US008234518B2
12 United States Patent (10) Patent No.: US 8.234.518 B2
Hansen 45) Date of Patent: Jul. 31, 2012
(54) METHOD FOR VOTING WITH SECRET 2008/0095375 Al* 4/2008 Tateokaetal. 380/282
SHARES IN A DISTRIBUTED SYSTEM 2008/0189428 Al* 8/2008 Godwinetal. ... 709/230
2008/0235765 Al 9/2008 Shimizu
2009/0245518 Al* 10/2009 Baeetal. 380/273
(75) Inventor: Jacob Gorm Hansen, Ryomgaard (DK) 2010/0050249 A1* 2/2010 NeWman 726/15
731 A VM I Palo Alto. CA (US 2010/0107158 Al 4/2010 Chen et al.
(73) Assignee: ware, Inc., Palo Alto, (US) (Continued)
*) Notice: Subject t disclai the t { thi
(*) Notice ubject to any disclaimer, the term of this OTHER PUBLICATIONS
patent 1s extended or adjusted under 35
U.S.C. 154(b) by d2 days. Moni Naor et al., “Access Control and Signatures via Quorum Secret
Sharing.” Parallel and Distributed Systems, IEEE Transactions,
(21) Appl. No.: 12/507,013 9(9):909-922 Sep. 1998.
(22) Filed: Jul. 21, 2009 (Continued)
(65) Prior Publication Data Primary Examiner — Scott Baderman
US 2011/0022883 A1 Jan. 27, 2011 Assistant Lxaminer — Chae Ko~
(74) Attorney, Agent, or Firm — Daniel Lin
(51) Int.CL
GOG6F 11/07 (2006.01) (57) ABSTRACT
(52) US.CL ... 714/4.11; 380/281; 380/286; 707/698; A replicated decentralized storage system comprises a plu-
713/168 rality of servers that locally store disk images for locally
(58) Field of Classification Search 714/4.11; running virtual machines as well as disk 1images, for failover
380/281, 286: 707/698 purposes, for remotely running virtual machines. To ensure
See application file for complete search history. that disk 1mages stored for failover purposes are properly
replicated upon an update of the disk image on the server
(56) References Cited running the virtual machine, a hash ot a umique value known
only to the server running the virtual machine 1s used to verity
U.S. PATENT DOCUMENTS the origin of update operations that have been transmitted by
6.058.493 A 5/2000 Talley the server to the other servers storing replications of the disk
6,192,472 B1* 2/2001 Garayetal. 713/165 image for failover purposes. If verified, the update operations
7,069,452 B1 ~ 6/2006 Hind etal. are added to such failover disk images. To enable the repli-
;’gjg’gég g% g%ggg %21;1162 teglal. cated decentralized system to recover from a failure of the
7016871 B2 3/2011 Brookner et al primary server, the master secret 1s subdivided into parts and
2002/0059329 Al 5/900? Hirashima distributed to other servers in the cluster. Upon a failure of the
2002/0133608 Al* 9/2002 Godwinetal. 709/230 primary server, a secondary server recerves a threshold num-
%883? 8 (1) ggi% i L ;? 3883 %?_bb ett ail* ber of the parts and 1s able to recreate the master secret and
1 1588 €1 A4l.
5004/0175000 Al* 9/2004 Caronmi 180/785 tallover virtual machines that were running 1n the failed pri-
2006/0136713 Al* 6/2006 Zimmeretal. 713/150 ary SCIvet.
2007/0094659 Al* 4/2007 Singhetal. 718/1
2007/0220605 Al 9/2007 Chien 20 Claims, 7 Drawing Sheets
S g s | [R s ey s
token, 5, for use in %;ip;gming upd?atg - - 200, 720
pe é ALY l |
VMES divides master secret token, s, respecive parlof master
o v pars, SETTE inken 7e5
g - FRECH i ;3
- B miﬁgﬁefriﬂrziiﬂhﬁfﬂ fﬁﬂgﬁﬂ
diffarent server inn tha ﬂ[uﬁt@fm

[
;
;
§
i
;
i
;
:
;
E
E
|
E

¥

Hrimary Sarver faiis

15

I.n_-_n.n_-_nu.ha_uu_udmmmmmmmmmmmmmmmmmmmmmmmmm

T Received

thrasiold & |
ganis of the master o~
aeorat inken?

FReoreaie master secral ioken s

from ¢ perts, F40
Generale correct parent id with mastar
zacrat token g and parent and data
information from lsst updaie cperation
in secongary disk image:
Hésituarant [dsaita) 745
Motify = other secondary servers st
if is the new primary server by
transmitiing a new operation ingiuding
oorrect parond i
L5
Instantiate a new virtual machine for
faiind virtual maching and g2 fo step
FU0 and sarve 85
NEW Drimany server £9%

US 8,234,518 B2
Page 2

U.S. PATENT DOCUMENTS

2010/0175061 Al* 7/2010 Maedaetal. 717/173
2010/0189014 Al* 7/2010 Hoganetal. 370/255
2011/0022574 Al 1/2011 Hansen
2011/0099187 Al 4/2011 Hansen
2011/0145188 Al 6/2011 Vachuska

OTHER PUBLICATTONS

David Mazieres et al., “Building secure file systems out of Byzantine
storage.” PODC °02: Proceedings of the Twenty-First Annual Sym-

posium on Principles of Distributed Computing, pp. 108-117, New
York, NY 2002. ACM Press.

Hakim Weatherspoon et al., “Antiquity: Exploiting a Secure Log for
Wide-Area Distributed Storage.” FuroSys *07: Proceedings of the

2007 Conference on EuroSys, pp. 371-384, New York, NY 2007.
ACM Press.

Notification of Transmittal of the International Search Report and the
Written Opinion of the International Searching Authority, or the
Declaration, Mar. 2, 2011, Patent Cooperation Treaty “PCT”, KIPO,
Republic of Korea.

* cited by examiner

US 8,234,518 B2

sann_ ||| 00!
| YOSIAYTdAH ||

Sheet 1 of 7

Jul. 31, 2012

| HOSIAM3dAH |

U.S. Patent

@Mmﬁm

W

|

(NVS) J

%ﬁm&%ﬁ.

‘001

| sawa |
. HOSINHIdAH |

WMH%E>%M&>EH

234,518 B2

2

US 8

Sheet 2 of 7

2012

/

Jul. 31

U.S. Patent

€ MM

US 8,234,518 B2

Y002

S0€

m m % u :

Sheet 3 of 7

Jul. 31, 2012

29 L 2 B

TN W TTr TS TR0 TR0 ¥ PR SR CR F L) - KRR T e

U.S. Patent

U.S. Patent Jul. 31, 2012 Sheet 4 of 7 US 8,234,518 B2

E

&
@
@

DISK IMAGE OF VM 210,

FIGURE 4A

U.S. Patent Jul. 31, 2012

RIMARY SERVER 200,

VIMFS 220, receives write operation

g@:% mg’ an u gmm operalion for write
operation:

of the private unique id:

......

from previous

VIMFS 2204 constructs an update

ﬁ;:amm on structure for write operation:

1D 425 pubhbc umque i (step 510)
RARENT 1D 430 previous private unique ic

(step 515)

DATA: data from write operation (step 500) |

VMES 220, appends constructed

update operation (o display image 30U 5;'

structure 1o secondary

| VMFS 2204 replaces previously stored |
| copy of private unique id (of step 515) |
| with private unique id generated from |

gwp 505 |

| update operation in di w ay image 300 |

from VM 210,
.t %ﬁ% @f ‘J% % Uﬁﬁq&j@

previous private umwm id generated |

.

|
|
: §

i

|

|

|

|

|

|

|

§

|
|
L

-

N
b

Sheet S of 7

FS f:}f mmm my server receives |
> update operation structure from VMFS |

2204 545 |

- VMFS of secondary server extracts |
| PARENT ID (i.e., private unique id of |
| previous update operation) from |
update operation structure 550 |

hash of PARENT ID g5

| VMFS of S@ﬁ@ﬁﬁﬁw server obtains ID
| (i.e., public unique id) from last update |
| structure in its secondary disk | image
' replica

Hiash of
WAR ENT ID of step 555
= |D of last update structure >

Yes

| VMFS of secondary server appends
| received umﬁ%ﬁ% structure m gmmm
diskimage replica 570 |

VMFES of secondary server inserts

physical address of update ﬁmrﬁfm
| in secondary display image into E *’if‘%ﬁ

VMFS of secondary server rejecis

received update structure

RE 5

US 8,234,518 B2

US 8,234,518 B2

Sheet 6 of 7

Jul. 31, 2012

U.S. Patent

Zereplpls)

2ry uonessdo elepdn

009

' uonesedQ eyepdn

E

(“eyepltUpls)H="pt |
%%m N

Aiewilid 1B) enbiun
ajealld 10 Adon paliolg

0 uonesed ayepdn

U.S. Patent Jul. 31, 2012 Sheet 7 of 7 US 8.234.,518 B2

US 8,234,518 B2

1

METHOD FOR VOTING WITH SECRET
SHARES IN A DISTRIBUTED SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is related to and filed on the same day as
U.S. patent application Ser. No. 12/506,965 entitled “Method

for Replicating Disk Images 1n a Cloud Computing Based
Virtual Machine File System”™.

SUMMARY OF THE INVENTION

One or more embodiments of the mvention provide a vir-
tual machine file system that employs a replicated and decen-
tralized storage system. In this system, as 1n warehouse-style
or “cloud” computing systems, multiple networked servers
utilize cheaper local storage resources (such as SATA disks)
rather than a centralized SAN, even though they may be less
reliable, because such a replicated and decentralized storage
system eliminates the bottleneck and single point of failure of
a SAN and also provide the potential for both incremental and
large-scale data center growth by simply adding more servers.
However, use of such local storage resources 1s also less
reliable than use of a SAN. To improve reliability, data rep-
lication techniques that provide high availability and ensure
the integrity and consistency of replicated data across the
servers are employed.

To address the foregoing, one or more embodiments of the
present invention provide methods for ensuring that only a
“primary’’ server that locally stores and makes use of a “pri-
mary” data file can provide updates to replications of the
primary data file that are locally stored on other “secondary™
servers (e.g., for back-up and recovery purposes, etc.). Spe-
cifically, a master secret known only to the primary server 1s
used to provide information 1n update operations transmitted
by the primary server to the secondary servers to verily that
the update operations originate from the primary server (and
therefore should be added to the replications of the primary
data file). To ensure that a system according to one or more
embodiments of the present invention 1s able to recover in the
event of a failure of the primary server, this master secret 1s
subdivided into different portions and transmitted to other
servers such that 1t can be recreated by combining a threshold
number of the different portions.

A method, according to one or more embodiments, for
recovering from a failure of a primary server storing a file that
1s replicated in each of a plurality of secondary servers 1n a
server cluster comprises transmitting a request to one or more
servers 1n the server cluster for a portion of a master secret
value, wherein, at the time of the failure, the complete master
secret value 1s known to the primary server but not to any one
ol the other servers in the server cluster. In one such embodi-
ment, the file may be a log file comprising a temporally
ordered list of update operations and may correspond to a disk
image of a virtual machine running on the primary server
prior to 1ts failure. Upon transmitting the request, the method
turther comprises recerving a threshold number of different

portions of the master secret value and reconstructing the
master secret value based on the received threshold number of
different portions. Once the master secret value has been
constructed, the method further comprises generating an
authentication value derived from the master secret value,
distributing the authentication value to each of the plurality of
secondary servers, and acting as a new primary server.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a network architecture for a cluster of vir-
tualization servers utilizing a SAN.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 2 depicts anetwork architecture using areplicated and
decentralized storage system for a virtual machine file sys-
tem, according to one or more embodiments of the present
invention.

FIG. 3 depicts disk image replication for a virtual machine
running on a server according to one or more embodiments of
the present invention.

FIG. 4 A depicts a log structure of a disk 1image of a virtual
machine stored on local storage, according to one or more
embodiments of the present invention.

FIG. 4B depicts the internal data structure of an update
operation of a disk 1image, according to one or more embodi-
ments of the present mvention.

FIG. 5 depicts a flow chart for replicating a primary data
image to secondary servers, according to one or more
embodiments of the present invention.

FIG. 6 depicts a sequence of update operations to a data
image, according to one or more embodiments of the present
invention.

FIG. 7 depicts a flow chart for sharing a master secret token
across a number of servers, according to one or more embodi-
ments of the present mvention.

DETAILED DESCRIPTION

FIG. 2 depicts anetwork architecture using areplicated and
decentralized storage system for a virtual machine file sys-
tem, according to one or more embodiments of the present
invention. In contrast to the network architecture of FIG. 1, 1in
which virtualization servers 100", ecach including a virtual file
system 115", a hypervisor 110' and one or more virtual
machines 120', 125' communicate with a centralized SAN
105 to access stored disk images corresponding to their
respective mstantiated virtual machines, each of the virtual-
ization servers 200, to 200, 1n the cluster of FIG. 2 has 1ts
own directly attached local storage, such as local storage 2035 ,
for virtualization server 200 ,. As such, virtual machines 210 ,
to 215 , running on server 200 , store their disk images 1nlocal
storage 205 ,. Storage in such a network architecture can
therefore be considered “decentralized” because disk 1image
data (in the aggregate) 1s stored across the various local stor-
ages residing in the servers. Each of virtualization servers
200 , to 200, includes virtualization software, for example, a
hypervisor such as 210 ,, that supports the instantiation and
running of virtual machines on the server. Hypervisor 210 ,
turther includes a virtual machine file system 220 , that coor-
dinates and manages access to local storage 2035 , by virtual
machines 210 , to 215, (1.e., to read from or write to their
respective disk images).

Each of servers 200 , to 200, 1s further networked to one or
more of the other servers 1n the cluster. For example, server
200 , 1s networked to server 200, server 200 -, server 200,
and server 200,,. As depicted in the network topology ot FIG.
2, each server 1s networked to four other servers 1n the cluster
and can reach another server in no more than one hop. It
should be recognized, however, that the network topology of
FIG. 2 1s a simplified 1llustration for exemplary purposes and
that any network topology that enables communication
among the servers 1n a cluster can be used consistent with the
teachings herein, including, without limitation, any ring,
mesh, star, tree, point-to-point, peer-to-peer or any other net-
work topology, whether partially connecting or fully connect-
ing the servers. By removing a centralized SAN from the
network architecture, embodiments of the present invention
remove a potential bottleneck and point of failure in the
architecture and are more easily able to scale storage for a

US 8,234,518 B2

3

virtualized data center 1n a cost efficient manner by incremen-
tally adding servers utilizing local storage to the cluster.

An embodiment of the mvention that utilizes a network
architecture similar to that of FIG. 2 replicates disk images
across the local storages of servers in a cluster to provide
server failure protection. If a server fails, another server in the
cluster that has a locally stored replica of the disk 1image of a
virtual machine 1n the failed server can failover that particular
virtual machine. In one embodiment, a designated server in
the cluster has responsibilities as a replication manager and
may, for example, instruct server 200 , to replicate the disk
image for virtual machine 210 , to the local storages of servers
200, 200, and 200,,. As referred to herein, a server that 1s
running a virtual machine 1s the “primary server” with respect
to the virtual machine, and other servers that store replica-
tions of the virtual machine’s disk 1image for failover purposes
are “secondary servers.” Similarly, a copy of the disk image of
a virtual machine that 1s stored in the local storage of the
primary server 1s a “primary’’ copy, replica or disk image, and
a copy of the disk 1image of a virtual machine that 1s stored 1n
the local storage of a secondary server 1s a “secondary” copy,
replica or disk image. FIG. 3 depicts disk image replication
for a virtual machine runming on a server using a decentral-
1zed storage system, according to one or more embodiments
of the present invention. In particular, virtual machine 210 ,
running on primary server 200 , utilizes a primary disk image
300 stored on local storage 203 , of server 200 , during normal
operations. Primary disk image 300 1s replicated as secondary
disk 1images 305, 310 and 315, respectively, in the local stor-
ages ol secondary servers 200, 200, and 200,

FIG. 4A depicts a log structure of a disk image of a virtual
machine stored on local storage, according to one or more
embodiments of the present invention. As 1llustrated 1n FIG.
4A, disk image 300 for virtual machine 210, running on
server 200 , 1s structured as a temporally ordered log of update
operations made to the disk. For example, when virtual
machine 210, 1ssues a write operation (e.g., containing a
logical block address from the virtual address space of the
virtual machine and data to be written into the logical block
address) to 1ts disk, virtual machine file system 220 , receives
the write operation and generates a corresponding update
operation, such as update operation 400, and appends update
operation 400 to the end of the log structure of disk image
300. In one embodiment, virtual machine file system 220,
turther maintains a B-tree data structure that maps the logical
block addresses referenced in write operations 1ssued by vir-
tual machine 210 , to physical addresses of local storage 205
that reference locations of the update operations (and data
residing therein) corresponding to the issued write opera-
tions. In such an embodiment, when virtual machine file
system 220 , recerves a write operation from virtual machine
210 ,, 1t additionally 1nserts the physical address correspond-
ing to the update operation 1n the log structure of the disk
image into the B-tree such that the physical address can be
found by providing the logical block address of the write
operation to the B-tree. This B-tree enables virtual machine
file system 220 , to handle read operations 1ssued by virtual
machine 210 ,. For example, when virtual machine 210,
issues a read operation (e.g., contamning a logical block
address from the virtual address space of the virtual machine
from which to read data) to its disk, virtual machine file
system 220 , receives the read operation, obtains a physical
address from the B-tree that corresponds to a previous update
command 405 (e.g., from a prior completed write operation)
stored in the log structure that contains the requested data, and
retrieves the data for virtual machine 210 ,. Instead of a B-tree

10

15

20

25

30

35

40

45

50

55

60

65

4

data structure, other similar tree or search data structure, such
as but not limited to lookup tables, radix trees and the like,
may be used.

FIG. 4B depicts the internal data structure of an update
operation of a disk 1mage, according to one or more embodi-
ments of the present invention. An update operation stored in
disk 1image 300, such as update operation 410 in FIG. 4B,
contains a header portion 415 and data portion 420. Header
portion 415 includes an 1d entry 425 that stores a public
unmique 1dentification or 1d for the update operation, a “parent”™
1d entry 430 that stores a private unique i1d of the preceding
update operation stored in the log of disk image 300, and data
information entry 4335 that stores descriptive information
about data portion 420 (e.g., amount of data, address loca-
tions, etc.).

In one embodiment of the present invention, a replicated
decentralized storage system, such as that depicted in FIGS. 2
and 3, performs replication of a primary data image to sec-
ondary servers 1n a manner that avoids split-brain scenarios. A
split-brain scenario can occur, for example, 11 the network
connections of server 200 , fail, but virtual machine 210, of
server 200, continues to otherwise operate normally and
1ssue write operations that are stored as update operations 1n
primary data image 300. Because server 200 , 1s no longer
accessible by any other server in the cluster, 1n one embodi-
ment, a designated server responsible for failover manage-
ment may conclude that server 200 , has failed and therefore
instruct server 200, to tailover virtual machine 210 , utilizing
its secondary disk image 305. In the event that the network
connections for 200 , are subsequently restored, two different
instantiations of virtual machine 210, will be running on
servers 200, and 200,. Furthermore, the respective disk
images 300 and 305 for virtual machine 210 , 1n server 200 ,
and server 200, will not be properly synchromized. In order to
prevent such split-brain situations, 1n which secondary serv-
ers mappropriately update their secondary replicas of a data
image, a virtual machine file system of the primary server,
according to an embodiment of the present invention,
employs a master secret token that 1s known only to the
primary server to ensure that only update operations propa-
gated by the primary server are accepted by the secondary
SErvers.

FIG. § depicts a flow chart for replicating a primary data
image on secondary servers, according to one or more
embodiments of the present invention. While the steps of the
flow chart reference structures of FIGS. 2, 3, 4A, and 4B, 1t
should be recognized that any other network architectures,
virtualization servers, disk image formats and update opera-
tion structures that are consistent with the teachings herein
may be used 1n conjunction with the flow chart of FIG. 5. In
step 500, virtual machine file system 220 , of primary server
200 , recerves a write operation from virtual machine 210 . In
step 505, virtual machine file system 220 , generates a private
unmique 1d for an update operation for the write operation. In
one embodiment, the private unique 1d 1s generated by hash-
ing a bitwise intersection of the primary server’s 200 , master
secret token, a parent 1d relating to the preceding update
operation (stored as the last entry in the primary and second-
ary disk images), and the data for the write operation (or
otherwise combining the data, parent 1d, master secret token
1n an alternative bitwise fashion such as concatenation, XOR,
etc.), H(slparent|data), where H 1s a cryptographic one way
hash function such as SHA-1 or SHA-256, s 1s the master
secret token, and parent 1s the parent 1d. In step 510, the
private unique 1d 1s then hashed again (e.g., with the same or
a different hashing function, depending upon the embodi-
ment) to obtain a public umque 1d, H(H(slparent|data)). In

US 8,234,518 B2

S

step 515, virtual machine file system 220 , obtains a stored
copy ol the previous private unique 1d generated from the
previous update operation stored 1n primary disk image 300.
In step 520, virtual machine file system 220, constructs an
update operation structure corresponding to the received
write operation in which: (1) 1d entry 4235 of the update opera-
tion structure 1s the public umique 1d generated 1n step 310; (11)
parent 1d entry 430 of the update operation structure 1s the
previous private unique 1d obtained 1n step 5135; and (1) the
data of the update operation structure i1s the data of the
received write operation. In step 525, virtual machine file
system 220 , appends the update operation structure to the end
of primary disk image 300. In step 530, virtual machine file
system 220 , further transmits the update operation structure
to each of secondary servers 200, 200, and 200,,. In one
embodiment, the update operation structure 1s transmitted to
the secondary servers using HI'TP or other similar network
communication protocols. In step 335, virtual machine file
system 220 , replaces the stored copy of the previous private
unique 1d obtained 1n step 515 with the private unique 1d of the
current update operation generated 1n step 505 (i.e.,
H(slparentldata), not H{(H(s|parentldata)). In step 540, virtual
machine file system 220 , obtains the physical address corre-
sponding to the appended update operation 1n primary disk
image 300 and inserts the physical address into 1ts B-tree data
structure such that the physical address can be found by
providing the logical block address of the write operation to
the B-tree data structure.

In step 545, the virtual machine file system for each of the
secondary servers receives the update operation structure. In
step 350, cach virtual machine file system of the secondary
servers extracts the parent 1d entry 430, which 1s the private
unique 1d of the previous update operation, known only to
primary server 200 , prior to transmission of the update opera-
tion structure to the secondary servers 1n step 530, from the
received update operation structure and generates, 1n step
555, a hash of the parent 1d entry 430. In step 560, each virtual
machine file system of the secondary servers extracts the 1d
entry 425 from the last update operation in 1ts secondary disk
image replica. Similar to the 1d entry 425 of the update opera-
tion structure constructed 1n step 520, 1d entry 425 extracted
in step 560 1s the public unique 1d that was created by virtual
machine file system 220 , for the prior update operation. In
step 565, 11 the generated hashed parent 1d equals the public
unique 1d stored as the 1d entry 425 of the last update opera-
tion of the secondary disk 1image, then 1n step 570, the virtual
machine file system of the secondary server confirms that the
received update operation structure originated from primary
server 220 , and appends the received update operation struc-
ture to the end of 1ts secondary data image (respectively, 303,
310 and 315 for primary disk image 300). In step 575, the
virtual machine file system of the secondary server obtains
the physical address corresponding to the appended update
operation in the secondary data image and inserts the physical
address 1nto 1ts B-tree data structure. However, 11, 1n step 565,
the generated hashed parent 1d does not equal the public
unique 1d stored as the 1d entry 425 of the last update opera-
tion of the secondary disk image, then the received update
operation structure 1s rejected in step 580.

The steps depicted 1n FIG. 5 ensure that only update opera-
tions generated by the primary server will be accepted and
appended by secondary servers to their respective secondary
disk images. Specifically, only the virtual machine file system
of primary server possesses a copy ol the current update
operation’s private unique id that can be provided as a parent
id 1n a subsequent update operation. All other secondary
servers can only obtain the corresponding public unique 1d

10

15

20

25

30

35

40

45

50

55

60

65

6

that 1s stored as 1d entry 425 of the update operation in the
secondary disk image. To further illustrate the relationship
between update operations, FIG. 6 depicts a sequence of
update operations to a data image, according to one or more
embodiments of the present invention. While update opera-
tions 1n FIG. 6 have been 1llustrated with only the 1d entry 425,
parent 1d entry 430 and data portion 420 for exemplary pur-
poses, 1t should be recognized that update operations, in
accordance with one or more embodiments of the invention,
may include additional fields and information, including, for
example, data mformation entry 4335. As previously dis-
cussed, the primary server keeps a memory butfer 600 that
stores the current private unique i1d corresponding to the last
entry of the primary data image. This 1s the stored copy of the
private unique 1d that 1s obtained 1n step 515 and subsequently
replaced 1n step 535. Of note, this stored copy of the current
private unique 1d 1s an unhashed version of the public unique
1d that 1s generated 1n step 510 and stored 1n the 1d entry 425
of the corresponding update operation. For example, 1f a
current private unique 1d 1s H(s|parent|data), then 1d entry 425
for the corresponding update operation 1n the primary and
secondary disk images contains a derived public unique 1d,
H(H(slparentldata)). As 1s apparent due to the nature of hash
functions, only a primary server has access to private unique
1d stored 1n butter 600 and no other server 1n a cluster, includ-
ing the secondary servers that have access to the correspond-
ing public unique 1d 1n 1d entry 425 of the last update opera-
tion in their secondary disk images, can determine or
otherwise derive the private unique 1d stored in butifer 600.
Update operation U, of FIG. 6 represents a first update opera-
tion of a disk image that 1s currently stored on the primary
disk 1images and all secondary disk images. A private unique
1id 605, H(sldata,), 1s generated by the virtual memory file
system as 1n step 505 and then hashed, in step 510, prior to
being stored as a public umique 1d 1n the 1d entry 425 of update
operation U,. Private unique 1d 605 1s then subsequently
stored 1n memory buifer 600 of primary server in step 335.
Parent 1d entry 430 of update operation U, 1s NULL because
it 1s the first update operation for the disk image. The primary
server generates the next update operation U, by creating a
new private unique 1d 610 by hashing that intersection of its
master secret token s, the new data for the update operation
U, , and the currentd, 1d,,, stored in butier 600, H(slidldata,),
where 1d, 1s H(sldata,). The parent 1d entry 430 of update
operation U, 1s the 1d,. When update operation U, is for-
warded to the secondary servers in step 330, the secondary
servers are able to confirm that update operation U, originates
from primary server by verifying in step 563 that the hash of
the parent 1d of recerved update operation U, , H(1d,,), 1s equal
to the 1d entry 425 of currently stored update operation U,
H(H(sldata,)).

To avoid losing the master secret token 1n the event that a
primary server fails, one or more embodiments of the present
invention utilize a secret sharing protocol to distribute the
master secret token across other servers 1n a manner that does
not actually reveal the master secret token. FIG. 7 depicts a
flow chart for sharing a master secret token across a number
of servers, according to one or more embodiments of the
present invention. In step 700, a virtual machine file system of
a primary server, such as virtual machine file system 220 ,,
generates a master secret token, s, to be used to propagate
update operations to secondary servers to be stored 1n sec-
ondary disk images, for example, in accordance with the flow
of FIG. 5. Prior to utilizing the master secret token s (e.g., 1n
accordance with the flow of FIG. §), 1 step 703, the virtual
memory file system divides the master secret token s 1nto n
parts or shares. The n shares have a characteristic that the

US 8,234,518 B2

7

combination of any threshold number t of the n shares can
recreate the master secret token s. In step 710, the virtual
memory file system of the primary server distributes each of
the n shares to a different server in the cluster. It should be
recognized that known secret sharing techmiques such as
Shamir’s secret sharing, Blakley’s secret sharing and other
similar secret sharing methods may be used to divide and
reconstruct master secret token s in accordance with embodi-
ments of the invention.

Upon a failure of primary server 200 ,, as 1n step 715, a
secondary server, such as secondary server 200, may recog-
nize the failure of primary server 200, i step 720. For
example, 1n one embodiment, a designated server with
fallover management responsibilities may inform secondary
server 200 of the failure of primary server 200 , and 1nstruct
secondary server 200, to become the new primary server and
mitiate failover procedures. In an alternative embodiment,
secondary server 200, may 1tself discover the failure of pri-
mary server 200 , (1.e., using its own monitoring capabilities)
and 1mitiate voting procedures, for example, by utilizing Iam-
port’s Paxos algorithm or similar known voting algorithms, to
become the new primary server, potentially competing with
other secondary servers that have also recognized the failure
of the primary server and iitiated their own voting proce-
dures to become the new primary server. For example, 1n step
725, secondary server 200, 1ssues a request to other servers 1n
the cluster for their respective shares of the master secret
token s possessed by failed primary server 200 ,. In steps 730
and 735, secondary server 200, continues to recerve master
secret token shares until 1t has received a threshold t of master
secret token shares. In an embodiment having competing
secondary servers, another secondary server may obtain the
threshold t of master secret token shares before secondary
server 200, for example, if the secondary servers follow the
rules of acceptance in accordance with Lamport’s Paxos
algorithm or similar algorithms. In step 740, secondary server
200, 1s able to generate master secret token s from the t
shares. In step 745, secondary server 200, generates a correct
parent 1d for a new update operation by hashing the intersec-
tion of master secret token s, the parent 1d of the last update
operation 1n 1ts secondary disk image, and the data from the
last update operation: H(slparentldata). In step 750, second-
ary server 200 notifies all the other secondary servers that 1t
has assumed responsibilities as the new primary server by
transmitting a “view-change” update operation that contains
the correct version of the parent 1d generated in step 745. In
step 755, the secondary server 200, instantiates a new virtual
machine and associates 1t with 1ts secondary disk 1mage for
the failed virtual machine of the failed primary server,
assumes responsibility as the new primary server and gener-
ates and subsequently propagates a newly generated master
key token by returning to step 700.

It should be recognized that various modifications and
changes may be made to the specific embodiments described
herein without departing from the broader spirit and scope of
the nvention as set forth in the appended claims. For
example, although the {foregoing embodiments have
described 1n the context of updating virtual machine disk
images 1n a replicated and decentralized virtualization data
center, 1t should be recognized that any system having any log
f1les or objects (or files or object that may be structured as logs
according to the teachings herein) that are replicated over
multiple computers or devices may utilize the techniques
disclosed herein to ensure exclusive access to such file or
object. Similarly, alternative embodiments may transmuit
other types of operations to be appended into a disk image
instead of or in addition to update operations. For example,

10

15

20

25

30

35

40

45

50

55

60

65

8

one embodiment may include a “branch™ and a delete opera-
tion, where the branch operation enables a new disk 1mage to
be created based on the current disk image without requiring
knowledge of the master secret token such that any server in
the cluster can request the creation of such a new disk 1image
(for example, for snapshotting purposes) and the delete
operation enables the deletion of an entire disk image. Alter-
native embodiments may utilize other techniques to generate
a unique 1d. For example, rather than creating a hash of the
intersection of the master secret token, parent 1d and current
data, alternative embodiments may create a hash of the inter-
section of the master secret token and the current data or the
parent 1d, or generate a unique 1d in any other manner con-
sistent with 1ts use as described herein. In one embodiment,
the unique 1d may be a 160 bit value. In another alternative
embodiment, a virtual machine file system may utilize a 64 bit
indexed B-tree that tracks entire extents rather than individual
block locations. Server clusters of alternative embodiments
may employ a combination of shared storage, such as a SAN,
and local storage 1n the servers themselves. For example, 1n
one such embodiment, a primary server both stores a primary
disk 1mage for a virtual machine on a SAN such that other
servers networked to the SAN can failover the wvirtual
machine, and also propagates update operations correspond-
ing to the virtual machine to secondary disk images 1n the
local storage units of other secondary servers in order to
provide additional safeguards 1n the event of a failure of the
SAN. In yet another alternative embodiment, each serverof a
cluster includes 1ts own local storage and 1s also networked to
a shared SAN. Severs 1n such an embodiment may utilize
local storage consistent with the teachings herein and access
the SAN 1n the event that its local storage fails or 1s otherwise
tull. Alternatively, servers in such an embodiment may utilize
the SAN as its primary storage and resort to local storage only
upon a failure of the SAN. It should be recognized that vari-
ous other combinations of using both a shared storage and
local storage units may be utilized consistent with the teach-
ings herein.

The various embodiments described herein may employ
various computer-implemented operations involving data
stored 1n computer systems. For example, these operations
may require physical manipulation of physical quantities usu-
ally, though not necessarily, these quantities may take the
form of electrical or magnetic signals where they, or repre-
sentations of them, are capable of being stored, transierred,
combined, compared, or otherwise manipulated. Further,
such manipulations are often referred to 1n terms, such as
producing, identifying, determining, or comparing. Any
operations described herein that form part of one or more
embodiments of the mnvention may be useful machine opera-
tions. In addition, one or more embodiments of the invention
also relate to a device or an apparatus for performing these
operations. The apparatus may be specially constructed for
specific required purposes, or it may be a general purpose
computer selectively activated or configured by a computer
program stored in the computer. In particular, various general
purpose machines may be used with computer programs writ-
ten 1n accordance with the teachings herein, or 1t may be more
convenient to construct a more specialized apparatus to per-
form the required operations.

The various embodiments described herein may be prac-
ticed with other computer system configurations including
hand-held devices, microprocessor systems, microprocessor-
based or programmable consumer electronics, minicomput-
ers, mainirame computers, and the like.

One or more embodiments of the present invention may be
implemented as one or more computer programs or as one or

US 8,234,518 B2

9

more computer program modules embodied 1n one or more
computer readable media. The term computer readable
medium refers to any data storage device that can store data
which can thereafter be input to a computer system computer
readable media may be based on any existing or subsequently
developed technology for embodying computer programs 1n
a manner that enables them to be read by a computer.
Examples of a computer readable medium include a hard
drive, network attached storage (NAS), read-only memory,
random-access memory (e.g., a flash memory device), a CD
(Compact Discs) CD-ROM, a CD-R, or a CD-RW, a DVD
(Digital Versatile Disc), a magnetic tape, and other optical
and non-optical data storage devices. The computer readable
medium can also be distributed over a network coupled com-
puter system so that the computer readable code 1s stored and
executed 1n a distributed fashion.

Although one or more embodiments of the present imven-
tion have been described 1n some detail for clarity of under-
standing, 1t will be apparent that certain changes and modifi-
cations may be made within the scope of the claims.
Accordingly, the described embodiments are to be considered
as 1llustrative and not restrictive, and the scope of the claims
1s not to be limited to details given herein, but may be modi-
fied within the scope and equivalents of the claims. In the
claims, elements and/or steps do not imply any particular
order of operation, unless explicitly stated in the claims.

Plural instances may be provided for components, opera-
tions or structures described herein as a single instance.
Finally, boundaries between various components, operations
and data stores are somewhat arbitrary, and particular opera-
tions are 1llustrated in the context of specific illustrative con-
figurations. Other allocations of functionality are envisioned
and may fall within the scope of the invention(s). In general,
structures and functionality presented as separate compo-
nents 1 exemplary configurations may be implemented as a
combined structure or component. Similarly, structures and
functionality presented as a single component may be imple-
mented as separate components. These and other variations,
modifications, additions, and improvements may fall within
the scope of the appended claims(s).

I claim:

1. A method for recovering from a failure of a primary

server storing a file that 1s replicated 1n each of a plurality of

secondary servers 1n a server cluster, the method comprising:
transmitting a request from a particular server in the server
cluster to one or more servers in the server cluster for a

portion ol a master secret value, wherein, at the time of

the failure, the complete master secret value 1s known to
the primary server but not to any one of the other servers
in the server cluster;

receiving a threshold number of different portions of the
master secret value at the particular server;

reconstructing the master secret value based on the
received threshold number of different portions at the
particular server;

generating an authentication value derived from the master
secret value at the particular server, the authentication
value being used by at least some of the secondary
servers to authenticate an operation as originating from
the primary server;

distributing the authentication value from the particular
server to each of the plurality of secondary servers; and

acting as a new primary server by the particular server after
the master secret value 1s reconstructed at the particular
Server.

2. The method of claim 1, wherein the file 1s a log file

comprising a temporally ordered list of update operations.

10

15

20

25

30

35

40

45

50

55

60

65

10

3. The method of claim 2, wherein each of the update
operations comprises a public unique 1d comprising a hash of
a private unique 1d generated from the master secret value, a
previous private unique 1d from a previous update operation
in the log file, and data.

4. The method of claim 2, wherein the authentication value
derived from the master secret value comprises a hash of a
bitwise intersection of the master secret value, a parent 1d
from a last update operation 1n a local replication of the log
file, and data from the last update operation in the local
replication of the log file.

5. The method of claim 4, wherein the parent 1d comprises
a private unique 1d of a stored update operation preceding the
last update operation in the local replication of the log file.

6. The method of claim 2, wherein the log file corresponds
to a disk 1mage of a virtual machine running on the primary
server prior to the failure of the primary server.

7. The method of claim 6, further comprising instantiating,
a new virtual machine and associating the new virtual
machine with a local replication of the log file.

8. The method of claim 2, further comprising generating a
new master secret value.

9. The method of claim 8, further comprising:

recerving data corresponding to an update operation;

generating a public unique 1d comprising a hash of a private

unique 1d generated from the new master secret value;

obtaining a previous private unique 1d corresponding to a

last update operation stored in a local replication of the
log file;

constructing a data structure for the update operation com-

prising the public unique 1d, the previous private unique
1d and the data; and

transmitting the data structure to the plurality of secondary
Servers.
10. A computer-readable storage medium 1ncluding
instructions that, when executed by a processing unit of a
secondary server storing a replication of a file stored on a
primary server, causes the processing unit to recover from a
failure of the primary server by performing the steps of:
transmitting a request from a particular server in the server
cluster to one or more servers 1n a server cluster for a
portion of a master secret value, wherein, at the time of
the failure, the complete master secret value 1s known to
the primary server but not to any one of the other servers
in the server cluster;
recerving a threshold number of different portions of the
master secret value at the particular server;

reconstructing the master secret value based on the
received threshold number of different portions at the
particular server;
generating an authentication value derived from the master
secret value at the particular server, the authentication
value being used by at least some of the secondary
servers to authenticate an operation as originating from
the primary server;
distributing the authentication value from the particular
server to each of the plurality of secondary servers; and

acting as a new primary server by the particular server after
the master secret value 1s reconstructed at the particular
Server.

11. The computer readable storage medium of claim 10,
wherein the file 1s a log file comprising a temporally ordered
list of update operations.

12. The computer readable storage medium of claim 11,
wherein each of the update operations comprises an public
unique 1d comprising a hash of a private unique 1d generated

US 8,234,518 B2

11

from the master secret value, a previous private unique 1d
from a previous update operation 1n the log file, and data.

13. The computer readable storage medium of claim 11,
wherein the authentication value derived from the master
secret value comprises a hash of a bitwise intersection of the >
master secret value, a parent 1d from a last update operation in
the replication of the log file, and data from the last update
operation 1n the replication of the log file.

14. The computer readable storage medium of claim 13,
wherein the parent 1d comprises a private umique 1d of a stored
update operation preceding the last update operation 1n the
replication of the log file.

15. The computer readable storage medium of claim 11,
wherein the log file corresponds to a disk 1mage of a virtual
machine running on the primary server prior to the failure of
the primary server.

16. The computer readable storage medium of claim 15,
wherein the processing unit further performs instantiating a
new virtual machine and associating the new virtual machine
with a local replication of the log file.

17. The computer readable storage medium of claim 11,
turther comprising generating a new master secret value.

18. The computer readable storage medium of claim 17,
wherein the processing unit further performs:

receiving data corresponding to an update operation;

generating a public unique 1d comprising a hash of a private

umque generated from the new master secret value;

10

15

20

25

12

obtaining a previous private unique 1d corresponding to a
last update operation stored 1n a local replication of the
log file;

constructing a data structure for the update operation com-

prising the 1d value, the previous private unique 1d and
the data; and
transmitting the data structure to the plurality of secondary

Servers.
19. A method for enabling a plurality of secondary servers
in a server cluster to recover from a failure of a primary server,
wherein each of the plurality of secondary servers stores a
replication of a log file stored on the primary server, the
method comprising:
generating a master secret value to create unique identifiers
for update operations to the log file and each replication
of the log file stored by each of the plurality of secondary
servers, wherein each update operation comprises a pub-
lic unique 1d comprising a hash of a private unique 1d
generated from the master secret value;
dividing the master secret value into a plurality of parts,
wherein a threshold number of any of the plurality of
parts can recreate the master secret value;
transmitting each of the plurality of parts for a different
server 1n the server cluster.
20. The method of claim 19, wherein the log file corre-
sponds to a disk 1image of a virtual machine running on the
primary server.

	Front Page
	Drawings
	Specification
	Claims

