12 United States Patent
Sedukhin et al.

US008239505B2

US 8.239,505 B2
Aug. 7, 2012

(10) Patent No.:
45) Date of Patent:

(54) PROGRESSIVELY IMPLEMENTING
DECLARATIVE MODELS IN DISTRIBUTED
SYSTEMS

(75) Inventors: Igor Sedukhin, Issaquah, WA (US);
Daniel Eshner, Issaquah, WA (US);
Amol S. Kulkarni, Bothell, WA (US);
Girish M. Venkataramanappa,
Redmond, WA (US); Leo S. Vannelli,
II1, North Bend, WA (US); Sumit
Mohanty, Redmond, WA (US);
Sundeep Sahi, Seattle, WA (US)

(73) Assignee: Microsoft Corporation, Redmond, WA
(US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 961 days.

(21) Appl. No.: 11/771,816

(22) Filed: Jun. 29, 2007

(65) Prior Publication Data
US 2009/0006062 Al Jan. 1, 2009

(51) Int.CL
GO6F 15/177 (2006.01)

GO6F 15/173 (2006.01)
(52) US.CL ... 709/221; °709/220; '709/223; 709/224

(58) Field of Classification Search 709/220,
709/221, 223, 224, 707/100; 717/174
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,751,635 A 6/1988 Kret

5,423,003 A 6/1995 Berteau
5,602,991 A 2/1997 Berteau
5,655,081 A 8/1997 Bonnell
5,764,241 A 6/1998 Elliott
5,809,266 A 9/1998 Touma

5,893,083 A 4/1999 Eshghi
5,913,062 A 6/1999 Vrvilo et al.
5,937,388 A 8/1999 Davis et al.
5,958,010 A 9/1999 Agarwal
6,005,849 A 12/1999 Roach et al.
0,026,404 A 2/2000 Adunuthula
0,055,363 A 4/2000 Beals et al.
6,070,190 A 5/2000 Reps
6,167,538 A 12/2000 Neufeld et al.
0,185,601 Bl 2/2001 Wolll

(Continued)

FOREIGN PATENT DOCUMENTS
EP 0733967 9/1996
(Continued)

OTHER PUBLICATIONS
U.S. Appl. No. 11/844,177, filed Aug. 23, 2007, Sedhukin.

(Continued)

Primary Examiner — Aaron Strange
(74) Attorney, Agent, or Firm — Workman Nydegger

(57) ABSTRACT

A system for automatically implementing high-level instruc-
tions 1 a distributed application program, where the high-
level mstructions reflect the behavior of the distributed appli-
cation program, includes at least a tools component. The tools
component 1s used to write high-level instructions 1n the form
of declarative models, and place them in a repository. An
executive component then recerves the declarative models
from the repository and refines them (e.g., via progressive
claboration) until there are no ambiguities. A platform-spe-
cific driver then translates the commands from the executive
component, effectively turning the declarative model instruc-
tions 1nto a set of imperative actions to be implemented 1n one
or more application containers. The platform-specific driver
also relays one or more event streams to an analytics means,
which can result 1n modifications to the declarative models
and corresponding new sets ol 1nstructions coming through
the platform-specific driver at a later point.

19 Claims, 3 Drawing Sheets

Receive A Set Of New Declarative Models 300

Implement The New Declarative Models
Through An Application Container 310

Identify A Change In The Declarative Models 320

Implement An Updated Version Of The
Declarative Models Through The Application 330
Container

US 8,239,505 B2

Page 2
U.S. PATENT DOCUMENTS 2003/0135384 Al 7/2003 Nguyen
| | 2003/0149685 Al 8/2003 Trossman
6,225,995 B1 5/2001 Jacobs 2003/0182656 Al 9/2003 Leathers
g%gg%gg Er ggggr g‘ﬁmel’ 2003/0195763 Al 10/2003 Gulcu
SO) - 1ot 2003/0208743 Al 11/2003 Chong
6,263,339 Bl 7/2001 Hirsch 2004/0034850 Al 2/2004 Burkhardt
2%32*233 Er 1%88r ?.m:iﬁo" et al. 2004/0040015 Al 2/2004 Jordan
ST ol 1001 R 2004/0046785 Al 3/2004 Keller
£330 114 Bl 129001 Jacobsy * 2004/0078461 Al 4/2004 Bendich et al.
6336217 Bl 1/2002 D’Anjou et al. 2004/0088350 AL 52004 Farly
C342907 Bl 112002 Petty 2004/0102926 Al 5/2004 Adendorff
6415297 Bl 7/2002 Leymann ct al. 20040148184 AL 72004 Sadiq
ALS, | 2004/0162901 Al 82004 Mangipudi et al.
2*‘6‘}’;’2?3 Et“ 1%88% iﬁ‘;’rﬂlﬂ“‘m“ah 2004/0186905 Al 9/2004 Young
D29, ; Tl 2004/0249972 Al 12/2004 White
6,640,241 Bl 10/2003 Ozzie 2005/0005200 Al 1/2005 Matena et al.
6,654,783 Bl 1172003 Hubbard 2005/0010504 Al 1/2005 Gebhard et al.
6,662,205 Bl 1272003 Bereiter 2005/0011214 Al 1/2005 Ratliff
6,697,877 Bl 2/2004 Martin 2005/0055692 Al 3/2005 Lupini et al.
6,710,786 Bl 3/2004 Jacobs 2005/0071737 Al 3/2005 Adendorff
6,715,145 Bl 3/2004 Bowman-Amuah 2005/0074003 Al 4/2005 Ball
6,718,535 Bl 4/2004 Underwood 2005/0091227 AL* 4/2005 MecCollum et al. 707/100
6,801,818 B2 10/2004 Kopcha 2005/0120106 Al 6/2005 Albertao
6,547,970 B2 1/2005 Keller et al. 2005/0125212 Al 6/2005 Hunt et al.
6,886,024 Bl 4/2005 Fujita 2005/0132041 Al 6/2005 Kundu
6,907,395 Bl 6/2005 Hunt 2005/0137839 Al 6/2005 Mansurov
6,931,644 B2 3j2005 RJO;E?*h o 2005/0149940 Al 7/2005 Calinescu
g’gﬂ’g% Eg géggg E?)ysineet ° 2005/0155042 Al 7/2005 Kolb et al.
941, 2 * 2005/0165906 Al 7/2005 Deo et al.
7,051,098 B2 52006 Masters 2005/0182750 Al 8/2005 Krishna et al.
7,055,143 B2 5/2006 Ringseth et al 2005/0188075 Al 82005 Dias et al.
7,065,579 B2 6/2006 lraversat 2005/0216831 Al 9/2005 Guzik
7,072,807 B2 7/2006 Brown et al. 2005/0228855 Al 10/2005 Kawato
7,072,934 B2 7/2006 Helgeson 2005/0246656 Al 11/2005 Vasilev
7,079,010 B2 7/2006 Champlin 2005/0251546 Al 11/2005 Pichetti et al.
7,085,857 B2 8/2006 Kimbrel et al. 2005/0261875 Al 11/2005 Shrivastava
;aoggﬂggj g% ggggg ﬁ“lg) 2005/0268307 Al 12/2005 Gates et al.
7130881 B2 10/2006 Volkov of al. 2005/0278702 Al 12/2005 Koyfman
7.150.015 B2 12/2006 Pace et al. 2005f02835 18 Al 12;2005 Sargent
7.155,380 B2 12/2006 Hunt et al. %882/88}8}231 it‘ }éggg ﬁ”t“
7,155,466 B2 12/2006 Rodriguez ; v
155, 2006/0013252 Al 1/2006 Smith
}-_géﬂgg? g% %882 %ﬁl‘“"ﬂ et al. 2006/0036743 Al 2/2006 Deng et al.
7174359 Bl 2/2007 Hamilton, II et al. ggggﬁgg%ggg it‘ ggggg f’}“gwm
_ | robman
7,178,129 B2 2/2007 Katz 2006/0070086 Al 3/2006 Wang
7,200,530 B2 4/2007 Brown 2006/0074730 Al 4/2006 Shukla et al.
7,210,143 B2 4/2007 Or et al. 2006/0074734 Al 4/2006 Shukla et al.
7,219,351 B2 5/2007 Bussler et al. 2006/0080352 Al 4/2006 Boubez
7,263,680 Bl 82007 Edwards et al. 006/0005443 Al 55006 Remrn:
7,296,268 B2 11/2007 Darling 2006/0101059 Al 5/2006 Mizote
7,379,999 Bl 5/2008 Zhou et al. 2006/0123389 Al 6/2006 Kolawa et al.
gggggg Eg %882 gffilnﬁéd et al. 2006/0123412 AL* 6/2006 Hunt et al. woooveovonn 717/174
7.403.956 B2 7/2008 Vaschilo et al. ggggfgigﬁgg it‘ %882 Eﬁldwm.
. | covolis et al.
?*i‘g‘é"géﬁ Ef 1%882 %“”“?ml ctal. 2006/0173906 Al 82006 Chu et al.
S 10907 Bl 35000 J;;pmga 1 2006/0206537 Al 9/2006 Chiang
312, . 2006/0206890 Al 9/2006 Shenfield et al.
7,526,734 B2 4/2009 Vasilev 2006/0230314 Al 10/2006 Saniar et al.
%2}8;2 Eg gggrg Bﬂs il o al 2006/0235859 Al 10/2006 Hardwick et al.
el sar By 75010 Bi?ep ell et al. 2006/0236254 Al 10/2006 Mateescu
, 101, . 2006/0242195 Al 10/2006 Bove
7,774,744 B2 8/2010 Moore et al. 2006/0265231 Al 11/2006 Fusaro et al.
%gg%g Eg g//ggrg E%“Stcml 2006/0277323 Al 12/2006 Joublin et al.
eatonr B> 115010 Eilieta‘ 2006/0277437 Al 12/2006 Ohtsuka
,044, I 2006/0294502 Al 12/2006 Das
;?33%2 Eg %8% gﬂﬁ t zi 2006/0294506 Al 12/2006 Dengler et al.
2002/0035593 Al 3/2002 Salim et al. 388%8882333 it“ %882 EII‘“““
2002/0038217 Al 3/2002 Young . aggerty
S 00o/00008 18 Al 005 Reng 2007/0006122 Al 1/2007 Bailey et al.
2002/0111841 Al 8/2002 Leymann et al. 2007/0016615 Al 1/2007 Mohan et al.
2002/0120917 Al 8/2002 Abrari et al. 2007/0033088 Al 2/2007 Aigner et al.
2002/0133504 Al 9/2002 Vlahos et al. 2007/0038994 AL 2/2007 Davis et al.
2002/0135611 Al 9/2002 Deosaran et al. 2007/0050237 Al 3/2007 Tien
2002/0147515 Al 10/2002 Fava et al. 2007/0050483 Al 3/2007 Bauer et al.
2002/0198734 Al 12/2002 Greene 2007/0001775 Al 3/2007 Tanaka
2003/0005411 Al 1/2003 Gerken 2007/0061776 Al 3/2007 Ryan et al.
2003/0061342 Al 3/2003 Abdelhadi 2007/0067266 Al 3/2007 Lomet
2003/0084156 Al 5/2003 Graupner et al. 2007/0089117 Al 4/2007 Samson

US 8,239,505 B2
Page 3

2007/0094350 Al 4/2007 Moore
2007/0112847 Al 5/2007 Dublish
2007/0168924 Al 7/2007 Kirby
2007/0174228 Al 7/2007 Folting
2007/0174815 Al 7/2007 Chrysanthakopoulos et al.
2007/0179823 Al 8/2007 Bhaskaran
2007/0208606 Al 9/2007 MacKay
2007/0220177 Al 9/2007 Kothari
2007/0226681 Al 9/2007 Thorup
2007/0233879 Al 10/2007 Woods
2007/0244904 Al 10/2007 Durski
2007/0245004 Al 10/2007 Chess
2007/0277109 Al 11/2007 Chen
2007/0283344 Al 12/2007 Apte et al.
2007/0288885 Al 12/2007 Brunel et al.
2007/0294364 Al 12/2007 Mohindra et al.
2008/0005729 Al 1/2008 Harvey
2008/0010631 Al 1/2008 Harvey
2008/0127052 Al 5/2008 Rostoker
2008/0209414 Al 8/2008 Stein
2008/0244423 Al 10/2008 Jensen-Pistorius
2009/0009662 Al 1/2009 Manapragada
2009/0049165 Al 2/2009 Long et al.
2009/0187662 Al 7/2009 Manapragada et al.
2009/0265458 Al 10/2009 Baker
2010/0005527 Al 1/2010 Jeon
2011/0179151 Al 7/2011 Sedukhin
2011/0219383 Al 9/2011 Bhaskar
2012/0042305 Al 2/2012 Sedukhin
FOREIGN PATENT DOCUMENTS

EP 1770510 4/2007

WO WO 00/38091 6/2000

WO 0124003 4/2001

WO WO 02/27426 A2 4/2002

WO 2007072501 6/2007

OTHER PUBLICATIONS

U.S. Appl. No. 11/740,737, filed Apr. 26, 2007, Sedhukin.

U.S. Appl. No. 11/771,827, filed Jun. 29, 2007, Sedhukin.

Frecon, Emmanuel, et al., “DIVE: a scaleable network architecture
for distributed virtual environments”, The British Computer Society,
The Institution of Electrical Engineers and IOP Publishing Ltd, Mar.
6, 1998, pp. 91-100,

Baldi, Mario, et al., “Exploiting Code Mobility in Decentralized and
Flexible Network Management™, Lecture Notes 1n Computer Sci-
ence, vol. 1219, Proceedings of the First International Workshop on
Mobile Agents, pp. 13-26.

Milenkovic, Milan, et al., “Towards Internet Distributed Comput-
ing”, Sep. 26, 2003, http://m.students.umkc.edu/mpshxt/ Towards__
IDC.pdf.

Dias, M. Bernardine, et al., “A Real-Time Rover Executive Based on
Model-Based Reactive Planning™ The 7th International Symposium
on Artificial Intelligence, Robotics and Automation in Space, May
2003.

Goble, Carole, et al., “Building Large-scale, Service-Oriented Dis-
tributed Systems using Semantic Models”, http://www.j1sc.ac.uk/
media/documents/programmes/capital/grid_ standards_ above
ogsa.pdf, 21 pages.

Robinson, William N. “Implementing Rule-based Monitors within a

Framework for continuous Requirements Monitoring” Proceedings
of the 38th Hawai International Conference on System Sciences,
2005 IEEE, 10 pages.

Maghraoui, Kaoutar EL, et al., “Model Driven Provisionings: Bridg-
ing the Gap Between Declarative Object Models and Procedural

Provisioning Tools™, http://wcl.cs.rp1.edu/papers/middleware06.pdf.
U.S. Appl. No. 11/925,079, filed Oct. 26, 2007, Bhaskar.

U.S. Appl. No. 11/925,326, filed Oct. 26, 2007, Christensen.

U.S. Appl. No. 11/925,680, filed Oct. 26, 2007, Sedukhin.

U.S. Appl. No. 11/925,591, filed Oct. 26, 2007, Sedukhin.

U.S. Appl. No. 11/925,067, filed Oct. 26, 2007, Sedukhin.

U.S. Appl. No. 11/925,184, filed Oct. 26, 2007, Voss.

U.S. Appl. No. 11/925,201, filed Oct. 26, 2007, Sedukhin.

U.S. Appl. No. 60/983,117, filed Oct. 26, 2007, Skierkowski.

OSLO>Suite 2006, “OSLO Suite 1s the leading platform for design-

ing, building and executing adaptive business solutions”, http://www.
oslo-software.com/en/product.php.

Korb, John T., et al., “Command Execution in a Heterogeneous
Environment”, 1986 ACM, pp. 68-74.

Von, Vorgelet, et al., “Dynamic Upgrade of Distributed Software
Components™, 2004, 191 pages.

Poslad, Stefan, et al., “The FIPA-OS agent platform: Open Source for
Open Standards™, Apr. 2000, 17 pages.

Software News, “Progress Software Extends Lead in Distributed
SOA” 2007, 6 pages.

Eidson, Thomas M., “A Component-based Programming Model for
Composite, Distributed Applications”, Institute for Computer Appli-
cations 1n Science and Engineering Hampton, VA, May 2001, 1 page.
Bauer, Michael A., “Managing Distributed Applications and Sys-
tems: An Architectural Experiment™, Jan. 31, 1997, 46 pages.
Tawiik, Sam, “Composite applications and the Teradata EDW?”,
Extend the capabilities of your enterprise data warehouse with sup-
porting applications, Teradata Magazine online, Archive: vol. 6, No.
4, Dec. 2000, 3 pages.

Alpern, Bowen, et al, “PDS: A Virtual Execution Environment for
Software Deployment™, 2005, pp. 175-185.

Talcott, Carolyn L., MTCoord 2005 Preliminary Version, “Coordi-
nation Models Based on a Formal Model of Distributed Object
Reflection™, 13 pages.

Leymann, F., et al., “Web Services and Business Process Manage-
ment”, IBM Systems Journal, vol. 41, No. 2, 2002, New Develop-
ments 1n Web Services and E-commerce, 11 pages.

Ivan, A.-A, et al., “Partionable services: A framework for seamlessly
adapting distributed applications to heterogeneous environments”,
High Performance Distributed Computing, 2002. HPDC-11 2002.
Proceedings. 11th IEEE International Symposium, 1 page.

Urban, Susan D., et al., “Active Declarative Integration Rules for
Developing Distributed Multi-Tiered Applications”, 3 pages.
Bischoftf, Urs, etal., “Programming the Ubiquitous Network: A Top-
Down Approach” System Support for Ubiquitous Computing Work-
shop (Ub1Sys’06), Orange County, USA, Sep. 2006, 8 pages.
Albrecht, Jeannie, et al., “Remote Control: Distributed Application
Configuration Management, and Visualization with Plush”, Proceed-
ings of the Twenty-first USENIX Large Installation System Admin-
istration Conference (LISA), Nov. 2007, 16 pages.

U.S. Appl. No. 12/105,083, filed Apr. 17, 2008 (Not Yet Published).
“Managing Complexity in Middleware,” by Adrian Colyer, Gordon
Blair and Awais Rashid, IBM UK Limuted, Hursley Park, Winchester,
England and Computing Department, Lancaster University, Bailrigg,
Lancaster, England, [online] [retrieved on Apr. 20, 2007], 6 pgs.
Retrieved from the Internet: http://www.aosd.net/2005/workshops/
acpdis/past/acp4is03/papers/colyer.pdf.

“User Interface Declarative Models and Development Environments:
A Survey,” by Paulo Pinheiro Da Silva, Department of Computer
Science, University of Manchester, Manchester, England, [online]
[retrieved on Apr. 20, 2007], 20 pgs. Retrieved from the Internet:
http://www.cs.utep.edu/paulo/papers/PinheirodaSilva. DSVIS
2000.pdf.

“Architecturing and Configuring Distributed Application with Olan,”
by R. Balter, L. Bellissard, F. Boyer, M Riveill and J.Y. Vion-Dury,
Middleware 98 Conference Report, Inria, France, [online] [retrieved
on Apr. 20, 2007], 15 pgs. Retrieved from the Internet: http://www.
comp.lancs.ac.uk/computing/middleware98/papers.html.

“A Load Balancing Module for the Apache Web Server,” Author
Unknown, [online] [retrieved on Apr. 20, 2007], 9 pgs. Retrieved
from the Internet: http://www.backhand.org/ ApacheCon2000/US/
mod__backhand_coursenotes.pdf.

“Performance Tuning and Optimization of J2ee Applications on the
Jboss Platform,” by Samuel Kounev, Bjorn Weis and Alejandro
Buchmann, Department of Computer Science, Darmstadt University
of Technology, Germany, [online] [retrieved on Apr. 20, 2007], 10
pgs. Retrieved from the Internet: http://www.cl.cam.ac.uk/~sk507/
pub/04-cmg-JBoss.pdf.

“Outlier Detection for Fine-Grained Load Balancing in Database
Clusters,” by Jin Chen, Gokul Soundararajan, Madalin Mihailescu
and Cristiana Amza, Department of Computer Science, Department
of Electrical and Computer Engineering, University of Toronto,

US 8,239,505 B2
Page 4

[online] [retrieved on Apr. 20, 2007], 10 pgs. Retrieved from the
Internet: http://www.cs.toronto.edu/Hinchen/papers/smdb07 .pdf.
Office Action dated Sep. 14, 2009 cited in U.S. Appl. No. 11/740,737.
Oflice Action dated Oct. 14, 2009 cited in U.S. Appl. No. 11/771,827.
“Factal:Edge Enlists CMLgroup to Bring Visualization to Business
Performance Management Clients”, http://extranet.fractaledge.com/
News/PressReleases/2006/060829, 2006, 2 pages.

Nastel Technologies, Inc., “AutoPilot Business Dashboard Configu-
ration and User’s Guide Version 4.4, 2006, AP/DSB 440.001, 82

pages.
TIBCO the Power of Now, “TIBCO BusinessFactor”, 2006, 2 pages.
TIBCO, http://wwvv.tibco.com/software/business__activity__moni-
toring/businessiactor/default.jsp, Copyright 2000-2007, 2 pages.
U.S. Appl. No. 11/925,184, Jan. 14, 2011, Office Action.

U.S. Appl. No. 11/740,737, Feb. 10, 2011, Office Action.

Rowe, L.A., et al., “Automating the Selection of Implementation
Structures,” IEEE Transactions on Software Engineering, Nov. 1978,
pp. 494-506, [retrieved on Jan. 6, 2012], Retrieved from the internet:
<URL:http://1eeexplore.ieee.org/>.

Oberle, D., et al., “Developing and Managing Software Components
in an Ontology-Based Application Server,” Proceedings of the 5th
ACM/IFIP/USENIX international conference on Middleware, Oct.
2004, pp. 459-477, [retrieved on Jan. 6, 2012], Retrieved from the
Internet: <URL:http://dl.acm.org/>.

Notice of Allowance dated Jan. 17, 2012 cited in U.S. Appl. No.
11/925,591.

Office Action dated Jan. 3, 2012 cited in U.S. Appl. No. 13/110,223.
Notice of Allowance dated Mar. 9, 2012 cited in U.S. Appl. No.
11/844,177.

Ketfl1 A., et al., “Model-Driven framework for Dynamic Deployment
and Reconfiguration of Component-Based Software Systems”,
Metainformatics Symposium, Nov. 9-11, 2005, 9 pages, [retrived on
Mar. 6, 2012], retrived from the Internet: <URL:http://dl.amc.org/>.
Eastman, J., et al., “Service Lifecycle in a Distributed Computing
Environment”, IEEE, 1998, pp. 183-184, [retrieved on Mar. 6, 2012],
Retrieved from the Internet: <URL:http://1eeexplore.iece.org/>.
Notice of Allowance dated Mar. 14, 2012 cited 1n U.S. Appl. No.
11/925,680.

Office Action dated Mar. 18, 2010 cited mn U.S. Appl. No.
11/740,737.

U.S. Appl. No. 11/925,079, Mar. 1, 2011, Notice of Allowance.
Office Action dated Apr. 5, 2010 cited in U.S. Appl. No. 11/771,827.
Office Action dated Apr. 13, 2010 cited in U.S. Appl. No. 11/925,326.
U.S. Appl. No. 11/925,184, Apr. 25, 2011, Office Action.

U.S. Appl. No. 11/740,737, Apr. 29, 2011, Notice of Allowance.
Rosenblum, D., and Wolf, A. “A Design Framework for Internet-
Scale Event Observation and Notification,” ACM SIGSOFT Soft-
ware Engineering Notes. vol. 22, Issue 6, Nov. 1997. [retrieved on
Jun. 12, 2011]. Retrieved from the Internet: <URL:www.acm.org> .

D. Raymar et al.; End-to-End Model Driven Policy Based Network
Management; 2006-computer.org; pp. 1-4.

R.M. Argent et al.; Development of Multi-Framework Model Com-
ponents; 2004; Citeseer; pp. 1-6.

U.S. Appl. No. 11/925,680, Jul. 18, 2011, Office Action.

U.S. Appl. No. 11/925,591, Jul. 5, 2011, Office Action.,

U.S. Appl. No. 13/077,730, Jul. 14, 2011, Office Action.

U.S. Appl. No. 11/925,201, Jul. 19, 2011, Notice of Allowance.
U.S. Appl. No. 11/925,326, Jul. 22, 2010, Notice of Allowance.
Quentin Limbourg et al: “USIXML: A Language Supporting Multi-
path Development of User Interfaces”, Engineering Human Com-
puter Interaction and interactive Systems; [Lecture Notes in Com-

puter Science;;LNCS], Springer-Verlag, Berlin/Heidelberg, vol.
3425, Jun. 30, 2005 pp. 200-220, CP019009959 ISBN: 978-3-540-

26097-4.
Pierre-Alain Muller et al., “Platform Independent Web Application

Modeling and Development with Netsilon”, Software & Systems
Modeling, Springer, Berlin, DE, vol. 4, No. 4, Nov. 1, 2005, pp.
424-442, XP019357229, ISSN: 1619-1374.

Wang L J et al: “Abstract Interface Specification Languages for
device-independent Interface Design: Classification, Analysis and
Challenges”, Pervasive Computing and Applications, 2006 1st Inter-
national Symposium on, IEEE, PI, Aug. 1, 2006, pp. 241-246.

Jean Vanderdonckt ed—Oscar Pastor et al, “A MDA—Compliant
Environment for Developing User Interfaces of information Sys-
tems”’, Advanced Information Systems Engineering; [Lecture Notes
in Computer Science;;LNCS], Springer-Verlag, Berling, Berlin/
Heidelberg, vol. 3520, May 17, 2005, pp. 16-31.

Xiaofeng Yu et al., “Towards a Model Driven Approach to Automatic
BPEL Generation”, Model Driven Architecture Foundations and
Applications; [Lecture Notes 1n Computer Science;;LNCS],
Springer Berlin Heidelberg, vol. 4530, Jun. 11, 2007 pp. 204-218.
U.S. Appl. No. 11/925,079, Sep. 1, 2010, Office Action.

U.S. Appl. No. 11/740,737, Sep. 13 2010, Office Action.
Wikipedia, “Declarative Programming™, available at wikipedia.org/
w/index/php?title=Declarative_ Programming&oldid=1645216,
Last accessed Jul. 28, 2011, (3 pages).

Notice of Allowance dated Sep. 30, 2011 cited 1n U.S. Appl. No.
11/925,201.

Notice of Allowance dated Sep. 29, 2011 cited 1n U.S. Appl. No.
13/077,730.

Office Action dated Oct. 19, 2011 cited in U.S. Appl. No. 11/925,680.
Shaojie Wang, Synthesizing Operating System Based Device Drivers
in Embedded Systems, 2003.

U.S. Appl. No. 11/771,827, Nov. 29, 2010, Notice of Allowance.
U.S. Appl. No. 11/925,067, Dec. 6, 2010, Notice of Allowance.

* cited by examiner

US 8,239,505 B2

Sheet 1 of 3

Aug. 7, 2012

U.S. Patent

/0] welboid
uoneol|ddy

PRINGUISIC

Vi 9l

—_—— e e e e .

cC[sSpuewwo)
/suoionsu|

gL
JanlQ olvads-wliope|d

egGl SIBPON
aAleJIe|08(]

£G1 SISPOI
— SAlleJe|98(]
0L1 | | o]
sonkleuy 0} Aojisoday JUBUOAWO?) BAINISXT

_

_

_

_

_

_

“ SUES|\

_

_

“

“ 6CL S|oPO
aAljeJe|08(]

COJ Sues\ ucnejuswsa|dwy

Z] lusuodwon s|0o]

US 8,239,505 B2

Sheet 2 of 3

Aug. 7, 2012

U.S. Patent

/€1 Swesns
JUSAT

/81
|||||||||||| SWEs.IS
JUSAT

0L
SUBS|\
SoljAleuy
qcgl |SPOW
SAIB.IB[09(]
POLIPON

J0O L weiboid

uoneolday
PainglisId

CCJ Jauleluon uoneolddy

£ SPUBLLIWIOY
/SUONONJISU

_
|
[Jusuodwo) uonejsuel] | |
i
|
|

O£ JaAl(q 2lj108dg-wione|d

£GL SISPON
SAIBJIR|09(]
071 Aojsoday

CZ[lusuodwon s|oo|

SAlRIRS(] £GL SIspoi

ecGl ISPON
aAllelensq

poulioy

/11 Jusuoduwon
buISS820.4 8|NP8YIS

G/l lusuodwon sAlNISX3

CO[Sues}y uoneusws|dw

Wa)SAS

——————————————————————————————d

US 8,239,505 B2

Sheet 3 of 3

, 2012

7

Aug

U.S. Patent

0¢¢

0¢€

0/€

00¢

¢ Ol

JaulBuO)
uonedi|ddy sy | ubnouy| S|spoy sAneleRs(d
3| 10O UoISIaA palepdn uy Jusws|dw|

S|SPON BAIeJe|08(] 8Y | Ul sbueyn v Aluspi

JaulBluON uonedlddy uy ybnoayl
S|OPON AleIR[D8(q MON By | Juswa|dw

S[SPOJN SANBIEPS(MBN 10 18S W SAI8I8Y

0E¢C

0cc

0L

00¢

7

Jauleluo)) uonesljady
Uy 0] SPUBWILIOY) pale|suel] 8y | pussg

S|BPOJN BAIlRIR[O8(] pauleY 8y 81e|suel]

UOIBWIOJU| [BNIX8JUOY)
UUAA S[SPOI sAllElefos(] 3y | suljoy

S[8POA UOIBJR|08(] 840N JO BUQ Alnusp

US 8,239,505 B2

1

PROGRESSIVELY IMPLEMENTING
DECLARATIVE MODELS IN DISTRIBUTED

SYSTEMS
CROSS-REFERENCE TO RELATED
APPLICATIONS
N/A
BACKGROUND

Background and Relevant Art

As computerized systems have increased in popularity, so
have the complexity of the software and hardware employed
within such systems. In general, the need for seemingly more
complex software continues to grow, which further tends to
be one of the forces that push greater development of hard-
ware. For example, 1f application programs require too much
of a given hardware system, the hardware system can operate
inelliciently, or otherwise be unable to process the application
program at all. Recent trends 1n application program devel-
opment, however, have removed many of these types of hard-
ware constraints at least 1n part using distributed application
programs. In general, distributed application programs com-
prise components that are executed over several different
hardware components, often on different computer systems
in a tiered environment.

With distributed application programs, the different com-
puter systems may communicate various processing results to
cach other over a network. Along these lines, an organization
will employ a distributed application server to manage several
different distributed application programs over many differ-
ent computer systems. For example, a user might employ one
distributed application server to manage the operations of an
ecommerce application program that 1s executed on one set of
different computer systems. The user might also use the dis-
tributed application server to manage execution of customer
management application programs on the same or even a
different set of computer systems.

Of course, each corresponding distributed application
managed through the distributed application server can, in
turn, have several different modules and components that are
executed on still other different computer systems. One can
appreciate, therefore, that while this ability to combine pro-
cessing power through several different computer systems
can be an advantage, there are other disadvantages to such a
wide distribution of application program modules. For
example, organizations typically expect a distributed appli-
cation server to run distributed applications optimally on the
available resources, and take into account changing demand
patterns and resource availability.

Unfortunately, conventional distributed application serv-
ers are typically 1ll-equipped (or not equipped at all) to auto-
matically handle and manage all of the different problems that
can occur for each given module of a distributed application
program. For example, a user may have an online store appli-
cation program that 1s routinely swamped with orders when-
ever there 1s a promotion, or during the same holidays each
year. In some cases, the user might expect the distributed
application server to analyze and anticipate these fluctuating
demands on various components or modules of the given
distributed application program.

In particular, the organization might expect the distributed
application server to swap around various resources so that
high-demand processes can be handled by software and hard-
ware components on other systems that may be less busy.

10

15

20

25

30

35

40

45

50

55

60

65

2

Such accommodations, however, can be difficult 1 not impos-
sible to do with conventional distributed application server

platforms. Specifically, most conventional distributed appli-
cation server platforms are ill-equipped or otherwise unable
to 1dentily and properly manage different demand patterns
between components of a distributed application program.
This may be due at least partly to the complexity in managing
application programs that can have many distributed compo-
nents and subsystems, many of which are long-running work-
flows, and/or otherwise legacy or external systems.

In addition, conventional distributed application program
servers are generally not configured for efficient scalability.
For example, most distributed application servers are config-
ured to manage precise instructions of the given distributed
application program, such as precise reference and/or com-
ponent addressing schemes. That 1s, there 1s often little or no
“loose coupling” between components of an application pro-
gram. Thus, when an administrator of the server desires to
redeploy certain modules or components onto another server
or set of computer systems, there 1s an enhanced potential of
errors particularly where a large number of different com-
puter systems and/or modules may be involved. This potential
for errors can be realized when some of the new module or
component references are not passed onward everywhere
they are needed, or 1f they are passed onward 1ncorrectly.

One aspect of distributed application programs that can
further enhance this potential for error 1s the notion that the
distributed application server may be managing several diif-
ferent distributed application programs, each of which
executes on a different platform. That 1s, the distributed appli-
cation server may need to translate different instructions for
cach different platform before the corresponding distributed
application program may be able to accept and implement the
change. Due to these and other complications, distributed
application programs tend to be fairly sensitive to demand
spikes.

This sensitivity to demand spikes can mean that various
distributed application program modules may continue to
operate at a sub-optimum level for a long period of time
betfore the error can be detected. In some cases, the adminis-
trator for the distributed application server may not even take
corrective action since attempting to do so could result in an
even greater number of errors. As a result, a distributed appli-
cation program module could potentially become stuck 1n a
pattern of ineflicient operation, such as continually rebooting
itself, without ever getting corrected during the lifetime of the
distributed application program. Accordingly, there are a
number of difficulties with management of current distributed
application programs and distributed application program
servers that can be addressed.

BRIEF SUMMARY

Implementations of the present invention provide systems,
methods, and computer program products configured to auto-
matically implement operations of distributed application
programs through a distributed application program server. In
at least one implementation, for example, a distributed appli-
cation program server comprises a set ol implementation
means and a set of analytics means. Through a platiform-
specific driver for each given module of a distributed appli-
cation program, the implementation means deploy sets of
high-level instructions, or declarative models, to create a
given distributed application program module on the respec-
tive platform, while the analytics means automatically moni-
tor and adjust the declarative models, as needed. This loose
coupling through the declarative models of server compo-

US 8,239,505 B2

3

nents to the distributed application program and automatic
monitoring and adjustment can allow the server to better

manage demand, resource, or usage spikes, and/or other
forms of distributed application program behavior tluctua-
tions.

Accordingly, a method of automatically implementing one
or more sets of high-level instructions 1n a distributed appli-
cation program during execution using declarative models
can 1nvolve 1dentifying one or more modifications to corre-
sponding one or more declarative models 1n a repository. The
one or more declarative models mclude high-level mstruc-
tions regarding one or more operations of a distributed appli-
cation program. The method can also involve refining the one
or more declarative models to include contextual information
regarding operations of the distributed application program.
In addition, the method can involve translating the one or
more refined declarative models 1into one or more commands
to be implemented by the container of the distributed appli-
cation program. Furthermore, the method can 1nvolve send-
ing the translated commands to one or more application con-
tainers. The translated commands are then received by the
container and used to determine and configure behavior of the
distributed application program 1in that container.

In addition, an additional or alternative method of auto-
matically implementing one or more sets of high-level
mstructions 1 a distributed application program during
execution using declarative models can involve recerving a
set ol new one or more declarative models from a repository.
The new one or more declarative models include high-level
instructions regarding operations of a distributed application
program. The method can also involve implementing the new
one or more new declarative models through an implementa-
tion means and one or more application containers. As a
result, a first set of low-level commands are prepared and sent
to the one or more application containers to be executed.

In addition, the method can involve identifying a change in
the new one or more declarative models via one or more
analytics means. The change reflects performance 1nforma-
tion for the distributed application program that 1s received
from the one or more application containers. Furthermore, the
method can 1nvolve implementing an updated version of the
one or more declarative models through the implementation
means and the one or more application containers. As such, a
second set of low-level commands are prepared and sent to
the one or more application containers to be executed based
on the changes to the one or more new declarative models.

This Summary 1s provided to mtroduce a selection of con-
cepts 1n a simplified form that are further described below 1n
the Detailed Description. This Summary 1s not intended to
identily key features or essential features of the claimed sub-
ject matter, nor 1s 1t intended to be used as an aid 1n determin-
ing the scope of the claimed subject matter.

Additional features and advantages of the invention will be
set forth 1n the description which follows, and in part will be
obvious from the description, or may be learned by the prac-
tice of the mvention. The features and advantages of the
invention may be realized and obtained by means of the
instruments and combinations particularly pointed out 1n the
appended claims. These and other features of the present
invention will become more fully apparent from the following
description and appended claims, or may be learned by the
practice of the invention as set forth hereinaftter.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to describe the manner in which the above-recited
and other advantages and features of the mmvention can be

10

15

20

25

30

35

40

45

50

55

60

65

4

obtained, a more particular description of the mvention
briefly described above will be rendered by reference to spe-

cific embodiments therecof which are illustrated in the
appended drawings. Understanding that these drawings
depict only typical embodiments of the invention and are not
therefore to be considered to be limiting of 1ts scope, the
invention will be described and explained with additional
specificity and detail through the use of the accompanying,
drawings 1n which:

FIG. 1A 1illustrates an overview schematic diagram in
accordance with an implementation of the present invention
of a system configured to automatically implement distrib-
uted application program operations using one or more
declarative models;

FIG. 1B illustrates a more detailed schematic diagram of
the executive component and platform-specific driver shown
in FIG. 1A;

FIG. 2 illustrates a tlowchart in accordance with an imple-
mentation of the present mvention of a series of acts 1n a
method of 1mplementing one or more sets of high-level
istructions 1 a distributed application program during
execution thereot using declarative models;

FI1G. 3 1llustrates an additional flowchart of an additional or
alternative method 1n accordance with an implementation of
the present invention for implementing one or more sets of
high-level mnstructions in a distributed application program
during execution thereof using declarative models.

DETAILED DESCRIPTION

Implementations of the present ivention extend to sys-
tems, methods, and computer program products configured to
automatically implement operations of distributed applica-
tion programs through a distributed application program
server. In at least one implementation, for example, a distrib-
uted application program server comprises a set of implemen-
tation means and a set of analytics means. Through a plat-
form-specific driver for each given module of a distributed
application program, the implementation means deploy sets
ol high-level mstructions, or declarative models, to create a
given distributed application program module on the respec-
tive platform, while the analytics means automatically moni-
tor and adjust the declarative models, as needed. This loose
coupling through the declarative models of server compo-
nents to the distributed application program and automatic
monitoring and adjustment can allow the server to better
manage demand, resource, or usage spikes, and/or other
forms of distributed application program behavior fluctua-
tions.

Accordingly, one will appreciate from the following speci-
fication and claims that implementations of the present inven-
tion can provide a number of different advantages to manag-
ing distributed application programs. This 1s at least partly
due to the ease of implementing high-level istructions, such
as those created by a program developer, as low-level instruc-
tions (e.g., executable commands) that can be executed by
distributed application containers that configure and manage
distributed application modules on a platform-specific basis.
For example, implementations of the present invention pro-
vide mechanisms for writing a declarative model, detecting
changes to a declarative model, and scheduling an appropri-
ate model refinement process so that refined declarative
model 1mstructions can be translated.

Further implementations provide mechanisms for translat-
ing the refined model into instructions/commands that are
ultimately executed. Accordingly, one will appreciate that
these and other features can significantly ease and normalize

US 8,239,505 B2

S

management of a distributed application program server
managing one or multiple different distributed application
programs, potentially on several different platforms. In par-
ticular, the server administrator can easily configure a wide
range of distributed application operations without necessar-
1ly needing to understand all the configuration particulars of
the given run-time environments, and/or the specific imple-
mentation platforms of the given distributed application pro-
gram.

Referring now to the Figures, FIG. 1A 1llustrates an over-
view schematic diagram of at least one implementation of the
present invention in which a distributed application server in
a distributed computerized environment/system 100 1s used
to implement high-level instructions 1n one or more different
distributed application programs 107 on an ongoing, auto-
matic basis. In particular, FIG. 1A shows a system distributed
system 100 comprising an implementation means 1035 and an
analytics means 110. In general, implementation means 1035
and analytics means 110 comprise one or more sets of gen-
eralized computer-executable components that can be used
within one or more distributed application program servers.
These generalized computer-executable components, in turn,

are configured to manage one or more different distributed
application programs 107 in one or more application contain-
ers 135.

For example, FIG. 1A shows that, 1n at least one 1mple-
mentation, implementation means 105 can comprise a tools
component 125. In general, tools component 125 comprises
one or more sets of computer-executable programs that can be
used by a program developer or a server administrator to
create one or more declarative models 153. For example, a
user (e.g., distributed application program developer) can use
one or more developer’s tools (e.g., 125), to create a declara-
tive model 153. As a preliminary matter, one will appreciate
that any reference herein to any platiorm (or otherwise oper-
ating system)-specific component or module/program 1s
made purely by way of convenience 1n explanation. Specifi-
cally, any reference herein to any component, module or
application-specific feature will be understood as capable of
being applied 1n a wide range of operating environments,
systems, and/or platforms.

In any event, and as previously mentioned, declarative
models 153 include one or more sets of high-level instruc-
tions regarding operations of a particular distributed applica-
tion program 107. These high-level instructions generally
describe a particular intent for operation/behavior of one or
more modules 1n the distributed application program, but do
not necessarily describe steps required to implement the par-
ticular operations/behaviors. For example, a declarative
model 153 can include such information as on what computer
systems a particular module should run, as well as the char-
acteristics of a computer system that should be allowed to run
the particular module (e.g., processing speed, storage capac-
ity, etc.).

Although the declarative model 153 could ultimately
include such specific information as the Uniform Resource
Identifier (URI) address of a particular endpoint, the maitial
creation ol any declarative model (e.g., 153) will usually
result in a document which will more likely include general-
ized information. Such generalized information might
include a domain name where a module can be executed,
different permissions sets that can be associated with execu-
tion of the module, whether or not certain components should
connect at all, etc. For example, a declarative model 153 may
describe the intent of having one web service connect to
another web service.

10

15

20

25

30

35

40

45

50

55

60

65

6

When ultimately interpreted and/or translated, these gen-
eralized itent instructions can result in very specific istruc-
tions/commands, depending on the platform or operating
environment. For example, the declarative model 153 could
include instructions so that, when interpreted, a web service
deployed into one datacenter may be configured to use a TCP
transport 11 one other web service 1s nearby. The 1nstructions
could also include instructions that tell the deployed web
service to alternatively use an Internet relay connection 1f the
other web service 1s outside of the firewall (1.e., not nearby).

Although indicating a preference for connection of some
sort, the declarative model (e.g., a “declarative application
model”) (153) will typically leave the choice of connection
protocol to a model interpreter. In particular, a declarative
model creator (e.g., tools component 125) might indicate a
preference for connections in the declarative model 153 gen-
crally, while the declarative model interpreter (e.g., executive
component 115 and/or platform-specific driver 130) can be
configured to select different communication transports
depending on where specific modules are deployed. For
example, the model interpreter (e.g., executive component
115 and/or platform-specific driver 130) may prepare more
specific mstructions to differentiate the connection between
modules when on the same machine, 1n a cluster, or connected
over the Internet.

Similarly, another declarative model (e.g., a “declarative
policy model”) (153) may describe operational features based
more on end use policies. For example, a declarative policy
model used with a distributed financial application program
may dictate that no more than 100 trade requests 1n a second
may be sent over a connection to a brokerage firm. A policy
model interpreter (e.g., executive component 1135 and/or plat-
form-specific driver 130), however, can be configured to
choose an appropriate strategy, such as queuing excessive
requests to implement the described intent.

In any case, FIG. 1A shows that, upon creating a particular
declarative model 153, the tools component 125 then passes
(e.g., writes) the declarative model 153 into repository 120. In
at least one implementation, anytime repository 120 receives
any kind of modification to a declarative model 153 (e.g., new
writes, or modifications from analytics means 110), executive
component 115 will detect this. For example, the repository
120 can send one or more updates or alerts to the executive
component 113. In additional or alternative implementations,
however, executive component 115 may be configured to
identify any such modifications, creations, or changes by
synchronizing with repository 120 on some particular sched-
ule, or even a continuous basis.

In either case, executive component 115 ultimately 1denti-
fies, recerves and refines the declarative models 153 (and/or
changes thereto) 1n repository 120 so that they can be trans-
lated by the platform-specific driver 130. In general, “refin-
ing” a declarative model 153 includes adding or moditying
any of the information contained in a declarative model so
that the declarative model instructions are sufliciently com-
plete for translation by platform-specific driver 130. Since the
declarative models 153 can be written relatively loosely by a
human user (1.e., containing generalized intent instructions or
requests), there may be different degrees or extents to which
an executive component will need to modity or supplement a
declarative model.

Along these lines, FIG. 1B illustrates additional details
regarding the refinement and translation process as per-
formed via implementation means 105. In particular, F1G. 1B
illustrates a number of additional processes that can occur
pursuant to implementing the various declarative models 153
ultimately as low-level instructions. To this end, FIG. 1B

US 8,239,505 B2

7

shows that executive component 115 comprises one or more
different components that can be used to refine declarative
model 153 using a progressive elaboration techniques.

For example, FIG. 1A shows that executive component 115
comprises a schedule processing component 117 and a refin-
ing component 119. In general, the schedule processing com-
ponent 117 1s that which enables the executive component
115 to identity changes 1n the repository to any declarative
models. For example, the schedule processing component
117 can comprise one or more 1nterfaces for receiving com-
munication from a corresponding interface built into reposi-
tory 120. Additionally, or alternatively, schedule processing,
component 117 comprises one or more sets of executable
instructions for synchronizing declarative model 153 data
within the repository.

Upon detecting any changes (whether new declarative
models or updates thereto), executive component 115 then
begins the process of progressive elaboration on any such
identified declarative model (or modification). In general,
progressive elaboration involves refining a particular declara-
tive model 153 (i.e., adding or modifying data) until there are
no ambiguities, and until details are sufficient for the plat-
form-specific drivers 130 to consume/translate them. The
executive component 115 performs progressive elaboration
at least 1n part using refining component 119, which “refines”
the declarative model 153 data.

In at least one implementation, executive component 115
implements this progressive elaboration or “refining’” process
as a worktlow that uses a set of activities from a particular
library (not shown). In one implementation, the executive
component 115 also provides the library in advance, and
specifically for the purposes of working on declarative mod-
cls. Some example activities that might be used 1n this par-
ticular worktlow can include “read model data,” “write model
data,” “find driver,” “call driver,” or the like. The actions
associated with these or other types of calls are described
more fully below as implemented by the refining component
119 portion of executive component 1135.

Specifically, 1n at least one implementation, the refining
component 119 refines a declarative model 153 (or update
thereto). The refining component 119 typically refines a
declarative model 133 by adding information based on
knowledge of dependencies (and corresponding semantics)
between elements 1n the declarative model 153 (e.g. one web
service connected to another). The refining component 119
can also refine the declarative model 153 by adding some
forms of contextual awareness, such as by adding information
about the available mventory of application containers 133
tor deploying a distributed application program 107. In addi-
tion, the refining component 119 can be configured to fill-in
missing data regarding computer system assignments.

For example, refining component 119 might identify a
number of different modules that will be used to implement a
declarative model 153, where the two modules have no
requirement for specific computer system addresses or oper-
ating requirements. The refining component 119 might thus
assign the distributed application program 107 modules to
available computer systems arranged by appropriate distrib-
uted application program containers 135, and correspond-
ingly record that machine information 1n the refined declara-
tive model 153a (or segment thereot). Along these lines, the
refining component 119 can reason about the best way to
{111-in data 1n a refined declarative model 153. For example, as
previously described, refining component 119 of executive
component 1135 may determine and decide which transport to
use for an endpoint based on proximity of connection, or

10

15

20

25

30

35

40

45

50

55

60

65

8

determine and decide how to allocate distributed application
program modules based on factors appropriate for handling
expected spikes 1n demand.

In additional or alternative implementations, the refining,
component 119 can compute dependent data 1n the declara-
tive model 153. For example, the refining component 119
may compute dependent data based on an assignment of
distributed application program modules to machines. Along
these lines, the refining component 119 may also calculate
URI addresses on the endpoints, and propagate the corre-
sponding URI addresses from provider endpoints to con-
sumer endpoints. In addition, the refining component 119
may evaluate constraints in the declarative model 153. For
example, the refining component 119 can be configured to
check to see 1f two distributed application program modules
can actually be assigned to the same machine, and 11 not, the
refining component 119 can refine the declarative model 153a
to correct 1t.

After adding all appropriate data to (or otherwise modity-
ing/refining) the given declarative model 153 (to create model
153a), the refimng component 119 can finalize the refined
declarative model 153a so that 1t can be translated by plat-
torm-specific drivers 130. To finalize or complete the refined
declarative model 1534, refining component 119 might, for
example, partition declarative model 153 into segments that
can be targeted by any one or more platiorm-specific drivers
130. To this end, the refining component 119 might tag each
declarative model 1534 (or segment thereof) with its target
driver (e.g., the address of platform-specific driver 130). Fur-
thermore, the refining component 119 can verily that the
declarative model 153a can actually be translated by the
platform-specific drivers 130, and, 1f so, pass the refined
declarative model 153a (or segment thereot) to the particular

platform-specific driver 130 for translation.

In any case, F1G. 1B shows that the platform-specific driver
130 translates these mstructions through translation compo-
nent 131. In general, translation component translates the
refined declarative models 153a (and/or segment thereof) into
sets of one or more platform-specific mnstructions/commands
133. For example, FIG. 1B shows that the platform-specific
driver 130 might create a set of imperative instructions/com-
mands 133 that can be executed in a particular operating
system or operating environment, and/or will be understood
by a specific application container 135. In one implementa-
tion, translation of a refined declarative model 153¢a can result
in the creation of files, adding virtual directories, writing
settings 1nto configuration files, or the like.

Whatever actions performed by the translation component
131 will be tailored for the specific platform or operating
environment. In particular, the platform-specific driver (e.g.,
via translation component 131) can translate the refined
declarative models according to in-depth, platform-specific
configuration knowledge of a given platform/operating envi-
ronment corresponding to the one or more application con-
tainers 135 (e.g., version of the operating system they run
under) and container implementation technologies. With
respect to a MICROSOFT WINDOWS operating environ-
ment, for example, some container implementation technolo-
gies might include “IIS”—Internet Information Service, or a

WINDOWS ACTIVATION SERVICE used to host a
“WCF"—WINDOWS Communication Foundation—ser-

vice module). (As previously mentioned, however, any spe-
cific reference to any WINDOWS or MICROSOFT compo-

nents, modules, platiorms, or programs i1s by way only of

example.)
As a result, the generalized or supplemented instructions

placed into the declarative models by the tools component

US 8,239,505 B2

9

125 and/or refining component 119 ultimately direct opera-
tional reality of one or more distributed application programs
107 1n one or more application containers 135. In particular,
the one or more distributed application containers 135
execute the declarative models 153 by executing the mstruc-
tions/commands 133 recerved from the platform-specific
driver 130. To this end, the distributed application containers
135 miught replace or update any prior modules have been
replaced or revised with a new declarative model 153. In
addition, the distributed application containers 1335 execute
the most recent version of modules and/or components, such
as normally done, including those described in the new
instructions/commands 133, and on any number of different
computer systems.

In addition to the foregoing, the distributed application
programs 107 can provide various operational information
about execution and performance back through the imple-
mentation means 105. For example, implementations of the
present invention provide for the distributed application pro-
gram 107 to send back one or more event streams 137 regard-
Ing various execution or performance indicators back through
platform-specific driver 130. In one implementation, the dis-
tributed application program 107 may send out the event
streams 137 on a continuous, ongoing basis, while, 1n other
implementations, the distributed application program 107
sends the event streams on a scheduled basis (e.g., based on a
scheduled request from driver 130). The platiorm-specific
drivers 130, 1n turn, pass the one or more event streams 137 to
analytics means 110 for analysis, tuning, and/or other appro-
priate modifications.

In particular, and as will be understood more fully herein,
the analytics means 110 aggregate, correlate, and otherwise
f1lter the relevant data to identily interesting trends and behav-
1ors of the various distributed application programs 107. The
analytics means 110 can also modily corresponding declara-
tive models 153 as appropriate for the identified trends. For
example, the analytics means 110 may modily declarative
models 153 to create a new or otherwise modified declarative
model 1535 that reflects a change 1n intent, such as to over-
come a problem 1dentified 1n event streams 137. In particular,
the modified declarative model 1535 might be configured so
that a given module of a distributed application program can
be redeployed on another machine if the currently assigned
machine 1s rebooting too frequently.

The modified declarative model 1535 1s then passed back
into repository 120. As previously mentioned, executive com-
ponent 115 will identity the new declarative model 1535 (or
modification to a prior declarative model 153) and begin the
corresponding refining process. Specifically, executive com-
ponent will use refining component 119 to add any necessary
data to modified declarative model 1534 to create refined,
modified declarative model, such as previously described.
The newly refined, albeit modified declarative model 1535 1s
then passed to platform-specific driver 130, where 1t 1s trans-
lated and passed to the appropriate application containers 135
for processing.

Accordingly, FIGS. 1A-1B (and the corresponding text)
provide a number of different schematics, components, and
mechanisms for automatically implementing high-level
instructions within distributed application programs. As pre-
viously described, this can all be done without necessarily
requiring intimate knowledge by a server administrator of the
distributed application programs and their containers.

In addition to the foregoing, implementations of the
present mvention can also be described in terms of one or
more flow charts of methods having a series of acts and/or
steps for accomplishing a particular result. For example,

10

15

20

25

30

35

40

45

50

55

60

65

10

FIGS. 2 and 3 illustrate additional or alternative methods
from the perspective of a server for automatically implement-
ing one or more sets of high-level instructions 1n a distributed
application program. The acts and/or steps of FIGS. 2 and 3
are described more fully below with respect to the compo-
nents, schematics, and corresponding text of FIGS. 1A and
1B.

For example, FI1G. 2 shows that a method from the perspec-
tive of a server of automatically implementing one or more
sets of high-level istructions in a distributed application
program during execution can comprise an act 200 of identi-
tying one or more declarative models. Act 200 includes 1den-
tifying one or more modifications to corresponding one or
more declarative models ito a repository, the one or more
declarative models including high-level instructions regard-
ing one or more operations of a distributed application pro-
gram. For example, as shown i FIGS. 1A and 1B, tools
component 125 can be used to create and/or pass declarative
models 153 into repository 120. Executive component 1135
(e.g., via schedule processing component 117) receives the
declarative models 153 (or corresponding updates thereto)
and begins processing.

FIG. 2 also shows a method from the perspective of the
server can comprise an act 210 of refining the declarative
models with contextual information. Act 210 includes, refin-
ing the identified one or more declarative models to include
contextual information regarding operations of the distrib-
uted application program. For example, executive component
115 can perform any number of actions, such as filling 1n
missing data in a declarative model, deciding which transport
to use 1n connection between modules, computing dependent
data 1n a declarative model, evaluating constraints 1n a
declarative model, and so forth.

In addition, FIG. 2 shows that the method from the per-
spective of the server can comprise an act 220 of translating
the refined declarative models. Act 220 includes translating
the one or more refined declarative models 1nto one or more
commands to be implemented by the distributed application
program. For example, implementation means 105 1n FIGS.
1A and 1B 1ncludes a platiorm-specific driver component 130
that receives instructions corresponding to refined declarative
model 153q and translates that refined declarative model
153a through translation component 131 to send a set of
instructions/commands 133 to one or more application con-
tainers 135.

Furthermore, FIG. 2 shows that the method from the per-
spective of the server can comprise an act 230 of sending the
translated commands to an application container. Act 230
includes, sending the translated commands to one or more
application containers, wherein the translated commands are
received and implemented. For example, as show in FIGS. 1A
and 1B, upon translating the 1nstructions to create platform-
specific instructions/commands 133, platform-specific driver
130 prepares (e.g., via translation component 131) and sends
these commands to the one or more application containers
135, whereupon they are executed 1n order to configure and
manage distributed application programs.

In addition to the foregoing, FIG. 3 shows that an addi-
tional or alternative method from the perspective of the server
of automatically implementing one or more sets of high-level
instructions can comprise an act 300 of recerving a set of new
declarative models. Act 300 includes recerving a set of new
one or more declarative models from a repository, the new one
or more declarative models including high-level instructions
regarding operations of a distributed application program.
For example, executive component 1135 receives declarative
models 113 through repository 120. These declarative models

US 8,239,505 B2

11

113 can come from tools component 125 11 they are new or
may alternatively come via analytics means 110, such as it
they are modified 1n response to information 1n event streams
137.

FIG. 3 also shows the method from the perspective of the
server can comprise an act 310 of implementing the new
declarative models through an application container. Act 310
includes implementing the new one or more declarative mod-
¢ls through an implementation means 1n one or more appli-
cation containers, wherein a first set of low-level commands
are prepared and sent to one or more application containers to
be executed. For example, FIGS. 1A and 1B show that the
executive component 115, such as via scheduling processing
component 117, and refining component 119, prepares a set
of refined declarative model 153a information. A platform-
specific driver 130 then translates the information 1nto spe-
cific sets of mstructions/commands 133. These specific sets
of mstructions/commands 133 then configure and control
behavior of the distributed application program(s) 107
through the execution 1n the respective application containers
135.

In addition, FIG. 3 shows a method from the perspective of
the server can comprise an act 320 of identifying a change in
the declarative models. Act 320 includes 1dentifying a change
in the new one or more declarative models via one or more
analytics means, the change reflecting performance informa-
tion for the distributed application program that 1s received
from the one or more application containers. For example,
FIG. 1B shows that application container 135 sends pertor-
mance information 140 back through platform-specific driver
130 of the implementation means 105. This information 1s
then passed on to the analytics means 110, which, 1T appro-
priate, can change or update the declarative models 113 to
accommodate any performance 1ssues. As previously dis-
cussed, the event streams might identify that a server (or
module on a server) 1s rebooting too frequently, and so ana-
lytics means might create a modification to the declarative
model (or 1535) that identifies an intent to redeploy the mod-
ule onto another server.

Furthermore, FIG. 3 shows that a method from the perspec-
tive of the server can comprise an act 330 of implementing an
updated version of the declarative models through the appli-
cation container. Act 330 includes implementing an updated
version of the one or more declarative models through the
implementation means and the one or more application con-
tainers, wherein a second set of low-level commands are
prepared and sent to the one or more application containers to
be executed based on the changes to the one or more new
declarative models. For example, FIG. 1B shows that imple-
mentation means 105 can receive a modified declarative
model 1535. As with model 153, declarative model 1535 can
then be detected and refined through executive component
115, which then passes the refined, modified declarative
model 1535 1nstructions to platiorm-specific driver 130 for
translation. As before, the distributed application container(s)
135 then execute the new corresponding instructions/com-
mands corresponding to refined, modified declarative model
1535 to reconfigure the distributed application programs 1n
their respective application containers.

Accordingly, FIGS. 1A through 3 provide a number of
schematics, components, and mechanisms for automatically
implementing high-level instructions at the server level that
are ultimately implemented as low-level istructions through
an application container. As described herein, these and other
advantages can enable a server admimstrator to continually
and automatically adjust distributed application program
operations without necessarily requiring intimate knowledge

10

15

20

25

30

35

40

45

50

55

60

65

12

of the platform requirements and rules of a particular distrib-
uted application program. As such, implementations of the
present invention are highly scalable across distributed sys-
tems, and relatively simple to manage.

The embodiments of the present invention may comprise a
special purpose or general-purpose computer including vari-
ous computer hardware, as discussed 1n greater detail below.
Embodiments within the scope of the present invention also
include computer-readable media for carrying or having com-
puter-executable 1nstructions or data structures stored
thereon. Such computer-readable media can be any available
media that can be accessed by a general purpose or special
purpose computer.

By way of example, and not limitation, such computer-
readable media can comprise RAM, ROM, EEPROM, CD-
ROM or other optical disk storage, magnetic disk storage or
other magnetic storage devices, or any other medium which
can be used to carry or store desired program code means 1n
the form of computer-executable instructions or data struc-
tures and which can be accessed by a general purpose or
special purpose computer. When information 1s transierred or
provided over a network or another communications connec-
tion (either hardwired, wireless, or a combination of hard-
wired or wireless) to a computer, the computer properly views
the connection as a computer-readable medium. Thus, any
such connection 1s properly termed a computer-readable
medium. Combinations of the above should also be included
within the scope of computer-readable media.

Computer-executable istructions comprise, for example,
instructions and data which cause a general purpose com-
puter, special purpose computer, or special purpose process-
ing device to perform a certain function or group of functions.
Although the subject matter has been described 1n language
specific to structural features and/or methodological acts, 1t 1s
to be understood that the subject matter defined in the
appended claims 1s not necessarily limited to the specific
teatures or acts described above. Rather, the specific features
and acts described above are disclosed as example forms of
implementing the claims.

The present invention may be embodied 1n other specific
forms without departing from 1ts spirit or essential character-
istics. The described embodiments are to be considered 1n all
respects only as 1llustrative and not restrictive. The scope of
the invention 1s, therefore, indicated by the appended claims
rather than by the foregoing description. All changes which
come within the meaning and range of equivalency of the
claims are to be embraced within their scope.

We claim:

1. At a server having one or more implementations means
and one or more analytics means configured 1n a distributed
computerized system environment to manage one or more
distributed application programs through one or more plat-
form-specific drivers, a method performed by a processor of
the server ol automatically implementing one or more sets of
high-level instructions 1n a distributed application program
during execution thereof using declarative models, compris-
ing the acts of:

storing, by the processor, one or more declarative models in

a repository, the one or more declarative models includ-
ing high-level instructions regarding one or more opera-
tions of a distributed application program;

refining the one or more declarative models to include

contextual information regarding operations of the dis-
tributed application program;

translating the one or more refined declarative models into

sets of one or more platform-specific commands to be
implemented by one or more application containers;

US 8,239,505 B2

13

sending the translated commands to the one or more appli-
cation containers, wherein the translated commands are
received and executed by the one or more application
containers to configure and control the distributed appli-
cation program;

while the distributed application program is executing,

receiving one or more modifications to the one or more
declarative models in the repository; and

in response to the one or more modifications, refimng and

translating the one or more modified declarative models
into sets of one or more platform-specific commands,
and sending the sets of one or more platform-specific
commands to the one or more application containers to
be executed by the one or more application containers to
implement the distributed application program such that
the one or more modifications to the one or more
declarative models are retlected 1n the distributed appli-
cation program.

2. The method as recited 1n claim 1, wherein the one or
more declarative models describe one or more distributed
application program operational intents, and do not include
specific information for implementing the distributed appli-
cation program operational intents.

3. The method as recited 1n claim 1, further comprising,
upon identifying the one or more modifications, an executive
component scheduling a refinement process that adds infor-
mation to a corresponding modified form of the one or more
declarative models.

4. The method as recited in claim 1, wherein refining the
one or more declarative models further comprises an execu-
tive component adding information regarding dependencies
between elements 1n any of the one or more declarative mod-
¢ls and inventory of the one or more application containers.

5. The method as recited 1n claim 1, wherein refining the
one or more declarative models further comprises adding any
missing data 1n the one or more declarative models that 1s
required for translation by a platform-specific driver.

6. The method as recited 1n claim 5, wherein adding any
missing data includes identifying specific computer systems
on which one or more modules of the distributed application
program should run.

7. The method as recited 1n claim S5, wherein adding any
missing data includes determining one or more transport pro-
tocols to use between connected modules used by the distrib-
uted application program.

8. The method as recited in claim 5, wherein adding any
missing data includes identifying any dependent data within
at least one of the one or more declarative models.

9. The method as recited 1n claim 8, further comprising the
acts of:

identifying one or more URI addresses for the 1dentified

dependent data; and

propagating any additional URI addresses between the

identified dependent data.

10. The method as recited in claim 5, wherein adding any
missing data further comprises identifying any constraints in
the one or more declarative models regarding location of one
or more distributed application program modules on a par-
ticular computer system.

11. The method as recited in claim 5, wherein adding any
missing data further comprises completing the one or more
declarative models so that they can be translated by a plat-
form-specific driver.

12. The method as recited 1n claim 11, wherein completing
the one or more declarative models to be translated further

10

15

20

25

30

35

40

45

50

55

60

65

14

comprises including an address of a platform -specific driver
in each of the refined, completed one or more declarative
models.

13. The method as recited 1n claim 12, further comprising
the executive component verifying the one or more declara-
tive models with each platform-specific driver to determine
that each of the one or more declarative models can be trans-
lated.

14. At a server having one or more implementations means
and one or more analytics means configured 1n a distributed
computerized system environment to manage one or more
distributed application programs through one or more plat-
form-specific drivers, a method performed by a processor of
the server of automatically implementing one or more sets of
high-level instructions 1n a distributed application program
during execution thereol 1 one or more distributed applica-
tion containers using declarative models, comprising the acts

of:

recerving a set of new one or more declarative models from
a repository, the new one or more declarative models
including high-level instructions regarding operations
of a distributed application program;

implementing the distributed application program through

an 1implementation means and one or more application
containers by generating a first set of low-level platform-
specific commands from the new one or more declara-
tive models and sending the first set of low-level plat-
form-specific commands to the one or more application
containers to be executed;

moditying the new one or more declarative models in the

repository to address performance information of the
distributed application program that 1s recerved from the
one or more application containers while the distributed
application program 1s executing;

identifying the modification to the new one or more

declarative models in the repository via one or more
analytics means; and

implementing an updated version of the distributed appli-

cation program through the implementation means and
the one or more application containers by generating a
second set of low-level platform-specific commands
from the modified new one or more declarative models
and sending the second set of low-level platform-spe-
cific commands to the one or more application contain-
ers to be executed.

15. The method as recited 1n claim 14, wherein implement-
ing the new one or more declarative models further com-
Prises:

preparing a refined set of one or more new instructions

corresponding to the new one or more declarative mod-
els; and

verilying that the set of one or more new instructions can be

translated by a platform -specific driver into the first set
of low-level commands.

16. The method as recited in claim 14, wherein implement-
ing the updated version of the distributed application program
further comprises:

preparing a new refined set of one or more updated nstruc-

tions corresponding to the modified new one or more
declarative models; and

verilying that the new refined set of one or more updated

istructions can be translated by a platform-specific
driver into the second set of low-level commands.

17. The method as recited in claim 14, wherein the perfor-
mance information is received from the one or more applica-
tion containers 1n one or more event streams.

US 8,239,505 B2

15 16
18. The method as recited 1n claim 17, wherein the one or sending the translated commands to the one or more appli-
more event streams are received via a platform-specific driver cation containers, wherein the translated commands are
that interfaces with the one or more application containers. received and executed by the one or more application
19. At a server having one or more implementations means containers to configure and control the distributed appli-
and one or more analytics means configured 1n a distributed s cation program;
computerized system environment t0 manage one or more while the distributed application program is executing,

distributed application programs through one or more plat-
form-specific drivers, a computer program storage product
comprising computer executable instructions stored thereon
that, when executed, cause one or more processors at the
server to perform a method comprising the acts of:
storing, by the processor, one or more declarative models 1n
a repository, the one or more declarative models includ-
ing high-level instructions regarding one or more opera-
tions of a distributed application program; 13
refining the one or more declarative models to include
contextual information regarding operations of the dis-
tributed application program;
translating the one or more refined declarative models 1nto
sets of one or more platform -specific commands to be
implemented by one or more application containers; I T

receiving one or more modifications to the one or more
declarative models 1n the repository; and

in response to the one or more modifications, refining and
translating the one or more modified declarative models
into sets ol one or more platform-specific commands,
and sending the sets of one or more platform-specific
commands to the one or more application containers to
be executed by the one or more application containers to
implement the distributed application program such that
the one or more modifications to the one or more
declarative models are reflected in the distributed appli-
cation program.

	Front Page
	Drawings
	Specification
	Claims

