive 1dentical value.

15. The method of claim 14, wherein performing a peri-
odical comparison process comprises the steps of:

collecting one or more configuration items;

ordering one or more configuration i1tems;

finding a consensus of common configuration 1tem values

in the one or more configuration 1tems;

determining which configuration items with deviating val-

ues are to be fixed;

updating the value of the configuration item values to be

fixed; and

updating a template of common configurations.

16. The method of claim 1, further comprising performing
a discovery process, wherein the discovery process discovers
one or more configuration items and respective values of the
one or more configuration items from all of the two or more
systems.

17. The method of claim 1, further comprising providing a
system, wherein the system comprises one or more distinct
software modules, each of the one or more distinct software
modules being embodied on a tangible computer-readable
recordable storage medium, and wherein the one or more
distinct software modules comprise a user iterface module,
a user notification process module, a discovery process mod-
ule, a consensus detection process module and a golden tem-
plate repository module executing on a hardware processor.

18. A computer program product comprising a tangible
computer readable recordable storage medium including
computer useable program code for problem determination,
the computer program product including:

computer useable program code for identilying one or

more configuration i1tems in two or more systems con-
nected to one or more networks;
computer useable program code for performing a compari-
son of one or more common configuration items from
the one or more configuration items in the two or more
systems connected to one or more networks; and

computer useable program code for using the comparison
to detect deviation between one or more configuration
items of one of the two or more systems and one or more
respective configuration 1tems 1n the other one or more
systems.

US 8,244,839 B2

13

19. The computer program product of claim 18, further
comprising computer useable program code for identifying a
template of common configurations, wherein the computer
useable program code for identifying a template of common
configurations comprises computer useable program code for
comparing the two or more systems, extracting one or more
common configuration items that have 1dentical values, and
storing the one or more common configuration i1tems as a
configuration tree 1n a local repository.

20. The computer program product of claim 18, further
comprising computer useable program code for detecting
deviation between the one or more configuration items from
the two or more systems and the template of common con-
figurations, wherein the computer useable program code for
detecting deviation between the one or more configuration
items from the two or more systems and the template of
common configurations comprises computer useable pro-
gram code for publishing the template of common configu-
ration to one or more points of deployment.

21. The computer program product of claim 18, further
comprising computer useable program code for notifying an
administrator to update one or more configuration 1tems with
one or more detected deviations 11 the one or more deviations
are not consistent among the two or more systems.

22. A system for problem determination, comprising:

a memory; and

at least one processor coupled to the memory and operative

to:

identily one or more configuration items 1n two or more
systems connected to one or more networks;

perform a comparison of one or more common configu-
ration items from the one or more configuration 1tems
in the two or more systems connected to one or more
networks; and

use the comparison to detect deviation between one or
more configuration items of one of the two or more

10

15

20

25

30

35

14

systems and one or more respective configuration
items 1n the other one or more systems.
23. The system of claim 22, wherein the at least one pro-
cessor coupled to the memory 1s further operative to identity
a template of common configurations, and wherein the at least
one processor coupled to the memory operative to identify a
template of common configurations 1s further operative to
compare the two or more systems, extract one or more com-
mon configuration items that have identical values, and store
the one or more to common configuration 1tems as a configu-
ration tree 1n a local repository.
24. The system of claim 22, wherein the at least one pro-
cessor coupled to the memory 1s further operative to detect
deviation between the one or more configuration 1tems from
the two or more systems and the template of common con-
figurations, and wherein the at least one processor coupled to
the memory operative to detect deviation between the one or
more configuration 1tems from the two or more systems and
the template of common configurations 1s further operative to
publish the template of common configuration to one or more
points of deployment.
25. An apparatus for problem determination, the apparatus
comprising;
means for identifying one or more configuration items 1n
two or more systems connected to one or more networks;

means for performing a comparison of one or more com-
mon configuration 1tems from the one or more configu-
ration 1tems in the two or more systems connected to one
or more networks; and

means for using the comparison to detect deviation

between one or more configuration 1tems of one of the
two or more systems and one or more respective con-
figuration 1tems 1n the other one or more systems.

	Front Page
	Drawings
	Specification
	Claims

