12 United States Patent

Cornett et al.

US008238360B2

US 8.238.360 B2
Aug. 7, 2012

(10) Patent No.:
45) Date of Patent:

(54) HEADER REPLICATION IN ACCELERATED (56) References Cited
TCP (TRANSPORT CONTROL PROTOCOL)
STACK PROCESSING U.S. PATENT DOCUMENTS
5,090,011 A 2/1992 Fukuta et al.
(75) Inventors: Linden Cornett, Portland, OR (US); 6,314,100 Bl 11/2001 Roach et al.
David B. Minturn, Hillsboro, OR (US); g’igg’ggi E i gggg% I\K/Iuller etal
_ 438, | uveretal. 709/234
Sll] 0oy SEII,, POl‘tlElIld,, OR (US), Hemal V. 6,675,200 B 1/2004 Cheriton
Shah, Trabuco Canyon, CA (US); 6,687,247 Bl 2/2004 Wilford et al.
Anshuman Thakur, Beverton, OR (US); 6,751,709 B2* 6/2004 Seidl et al. o, 711/137
Gary Y. Tsao. Austin, TX (US): Anil 956,046 BI 12006 Tuvelletal.
Vasudevan, Portland, OR (US) 7012918 B2 3/2006 Williams
_ 7,035,289 B2 4/2006 Devine et al.
(73) Assignee: Intel Corporation, Santa Clara, CA (Continued)
(US)
_ _ o _ FOREIGN PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35 CN 1926834 A _ 312007
U.S.C. 154(b) by 812 days. (Continued)
(21) Appl. No.: 11/140,092 OTHER PUBLICATIONS
Definition of “any”, http://www.merriam-webster.com/dictionary/
(22) Filed: May 26, 2005 any, accessed Jul. 6, 2011, Merriam-Webster, all pages.™
(65) Prior Publication Data (Continued)
US 2006/0072564 A1 Apr. 6, 2006 Primary Examiner — Derrick Ferris
o Assistant Examiner — Omar Ghowrwal
Related U.S. Application Data (74) Attorney, Agent, or Firm — Grossman, Tucker,
(63) Continuation-in-part of application No. 11/027,719, Perreault & Ptleger, PLLC
filed on Dec. 30, 2004, which 1s a continuation-in-part
of application No. 10/815,895, filed on Mar. 31,2004. (57) ABSTRACT
In one embodiment, a method 1s provided. The method of this
(1) Int. CI. embodiment provides storing a packet header at a set of at
HO4L 12/54 (2006.01) least one page of memory allocated to storing packet headers,
(52) US.CL e, 370/429 and storing the packet header and a packet payload at a
(58) Field of Classification Search 710/1, 22, location not 1n the set of at least one page ofmemory allocated

710/26; 370/351, 389,392, 395.1, 395.7-395.72,
370/412-413, 415,417, 428429

See application file for complete search history.

11001(

START

to storing packet headers.

19 Claims, 14 Drawing Sheets

>

STORE A PACKET HEADER

1102 2_' AT A SET OF AT LEAST ONE
PAGE OF MEMORY

ALLOCATED TO STORING
PACKET HEADERS

v

11041

STORE THE PACKET
HEADER AND A PACKET
PAYLOAD AT A LOCATION
NOT IN THE SET OF AT
LEAST ONE PAGE OF
MEMORY ALLOCATED TO
STORING PACKET HEADERS

Y

END

— el —

e

US 8,238,360 B2
Page 2

U.S. PATENT DOCUMENTS

7,089,344 Bl1* 82006 Raderetal. 710/308
7,142,540 B2 11/2006 Hendel et al.

7,181,531 B2 2/2007 Pinkerton et al.

7,668,165 B2 2/2010 Hoskote et al.

7,783,769 B2 8/2010 Vasudevan et al.

7,788,391 B2 8/2010 Sen et al.

2002/0174255 Al1* 11/2002 Hayteretal. 709/250
2003/0014544 Al 1/2003 Pettey
2003/0169738 Al 9/2003 McDaniel
2003/0217231 A1 11/2003 Seidl et al.
2004/0013117 Al 1/2004 Hendel
2004/0030806 Al 2/2004 Pandya
2004/0054837 Al 3/2004 Biran et al.
2004/0225748 Al1* 11/2004 Chongccoevvvvveennnn, 709/236
2005/0223128 A1 10/2005 Vasudevan et al.
2005/0223134 A1 10/2005 Vasudevan et al.
2006/0075142 Al 4/2006 Cornett et al.
2008/0126553 Al1* 5/2008 Boucheretal. 709/230
FOREIGN PATENT DOCUMENTS
EP 0574140 A1 12/1993
EP 0642246 A2 3/1995
EP 0657824 Al 6/1995
EP 1730919 A1 12/2006
HK 1094291 Al 3/2007
JP 06078001 A 3/1994
JP 06125365 A 5/1994
JP 07078112 A 3/1995
JP 07221780 A 8/1995
JP 2000332817 A 11/2000
JP 2002524005 T2 7/2002
JP 2005539305 T2 12/2005
JP 2006516054 T2 6/2006
SG 125367 9/2008
WO 2005104486 11/2005
WO 2005104486 A1 11/2005
OTHER PUBLICATIONS

Definition of “any”, http://web.archive.org/web/20031203174852/

http://dictionary.reference.com/search?g=any, accessed Jul. 6, 2011,

citation Dec. 3, 2003, Lexico Publishing Group, all pages.™
Makinent, S. et al, “Performance Characterization of TCP/IP Packet
Processing in Commercial Server Workloads”, IEEE—Conference
Proceedings Article, 2003, pp. 33-41, XP010670787.

Vasudevan et al, “Accelerated TCP (Transport Control Protocol)
Stack Processing”, U.S. Appl. No. 10/815,895, filed Mar. 31, 2004.
Cornett et al. “Storing Packet Headers”, U.S. Appl. No. 10/954,248,
filed Sep. 29, 2004.

Vasudevan et al. “Accelerated TCP (Transport Control Protocol)
Stack Processing”, U.S. Appl. No. 11/027,719, filed Dec. 30, 2004.
Office Action Recerved for EP Patent Application No. 04756431.5 ,
mailed on Oct. 1, 2007, pp. 3.

Office Action Recerved for SG Patent Application No. 200606011-5
, mailed on Nov. 22, 2007, pp. 11.

Oflice Action Recerved for SG Patent Application No. 200606011-5
, mailed on Feb. 13, 2007, pp. 10.

Office Action Received for KR Patent Application No. 2006-
7020469 , mailed on Mar. 28, 2007, English translation of pp. 3.
Notice of Allowance Recerved for KR Patent Application No. 2006-
7020469 , mailed on Nov. 28, 2007, English translation of pp. 10.
Notice of Allowance Received for TW Patent Application No.
93119637 , mailed on Dec. 20, 2006, pp. 3.

Oflice Action Recerved for U.S. Appl. No. 10/973,790 , mailed on
May 30, 2008, pp. 15.

Office Action Receirved for U.S. Appl. No. 11/027,719 , mailed on
Jun. 13, 2008, pp. 15.

International Preliminary Report on Patentability for PCT Patent
Application No. PCT/US2004/021015, mailed on Oct. 12, 2006, pp.
8.

International Search Report / Written Opinion for PC'T Patent Appli-
cation No. PCT/US2004/021015, mailed on Dec. 23, 2004, pp. 12.
Non-Final Office Action received for U.S. Appl. No. 10/815,895

mailed on Jan. 8, 2008, pp. 19.

Final Office Action recerved for U.S. Appl. No. 10/815,895 mailed on
Jul. 18, 2008, pp. 22.

Notice of Allowance recerved for SG Application No. 200606011-5
mailed on Jun. 25, 2008, pp. 8.

Office Action recerved for U.S. Appl. No. 10/815,895 mailed on Jan.
7, 2009, pp. 25.

Notice of Allowance recerved for U.S. Appl. No. 10/973,790 mailed
on Dec. 30, 2008, pp. 15.

Office Action recerved for U.S. Appl. No. 11/027,719 mailed on Dec.
10, 2008. pp. 18.

Office Action received for Japanese Patent Application No. 2007 -
502782 mailed on Feb. 3, 2009. 5§ pages (including 2 pages of English
translation).

Non-Final Office Action received for U.S. Appl. No. 11/027,719
Mailed on May 7, 2009.

Office Action received for Chinese Patent Application No.
200480042550.4, Mailed on Aug. 14, 2009, 4 pages of Office Action
and English translation of 7 pages.

Notice of Allowance received for U.S. Appl. No. 10/815,895, Mailed
on Nov. 5, 2009, pp. 14.

Office Action received for Japanese Patent Application No. 2007-
502782, Mailed on Aug. 4, 2009, 3 pages of Office Action and
English translation of 2 pages.

Non-Final Office Action received for U.S. Appl. No. 11/027,719,
Mailed on Nov. 9, 2009, pp. 18.

Notice of Allowance received for U.S. Appl. No. 10/973,790, Mailed
on Sep. 29, 2009, pp. 7.

Notice of Allowance received for Japanese Patent Application No.
2007502782, mailed on Jan. 12, 2010.

Notice of Allowance recerved for U.S. Appl. No. 10/815,895, mailed
on Feb. 23, 2010, 4 Pages.

Notice of Allowance recerved for U.S. Appl. No. 10/973,790, mailed
on Feb. 22, 2010, 4 Pages.

Notice of Allowance recerved for U.S. Appl. No. 10/973,790, mailed
on Apr. 1, 2010, 2 Pages.

Final Office Action received for U.S. Appl. No. 11/027,719, Mailed
on Apr. 5, 2010, 15 Pages.

Supplemental Notice of Allowability received for U.S. Appl. No.
10/973,790, mailed on Apr. 26, 2010, 2 Pages.

Supplemental Notice of Allowance recerved for U.S. Appl. No.
10/815,895, mailed on May 20, 2010. pp. 3.

Supplemental Notice of Allowability received for U.S. Appl. No.
10/815,895, mailed on Jun. 9, 2010, 2 Pages.

Supplemental Notice of Allowability received for U.S. Appl. No.
10/973,790, mailed on Jun. 17, 2010, 5 Pages.

Non-Final Office Action received for U.S. Appl. No. 11/027,719,
mailed on Feb. 11, 2011, 22 pages.

Office Action received for EP Patent Application No. 04756431.5
mailed on Oct. 19, 2007, 3 pages.

Office Action received for Japanese Patent Application No. 2007-
502782, mailed on Feb. 3, 2009, 3 pages of Office Action and English
translation of 2 pages.

Office Action recerved for Singaporean Patent Application
200606011-5, mailed on Feb. 13, 2007, 10 pages.

Office Action recerved for Singaporean Patent Application
200606011-5, mailed on Nov. 22, 2007, 11 pages.

Final Office Action recerved for U.S. Appl. No. 11/027,719, mailed
on Dec. 10, 2008, 18 pages.

Second Office Action received for the Chinese patent Application No.
200480042550.4, mailed on Aug. 10, 2011, 5 pages of Translation
and 3 pages of Office Action.

Notice of Allowance recerved to the U.S. Appl. No. 11/027,719,
mailed on Oct. 13, 2011, 12 pages.

* cited by examiner

U.S. Patent Aug. 7, 2012 Sheet 1 of 14 US 8,238.360 B2

104

102N

100

102A

U.S. Patent

Aug. 7, 2012

Sheet 2 of 14

e

N
Cad
M

|

200

L

US 8,238,360 B2

j“ 2 3 8
L ol c A R RS L e LRI YR TN L TR -

FrasurrakdER iy X TFE FFE LS =

= TWORK CONTROLLER 212

ik dr. l-—- Tl

Y

¥

W Eefrrwnen o ek ey ol aeie e B el T F T T A - b

AR Pl i owwrpy

"HOST MEMORY
204\ 226
]

APPLICATION

BUFFER 2148 |

‘r

» BUFFER 214D J

218
N A

" OPERATING

BUFFER 214C |

BUFFER 214E

)
)

222

Y

DMA DRIVER
224

Camlighr

&
b b

A

| CIRCUITRY 216
236 | 226

)

CIRCUITRY 218

HOST PROCESSOR 202 |

236

i

CHIPSET 208

- DMA ENGINE
210

Ll by .

Lo T iy

U.S. Patent Aug. 7, 2012 Sheet 3 of 14 US 8.238.360 B2

LT smrr >

NETWORK CONTROLLER
302 RECEIVES INDICATION
THAT ONE OR MORE
PACKETS RECEIVED ON A 312
NETWORK
PERFORM ONE OR MORE
IF ACCELERATED OPERATIONS THAT
304 CONNECTION, NETWORK | RESULT IN A DATA
CONTROLLER NOTIFIES MOVEMENT MODULE
TCP-A DRIVER THAT ONE PLACING ONE OR MORE
OR MORE PACKETS HAVE PAYLOADS INTO A READ
ARRIVED BUFFER

314

YES

TCP-A DRIVER PERFORMS

208 PENDING DMA
PACKET PROCESSING FOR

COMPLETION(S)?

AT LEAST ONE OF THE ONE
OR MORE PACKETS NO
316 YES
308
NO
SAYLOAD(S) READ PERFORM OTHER TASKS
YES FOR PLACEMENT?
318
NO PASS CONTROL BACK TO
310 OPERATING SYSTEM

MORE PACKETS? 320

U.S. Patent

Aug. 7, 2012 Sheet 4 of 14

402

404

406

408

OPERATING SYSTEM
RECEIVES A REQUEST
FROM APPLICATION TO
TRANSMIT DATA

OPERATING SYSTEM
NOTIFIES TCP-A DRIVER
THAT THERE IS DATA TO BE
TRANSMITTED

TCP-A DRIVER PERFORMS
ONE OR MORE OPERATIONS
THAT RESULT IN DATA
BEING TRANSMITTED TO
NETWORK CONTROLLER

IN RESPONSE TO RECEIVING
THE DATA, NETWORK
CONTROLLER CREATES ONE
OR MORE PACKETS FOR
TRANSMISSION BY
PACKETIZING DATA

US 8,238,360 B2

U.S. Patent

502

504

Aug. 7, 2012 Sheet 5 of 14

PERFORM PACKET
PROCESSING ON ONE OR
MORE PACKETS

SUBSTANTIALLY
SIMULTANEOUSLY WITH
PERFORMING PACKET
PROCESSING, USING A DATA
MOVEMENT MODULE TO
PLACE ONE OR MORE
PAYLOADS
CORRESPONDING TO THE
ONE OR MORE PACKETS
INTO A READ BUFFER

US 8,238,360 B2

. V9 'Ol
009

W
JIN &%
/] e 19

US 8,238,360 B2

i _ |
,m = 2
= 7 |
7 \OAwm
R
=) 019
< 1I9ALIP
0 _
Horss |
¥09 1
105S220.d

U.S. Patent

U.S. Patent Aug. 7, 2012 Sheet 7 of 14 US 8.238.360 B2

N
604 |

processo
|
cache
606
memory |
602
i}

B

"

SERIIRB
HEi1 |
1 |
HEil I
AR IEEN

FIG. 6B

US 8,238,360 B2

Sheet 8 of 14

Aug. 7, 2012

U.S. Patent

J9 DI

™ WOV

Alowawl

[219 abed |

L]

300 911

_ #09
10ssad0.d

US 8,238,360 B2

Sheet 9 of 14

Aug. 7, 2012

U.S. Patent

-l Ud18}

2 >
| Z19 abed |

_ g09d1L |
+09
105S920.d

019
JOALP _

dg "9OId

US 8,238,360 B2

Sheet 10 of 14

Aug. 7, 2012

U.S. Patent

078

¥oe3s |020304d

0} Aelie 3jedipul

8 "Dl

818

; Aele 3)edipul

918
Ae.le 0} Jopeay ppe

——

b18

lapeay yonjaja.d

1dNn.1iajul SAI9Dl

I

80/
1dn.isjul jeubis

90/
peojAed
oed 2103S

il

b0/

slapeay JO
abed ul Jspesy
JoMoed a40)s

00
19)0ed SAI0.

L Old

US 8,238,360 B2

Sheet 11 of 14

Aug. 7, 2012

U.S. Patent

Ut09
105sa00.d

a+09 2309
josssooud | | Jossaooldd

6 OId

U.S. Patent Aug. 7, 2012 Sheet 12 of 14 US 8,238.360 B2

604
|

I
processor

FIG. 10

U.S. Patent

1102

1104

1106

Aug. 7, 2012 Sheet 13 of 14

STORE A PACKET HEADER
AT A SET OF AT LEAST ONE
PAGE OF MEMORY
ALLOCATED TO STORING
PACKET HEADERS

STORE THE PACKET
HEADER AND A PACKET

PAYLOAD AT A LOCATION
NOT IN THE SET OF AT
LEAST ONE PAGE OF
MEMORY ALLOCATED TO
STORING PACKET HEADERS

US 8,238,360 B2

U.S. Patent Aug. 7, 2012 Sheet 14 of 14 US 8,238.360 B2

RECEIVING A PACKET HAVING A
PAYLOAD PORTION AND A HEADER
PORTION

1204 STORING THE PACKET IN A FIRST
LOCATION

1206
REPLICATING THE HEADER

1202

1208 STORING THE HEADER PORTION IN A
LOCATION DIFFERENT FROM THE FIRST
LOCATION

1210

IS PACKET CANDIDATE FOR
ACCELERATED PROCESSING?

YES

1212
PERFORM ACCELERATED PROCESSING

FIG. 12

US 8,238,360 B2

1

HEADER REPLICATION IN ACCELERATED
TCP (TRANSPORT CONTROL PROTOCOL)
STACK PROCESSING

PRIORITY INFORMAITTON

This application 1s a continuation-in-part (CIP) of U.S.
patent application Ser. No. 11/027,719 entitled “Accelerated
TCP (Transport Control Protocol) Stack Processing™, filed
Dec. 30, 2004, which 1s a CIP of U.S. patent application Ser.
No. 10/815,895 entitled “Accelerated TCP (Transport Con-
trol Protocol) Stack Processing”, filed Mar. 31, 2004, and

claims the benefit of priority thereof.

RELATED APPLICATIONS

This application 1s related to U.S. patent application Ser.
No. 10/934,248 entitled “Storing Packet Headers™, filed Sep.
29, 2004.

FIELD

Embodiments of this invention relate to accelerated TCP
(Transport Control Protocol) stack processing.

BACKGROUND

Networking has become an integral part of computer sys-
tems. Advances in network bandwidths, however, have not
been fully utilized due to overhead that may be associated
with processing protocol stacks. A protocol stack refers to a
set of procedures and programs that may be executed to
handle packets sent over a network, where the packets may
conform to a specified protocol. For example, TCP/IP ('Trans-
port Control Protocol/Internet Protocol) packets may be pro-
cessed using a TCP/IP stack.

Overhead may result from bottlenecks 1n the computer
system from using the core processing module of a host
processor to perform slow memory access functions such as
data movement, as well as host processor stalls related to data
accesses missing the host processor caches. Each memory
access that occurs during packet processing may represent a
potential delay as the processor awaits completion of the
memory operation.

One approach to reducing overhead is to oftload protocol
stack processing. For example, TCP/IP stack processing may

be offloaded onto a TCP/IP offload engine (heremafter
“OE”). In TOE, the entire TCP/IP stack may be offloaded
onto a networking component, such as a MAC (media access
control) component, of an I/O subsystem, such as a NIC
(network interface controller). However, use of a TOE to
process the entire TCP/IP stack may not scale well to support
a large number of connections due to the memory require-
ments associated with storing contexts associated with these
connections.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present invention are illustrated by
way of example, and not by way of limitation, 1n the figures of

the accompanying drawings and in which like reference
numerals refer to similar elements and in which:

FI1G. 1 1llustrates a network.

FI1G. 2 1llustrates a system according to one embodiment.

FI1G. 3 1s a flowchart 1llustrating a method according to one
embodiment.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 4 1s a flowchart illustrating a method according to
another embodiment.

FIG. 5 1s a flowchart illustrating a method according to
another embodiment.

FIGS. 6 A-6D 1illustrate storage of packet headers.

FIG. 7 1s a flowchart illustrating a process to store packet
headers.

FIG. 8 1s a flowchart illustrating a process to pretetch
packet headers into a cache.

FIG. 9 1llustrates a diagram of a computer system.

FIG. 10 illustrates a second embodiment to store packet
headers.

FIG. 11 1s a tlowchart illustrating a second embodiment to
store packet headers.

FIG. 12 1s a flowchart 1llustrating header replication.

DETAILED DESCRIPTION

Examples described below are for illustrative purposes
only, and are 1n no way intended to limit embodiments of the
invention. Thus, where examples may be described in detail,
or where a list of examples may be provided, 1t should be
understood that the examples are not to be construed as
exhaustive, and do not limit embodiments of the invention to
the examples described and/or 1llustrated.

FIG. 1 1llustrates a network 100 1n which embodiments of
the mvention may operate. Network 100 may comprise a
plurality of nodes 102A, . . . 102N, where each of nodes
102A, ... 102N may be communicatively coupled together
via a communication medium 104. As used herein, compo-
nents that are “communicatively coupled” means that the
components may be capable of communicating with each
other via wirelined (e.g., copper wires), or wireless (e.g.,
radio frequency) means. Nodes 102A . . . 102N may transmit
and receive sets of one or more signals via medium 104 that
may encode one or more packets.

As used herein, a “packet” means a sequence of one or
more symbols and/or values that may be encoded by one or
more signals transmitted from at least one sender to at least
one recerver. As used herein, a “communication medium”
means a physical entity through which electromagnetic radia-
tion may be transmitted and/or received. Communication
medium 104 may comprise, for example, one or more optical
and/or electrical cables, although many alternatives are pos-
sible. For example, communication medium 104 may com-
prise air and/or vacuum, through which nodes 102A ... 102N
may wirelessly transmit and/or receive sets of one or more
signals.

In network 100, one or more of the nodes 102A . .. 102N
may comprise one or more intermediate stations, such as, for
example, one or more hubs, switches, and/or routers; addi-
tionally or alternatively, one or more of the nodes 102A . . .
102N may comprise one or more end stations. Also addition-
ally or alternatively, network 100 may comprise one or more
not shown intermediate stations, and medium 104 may com-
municatively couple together at least some of the nodes
102A ...102N and one or more of these intermediate stations.
Of course, many alternatives are possible.

At least one of nodes 102A, . . ., 102N may comprise
system 200, as illustrated 1n FIG. 2. System 200 may com-
prise host processor 202, host memory 204, bus 206, and
chupset 208. (System 200 may comprise more than one host
processor 202, host memory 204, bus 206, and chipset 208, or
other types of processors, memories, and busses; however, the
tormer are illustrated for simplicity of discussion, and are not
intended to limit embodiments of the mvention.) Host pro-

US 8,238,360 B2

3

cessor 202, host memory 204, bus 206, and chipset 208 may
be comprised 1n a single circuit board, such as, for example,
a system motherboard 238.

Host processor 202 may comprise a core processing mod-
ule and other support modules that interface with other sys-
tem elements. For example, a support module may include a
bus unit that communicates with a memory controller on
system 200. Host processor 202 may comprise, for example,
an Intel® Pentium® microprocessor that 1s commercially
available from the Assignee of the subject application. Of
course, alternatively, host processor 202 may comprise
another type ol microprocessor, such as, for example, a
microprocessor that 1s manufactured and/or commercially
available from a source other than the Assignee of the subject
application, without departing from embodiments of the
invention.

Host processor 202 may be communicatively coupled to
chipset 208. Chipset 208 may comprise a host bridge/hub
system that may couple host processor 202 and host memory
204 to each other and to bus 206. Chipset 208 may also
include an I/O bridge/hub system (not shown) that may
couple the host bridge/bus system to bus 206. Chipset 208
may comprise one or more integrated circuit chips, such as
those selected from integrated circuit chipsets commercially
available from the Assignee of the subject application (e.g.,
graphics memory and I/O controller hub chipsets), although
other one or more 1ntegrated circuit chips may also, or alter-
natively, be used.

Bus 206 may comprise a bus that complies with the Periph-
cral Component Interconnect (PCI) Local Bus Specification,
Revision 2.2, Dec. 18, 1998 available from the PCI Special
Interest Group, Portland, Oreg., U.S.A. (heremaftter referred
to as a “PCI bus”). Alternatively, bus 106 1nstead may com-
prise a bus that complies with the PCI-X Specification Rev.
1.0a, Jul. 24, 2000, (heremafiter referred to as a “PCI-X bus”™),
or a bus that complies with the PCI-E Specification Rev.
PCI-E (hereinaiter referred to as a “PCI-E bus”), as specified
in “The PCI Express Base Specification of the PCI Special
Interest Group”, Revision 1.0a, both available from the afore-
said PCI Special Interest Group, Portland, Oreg., U.S.A.
Also, alternatively, bus 106 may comprise other types and
configurations of bus systems.

System 200 may additionally comprise circuitry 216. Cir-
cuitry 216 may comprise one or more circuits to perform one
or more operations described herein as being performed by,
for example, a driver 222 and/or network controller 212. In
embodiments of the invention, driver 222 may perform accel-

erated processing as described below, and may be referred to
as a TCP-A (Transport Control Protocol-—Accelerated)
driver.

References to TCP-A driver herein may describe any driver
that may perform accelerated processing when called upon to
perform accelerated processing, and references to TCP driver
herein may describe any driver that may perform non-accel-
erated processing when called upon to perform non-acceler-
ated processing. TCP-A driver need not be a distinct driver
from TCP dniver, but may instead comprise a driver that may
perform either non-accelerated or accelerated processing. For
example, driver 222 may comprise a TCP driver that may also
perform accelerated processing.

Circuitry 216 may be hardwired to perform the one or more
operations, and/or may execute machine-executable mstruc-
tions to perform these operations. For example, circuitry 216
may comprise memory 236 that may store machine-execut-
able instructions 226 that may be executed by circuitry 216 to
perform these operations. Instead of being comprised 1n host
processor 202, or chipset 208, some or all of circuitry 216

10

15

20

25

30

35

40

45

50

55

60

65

4

may be comprised 1n a circuit card (not shown), and/or other
structures, systems, and/or devices that may be, for example,
comprised 1 motherboard 238, and/or communicatively
coupled to bus 206, and may exchange data and/or commands
with one or more other components 1n system 200. Circuitry
216 may comprise, for example, one or more digital circuits,
one or more analog circuits, one or more state machines,
programmable circuitry, and/or one or more ASIC’s (Appli-
cation-Specific Integrated Circuits).

System 200 may additionally comprise one or more memo-
ries to store machine-executable nstructions 226 capable of
being executed, and/or data capable of being accessed, oper-
ated upon, and/or manipulated by circuitry, such as circuitry
216. For example, these one or more memories may include
host memory 204, or memory 236. One or more memories
204, 236 may, for example, comprise read only, mass storage,
random access computer-readable memory, and/or one or
more other types ol machine-readable memory. The execu-
tion of program instructions 226 and/or the accessing, opera-
tion upon, and/or manipulation of data by circuitry 216 may
result in, for example, circuitry 216 carrying out some or all of
the operations described herein as being carried out by vari-
ous hardware and/or software components in system 200.

For example, machine-executable instructions 226 may
comprise a set of instructions for an application 218; a set of
instructions for operating system 220; a set of instructions for
TCP-A driver 222; and/or a set of instructions for DMA driver
224. In one embodiment, circuitry 216 of host processor 202
may execute machine-executable instructions 226 for TCP-A
driver 222, for DMA driver 224, and for operating system
220. Machine-executable instructions 226 may execute 1n
memory by circuitry 216, such as 1n host processor 202,
and/or by circuitry 216 1n general.

A method according to one embodiment 1s 1llustrated in the
flowchart of FIG. 3 with reference to system 200 of FIG. 2.
The method begins at block 300, and continues to block 302
where network controller 212 may receive an indication that
one or more packets 228 (only one shown), each comprising
a header 230 and a payload 232, have been received from
network 100. In an embodiment, network controller 212 may
perform stateless assists. “Stateless assists” refer to opera-
tions that may be performed independently of the connection
context. As used herein, “connection context” refers to infor-
mation about a connection. For example, the information may
comprise the sequence number of the last packet sent/re-
ceived, and amount of memory available. Performing state-
less assists may reduce the burden on the network controller
212. Stateless assists may include, but are not limited to,
splitting the header and payload, header parsing, hashing,
posting queues, large send oftload, and checksum offload.

For example, for each packet 228, network controller 212
may split header 230 and payload 232 from packet 228, and
posteach 230, 232 to one or more buifers 214A, 214B. In one
embodiment, header 230 may be posted to a first butfer such
as header butler 214 A, and payload 232 may be posted to a
second butler such as data butfer 214B. This feature 1n which
a packet 1s split into a header portion and a payload portion 1s
referred to herein as a split header feature. With split header,
circuitry may perform parsing to determine where the header
ends and the payload starts. The header and payload may be
stored 1n separate locations (e.g., first and second builers).

In another embodiment, header 230 may additionally be
stored 1n the second butfer. In an embodiment, this may result
from using the split header feature, and placing the header 1n
the same location in which the payload 1s stored. In other
embodiments, this may result from using a header replication
teature. In header replication, circuitry may store the header

US 8,238,360 B2

S

and the payload (1.e., the packet) at a first location (e.g.,
second buffer), and store a predetermined number of bytes of
the packet 1n a second location (e.g., first butier). The prede-
termined number may correlate to a number of bytes of the
header 1n a packet, and may be configurable. With header
replication, circuitry does not need to perform parsing to
determine where the header ends and the payload begins.

The one or more packets 228 may be comprised 1n one or
more groups, and each group of packets 228 may be trans-
mitted and/or recerved over a connection. The one or more
packets 228 may berecerved inresponse to a read data request
from, for example, application 218.

“Application” refers to one or more programs that use the
network. An application 218 may comprise, for example, a
web browser, an email serving application, a file serving
application, or a database application. In conjunction with a
read data request, application 218 may designate destination
read bufler 214C where application 218 may access the
requested data. In conjunction with a transmit data request,
application 218 may write data to be transmitted to source
butifer 214D.

“Network controller” refers to any combination of hard-
ware and/or software that may process one or more packets
sent and/or received over a network. In an embodiment, net-
work controller may comprise, for example, a MAC (media
access control) layer of the Data Link Layer as defined 1n the
Open System Interconnection (OSI) model for networking
protocols. The OSI model 1s defined by the International
Organization for Standardization (ISO) located at 1 rue de
Varembe, Case postale 56 CH-1211 Geneva 20, Switzerland.

A “connection” as used herein refers to a logical pathway

to facilitate communications between a first node on a net-
work and a second node on the network. A connection may
facilitate communications for one or more transactions
between the first node and the second node. A “transaction”
refers to a request to send or recerve data, such as may be
iitiated by an application, such as application 218, on a
system, such as system 200. Each connection may be associ-
ated with a connection context.
In an embodiment, network controller 212 may determine
il the connection 1s an accelerated connection in which one or
more packets 228 may be oifloaded to TCP-A driver 222 for
accelerated processing prior to splitting header 230 and pay-
load 232 and continuing to block 304. In other embodiments,
network controller 212 may split one or more packets 228 into
header 230 and payload 232 without first determiming 11 con-
nection 1s an accelerated connection. One example of how to
determine if a connection 1s an accelerated connection 1s
described in U.S. patent application Ser. No. 11/018,448 filed
on Dec. 20, 2004, entitled “Connection Context Prefetch”.

At block 304, 1f the connection 1s an accelerated connec-
tion, and therefore one or more packets 228 may be candi-
dates for accelerated packet processing (packets may be
referred to as oftload packets), network controller 212 may
notily a driver that one or more packets 228 have arrived, and
may indicate header buffer 214A and data buffer 214B to a
driver (e.g., TCP-A driver) for accelerated processing, such as
from blocks 306-318. Alternatively, i1f the connection 1s not an
accelerated connection, and therefore one or more packets
228 may not be candidates for accelerated processing (pack-
cts may be referred to as non-oftload packets), network con-
troller 212 may indicate data buifer 214B (which includes
header portion and data portion of the packet) to a driver (e.g.,
TCP driver) to perform regular, non-accelerated processing.

In one embodiment, network controller 212 may notify
TCP-A dniver 222 by notifying operating system 220 1n
accordance with an interrupt moderation scheme. An nter-

10

15

20

25

30

35

40

45

50

55

60

65

6

rupt moderation scheme refers to a condition where an inter-
rupt may be asserted for every n packets received by network
controller 212. Thus, 11 network controller 212 receives n or
more packets, network controller 212 may notily operating
system 220 that packets have arrived. Likewise, 11 network
controller 212 receives less than n packets, network controller
212 may instead wait until more packets are recerved before
notilying operating system 220. In one embodiment, operat-
ing system 220 may then notify TCP-A driver 222 that pack-
ets are ready to be processed.

At block 306, TCP-A driver 222 may perform packet pro-
cessing for at least one of the one or more packets. Packet
processing may be performed by the TCP-A driver 222
retrieving header 230 from post builer 214A, parsing the
header 230 to determine the connection context associated
with the current connection (if this has not already been
done), and performing TCP protocol compliance. TCP pro-
tocol compliance may comprise, for example, verifying the
sequence number of a received packet to ensure that the
packet 1s within a range of numbers that was agreed upon
between the communicating nodes; veritying the payload
s1ze to ensure that the packet 1s within a range of sizes that was
agreed upon between the communicating nodes; ensuring
that the header structure conforms to the protocol; and ensur-
ing that the timestamps are within an expected time range.

TCP-A driver 222 may fetch a next header to process prior
to completing the processing of a current header. This may
ensure that the next header 1s available 1n the host processor’s
caches (not shown) before the TCP-A driver 222 1s ready to
perform TCP processing on 1t, thereby reducing host proces-
sor stalls. Prefetching the header 1s described 1n more detail
below. The method may continue to block 308.

In one embodiment, TCP-A driver 222 may additionally
determine i a connection associated with a packet 1s to be
accelerated prior to performing packet processing. This may
be done, for example, 1f network controller 212 has not
already made this determination. TCP-A driver 222 may
accelerate select connections. Select connections may com-
prise, for example, connections that are long-lived, or which
comprise large data. If TCP-A driver 222 determines that
network connection 1s to be accelerated, TCP-A driver 222
may pertorm packet processing as described at block 306. IT
TCP-A driver 222 determines that network connection 1s not
to be accelerated, the method may continue to block 318.

At block 308, TCP-A driver 222 may determine 1f one or
more payloads 232 placed 1n post buller 214B are ready for
placement. A payload 232 may be ready for placement 1f, for
example, the corresponding header has been successiully
processed, and a read butler, such as read builer 214C, has
been designated. 11 at block 308, payload 232 1s not ready for
placement, the method may continue to block 310. In one
embodiment, TCP-A driver 222 may determine if there are
one or more payloads 232 ready for placement at anytime. For
example, 11 1t 1s determined that payload 232 1s not ready for
placement, TCP-A driver 222 may wait for some period of
time before 1t makes this determination again. Where payload
232 cannot be placed because a read builer 214C does not
exist, for example, TCP-A driver 222 may alternatively or
additionally at anytime indicate to operating system 220 the
presence of payload 232 ready to be placed. Operating system
220 may then designate a buflfer, or may ask application 218
to designate a butler. If there are one or more payloads ready
for placement, the method may continue to block 312.

Atblock 310, TCP-A driver 222 may determine 11 there are
more packets 228 to process, for example 1n post buller 214 A,
of the n packets for the current interrupt. If there are more
packets 228 to process, the method reverts to block 306. IT

US 8,238,360 B2

7

there are no more packets 228, and one or more packets 228
have not been previously placed, and are ready for placement,
the method may continue to block 312. If there are no more
packets 228 to process, and there are no previous packets 228
to place, the method may continue to block 314.

At block 312, TCP-A driver 222 may perform one or more
operations that result 1n a data movement module placing one
or more corresponding payloads 232 into a read builer, such
as read butfer 214C. As used herein, a “data movement mod-
ule” refers to a module for moving data from a source to a
destination without using the core processing module of a
host processor, such as host processor 202. A data movement
module may comprise, for example, a DMA engine as
described below.

In one embodiment, for example, TCP-A driver 222 may
send a request to DMA driver 224, and DMA driver 224 may
schedule a request with DMA engine 210 to write the one or
more payloads 232 from post builer 214B to read builer
214C. In another embodiment, TCP-A driver 222 may
directly program DMA engine 210 to write the one or more
payloads 232 from post buifer 214B to read butier 214C.
DMA driver 224 may be a standalone driver, or part of some
other driver, such as TCP-A driver 222. Rather than being part
of chipset 208, DMA engine 210 may be a support module of
host processor 202. By using the DMA engine for placement
of data, host processor 202 may be freed from the overhead of
performing data movements, which may result 1n the host
processor 202 running at much slower memory speeds com-
pared to the core processing module speeds. Following the
DMA engine 210 scheduling, the method may revert to block
310 to determine 11 there are additional packets 228 to pro-
CEesS.

Atblock 314, TCP-A driver 222 may determine if there are
any pending DMA completions for the current interrupt.
Alternatively, TCP-A drniver 222 may look for DMA comple-
tions at anytime. A “pending completion” as used herein
refers to the completion of a request. In one embodiment, a
pending completion refers to the completion of a request to
DMA engine 210 to write one or more payloads 232. If, at
block 314, there are one or more pending DMA completions
for the current interrupt, the method may continue to block
316. If at block 314 there are no pending DMA completions
for the current interrupt, the method may continue to block
318.

At block 316, TCP-A driver 222 may perform other tasks.
Other tasks may include looking for more packets 1n a sub-
sequent interrupt, setting up the DMA engine 210 to 1ssue an
interrupt upon completion of a last queued task for the current
interrupt, or other housekeeping, such as transmitting data,
and performing TCP timer related tasks.

At block 318, TCP-A driver 222 may pass control back to
operating system 220. If all packets 228 have been processed.,
operating system 220 may wait for a next interrupt. If one or
more packets 228 have still not been processed, operating,
system 220 may notily a TCP driver (not shown) rather than
TCP-A dniver 222, where the TCP driver may perform TCP
stack processing by performing packet processing, and by
using the core processing module of host processor 202 to
perform data transiers. TCP driver may implement one or
more host network protocols, also known as host stacks, to
process one or more packets 228.

The method may end at block 320.

A method according to another embodiment 1s illustrated
in FIG. 4. The method begins at block 400 and continues to
block 402 where operating system 220 may receive a request
from application 218 to transmit data 234 placed in buifer
214D. Operating system 220 may perform preliminary

10

15

20

25

30

35

40

45

50

55

60

65

8

checks on data 234. Preliminary checks may include, for
example, obtaining the associated connection context. In a
TCP/IP connection, for example, connection context may
comprise packet sequence numbers to identity the order of the
packets, buffer addresses of bulfers used to store data, and
timer/timestamp information for retransmissions.

At block 404, operating system 220 may notily TCP-A
driver 222 that there 1s data 234 to be transmitted from buifer
214D.

At block 406, TCP-A driver 222 may perform one or more
operations that result in data 234 being transmitted to network
controller 212. For example, these one or more operations
may include TCP-A driver 222 programming DMA engine
210 to transmit data 234 from source buifer 214D to network
controller 212. Alternatively, TCP-A driver 222 may queue a
butler, such as queued buiter 214E, to network controller 212,
where network controller 212 may 1nstead read data 234 from
queued buffer 214E. Source buifer 214D may be designated
by application 218, for example, and queued buiier 214EF may
be designated by network controller 212, for example.

In one embodiment, TCP-A driver 222 may program DMA
engine 210 to transmit data 1f the data 1s small, and TCP-A
driver 222 may queue a butfer, such as queued butler 214E, 1f
the data 1s large. As used herein, “queuing a buifer” means to
notily a controller that there 1s a buffer from which it can
access data. For example, TCP acknowledgment packets to
acknowledge receipt of packets may typically be relatively
small-sized packets, and may be sent by TCP-A driver 222 to
network controller 212 by TCP-A driver 222 programming
DMA engine 210 to transmit data 234. As another example,
storage applications that send large files over the network
may be relatively large, and may therefore be sent by TCP-A
driver 222 to network controller 212 by queuing buifer 214E.

At block 408, 1n response to recerving the data, network
controller 212 may create one or more packets for transmis-
sion by packetizing the data. In one embodiment, network
controller 212 may packetize data by performing segmenta-
tion on the data. “Segmentation” refers to breaking the data
into smaller pieces for transmission. In one embodiment,
network controller 212 may include a MAC, and segmenta-
tion may be referred to as a large send offload, wherein MAC
frames may be created for transmission of data 234 over the
network. Network controller 212 may recerve data directly
from TCP-A driver 222, or by accessing queued butfer 214E.

The method may end at block 410. Thereaiter, operating
system 220 may send a completion notification to application
218. Furthermore, source buiier 214D may be returned to
application 218, and application may use the builer for other
pUrposes.

A method for accelerated processing 1n accordance with
another embodiment 1s 1llustrated 1n FIG. 5. The method of
FIG. 5 begins at block 500 and continues to block 502 where
packet processing may be performed on one or more packets.
Packet processing may be performed, for example, as
described at block 306 of FI1G. 3. This may be performed by,
for example, a transport protocol driver, where the protocol
may include, for example, TCP/IP. The method may continue
to block 504.

At block 504, substantially simultaneously with perform-
ing packet processing, a data movement module may be used
to place one or more payloads corresponding to the one or
more packets into a read bulfer. Use of a data movement
module to place one or more payloads corresponding to the
one or more packets 1into a read butfer may be performed, for
example, as described at block 312 of FIG. 3. As used herein,
“substantially simultaneously” means at or around the same
time as another process so that there 1s some overlap between

US 8,238,360 B2

9

the two processes, but does not necessarily mean that the two
processes must begin and end execution at the same time.
Thus, data movement may occur at some point during packet
processing, including prior to packet processing, subsequent
to packet processing, and/or during packet processing. The
method may continue to block 506.

At block 506, the method of FIG. 5 may end.

As discussed above, each memory operation that occurs
during packet processing may represent a potential delay.
(Given thatreading a packet header may occur for nearly every
packet, storing the header 1n a processor’s cache can greatly
improve packet processing speed. Generally, however, a
grven packet’s header will not be 1n cache when the stack first
attempts to read the header. For example, 1n many systems, a
NIC receiving a packet writes the packet mnto memory and
signals an interrupt to a processor. In this scenario, the pro-
tocol software’s 1nitial attempt to read the packet’s header
results 1n a “compulsory” cache miss and an ensuing delay as
the packet header 1s retrieved from memory.

FIGS. 6 A-6D illustrate techniques that may increase the
likelihood that a given packet’s header will be 1n a processor’s
cache when needed by collecting packet headers 1nto a rela-
tively small set of memory pages. By splitting a packet apart
and excluding packet payloads from these pages, a larger
number of headers can be concentrated together. This reduced
set of pages can then be managed 1n a way to permit effective
prefetching of packet headers into the processor cache before
the protocol stack processes the header.

In greater detail, FIG. 6A depicts a sample computer sys-
tem that features a processor 604, memory 602, and a NIC
600. Memory 602 1s organized as a collection of physical
pages of contiguous memory addresses. The size of a page
may vary in different implementations.

In this sample system, the processor 604 includes a cache
606 and a Translation Lookaside Builer (TLB) 608. Briefly,
many systems provide a virtual address space that greatly
exceeds the available physical memory. The TLB 608 is a
table that cross-references between virtual page addresses
and the currently mapped physical page addresses for
recently referenced pages of memory. When a request for a
virtual address results 1n a cache miss, the TLB 608 1s used to
translate the virtual address 1nto a physical memory address.
However, 11 a given page isnotinthe TLB 608 (e.g., apage not
having been accessed 1n time), a delay 1s incurred in perform-
ing address translation while the physical address 1s deter-
mined.

As shown, the processor 604 also executes instructions of
a driver 620 (e.g., TCP dniver that performs both accelerated
and nonaccelerated processing) that includes a protocol stack
618 (e.g., a TCP/IP protocol stack) and a base driver 610 that
controls and configures operation of NIC 600. Potentially, the
base driver 610 and stack 618 may be implemented as differ-
ent layers of an NDIS (Microsoit Network Driver Interface
Specification) compliant driver 620 (e.g., an NDIS 6.0 com-
pliant driver).

As shown 1n FIG. 6 A, 1n operation the NIC 600 receives a
packet 614 from a network (shown as a cloud). As shown, the
controller 600 can “split” the packet 614 1nto its constituent
header 614a and payload 6145b. For example, the controller
600 can determine the starting address and length of a pack-
et’s 614 TCP/IP header 614a and starting address and length
of the packet’s 614 payload 614b. Instead of simply writing a
verbatim, contiguous copy of the packet 614 imnto memory
602, the controller 600 can cause the packet components
614a, 614b to be stored separately. For example, as shown,
the controller 600 can write the packet’s header 614a 1nto a
physical page 612 of memory 602 used for storage of packet

10

15

20

25

30

35

40

45

50

55

60

65

10

headers, while the packet payload 6145 1s written mto a
different location (e.g., a location not contiguous or in the
same page as the location of the packet’s header 614a).

As shown 1n FIG. 6B, this process can repeat for subse-
quently recerved packets. That 1s, for recerved packet 616, the
controller 600 can append the packet’s header 616a to the
headers stored 1n page 612 and write the packet’s payloa
6165 to a separate location somewhere else in memory 602.

To avoid an 1mitial cache miss, a packet’s header may be
prefetched into cache 606 before header processing by stack
618 soltware. For example, driver 610 may execute a prefetch
instruction that loads a packet header from memory 602 into
cache 606. As described above, in some architectures, the
elficiency of a prefetch instruction suffers when a memory
access Ialls within a page not currently 1dentified in the pro-
cessor’s 604 TLB 608. By compactly storing the headers of
different packets within a relatively small number of pages,
these pages can be maintained in the TLB 608 without occu-
pying an excessive number of TLB entries. For example,
when stripped of their corresponding payloads, 32 different
128-byte headers can be stored 1n a single 4-kilobyte page
instead of one or two packets stored 1n their entirety.

As shown 1n FIG. 6C, the page(s) 612 storing headers can
be maintained in the TLB 608, for example, by a memory
access (e.g., aread) to a location 1n the page. This “touch” of
a page may be repeated at different times to ensure that a page
1s 1n the TLB 608 before a prefetch. For example, a read of a
page may be performed each time an 1nitial entry 1n a page of
headers 1s written. Assuming that packet headers are stored in
page 612 1n the order received, performing a memory opera-
tion for the first entry will likely keep the page 612 in the TLB
608 for the subsequently added headers.

As shown 1n FIG. 6D, once included 1n the TLB 608,
prefetch operations load the header(s) stored in the page(s)
612 into the processor 604 cache 606 without additional
delay. For example, as shown, the base driver 610 can
prefetch the header 616a for packet 616 before TCP process-
ing of the header by the protocol stack 618.

FIG. 7 1llustrates sample operation of a NIC participating
in the scheme described above. As shown, after recerving 700
a packet, the controller can determine 702 whether to perform
header splitting. For example, the controller may only per-
form splitting for TCP/IP packets or packets belonging to
particular tlows (e.g., particular TCP/IP connections or Asyn-
chronous Transier Mode (ATM) circuits).

For packets selected for splitting, the controller can cause
storage 704 (e.g., via Direct Memory Access (DMA)) of the
packet’s header in the page(s) used to store headers and
separately store 706 the packet’s payload. For example, the
controller may consume a packet descriptor from memory
generated by the driver that identifies an address to use to
store the payload and a different address to use to store the
header. The driver may generate and enqueue these descrip-
tors 1n memory such that a series of packet headers are con-
secutively stored one after the other 1n the header page(s). For
instance, the driver may enqueue a descriptor identiiying the
start of page 612 for the first packet header received (e.g.,
packet header 6146 1 FIG. 6A) and enqueue a second
descriptor 1dentiiying the following portion of page 612 for
the next packet header (e.g., packet header 6165 1n FIG. 6B).
Alternately, the controller may maintain pointers into the set
of pages 612 to store headers, essentially using the pages as a
ring buifer for received headers.

As shown, after writing the header, the controller signals
708 an 1terrupt to the driver indicating receipt of a packet.
Potentially, the controller may implement an interrupt mod-

US 8,238,360 B2

11

eration scheme and signal an interrupt after some period of
time and/or the receipt of multiple packets.

FIG. 8 illustrates sample operation of the driver in this
scheme. As shown, after receiving 810 an interrupt for a split
packet 812, the driver can 1ssue a prefetch 814 instruction to
load the header into the processor’s cache (e.g., by using the
packet descriptor’s header address). Potentially, the packet
may then be indicated to the protocol stack. Alternately, how-
ever, the driver may defer immediate indication and, instead,
build an array of packets to indicate to the stack in a batch. For
example, as shown, the driver may add 816 the packet’s
header to an array and only indicate 820 the array to the stack
if 816 some threshold number of packets have be added to the
array or 1f some threshold period of time has elapsed since
indicating a previous batch of packets. Since prefetching data
into the cache into memory takes some time, moderating
indication to the stack increases the likelithood that prefetch-
ing completes for several packet headers before the data 1s
needed. Depending on the application, 1t may also be possible
to speculatively prefetch some of the payload data before the
payload is accessed by the application.

FI1G. 9 1llustrates a sample computer architecture that can

implement the techniques described above. As shown, the
system 1ncludes a chipset 630 that couples multiple proces-
sors 604a-6047 to memory 632 and NIC 600. The processors
6044a-604» may include one or more caches. For example, a
given processor 604aq-604» may feature a hierarchy of caches
(e.g., an L2 and L3 cache). The processors 604a-604» may
reside on different chips. Alternately, the processors 604a-
6047 may be different processor cores 604a-604# integrated
on a common die.

The chipset 630 may interconnect the different compo-
nents 600, 632 to the processor(s) 604a-604n, for example,
via an Input/Output controller hub. The chipset 630 may
include other circuitry (e.g., video circuitry and so forth).

As shown, the system includes a single NIC 600. However,
the system may include multiple controllers. The control-
ler(s) can include a physical layer device (PHY) that trans-
lates between the analog signals of a communications
medium (e.g., a cable or wireless radio) and digital bits. The
PHY may be communicatively coupled to a media access
controller (MAC) (e.g., via a FIFO) that performs “layer 2”
operations (e.g., Ethernet frame handling). The controller can
also include circuitry to perform header splitting.

Many variations of the system shown 1n FIG. 9 are pos-
sible. For example, instead of a separate discrete NIC 600, the
controller 600 may be integrated within the chipset 630 or a
processor 604a-6041.

In an embodiment, as illustrated 1n FIG. 10, NIC 100 (or
network controller 212) may store the header 614a, 616a and
payload 6145, 6165 in separate butlers, and additionally store
the header 614a, 616a to a location 1n which the payload
6145, 6165 1s written. Put differently, the payload 6145, 6165
may be stored to a first location, while the header 6144, 6164
may be stored to the first location, as well as a second location
different from the first location. Since some operating sys-
tems, such as Microsoft® Windows®, may expect that all
packets be passed up to the host stack 1n a single builer, this
maintains the single buifer requirement for non-oftload pack-
ets, while allowing the split header feature to be used for off
load packets.

A method in accordance with this embodiment 1s 1llus-
trated in FIG. 11. The method begins at block 1100, and
continues to block 1102 where circuitry may store a packet
header at a set of at least one page of memory allocated to
storing packet headers.

10

15

20

25

30

35

40

45

50

55

60

65

12

At block 1104, circuitry may store the packet header and a
packet payload at a location not 1n the set of at least one page

of memory allocated to storing packet headers.

The method may end at block 1106.

In an embodiment, blocks 1102-1104 may be accom-
plished by using the split header feature. In this embodiment,
circuitry may split the header and payload from the packet,
and may store the header 1n the at least one page of memory,
and store the header and payload at a location not 1n the set of
at least one page of memory. In another embodiment, this may
be accomplished by header replication.

The method may end at block 1108.

Another method 1n accordance with this embodiment 1s
illustrated 1n FI1G. 12. The method begins at block 1200, and
continues to block 1202 where circuitry may receive a packet
having a payload portion and a header portion. The method
may continue to block 1204.

At block 1204, circuitry may store the packet in a first
location. The method may continue to block 1206.

At block 1206, circuitry may replicate the header portion.
The method may continue to block 1208.

At block 1208, circuitry may store the header portion 1n a
location different from the first location. The method may
continue to block 1210.

At block 1210 1t may be determined if the packet 1s a
candidate for accelerated processing. The method may con-
tinue to block 1212.

At block 1212, 11 the packet 1s a candidate for accelerated
processing, circuitry may perform accelerated processing on
the packet. The method may continue to block 1214.

The method may end at block 1214.

Embodiments of the present invention may be provided,
for example, as a computer program product which may
include one or more non-transitory machine-readable media
having stored thereon machine-executable instructions that,
when executed by one or more machines such as a computer,
network of computers, or other electronic devices, may result
in the one or more machines carrying out operations 1n accor-
dance with embodiments of the present invention. A machine-
readable medium may include, but 1s not limited to, floppy
diskettes, optical disks, CD-ROMs (Compact Disc-Read
Only Memories), and magneto-optical disks, ROMs (Read
Only Memories), RAMs (Random Access Memories),
EPROMSs (Erasable Programmable Read Only Memories),
EEPROMSs (Electrically Erasable Programmable Read Only
Memories), magnetic or optical cards, flash memory, or other
type of media/machine-readable medium suitable for storing,
machine-executable 1nstructions.

Moreover, embodiments of the present invention may also
be downloaded as a computer program product, wherein the
program may be transierred from a remote computer (e.g., a
server) to a requesting computer (e.g., a client) by way of one
or more data signals embodied 1n and/or modulated by a
carrier wave or other propagation medium via a communica-
tion link (e.g., a modem and/or network connection).

CONCLUSION

Therefore, in one embodiment, a method may comprise
storing a packet header at a set of at least one page of memory
allocated to storing packet headers, storing a packet payload
at a location not 1n the set of at least one page of memory
allocated to storing packet headers, and storing the packet
header at the location 1n which the packet payload 1s stored.

Embodiments of the mvention may significantly reduce
TCP/IP processing overhead that may result from using the
core processing module of a host processor. TCP/IP process-

US 8,238,360 B2

13

ing may be accelerated by using a data movement module,
such as a DMA engine, to move data from one builer to
another butler. Since the core processing module of a host
processor may be bypassed using a DMA engine, slow
memory access speeds may be avoided. Furthermore, TCP/IP
processing performed on the host processor may scale better
than TOE processing because the number of contexts i1s not
limited by TOE memory.

Furthermore, processing performance ol non-offload
packets may be improved by storing the packet 1n one loca-
tion, and the header 1n another location. In these embodi-
ments, a header portion of a packet may be placed 1n a header
butler, and the data portion of the packet may be placed 1n a
data butler. The header portion may additionally be placed 1n
the data builer along with the data portion. This may be
accomplished by header splitting, or by header replication.
For offload packets, the two builers may be indicated to a
driver for accelerated processing, and for non-oftload pack-
ets, a single buffer comprising the data portion and header
portion may be indicated to the driver for non-accelerated
processing.

In the foregoing specification, the mvention has been
described with reference to specific embodiments thereof. It
will, however, be evident that various modifications and
changes may be made to these embodiments without depart-
ing therefrom. The specification and drawings are, accord-
ingly, to be regarded 1n an 1llustrative rather than a restrictive
sense.

What 1s claimed 1s:

1. A method for accelerated protocol stack processing,
comprising;

receiving and storing a packet at an input buifer of a recerv-

ing device, said packet having a packet payload portion
and a packet header;

after receiving said packet at said receiving device, split-

ting said packet into its constituent packet header and
packet payload;

after splitting and prior to every protocol stack processing,

at said receiving device, storing said packet header of
said packet 1n a header butler;

after splitting and prior to every protocol stack processing

at said receiving device, storing the packet header and
said packet payload 1n a data butfer; and

1ssuing a prefetch mstruction to load the packet header into

a cache of a processor 11 the packet 1s a candidate for
accelerated protocol stack processing.

2. The method of claim 1, additionally comprising:

determining if the packet 1s a candidate for accelerated

protocol stack processing;

if the packet 1s a candidate for accelerated protocol stack

processing, indicating the header butler to a driver that
performs accelerated protocol stack processing; and

if the packet 1s not a candidate for accelerated protocol

stack processing, indicating the data builer to a driver
that performs non-accelerated protocol stack process-
ng.

3. The method of claim 1, additionally comprising per-
forming a memory operation to load the packet header into a
translation lookaside buffer of a processor.

4. A method for accelerated protocol stack processing,
comprising;

receiving and storing a packet at an input buifer of a recerv-

ing device, said packet having a payload portion and a
header portion;

after receiving said packet at said receiving device, split-

ting said packet into 1ts constituent header portion and
payload portion;

10

15

20

25

30

35

40

45

50

55

60

65

14

after splitting and prior to every protocol stack processing
at said receirving device, storing the header portion and
payload portion 1n a first location, and storing the header
portion 1n a location that 1s different from the first loca-
tion and allocated for storing two or more header por-
tions;
determining 11 the packet 1s an offload packet, and 11 the
packet 1s an offload packet, performing accelerated pro-
tocol stack processing on the packet; and
1ssuing a prefetch instruction to load the packet header into
a cache of a processor 1f the packet 1s a candidate for
accelerated protocol stack processing.
5. The method of claim 4, wherein said performing accel-
erated protocol stack processing comprises performing
packet processing on the packet substantially simultaneously
while using a data movement module to place the payload for
one or more other packets.
6. The method of claim 5, wherein the data movement
module comprises a DMA (direct memory access) engine.
7. The method of claim 6, wherein the DMA engine resides
on a chipset.
8. An apparatus for accelerated protocol stack processing,
comprising;
circuitry to:
recerve and store a packet at an input buifer of a receiving
device, said packet having a payload portion and a
header portion;
alter recewving said packet at said receiving device, split
said packet into its constituent header portion and pay-
load portion;
alter splitting and prior to every protocol stack processing
at said receiving device, store the header portion and
payload portion 1n a first location, and store the header
portion 1n a location that 1s different from the first loca-
tion and allocated for storing two or more header por-
tions;
determine if the packet 1s an offload packet, and if the
packet1s an offload packet, perform accelerated protocol
stack processing on the packet; and
1ssuing a prefetch istruction to load the packet header into
a cache of a processor if the packet 1s a candidate for
accelerated protocol stack processing.
9. The apparatus of claim 8, wherein said circuitry to per-
form accelerated protocol stack processing comprises cir-
cuitry to perform packet processing on the packet substan-
tially simultaneously while using a data movement module to
place the payload for one or more other packets.
10. The apparatus of claim 9, wherein the data movement
module comprises a DMA (direct memory access) engine.
11. The apparatus of claim 10, wherein the DMA engine
resides on a chipset.
12. A system for accelerated protocol stack processing,
comprising;
a chipset having a DMA (direct memory access) engine,
the chipset communicatively coupled to a transport pro-
tocol driver of a processor and to a network controller;
and
circuitry to:
prior to protocol stack processing, recerve a packet at a
receiving device having a payload portion and a
header portion and store said packet at an input builer;

after receiving said packet at said receiving device, split
said packet into 1ts constituent header portion and
payload portion;

after splitting and prior to every protocol stack process-
ing at said receiving device, store the header portion
and payload portion 1n a first location, and store the

US 8,238,360 B2

15

header portion 1n a location that 1s different from the
first location and allocated for storing two or more
header portions;
determine 1if the packet 1s an offload packet, and if the
packet 1s an offload packet, perform accelerated pro-
tocol stack processing on the packet; and
1ssue a prefetch instruction to load the packet header into
a cache of a processor 1f the packet 1s a candidate for
accelerated protocol stack processing.

13. The system of claim 12, wherein said circuitry to per-
form accelerated protocol stack processing comprises cir-
cuitry to perform packet processing on the packet substan-
tially simultaneously while using a data movement module to
place the payload for one or more other packets.

14. The system of claim 13, wherein the data movement
module comprises a DMA (direct memory access) engine.

15. The system of claim 14, wherein the DMA engine
resides on a chipset.

16. An article comprising a non-transitory computer-read-
able media having machine-executable instructions, the
instructions when executed by a machine, result 1n a process
for accelerated protocol stack processing being carried out,
the process including:

receiving and storing a packet at an iput buflfer at a recerv-

ing device, said packet having a payload portion and a
header portion;

e

10

15

20

25

16

alter recerving said packet at said receiving device, split-
ting said packet into its constituent header portion and
payload portion;

after splitting and prior to every protocol stack processing

at said recerving device, storing the header portion and
payload portion 1n a first location, and storing the header
portion 1n a location that 1s different from the first loca-
tion and allocated for storing two or more header por-
tions;

determine if the packet is an offload packet at said recerving,

device, and i1 the packet 1s an offload packet, perform
accelerated protocol stack processing on the packet; and

1ssue a prefetch instruction to load the packet header into a

cache of a processor if the packet 1s a candidate for
accelerated protocol stack processing.

17. The article of claim 16, wherein said 1nstructions that
result 1n performing accelerated protocol stack processing
comprises instructions that result 1n performing packet pro-
cessing on the packet substantially simultancously while
using a data movement module to place the payload for one or
more other packets.

18. The article of claim 17, wherein the data movement
module comprises a DMA (direct memory access) engine.

19. The article of claim 18, wherein the DMA engine
resides on a chipset.

	Front Page
	Drawings
	Specification
	Claims

