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within a multi-sampling graphics pipeline. Each geometric
primitive 1s rasterized ito fragments, corresponding to
screen space pixels covered at least partially by the geometric
primitive. Fragment coverage represents the pixel area cov-
ered by the geometric primitive and determines the weighted
contribution of a fragment color to the corresponding screen
space pixel. Samples associated with a given fragment are
called sibling samples and have the same color value. The
property of sibling samples having the same color value 1s
exploited to compress and process multiple samples, thereby
reducing the size of the associated logic and the amount of
data written to and read from the frame buiier.
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COLOR-COMPRESSION USING AUTOMATIC
REDUCTION OF MULITT-SAMPLED PIXELS

BACKGROUND OF THE INVENTION

1. Field of the Invention

Embodiments of the present invention relate generally to
computer graphics and more specifically to color-compres-
s10n using automatic reduction of multi-sampled pixels.

2. Description of the Related Art

A graphics rendering engine used to generate computer
graphics 1mages commonly includes a set of processing
engines organized in a datatlow-style pipeline. Such images
are conventionally composed of geometric primitives such as,
for example, triangles.

To render a computer graphics 1mage, each triangle 1s
transformed 1nto a screen-aligned coordinate system, referred
to as “screen space.” Manipulation of the geometric primi-
tives up to and including the transformation into screen space
are typically performed 1n the graphics rendering engine by a
geometry processing unit, which passes results to a rasteriza-
tion unit. The rasterization unit decomposes each geometric
primitive into fragments for further processing, where there 1s
a fragment associated with each screen space pixel either
tully of partially covered by the geometric primitive. The
coverage ol a particular fragment (referred to herein as the
“fragment coverage”) indicates the portion of the screen
space pixel corresponding to the fragment that 1s covered by
the geometric primitive. Each fragment may also have asso-
ciated data, including, without limitation, depth and color
values. The depth value of a fragment 1s compared to a pre-
vious depth value to determine the visibility of that fragment.
If the fragment 1s visible, the color value of the fragment
either contributes to or uniquely determines the color of the
corresponding pixel. When a fragment 1s found to be visible,
its corresponding fragment data, including, without limita-
tion, depth and color values, are written to a frame builer
memory.

Depth values and color values may each undergo read,
write and read-modify-write operations with respect to the
frame buffer memory. The graphics rendering engine and the
frame bulfer memory are commonly in different chips,
requiring all frame bulfer accesses to be conducted over a
chip-to-chip interconnect. The data bandwidth between the
graphics rendering engine and the external memory devices
making up the frame buffer 1s called memory bandwidth, and
1s commonly one of the most sigmificant factors limiting
system performance.

As 1s well known, the quality of a rendered 1mage 1s sig-
nificantly improved with anti-aliasing. Super-sampling and
multi-sampling are two common anti-aliasing techniques
known 1n the art. Super-sampling involves generating mul-
tiple samples within a pixel, where each sample 1s indepen-
dently computed for coverage and shading. The shaded
samples are stored within a frame butter and blended together
for display. While super-sampling produces a very accurate
and high quality 1mage, super-sampling 1s quite expensive
because each pixel within a rendered image requires the com-
putational processing of multiple fully shaded samples, and
shading 1s typically the most expensive operation within the
graphics rendering engine.

Multi-sampling 1s a less expensive technique that uses one
tully shaded color value and a coverage mask, rather than
multiple fully shaded samples, to generate the multiple
samples stored in the frame butler that are ultimately blended
together to produce a pixel within a rendered 1mage. Multi-
sampling 1s commonly used because of the substantial cost-
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versus-performance benefit that 1s typically achieved without
a significant loss 1 overall image quality. Although multi-
sampling saves shader processing relative to super-sampling,
multi-sampling still requires a frame bufler with a sample per
pixel and the attendant bandwidth, which can limit applica-
tion performance. Some techniques exist for compressing
multi-sampled color data by identifying situations 1n which
all samples for a pixel have 1dentical color values and can be
represented by a single “reduced” color value per pixel. By
storing reduced color values per pixel, rather than indepen-
dent color values per sample, frame-builer bandwidth can be
substantially reduced. Reducing samples saves off-chip
bandwidth. As screen resolutions and sample rates become
higher, 1t becomes expensive and impractical to expand frag-
ment colors into samples 1n the graphics rendering pipeline

when many such fragments will ultimately be reduced, as
described above.

As the foregoing illustrates, what 1s needed 1n the art 1s a
technique that achieves the processing and bandwidth advan-
tages of reduction throughout the entire graphics rendering
pipeline.

SUMMARY OF THE INVENTION

One embodiment of the invention sets forth a graphics
pipeline configured to process non-blended color data of
multi-sampled pixels. The graphics pipeline includes a shader
engine configured to generate shaded pixels in reduced form
based on a currently rasterized geometric primitive, where the
shaded pixels are not expanded into samples, and a color
raster operations (CROP) unit configured to receive the
shaded pixels 1n reduced form from the shader engine, to
accumulate a tile of shaded pixels, and to determine whether
the tile of shaded pixels 1s fully covered by the geometric
primitive.

One advantage of the disclosed architecture 1s that 1n cases
where geometric primitives fully cover memory tiles, the
property of sibling samples having the same color value 1s
exploited to process multisampled color data as pixels, rather
than as samples, throughout the color rendering pipeline,
thereby reducing the size of the associated logic and the
amount of data written to and read from the frame buiier.

BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features of
the present mvention can be understood in detail, a more
particular description of the invention, briefly summarized
above, may be had by reference to embodiments, some of
which are illustrated 1n the appended drawings. It is to be
noted, however, that the appended drawings illustrate only
typical embodiments of this invention and are therefore not to
be considered limiting of its scope, for the invention may
admit to other equally effective embodiments.

FIG. 1 1s a conceptual diagram of a graphics rendering
pipeline, according to one embodiment of the invention;

FIG. 2A 1illustrates two overlapping triangles on a pixel
orid whereby the color of a first pixel 1s determined by the
color of a single triangle and the color of a second pixel 1s
determined by a blended color contribution from two tri-
angles;

FIG. 2B illustrates two pixels, whereby the color of the first
pixel 1s determined by the color of a single triangle and the
color of the second pixel 1s determined by a blended color
contribution of two triangles;

FIG. 2C 1llustrates a portion of a triangle on a pixel gnd
showing a memory tile alignment, where a first memory tile 1s
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cligible for compression and a second memory tile 1s not
cligible for compression, according to one embodiment of the
invention;
FIG. 3 A 1s a conceptual drawing of a single pixel with four
samples, according to one embodiment of the invention;
FIG. 3B illustrates the organization of an uncompressed

eight-by-four sample memory tile, corresponding to a four-
by-two array of pixels in screen space, according to one
embodiment of the invention;

FIG. 4 1llustrates the organization of a compressed eight-
by-four sample memory tile, corresponding to a four-by-two
array of pixels 1n screen space, according to one embodiment
of the invention;

FIG. SA 15 a flow diagram of method steps for processing
non-blended color data of multi-sampled pixels, according to
one embodiment of the invention:

FIG. 3B i1s a flow diagram of method steps for processing,
blended color data of multi-sampled pixels, according to one
embodiment of the invention; and

FIG. 6 1s a conceptual diagram of a computing device
configured to implement one or more aspects of the present
invention.

DETAILED DESCRIPTION

The present invention improves the overall efliciency of a
graphics rendering engine by exploiting a redundancy 1n anti-
aliased color samples to reduce pixel data path processing,
thereby 1mproving overall efficiency and simultaneously
reducing the bandwidth requirements associated with color
buflfer access.

FIG. 1 1s a conceptual diagram of a graphics rendering
pipeline 100, according to one embodiment of the mvention.
A geometry processing unit 110 receives geometry primi-
tives, typically triangles, from a graphics application (not
shown) and conducts geometric transforms as specified by the
graphics application. The output of the geometry processing
unit 110 includes triangles transformed and projected onto a
two-dimensional surface, referred to as “screen space,” cor-
responding to a window on the viewer’s screen. Alternately, a
two-dimensional surface 1n screen space may be used as the
destination rendering surface in applications that do not
immediately display rendered frame butier data to a screen.
Such applications include rendering to environment maps or
high-dynamic-range oif screen builers.

The geometric primitives 1n screen space generated by the
geometry processing unit 110 are distributed to one or more
rasterization units 111, which converts them into fragments,
corresponding to screen space pixels that are least partially
covered by the geometric primitives. In decomposing geo-
metric primitives into fragments, the rasterization units 111
determine the screen space pixel coverage of each geometric
primitive along with the sample coverage of each fragment.
Additionally, the rasterization units 111 determine the screen
space coverage and alignment of each geometric primitive
with respect to memory tiles. The rasterization units 111
generate output data streams 121 that include, without limi-
tation, fragments that include geometric coverage and depth
information.

Shaders 112, represented by shader 112-1 through shader
112-7, recerve fragments from the rasterization units 111 and
process the fragments into shaded pixels, according to shad-
ing 1nstructions specified by the graphics application. Cross-
bar 116 conveys shaded pixels (pixel fragments ) from shaders
112 to color raster operations units (CROPs) 113, represented
by CROP unit 113-1 through CROP unit 113-7, for further
processing. The CROP units 113 perform any needed blend-
ing on the shaded pixels or samples, as specified by the
graphics application.

The frame butfer 114 includes, without limitation, butfers
for depth information and buffers for color information. The
frame builer 114 1s typically structured as a two-dimensional
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surface mapped mto linear memory space. A video retresh
umt 115 provides a video output stream to a display device
(not shown) for viewing by a user.

Persons skilled in the art will recognize that the present
invention 1s not limited 1n any way by the architecture of FIG.
1. In particular, the teachings of the present mvention are
equally applicable 1n graphics rendering pipelines having one
Or more geometry processing units, one or more rasterization
units, one or more shaders, one or more CROP units, one or
more units for z-processing and one or more frame builers.
For this reason, the remainder of the description may include
references to particular elements of the graphics rendering
pipeline 1n either singular or plural form without any intention
to limit the scope of the present invention.

As previously discussed, multi-sampling uses a coverage
mask along with one color value per shaded pixel to define the
contribution of the shaded pixel to the corresponding pixel
within the rendered image. The coverage mask associated
with the shaded pixel specifies which samples from the
shaded pixel should be blended with or written to the corre-
sponding pixel within the rendered 1image 11 the shaded pixel
passes depth and stencil testing. For example, a partially
transparent sample within a shaded pixel that survives depth
testing may be blended with the corresponding sample within
the rendered image to determine the new sample color for the
corresponding pixel within the rendered 1mage.

In order to preserve the proper set of sample color values
contributed by each shaded pixel to the corresponding pixel
within the rendered image, the associated samples may be
expanded for blending and storage within the frame butifer
114, according to the fragment coverage. In many cases, a
single color value 1s sufficient to represent all the samples
associated with a given pixel. Such pixels are said to be
reducible. For example, when a shaded pixel fully covers the
corresponding pixel 1in the rendered image, then only one
color value 1s needed for the pixel. When all of the pixels
within a two-dimensional tile of pixels stored in the frame
butfter 114 are reducible, then the entire tile 1s reducible and
may be stored in a compressed format. As discussed in greater
detail below, frame builer data 123 may be processed 1n a
reduced or an expanded format.

In one embodiment of the present invention, the shader 112
and the CROP unit 113 are designed to process e1ght pixels in
parallel, and when rendering with four samples per pixel, a
memory tile includes a four pixel wide by two pixel tall
memory tile. In other words, the memory tile 1s eight samples
wide by four samples tall. In a compressed format, the eight
pixels within the tile may be fully represented by a selected
cight samples within the tile. Thus, 1n a commonly occurring
case, the CROP unit 113 can process e1ght compressed pixels
(1.e., eight samples) in parallel by accessing compressed data
from the frame builer and processed that data. In a less com-
mon case, the CROP unit 113 can process two uncompressed
pixels (1.e., two groups of four samples) in parallel by access-
ing expanded, uncompressed data from the frame buifer and
processing that data. In both cases, the internal processing
rate matches memory bandwidth, thus the utilization of the
hardware within the crossbar 116 and CROP umt 113 are
optimized.

FIG. 2A 1llustrates two overlapping triangles 202 and 203
on a pixel grid 201 whereby the color of a first pixel 2035 1s
determined by the color of a single triangle 203 and the color
of a second pixel 204 1s determined by a blended color con-
tribution from two triangles 202 and 203. As 1s well known,
anti-aliasing provides a mechanism for pixels, such as pixel
204, that are covered by more than one geometric primitive to
appear smoother and more realistic and smooth rather than
pixilated or jagged. Pixels completely covered by one geo-
metric primitive, such as pixel 205, require no such smooth-
ing. One conventional approach to anti-aliasing 1s multi-sam-
pling, whereby two or more samples are used to compute the
final color value of a given pixel. The samples associated with
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cach fragment corresponding to a particular pixel are accu-
mulated in the color buifer during rendering. The samples for
the pixel are then blended together for display or final output
of the scene. For purposes of FIGS. 2A-2C, the geometric
primitives under discussion are assumed to be triangles.
FI1G. 2B illustrates two pixels 204, 205, whereby the color
of the first pixel 205 1s determined by the color of a single
triangle 203, and the color of the second pixel 204 1s deter-
mined by a blended color contribution of two triangles 202,
203. In this example, anti-aliasing that employs multi-sam-
pling with four samples per pixel 1s shown. Again, multi-
sampling may employ two or more samples per pixel to
achieve valid results. Thus, the choice of four samples per

pixel herein 1s for the purpose of discussion only and 1n no
way limits the scope of the invention.

Each sample 210-213 of pixel 205 1s associated with the
same fragment since only one geometric primitive, triangle
203, covers pixel 205. Thus, all four samples 210-213 are
derived from the same geometric primitive, triangle 203.
While, 1n theory, all four samples 210-213 may have inde-
pendently computed color values, 1n practice, and according,
to the definition of anti-aliasing using multi-sampling, all four
samples 210-213 are all assigned the same color value since
the cost of independently computing four different color
samples from the same geometric primitive would be quite
high, but would only minimally improve image quality. These
four samples are referred to as “sibling samples,” as they are
all generated from the same parent geometric primitive.
Importantly, since all sibling samples are assigned the same
color value, only one color value 1s needed 1n pixel 203 to
uniquely describe all 4 samples, which are redundant.

The color of pixel 204 1s the result of blending contribu-
tions from triangles 202 and 203 and, thus, 1s derived from
two fragments. The two triangles may have very different
colors, requiring data from at least one sample from each
fragment to be blended to compute the final color value for
pixel 204. Another pixel may include four fragments gener-
ated from four different triangles. In such a case, there would
be one sample per fragment, and each sample would have a
different color value. Thus, for a given pixel, one to four
sample color values are needed to determine the final color
value of that pixel. If only one color value 1s needed because
the samples are all sibling samples, the pixel 1s said to be
“reducible,” meaning that 1t 1s capable of being represented
by a single color value rather than N independent samples.

FI1G. 2C 1llustrates a portion of a triangle 231 on a pixel grid
201 showing a memory tile alignment 234, where a {first
memory tile 232 1s eligible for compression and a second
memory tile 233 1s not eligible for compression, according to
one embodiment of the mvention. In one embodiment, pixels
are stored 1n frame bufler memory in arrays of four-by-two
pixels (eight-by-four samples), called memory tiles. Each
such memory tile 1s a contiguous span of memory and repre-
sents a two-dimensional region of the corresponding surface
within the memory. Furthermore, each memory tile is treated
as a data structure capable of representing multiple data, such
as compressed and uncompressed formats. When data 1s
stored 1n a compressed format, less memory bandwidth 1s
required to store and retrieve that data. As taught in U.S. Pat.
No. 6,825,847, each memory tile has an associated on-chip
memory that stores a bit indicating whether a particular
memory tile 1s compressed. When a memory tile 1s stored in
frame buflfer memory, a bit in the on-chip memory 1s set to
indicate status (compressed of uncompressed) of the memory
tile. When a memory tile 1s read from frame bufier memory,
the associated status bit in the on-chip memory 1s queried to
determine whether the data being accessed 1s compressed or
uncompressed.

FIG. 3A 1s a conceptual drawing of a single pixel 314 with
tour samples 310-313, according to one embodiment of the
invention. Each sample uses four bytes of memory, while
cach pixel uses sixteen bytes of memory, and a sixteen byte
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transter size 1s used when writing data to and reading data
from a frame builer 114 of FIG. 1. Each access to memory 1s
therefore a multiple of sixteen bytes.

FIG. 3B illustrates the orgamization of an uncompressed
eight-by-four sample memory tile 340, corresponding to a
four-by-two array of pixels 1n screen space, according to one
embodiment of the invention. As shown, each pixel 320-327
has four corresponding samples. For example, pixel 0 320
includes samples 310-313. As described above, 1n the case
where memory tile 340 1s completely covered by a geometric
primitive, the color value of each pixel 320-327 may be rep-
resented by the color value of one sample of each respective
pixel, since all samples associated with a given pixel are
sibling samples. Thus, color data associated with pixels 320-
327 need not be expanded from a color value per pixel to a
color value per sample.

FIG. 4 1llustrates the organization of a compressed eight-
by-four sample memory tile 420, corresponding to a four-by-
two array of pixels 1n screen space, according to one embodi-
ment of the invention. This compressed representation 1s only
possible when all eight pixels 410-417 1n the memory tile are
reducible and may therefore be represented by one sample
cach. As shown, when all eight pixels 410-417 are reducible,
they may be re-mapped to eight contiguous sample locations
normally used for the first two pixels of every memory tile
420. This re-mapping places the eight pixels 410-417 in the
first thirty-two bytes of the memory tile 420. Furthermore, the
starting address of the memory tile 420 remains the same for
uncompressed and compressed formats, advantageously
allowing common address calculations regardless of reduc-
ibility. The CROP unit 113 1s able to process the eight samples
410-417 (representing the eight pixels) 1in parallel, enabling a
throughput of eight pixels per time unit for compressed tiles
within the graphics rendering pipeline 100.

Three principles are at work in the above discussion. The
first principle 1s that anti-aliased pixels that are fully covered
by a single geometric primitive contain samples of 1dentical
color, allowing the samples to be represented by a single color
value. The second principle 1s that of allowing both com-
pressed and uncompressed pixel data to be stored 1n memory
tiles such that clients of the frame buifer memory (e.g., the
raster operations unit) can selectively store color data in a
compressed format whenever possible, thus achieving a net
reduction 1 the memory bandwidth requirements of the sys-
tem. The third principle 1s that of 1dentifying groups of pixels
that may be processed without expanding the pixels into their
uncompressed format and processing the pixels n their
reduced form, thereby reducing the size of the data path logic
needed to process the pixels 1n compressed format at a speci-
fied throughput.

FIG. 5A 1s a flow diagram of method steps for processing
non-blended color data of multi-sampled pixels, according to
one embodiment of the invention. Although the method steps
are described 1n conjunction with the systems of FIGS. 1 and
6, persons skilled in the art will understand that any system
that performs the method steps, 1n any order, 1s within the
scope of the invention.

The method begins in step 502, where a shader unit gen-
crates multiple shaded pixels, according to programming
istructions specified by a graphics application. In step 504,
the shader unit transmits the shaded pixels to a CROP unit in
reduced form. In reduced form, each pixel includes one color
value that represents the potential color values of multiple
samples within the shaded pixel, together with a sample cov-
erage mask. In step 506, the shaded pixels associated with a
screen space tile are accumulated within the CROP unit (re-
ferred to herein as a “tile of shaded pixels™). One component
of the accumulated data 1s a coverage mask that represents the
intersection of the currently rasterized geometric primitive
and the tile of shaded pixels. In step 508, the CROP unait
determines whether the tile of shaded pixels 1s fully covered
by the geometric primitive. I1 so, then the method proceeds to
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step 510, where the CROP unit writes the accumulated shaded
pixels to the frame buffer 1n reduced form. The method ter-
minates after completing step 510. In alternative embodi-
ments, coverage may be determined prior to transmitting the
shaded pixels to the CROP unit. For example, a tile of shaded 5
pixels may be accumulated upstream of the CROP unit and
coverage may be determined by an upstream unit prior to
sending the tile to the CROP unit or coverage may be tracked
by maintaiming a flag per tile that 1s cleared i1 any samples are
discarded or uncovered. 10
If, 1n step 508, the CROP unit determines that the corre-
sponding frame bufler tile 1s not fully covered, then the
method proceeds to step 512. If, in step 512, the CROP umit

determines that the frame bufler or memory tile correspond-
ing to the tile of shaded pixels 1s compressed, meaming that the
pixels included within the frame buiter tile (also referred to as
“destination data™) are stored in a reduced form, then the
method proceeds to step 520, where the CROP unit reads the
destination data stored 1n reduced form from the frame butfer.

In step 522, the shaded pixels and the destination data (i.e., the
pixels included within the frame butler tile) are expanded to 20
individual samples. In step 524, the samples associated with
the expanded shaded pixels are merged 1nto the samples asso-
ciated with the expanded destination data, based on the cov-
crage mask associated with the tile of shaded pixels. In step
526, the CROP unit writes the pixels resulting from step 524
to the frame butler in expanded form. The method terminates
alter completing step 526.

If, 1n step 512, the CROP unit determines that the frame
butlfer tile corresponding to the tile of shaded pixels 1s not
compressed, meaning that the destination data 1s not stored 1n
a reduced form (1.e., stored in an expanded form), then the 3¢
method proceeds to step 530. In step 530, the CROP umit
expands the shaded pixels to individual samples, and the
method proceeds to step 532. In step 332, the CROP umit
writes the pixels resulting from step 530 to the frame builer in
expanded form, using byte enables to selectively update the ;5
covered samples.

FIG. 3B i1s a flow diagram of method steps for processing,
blended color data of multi-sampled pixels, according to one
embodiment of the invention. Although the method steps are
described in conjunction with the systems of FIGS. 1 and 6,
persons skilled 1n the art will understand that any system that
performs the method steps, 1n any order, 1s within the scope of
the 1nvention.

The method begins 1n step 550, where shader unit gener-
ates multiple shaded pixels, according to programming
instructions specified by a graphics application. In step 352, 45
the shader unit transmaits the shaded pixels to a CROP unit in
reduced form. Again, 1n reduced form, each pixel includes
one color value that represents the potential color values of
multiple samples within the shaded pixel and a sample cov-
crage mask. In step 354, the shaded pixels associated with a
screen space tile are accumulated within the CROP unit
(again, referred to as a “tile of shaded pixels™). One compo-
nent of the accumulated data 1s a coverage mask that repre-
sents the intersection of a currently rasterized geometric
primitive and the tile of shaded pixels. In step 556, the CROP
unit reads destination data from the frame buffer. Again, the 55
destination data is the pixel data within a frame buifer tile that
corresponds to the tile of shade pixels. If, 1n step 560, the
CROP unit determines that the tile of shaded pixels 1s fully
covered by the geometric primitive and that the frame buifer
tile 1s compressed, meaning that the destination data 1s stored
in a reduced form, then the method proceeds to step 562. In
step 562, the CROP unit blends the shaded pixels, represented
in reduced form, with the pixels within the destination data,
also represented 1n reduced form. That 1s, only the represen-
tative color value of a given shaded pixel 1s blended with the
corresponding representative color value of a pixel within the 65
destination data to produce each resulting pixel. By blending
only the one color value that represents the potential color
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values of multiple samples within the shaded pixel, only a
fraction of the computational load and memory bandwidth
are required when compared to blending each sample of each
pixel. In step 564, the CROP unit writes the resulting pixels to
the frame buifer in reduced form. The method terminates after
completing step 564. As set forth above with respect to FIG.
S5A, the accumulation of the tile and determination of cover-
age may occur upstream of the CROP unit in various alterna-
tive embodiments.

I1, 1n step 560, the CROP unit determines either that the tile
of shaded pixels 1s not fully covered by the geometric primi-
tive or that the frame buifer tile 1s not compressed, meaning
that the destination data 1s stored 1n an expanded form, then
the method proceeds to step 570. In step 570, the accumulated
shaded pixels are expanded to individual samples for process-
ing. If, i step 572, the frame buifer tile 1s not compressed,
then the method proceeds to step 576, where the CROP unit
blends the expanded shaded pixels with the expanded desti-
nation pixels read from the frame buifer. That 1s, each sample
of each expanded shaded pixel 1s blended with the corre-
sponding sample of the destination pixel. In step 378, the
CROP unit writes the blended pixels generated 1n step 576 to
the frame butler 1n expanded form. The method terminates
alter completing step 578.

I, 1n step 572, the frame butler tile 1s compressed, meaning,
that the destination data is stored in reduced form, then the
method proceeds to step 574. In step 574, the CROP umit
expands the destination data to 1individual samples for pro-
cessing. The method then proceeds to step 576, described
above.

FIG. 6 1s a conceptual diagram of a computing device 600
configured to implement one or more aspects of the present
invention. The computing device 600 includes, without 11mi-
tation, a processor 610, system memory 615, a graphics pro-
cessing unit (GPU) 620 and local memory 625 connected to
the GPU 620. The GPU 620 includes at least one rendering
engine 621 used to process data. The rendering engine 621
includes at least one graphics rendering pipeline 100 used to
process data, as described above. Persons skilled in the art
will recognize that any system having one or more processing
units configured to implement the teachings disclosed herein
falls within the scope of the present invention. Thus, the
architecture of computing device 600 1n no way limits the
scope of the present invention.

While the forgoing 1s directed to embodiments of the
present vention, other and further embodiments of the
invention may be devised without departing from the basic
scope thereol. Theretfore, the scope of the present invention 1s
determined by the claims that follow.

We claim:

1. A graphics pipeline configured to process non-blended
color data of multi-sampled pixels, the graphics pipeline
comprising:
a shader engine configured to generate shaded pixels 1n a
reduced form that includes a single color value and a
coverage mask that identifies one or more samples of the
shaded pixel associated with the single color value based
on a currently rasterized geometric primitive; and
a color raster operations (CROP) unit configured to:
accumulate a plurality of shaded pixels 1n reduced form
from the shader engine, wherein the plurality of
shaded pixels correspond to a tile of contiguous pixels
stored 1n a memory,

determine whether the plurality of shaded pixels are
tully covered by the geometric primitive and whether
the tile 1s stored 1n a compressed format, wherein the
compressed format includes only one color value for
cach pixel associated with the tile, and

if the plurality of shaded pixels are fully covered by the
geometric primitive and the tile 1s stored in the com-
pressed format, then, for each of the plurality of
shaded pixels, blending the single color value associ-
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ated with the shaded pixel with the one color value
associated with the corresponding pixel 1n the tile to
generate a blended pixel, or

if the plurality of shaded pixels are not tully covered by
the geometric primitive, then, for each of the plurality
of shaded pixels, expanding the single color value
associated with the shaded pixel to generate indi-
vidual samples associated with the shaded pixel and
blending each of the individual samples with a corre-
sponding sample associated with the corresponding
pixel 1n the tile to generate the blended pixel.

2. The graphics pipeline of claim 1, wherein the CROP unit
1s Turther configured to access a status bit stored 1n an on-chip
memory to determine whether the tile 1s stored in the com-
pressed format.

3. The graphics pipeline of claim 1, wherein, for each pixel
associated with the tile, the CROP unit 1s further configured to
expand the pixel into individual samples.

4. The graphics pipeline of claim 1, wherein the plurality of
shaded pixels are fully covered by a geometric primitive 1f the
coverage mask for each of the plurality of shaded pixels
identifies that all of the samples within each shaded pixel are
associated with the single color value and each of the plurality
of shaded pixels includes the same single color value.

5. The graphics pipeline of claim 1, wherein, 11 the plurality
of shaded pixels are fully covered by the geometric primitive
and the tile 1s stored in the compressed format, the CROP unit
1s Turther configured to write each of the blended pixels to the
tile 1n the compressed format.

6. The graphics pipeline of claim 5, wherein the CROP unait
1s Turther configured to write a status bit stored 1n an on-chip
memory to indicate that the tile 1s compressed.

7. The graphics pipeline of claim 1, wherein, 11 the plurality
of shaded pixels are not fully covered by the geometric primi-
tive or the tile 1s not stored in the compressed format, the
CROP unit 1s further configured to write each of the blended
pixels to the tile 1n an uncompressed format.

8. The graphics pipeline of claim 7, wherein the CROP unit
1s configured to write each of the blended pixels to the tile 1n
the uncompressed format using byte enables to selectively
update covered samples.

9. A computing device configured to process non-blended
color data of multi-sampled pixels, the computing device
comprising:

a memory; and

a processor coupled to the memory and having a graphics

processing pipeline that includes:

a shader engine configured to generate shaded pixels 1in
a reduced form that includes only a single color value
and a coverage mask that identifies one or more
samples of the shaded pixel associated with the single
color value based on a currently rasterized geometric
primitive; and

a color raster operations (CROP) unit configured to:
accumulate a plurality of shaded pixels 1n reduced

form from the shader engine, wherein the plurality
of shaded pixels correspond to a tile of contiguous

10

15

20

25

30

35

40

45

50

10

pixels stored 1n a memory, determine whether the
plurality of shaded pixels are fully covered by the
geometric primitive and whether the tile 1s stored 1n
a compressed format, wherein the compressed for-
mat includes only one color value for each pixel
associated with the tile, and

11 the plurality of shaded pixels are fully covered by
the geometric primitive and the tile 1s stored in the
compressed format, then, for each of the plurality
of shaded pixels, blending the single color value
associated with the shaded pixel with the one color
value associated with the corresponding pixel 1n
the tile to generate a blended pixel, or

1 the plurality of shaded pixels are not fully covered
by the geometric primitive, then, for each of the
plurality of shaded pixels, expanding the single
color value associated with the shaded pixel to gen-
erate individual samples associated with the shaded
pixel and blending each of the individual samples
with a corresponding sample associated with the
corresponding pixel in the tile to generate the
blended pixel.

10. The computing device of claim 9, wherein the CROP
unit 1s further configured to access a status bit stored 1n an
on-chip memory to determine whether the tile 1s stored in the
compressed format.

11. The computing device of claim 9, wherein, for each
pixel associated with the tile, the CROP unait 1s further con-
figured to expand the pixel into individual samples.

12. The computing device of claim 9, wherein the plurality
of shaded pixels are fully covered by a geometric primitive 1f
the coverage mask for each of the plurality of shaded pixels
identifies that all of the samples within each shaded pixel are
associated with the single color value and each of the plurality
of shaded pixels includes the same single color value.

13. The computing device of claim 9, wherein, if the plu-
rality of shaded pixels are fully covered by the geometric
primitive and the tile 1s stored in the compressed format, the
CROP unit 1s further configured to write each of the blended
pixels to the tile 1n the compressed format.

14. The computing device of claim 13, wherein the CROP
unit 1s further configured to write a status bit stored 1n an
on-chip memory to indicate that the tile 1s compressed.

15. The computing device of claim 9, wherein, if the plu-
rality of shaded pixels are not fully covered by the geometric
primitive or the tile 1s not stored in the compressed format, the
CROP unit 1s further configured to write each of the blended
pixels to the tile 1n an uncompressed format.

16. The computing device of claim 15, wherein the CROP
unit 1s configured to write each of the blended pixels to the tile
in the uncompressed format using byte enables to selectively
update covered samples.
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