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1900 x

1000 | algorithm FunctionProductintegral (W, W», ..., Wy);
2 u=W;dcx W,.dcx ... x Wy.dc;
\b 3 traverseAugTrees (1, Wi.node, W>.node, ... , Wy.node);
4 end
1 routine traverseAuglrees (cum, wy, Ws, ... , Wn);
2 Rank wy,...,wy so that wy,...,w; are not null and wy,,..., Wy are null;
1904 3 if k <2 then return;
\» 4 for 1=1 to N, update w;.parentsum,;
5 cum =cumX | 1§ A wj.parentsum |;
6 u=u+ [cum x getProductintegral (wy, ... , wi)];
7 for1i=0to3 .
3 traverseAugTrees (cum, wy.ch[1], ... wy.ch[1]);

routine getProductlntegral (wy, ... , W)
itm=1 return O;
return [ (wp.parentsum x getProductintegral (wy, ... , Wy 1))
+ (wg,.w[0] x getWaveletProduct (0, 1, 2, wy, ..., W)
+ (W W[1] x getWaveletProduct (1, 0, 2, wy, ..., Wp.1))
+ (W W[2] x getWaveletProduct (2, O, 1, W, ., W)

1906

N B W

routine getWaveletProduct (a, b, ¢, wy, ... , W)
if m =1 return wy.ylal;
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+ (4 x w,.w[a] x getProductIntegral(wy, ..., Wi.1))
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algorithm FunctionProductIntegral (W, W, ..., Wy);
u=W;.dcx W,dcx...x Wydc;
traverseAugTrees (1, Wi.node, Wy.node, ... , Wy.node);

end

routine traverseAugTrees (cum, wy, W, ... , WN);
Rank wy,...,wy so that wy,...,wy are not null and wy.(,...,wy are null;
if k <2 then return;
for 1 =1 to N, update w;.parentsum;
cum = cum X | Il=x+; w;.parentsum |;
u=u+ [cum x getProductlntegral (wy, ..., wi)l;
for1i=0to 3

traverseAuglrees (cum, wi.chl1], ... wi.chf1]);

routine getProductIntegral (wy, ..., wy)
ifm=1return O;

T[1].49, w[0], w[1], w[2], cum}

= {0: WIW[O]: WI\IJ[IL Wlw[zla wl'parentsum}

fori=2to(m-1)

Z[1].cum = w;.parentsum x &7 [1 - 1 ].cum;
7 [i].0 = getP(i);

T I].y[0]) = getW (0, 1, 2, 1);

T 1l.y[l]=getW (1, 0, 2, 1);

T ].v[2] =getW (2,0, 1, 1);

return getP(im);

routine getP (1)
if 1=1 return O;
return [wi.parentsumx & [1- 1].0 +

+ (wi.y[0] x 711 - 1]L.yw[0])
+ (w1l x T 1-1].y[lD
+ (wWiy[2]x T - 1].w][2))]:

routine getW (a, b, ¢, 1)
if1=1return Z [1].yla];
return [(wi.yla]l x 77 [1 - 1].cum)
+ (w;.parentsum X & [1 - 1].y[a])

- (@ x wiy[al x Z7i - 1].9)

- (2 x (wiw[bl x Z7i - 1].yle] + wiw[e] x Z7i - 1L.y[bD)];

FIG. 20
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struct table I [N]
¢: magnitude;
W[0]: magnitude;
v[1]: magnitude;
W[2]: magnitude;
cum: cumulative parentsum;
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] algorithm FunctionProduct (W,, Wi, Wa, ..., Wio) 2000
2302 5 Wo.de = Wy.de x Wade x ... x Wir.de;
3 getCoefticients(1, Wy.node, W, .node, Wy.node,, ..., Wy.1.node);
4 end
1 routine getCoefficients (cum, wy, Wy, Wa, ... , Win.1)
2 Rank wy, ... ,wn.; so that wy, ..., wy are not null and wi,q, ..., Wy are null;
3 if k = O then return;
2904 4 fori=1to (N - 1), update w;.parentsum;
5 cum = cum X [ ITjok+; Wy.parentsum |;
6 updateParents (wp, cum x getProductIntegral(wy, ... , wy));
7 Wo. U] 0] = cum x getW (0, 1, 2, k);
8 wo.Y[1l] =cum x getW (1, 0, 2, k);
9 wo.W[2] = cum x getW (2, 0, 1, k);
10 fori=0to 3
11 getCoeflicients (cum, wy.ch[i], wy.chli], ... wy ch[i]);
7006 1 routine updateParents (wy, val)
\»2 wy.dc = wp.dc + val;
3 for scalej =0, 1, ..., wy.scale-1
4 // lies In the quadrant (k, 1) of its parent w; at scale j
5 W, [0] = w,.y[0] + (sign (0, k, 1) x 2'x val);
6 wo[1]=w,.y[1] + (sign (1, k, D) x 2'x val);
7 W, W[2] = wp.p[2] + (ign (2, k, 1) x 2'x val);
] routine getProductintegral (wy, ... , W)
2 if m =1 return 0;
2008 2 1149, wl0], w[1], wi2], cum} = {0, w1.{y[0], y[1], w[2], w,.parentsum}}
4 for1=2to(m—-1)
5 T [1].cum = wi.parentsum X 7 [i - 1].cum;
6 T 1].0 = getP(1);
7 T 1].w[0] =getW (0, 1, 2, 1);
8 T 1].y[1] = getW (1, 0, 2, 1);
9 T 1)w[2] =getW (2,0, 1, 1);
10 return getP(m);
2010 1 routine getP (1)
2 1f 1=1 return 0;
3 return [wi.parentsum x & [i - 1].¢ + (w.w[0] x Z7[i - 1].w[0])
4 + (Wiy[1] x T701 - 1.wf1]) + (wiy[2] x 7710 - 1].y[2]D)];
2012 routine getW (a, b, ¢, 1)

1
2 it1=1 return & [1}.y[a];
3 return [(wi.y[a] x Z7[1 - 1].cum) + (w;.parentsum x Z[i - 1].y[a])
4 + (@ x wiy[a] x T7i - 1] ¢)

+ (2" x (wiy[b] x 771 - 1].y[e] + wiyle] x Z7[i - 11.y[bD));

FIG. 29
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SYSTEMS AND METHODS FOR GRAPHICAL
RENDERING

CROSS-REFERENCE TO RELAT
APPLICATIONS
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»

This application claims priority to U.S. provisional appli-
cation entitled, “Generalized Wavelet Product Integral For
Rendering Dynamic Glossy Objects,” having Ser. No.

60/830,654, filed Jul. 13, 2006, which 1s entirely incorporated
herein by reference.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This disclosure was made with government support under
grant number 0312724 awarded by the National Science

Foundation. The government has certain rights 1n the mven-
tion.

BACKGROUND

Mathematics 1s a powertul tool that can be used to create
models, among other things. When a real world system 1s
represented using a mathematical model, the solution to the
mathematical model often represents an answer to a problem
in the real world system. In some cases, due to the nature of
the system, the mathematical model includes a series of func-
tions that are multiplied together and integrated, or simply
multiplied together. One example of such a mathematical
model 1s a light transport model that represents the physics of
light moving within a three-dimensional scene. The light
transport model describes the radiance of objects 1n the scene
as a function of parameters such as the viewpoint of the
observer, the texture of the objects, and the lighting 1tself.

In cases 1n which the mathematical model 1s complex and
time-consuming to solve, an approximation of the model can
be employed to simplify, for example, rendering a graphical
scene. However, the approximation may underestimate or
1gnore some variables of the model, and therefore the contri-
bution of corresponding elements to the overall system. For
example, most computer graphics rendering processes rely on
simplified or approximated versions of the light transport
model, but the lighting of the scenes rendered using such
models 1s not realistic. Some simplified versions of the light
transport model require objects 1n the scene to be static.
Others cannot approximate the specular highlights that high-
frequency lighting creates on glossy materials. Still others are

physically accurate but are too slow for real-time rendering.

To date, a need exists for systems and methods for deter-
mimng the integral of the product of a plurality of functions,
or for determining the product of a plurality of functions. For
example, such a need exists 1n the art of computer graphics
rendering, where such systems and methods can be employed
with reference to the light transport model.

SUMMARY

In one embodiment, a computer readable medium config-
ured to approximate the integral of the product of a plurality
of Tunctions includes logic configured to factor the plurality
of functions 1nto a set of fixed functions and one varying
function, logic configured to determine a first vector that
represents the product of the fixed functions 1n the wavelet
domain, logic configured to determine a second vector that
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2

represents the one varying function in the wavelet domain,
and logic configured to determine an 1nner product of the first

vector and the second vector.

In one embodiment, a computer readable medium config-
ured to determine a vector that represents the product of a
plurality of functions in the wavelet domain includes logic
configured to project each tunction of the plurality of func-
tions into the wavelet domain, logic configured to encode the
basis coelficients of each function of the plurality in a wavelet
tree, and logic configured to determine basis coelficients of
the vector by traversing direct paths through the wavelet trees,
along which direct paths an integral coellicient may by non-
ZErO0.

Other systems, devices, methods, features, and advantages
of the disclosed systems and methods for determining the
integral of the product of a plurality of functions will be
apparent or will become apparent to one with skill in the art
upon e¢xamination of the following figures and detailed
description. All such additional systems, devices, methods,
features, and advantages are itended to be included within
the description and are intended to be protected by the accom-
panying claims.

BRIEF DESCRIPTION OF THE FIGURES

The present disclosure may be better understood with ret-
erence to the following figures. Matching reference numerals
designate corresponding parts throughout the figures, and
components 1n the figures are not necessarily to scale.

FIG. 1 1s a block diagram 1llustrating an embodiment of a
method for determining the integral of the product of a plu-
rality of functions.

FIG. 2 1s a diagram 1illustrating a two-dimensional, non-
standard Haar basis set having a resolution n of 3.

FIG. 3 1s a diagram illustrating the two-dimensional, non-
standard Haar basis set having a resolution n of 2.

FIG. 4 1s a diagram 1llustrating restricted basis functions of
the two-dimensional, nonstandard Haar basis set as shown 1n
FIG. 3.

FIG. S5 illustrates four example functions represented 1n the
wavelet domain.

FIG. 6 1s a diagram 1llustrating a wavelet domain represen-
tation of the integral of the product of the example functions
of FIG. §.

FIG. 7 1s a diagram 1illustrating an example basis function
tree for the basis set as shown 1n FIG. 2.

FIG. 81s a diagram illustrating an example basis coellicient
tree.

FIG. 9 15 a diagram 1llustrating example products of two
basis functions, and an example equation for calculating such
products.

FIG. 10 1s a diagram 1llustrating example products of more
than two basis functions, and example equations for calculat-
ing such products.

FIG. 11 1s a table that tabulates the basis function type of
the basis function appearing in the product of a plurality of
basis functions.

FIG. 12 1s a block diagram illustrating an embodiment of a
method of determining an N order integral coefficient C¥.

FIG. 13 1s a block diagram illustrating an embodiment of a
method for determining a basis function type of a basis func-
tion appearing in the product of a plurality of basis functions.

FIG. 14 1s a block diagram illustrating a general-purpose
computer system that can be used to implement embodiments
of the systems and methods disclosed herein.

FIG. 15 15 a table illustrating seven cases that facilitate
determining the N order integral coefficient C.
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FIG. 16 1s a block diagram illustrating another embodiment
of a method for determining the integral of the product of a

plurality of functions.

FI1G. 17 illustrates an example wavelet tree 1n pseudo code.

FI1G. 18 1s a block diagram 1llustrating an embodiment of a
method for traversing direct paths through a plurality of
wavelet trees to determine the integral of the product of the
functions represented by the wavelet trees.

FI1G. 19 illustrates 1n pseudo code an example tree-traversal
algorithm for determining the integral of the product of a
plurality of functions, and embodiments of component rou-
tines.

FIG. 20 illustrates 1n pseudo code an optimized tree-tra-
versal algorithm for determiming the integral of the product of
a plurality of functions, and embodiments of component rou-
tines.

FI1G. 21 1llustrates 1n pseudo code an intermediate table that
can be employed by the algorithm of FIG. 20.

FI1G. 22 1s an embodiment of a system for determiming the
integral of the product of a plurality of functions.

FIG. 23 1s a diagram 1llustrating light and objects 1n an
example scene.

FI1G. 24 1s a block diagram 1llustrating an embodiment of a
method of rendering a graphical scene 1n which the radiance
of a point X 1n the scene 1s determined by integrating the
product of a plurality of functions contributing to a light
transport model of the scene.

FI1G. 25 1s a block diagram 1llustrating an embodiment of a
system of rendering a graphical scene 1n which the radiance of
a point X 1n the scene 1s determined by integrating the product
of a plurality of functions contributing to a light transport
model of the scene.

FI1G. 26 1s a block diagram 1llustrating an embodiment of a
method for approximating the integral of the product of a
plurality of functions.

FIG. 27 1s a block diagram 1llustrating an embodiment of a
method for determining the basis coellicients of a vector
representing the product of a plurality of functions i1n the
wavelet domain.

FI1G. 28 1s a block diagram 1llustrating an embodiment of a
method for traversing direct paths through a plurality of
wavelet trees to determine the basis coelficients of a vector
representing the product o the corresponding functions 1n the
wavelet domain.

FI1G. 29 illustrates 1n pseudo code an example tree-traversal
algorithm for determining the basis coelficients of a vector
representing the product of a plurality of functions in the
wavelet domain, and embodiments of component routines.

FIG. 30 1s an embodiment of a system for approximating,
the integral of the product of the plurality of functions.

FIG. 31 1s a block diagram 1llustrating an embodiment of a
method of rendering a graphical scene by approximating a
radiance of a point X 1n a scene.

FI1G. 32 1s a block diagram 1llustrating an embodiment of a
system for rendering a graphical scene by approximating a
radiance of a point X 1n a scene.

DETAILED DESCRIPTION

Described below are embodiments of systems and methods
for determiming the integral of the product of a plurality of
functions, and for determining the product of a plurality of
functions. In some embodiments, the systems and methods
can be used to render scenes using a computer, mncluding
dynamic glossy objects 1n real time, as 1s also described 1n a
paper by the inventors, Sun et al., entitled “Generalized Wave-
let Product Integral for Rendering Dynamic Glossy Objects”,
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ACM Transactions on Graphics (SIGGRAPH ’06) 25, 3,
055-966, which 1s incorporated by reference herein 1n 1ts
entirety.

FIG. 1 1s a block diagram 1llustrating an embodiment of a
method 100 for determining the integral of the product of a
plurality of functions. The integral of the product of the plu-
rality of functions 1s represented using equation (1):

(1)

N
U = f]_[ F;(v)dv
i=1

where u 1s the integral of the product of the plurality of
functions, N 1s the total number of functions contributing to
the product being integrated, and F.(v) generically denotes
the i” function in the product being integrated, i being any
integer from 1 to N.

In block 102, each of the plurality of functions F,(v) 1s
projected into the wavelet domain. Projecting the functions
into the wavelet domain comprises, for example, performing
a wavelet transform on each function. The wavelet transform
projects the function F (v) onto a wavelet basis set 3. The
wavelet basis set p includes a plurality of basis functions
b, (v). As aresult of the wavelet transtform, each function F,(v)
1s expressed as the sum of a series of basis functions b, (v)
scaled by corresponding basis coetlicients 1, ;, as shown in
equation (2):

M (2)
Fi() = > [fin-ba(v)]
h=1

where b, (v) is a h” basis function in the wavelet basis set f3,
t, ; 1s the basis coeflicient corresponding to the h™ basis func-
tion, and M 1s the number of basis functions b, (v) used to
represent the function F (v) in the wavelet domain. Replacing
the function F,(v) 1n equation (1) with 1ts wavelet domain
representation shown in equation (2) vyields the wavelet
domain representation of the integral of the product of the
plurality of functions, as shown 1n equation (3):

N M

|| | Uin; - om0
1 A

i=1

(3)

-]

The wavelet transtorm can be a nonstandard Haar wavelet
transform, 1 which case the wavelet basis set p can be a
two-dimensional, nonstandard Haar basis set. Such a wavelet
transform and basis set are described by Stollnitz, et al. in

[ 1

“Wavelets for Computer Graphics: A Primer,” IEEE Com-
puter Graphics and Applications (1995), 135, 3, 76-84, which
1s incorporated by reference 1n its enfirety herein. Projecting
cach function F.(v) onto the two-dimensional, nonstandard
Haar basis set by performing the nonstandard Haar wavelet
transform simplifies evaluating the integral of the product of
the plurality of functions because only nonzero basis coetii-
cients f; , and nonzero N order integral coefficients C* con-
tribute to the integral and when two-dimensional, nonstand-
ard Haar basis functions are used to represent the functions
F,(v), many of the basis coetlicients 1, , and the N order
integral coefficients C" are zero, as described in detail below.
Theretfore, from this point forward, the term wavelet trans-
form generally refers to the nonstandard Haar wavelet trans-
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form, the term basis function b,, generally refers to a two-
dimensional, nonstandard Haar basis function and the term
basis set B generally refers to the two-dimensional, nonstand-
ard Haar basis set and the basis functions, of this basis set,
unless otherwise indicated. Because the wavelet transform 1s
known 1n the art and 1s explained 1n the Stollnitz reference
incorporated above, a discussion of the wavelet transform 1s
omitted here. However, a brief explanation of the basis set 1s
provided below.

The two-dimensional, nonstandard Haar basis set B
includes a plurality of basis functions, the number of basis
functions varying with the resolution n of the basis set. For
example, FIG. 2 1s a diagram illustrating a basis set 200,
having a resolution n of 3 and a total of eighty-four basis
functions. In FIG. 2, each square diagram represents one of
the basis functions. The basis function 1s positive where the
diagram 1s white, 1s negative where the diagram 1s black, and
1s zero where the diagram 1s gray. For stmplicity, a magnitude
of the basis function 1s 1ignored in the diagrams, but 11 shown,
the magnitude would project out of or into the page. Each of
the basis functions 1s normalized such that the magnitude of
the basis function 1s one, and therefore the basis set 200 1s an

orthonormal basis set.

Generally speaking, the basis set 200 includes four basis
function types: scaling basis functions generally denoted by
¢, and three different wavelet basis functions generally
denoted by 1y, J,, and ;. A mother basis function 1s defined
tor each of the four basis function types. As illustrated 1n FIG.
2, the mother basis functions include a mother scaling basis
function ¢" and three different mother wavelet basis functions
WP, °, ", and 1.°. Each of the mother basis functions takes a
unique shape within the diagram. The equations of the mother
basis functions are provided below:

l f@=sx=<and(0 =< y=<])
' (x, y) =
0 else
r . 1
1 1f(0£xﬂ§]and(0£y£1)
Y — |
i =y if(i {xﬂl]and([)ﬂyﬂl)
() else

1]

2
0 _ 1

V2= 1 o Exil)and(i {yﬂl]

1t (O £xil)and(0£y£

else

W3 (x, ) = <

Each of the remaining basis functions 1n the basis set 200 1s
a dilated and spatially translated version of one of the mother
basis functions. The mother basis functions can be dilated by
a scale 1 and can be spatially translated with respect to an x-y
coordinate system by spatial translations k and 1. The scale ;
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can be any integer from O to (n—1), n being the resolution of
the basis set 200. Each spatial translation k and 1 can be any
integer from 0 to (2-1). Each combination <j,k,1>is a unique
support that indicates a size and location of the basis function
in the diagram, the size being a function of the scale 1 and the
location being a function of the spatial translations k, 1.

For each support <j,k,1>, four normalized basis functions
are defined, one for each of the basis function types. A scaling
basis function ¢,/ for the support <j k,1>is expressed in terms
of the mother scaling basis function ¢° by:

§rf (6, )=29° (x~k, 2y-1) (4)

Three wavelet basis functions 1, 7, ¢, 7, } 7 for the support

<,k,I> are expressed 1n terms of their respective mother
wavelet functions ,°, 1.°, and 1)." by:

W, )= (Zx-k Zy-1) (3)

o, ) =2 Y-k, Zy-1) (6)

W3, (6 ) =23 (Px-k Vy-1) (7)

The basis set 200 therefore includes one basis function for
cach basis function type at each support <j,k,1>, the basis
function type indicating the shape of the basis function within
the diagram, and the support indicating the size and location
of the basis function within the diagram.

Although the two-dimensional, nonstandard Haar basis set
B 1s described above with reference to the basis set 200 shown
in FIG. 2, aperson of skill would understand that the basis set
B can have greater or fewer basis functions depending on the
resolution n. For example, FI1G. 3 1s a diagram illustrating the
two-dimensional, nonstandard Haar basis set 300 having a
resolution n of 2. The principles described with reference to
the basis set 200 generally apply to the basis set 300, and to
any other such basis set B regardless of the resolution n.

The basis set B includes a subset of restricted basis func-
tions. The restricted basis function subset includes 2"x2"
basis functions from the basis set, including the mother scal-
ing basis function ¢ and all of the wavelet basis functions
Y, 7, P, 7, 15 7. In other words, the restricted basis function
subset 1includes all basis functions 1n the basis set except for
the scaling basis functions ¢,/ having scales j greater than
zero. For example, the restricted basis function subset 400 of
the two-dimensional, nonstandard Haar basis set 300 1s
shown 1n FIG. 4.

Returning to block 102 of FIG. 1, the nonstandard Haar
wavelet transform projects the functions F (v) onto restricted
basis functions ol the basis set. Because the wavelet transform
projects the function F,(v) onto the restricted bases, the wave-
let domain representation of the function F (v) 1n equation (2)
1s the sum of a series of 272" restricted basis functions b,
scaled by 2"x2" corresponding basis coetficients 1, ,, wheren
1s the resolution. Therefore, from this point forward, the term
basis function b, generally refers to one of the restricted basis
tunctions and the term basis coetficient f, , generally refers to
either the mother scaling coelfficient or one of the wavelet
coellicients.

FIG. 5 illustrates four example functions represented in the
wavelet domain. For exemplary purposes, the functions F (v)
are shown 1n terms of the restricted basis functions b, of the
subset 400 shown 1n FIG. 4, although 1n most cases a basis set
B of higher resolution 1s used. In example 502 the function
F,(v) 1s represented as sixteen basis coetficients 1, ; to 1, |4
scaling the sixteen restricted basis functions b, to b, .. The
same 1s true for examples 504, 506, and 508, which 1llustrate
tunctions F,(v), F;(v), and F_(v), respectively.
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The meaning of the wavelet domain representation of the
tunction F,(v) will now be described. The mother basis tunc-
tions are defined for the support <0,0,0>, which covers the
entire diagram. Therefore, the basis coelficients of the mother
basis functions provide information about the entire function
F.(v). Specifically, the shape of the mother scaling basis func-
tion ¢° represents an average over the entire diagram, and the
shapes of the mother wavelet functions y,°, .°, and "
represent horizontal, vertical, and diagonal steps, respec-
tively, from the mother scaling basis function ¢° over the
entire diagram. Therefore, the basis coelficient of the mother
scaling basis function ¢" provides information about an aver-
age of the function F.(v), while the basis coelficients of the
wavelet basis functions 1,°, 1.°, and .” provide informa-
tion about horizontal, vertical and diagonal differences from
average, respectively, over the entire function.

Supports <7,k, 1> that are less than the entire diagram rep-
resent distinct portions of the function F (v) represented by
the diagram. Therefore, the basis coell]

icients of basis func-
tions for supports <.k, 1> other than <0,0,0> provide infor-
mation about the portion of the function F,(v) represented by
the support, and the basis function type indicates the type of
nformation that is provided. Specifically, the basis coetll-
cients ot the wavelet basis tunctions 1, 7/, P, 7, 5 - / provide
information about horizontal, vertical, and diagonal differ-
ences, respectively from the average over the portion of the
tunction F (v) represented by the support. The scaling basis
functions ¢,/ do not have basis coefficients because the wave-
let transform represents the function F.(v) 1n terms of the
restricted bases, as discussed above.

While the basis coelficients of basis functions at finer or
higher scales 1 provide information about smaller portions of
the function F.(v), the information that 1s provided 1s more
detailed or resolved. For example, in FIG. 2, the wavelet basis
functionp, " has a support that is Smaller than the support of
the mother wavelet basis function W, 111d1cat111g that a basis
coefficient of the wavelet basis tunction 1y ' provides infor-
mation about a smaller portion of the function F (v) than the
basis coellicient of the mother wavelet function 1) 3ml; how-
ever, the diagonal difference from average represented by the
basis coellicient of the wavelet basis function 11)3ml 1S more
resolved than the diagonal difference from the average rep-
resented by the basis coellicient of the mother wavelet func-
tion Y,", as visually indicated by the increased resolution in

the diagram.

With reference back to FIG. 1, 1n block 104 the integral u of
the product of the plurality of functions is represented 1n the

wavelet domain as the sum of a series of contributing prod-
ucts, each contributing product including a plurality of basis

coellicients and one 1ntegral coelflicient. Such a representa-
tion 1s achieved by simplitying the wavelet domain represen-
tation of the integral u shown in equation (3). An N order
basis product P" is defined as the product of N arbitrary basis
tunctions b,

(8)
bg(V)

ot
T
et

I-‘m:lE

and an N order integral coefficient C is defined as the
integral of the N order basis product P:
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— f b1.bo,...,

Substituting equation (9) into equation (3), the integral of the

product of the plurality of functions 1s expressed in the wave-
let domain according to equation (10):

N
Cbl b by

N
chﬂ'v = f]_[ b, (V)dv
g=1

(10)

M_ N N
E E % | | ﬁ,hf f]_[ bhf (V)(,f‘b’
Ri=1 hy=1  hy=l1 i=1 =l
TN
2 2 E : N
1 =l =l
= [fir-far e I Chy by by |
_ N _
iz S I Gy [ e F
' N
S Sam e Sl .CbM:bM:---:bM—l] +
N
[t oo vt = Coy g oy |

In other words, the integral of the product of the plurality of
functions u 1s represented in the wavelet domain as the sum of
a series of contributing products. Each contributing product
in the series 1s the product of multiple basis coellicients and
one N order integral coefficient C, the multiple basis coef-
ficients including one basis coetficient 1; ;, from each of the N
functions, and the N” order integral coefﬁmen‘[ C" being the
integral of the product of the basis functions b, (v) that corre-
spond to those basis coetlicients {, ,. One contributing prod-
uct appears 1n the series for each combination of N basis
coefficients f,, having one coefficient from each of the N
functions, such that a total of MY contrlbutmg products
appear 1n the series. It should be noted that in the basis
coeflicient 1, ,, h 1s an integer from 1 to M and 1 1s an integer
from 1 to N, M being the number of basis functions b, used to
represent the function F,(v) and N being the number of func-
tions F,(v) whose product 1s being integrated.

FIG. 6 1s a diagram 1illustrating the wavelet domain repre-
sentation of the integral u of the product of the example
functions of FIG. 5. In example 600, the example functions
F,, F,, Fy, and F, of examples 502, 504, 506, and 508 are
inserted into equation (10). The integral u of the product of the
functions 1s represented in the wavelet domains the sum of a
series of 16* contributing products, but for illustrative put-
poses, only three of these contributing products 602, 604, and
606 arc shown 1n example 600. Each product 602, 604, and
606 includes four basis coetficients 608, one from each of the
functions F,, F,, F,, and F,, and one 4” order integral coef-
ficient 610, which 1s the integral of the basis functions that
correspond to the basis coellicients 608. For example, the
four basis coetlicients 608 1n the product 602 are the basis
coefficient f; | from the function I, the basis coefficient 1, ,
trom the function F,, the basis coetficient t; | from the func-
tion F;, and the basis coefficient 1, ; from the function F,.
Each of these basis coellicients corresponds to the basis func-
tion labeled b, i FIG. 4, which 1s the mother scaling basis
function ¢°, as shown in FIG. 4. Therefore, the 47 order
integral coellicient 610 1n the product 602 1s the integral of the

product of four mother scaling basis functions ¢°, as shown in
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example 612 of FIG. 6. The example product 604 is the
product for the combination of basis coetlicients that includes
the basis coetlicient t, 4 from the function I, the basis coet-
ficient 1, , from the function I, the basis coefficient 5 |, from
the function FF;, and the basis coetficient f,, -, from the function
F,. Therefore, as shown in example 614 of FIG. 6, the 47
order integral coetficient 610 1n the product 604 1s the integral
of the product of the basis functions labeled b, b,, b, ;, and b,
in FIG. 4. The example product 616 follows the same form.
In block 106, the basis functions are organized 1n a basis
function tree, and the basis coeflicients of each function are
placed 1n a basis coellicient tree. The basis function tree 1s
described first, because its organization informs the organi-
zation of the basis coetll

icient tree.

The basis function tree organizes basis functions based on
parent-chuld relationships among the basis functions. The
mother scaling function ¢° is defined as the parent of all other
basis functions, and 1s defined as the immediate parent of the
mother wavelet functions ¢ ,°, ¢,", and y,°. For all other
basis functions, the basis function 1s a parent basis function of
a child basis function 11 the scale j of the parent basis function
1s less than the scale 7 of the child basis function and the
support <1,k 1> of the parent basis function completely covers
the support <1.k,I> of the child basis function, meaning the
parent basis function 1s positionally located 1n the diagram
with respect to the x-y coordinate system in every (X, y)
position occupied by the child basis function. The parent
basis function of support <j,k.1>1s an immediate parent of the
child basis function 11 the child basis function has scale (3+1)
and 1s located at spatial positions (2k, 21), (2k+1, 21), (2k,
21+1), and (2k+1, 21+1). Based on the defimitions above, a
child basis function may have more than one immediate par-
ent basis function, and further, the immediate parent basis
functions may be a different mother basis function type than
the child basis function. For examplej with reference to FIG.
2, the scaling basis function ¢,,", is one of the immediate
parent basis functions of the wavelet basis functlon 11)1 :
because the scale of the wavelet basis function vy, 2 is one
greater than the scale of the scaling basis function q)DD , and
the support of the scaling basis function ¢,," completely
covers the support of the wavelet basis function U.Jlmz

For example, FIG. 7 1s the diagram 1llustrating an example
basis function tree 700 for the basis set 200 shown 1n FIG. 2.
The mother scaling basis function ¢° lies in a root 702 of the
tree 700, indicating its status as the parent of all basis func-
tions 1n the set 200. A mother node 704 immediately depends
from the root 702 and includes the three mother wavelet
functions ., y,’, and y,", indicating their status as the
immediate children of the mother scaling basis function ¢°.
Below the mother node 704 1n which the three mother wavelet
functions y,°, y,°, and " lie, basis functions are organized
in child nodes 706, each child node 706 corresponding to a
unique support <.k, 1> and including the four basis functions
that are defined for the support. The four basis functions in the
child node 706 are generally represented by b,7/, where b
generally denotes a basis function, j denotes the scale of the
basis function, and (k, 1) denotes the spatial translation. For
example, the basis functions 1n child node 710 are represented
by the symbol b', |, indicating the node includes all four basis
functions defined on the support <1,1,1>, as shown in the key
712.

Because the child nodes 706 are organized according to
parent-child relationship, any basis function in any child node
706 1s an immediate child basis function of the basis functions
in the node from which the child node 706 depends. For
example, each basis function in the child node 710 is the
immediate child basis function of each of the mother wavelet
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functions 1n the mother node 704. Further, if any basis func-
tion 1n a child node 706 1s a parent basis function, 1ts corre-
sponding child basis functions are located 1n child nodes 706
depending from 1t, and 11 the basis function in the child node
706 1s an immediate parent basis function, its corresponding
immediate child basis functions are located in the child nodes
706 immediately depending from it. For example, in FIG. 7
the child node 710 has four child nodes 706 immediately
depending from 1t, indicating that each of the four basis
functions defined on the support <1,1,1> 1s an immediate
parent basis function of each of the basis functions defined on
supports <2,2,2>, <2,3,2>, <2,2,3>, and <2,3,3>,

As shown, the basis function tree 700 includes all of the
basis functions of the basis set 200 shown 1n FIG. 2, which has
a resolutionn of 3. Of course, the basis function tree 700 may

have greater or fewer child nodes 706 depending on the reso-
lution n.

A direct path through the basis function tree 700 connects
the node 1n which a child basis function lies to the node 1n
which 1ts parent basis function lies. The direct path traces
from the child basis function to the parent basis function
passing through any nodes including the immediate parent
basis functions. For example, in FIG. 7,, a direct path 714
exists from the child basis functiony, *in the child node 716
to the mother scahng function ¢° at the root 702. The child
basis function wl“ in the child node 716 has as immediate
parents all of the basis ﬁmctions 1n the child node 718, includ-
ing basis functions ¢, ", 1 l.-;m : wzm : and Ps,, WhiCh n turn
have the mother wavelet functions ,°, .°, and P,” in the
mother node 704 as immediate parents, which 1n turn having
the mother scaling function ¢ in the root 702 as an immediate
parent. However, the direct path need not extend all the way to
the mother scaling function ¢. in the root 702. For example,
the scaling basis function ¢,, " is a child basis function of the
mother wavelet function ,°, as indicated by the direct path
720 connecting the child node 710 to the mother node 704.

The basis coellicient tree has the same nodes as the corre-
sponding basis function tree. However, instead of organizing
basis functions according to parent-child relationship, the
basis coellicient tree organizes basis coellicients. Each basis
coellicient 1s 1n the node of the basis coellicient tree that
corresponds to the node occupied by 1ts corresponding basis
function 1n the basis function tree. Therefore, the basis coel-
ficient tree has the same nodes positioned with respectto each
other 1n the same manner as the basis function tree. Unlike the
basis function tree, however, 1n the basis coelficient tree the
child nodes include at most three basis coefficients, the child
scaling functions not having basis coellicients because the
wavelet transform projects the function onto the restricted
bases.

For example, FIG. 8 1s a diagram illustrating an example
basis coefficient tree 800, which organizes the basis coetii-
cients for the function F, (v) shown in example 502 of FIG. S.
Because the basis coefﬁmen’[ t, | corresponds to the mother
scaling basis function ¢°, the basis coefficient t, , liesinaroot
802 of the basis coelficient tree 800. The basis coelficients
t) 5, 1) 3, and t, 4 Correspond to the three mother wavelet
functions 11)1 ,P,", and 9,”, and therefore these basis coeffi-
cients lie in a mother node 804 that immediately depends
from the root 802. Below the mother node 804, basis coetfi-
cients are organized in child nodes 806, each child node 806
corresponding to a unique support <7,k,1> and including the
three basis coellicients that correspond to the wavelet basis
functions 1, 7, .7, and ;7 defined for the support. For
example, the child node 810 in the basis coelficient tree 800
includes the three basis coeflicients 1, |4, 1, 5, and 1, | 5 that
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corresponds to the three wavelet basis tunctions 1, -, b 21 3
Y3 ! defined for the support <1, 1, 1> in the child node 710 of
FIG. 7.

As shown, the basis coeflicient tree 800 includes one basis
coellicient for each restricted basis function of the basis set
shown 1n FIG. 4. Of course, the basis coelficient tree 800 may
have greater or fewer child nodes 806 depending on the reso-
lution n of the basis set, and usually a basis set of higher
resolution will be used.

With reference back to block 106 of FIG. 1, the basis
coellicients of the function F.(v) are placed 1n the basis coel-
ficient tree. In some embodiments, one basis coellicient tree 1s
defined for each function F.(v), such that a total of N basis
coellicients trees are defined for the N functions whose prod-
uct 1s being integrated. In other embodiments, a greater num-
ber of basis coellicient tree can be used.

In block 108, the N order 1ntegral coefficients C are
determined, one th order integral coefficient C" appearing in
cach contributing product in the sum of the series of contrib-
uting products that determines the integral u. As mentioned
above, only contributing products that include nonzero N?
order integral coefficients C* contribute to the result u in
equation (10), but when two-dimensional, nonstandard Haar
basis functions are used to represent the functions F,(v), many
of the N” order integral coefficients C* are zero. If the integral
coellicient 1s zero, the entire contributing product i1s zero and
does not contribute to the integral. If the integral coetficient 1s
not zero, 1ts value should be determined so that the contribu-
tion of the contributing product to the integral u 1s considered.
For example, in FI1G. 6 each of the example products 602, 604,
and 606 includes four basis coefficients and one 4™ order
integral coefficients C*. If the 4™ order integral coefficient is
zero, the product 602, 604, or 606 does not contribute to the
integral u. Theretfore, a set of principles for determiming the
N? order integral coefficient CV are described below with
reference to FIGS. 9-13.

FIG. 9 1s a diagram 1illustrating example products of two
basis functions, and an example equation for calculating such
products. As shown in equation (11), a product P~ of two basis
functions b, and b, 1s another basis tunction b 2 scaled by a
sign =, which may be positive or negative, and a magnitude
|P#|, which may be zero:

P’=b,-by==|P’|b 2 (11)

The product P of the two basis functions is not zero if the
support of one of the basis functions completely covers the
support of the other basis function, as shown in examples 901
through 915. As mentioned above, the support of one basis
function completely covers the support of another basis func-
tion 1f the one basis function 1s positionally located 1n the
diagram with respect to the x-y coordinate system 1n every (X,
y) position occupied by the other basis function. In other
words, the product P~ of two basis functions is non-zero if and
only 1f either there 1s a direct path 1n the basis function tree
between the nodes occupied by the two basis functions,
meaning the two basis functions are related as parent and
child, or the two basis functions lie 1n the same node of the
basis function tree, meaning the two basis functions have the
same support. Otherwise, when the support of neither basis
function completely covers the support of the other basis
function, the product P* of two basis functions is zero, as
shown 1n examples 916, 917, and 918. In other words, the
product P* of two basis functions is zero if the supports of the
two basis functions are completely disjoint.

In cases in which the product P? is not zero, the sign,
magnitude, and basis function of the product P can be deter-
mined from the characteristics of the two basis function being,
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multiplied together. For example, the product of two 1dentical
wavelet basis functions of the same support 1s the scaling
basis function of the same support, scaled by a magnitude 2,
as shown 1n examples 901, 902, and 903 and 1n equation (12).

Vil Y =2 Orf (12)

The product of two different wavelet basis functions of the

same support 1s the third wavelet basis function of the same
support, scaled by a magnitude 2, as shown in examples 904,

903, and 906 and 1n equations (13):

lp IHJIPEHJZZJHJ 3;;.

Yo, W3, /=2, 7

1P3HJ'IP lHj:yIPEHj (13)

The product of a scaling basis function of a given support
and a wavelet basis function of the same support 1s the wavelet
basis function of the same type and support, scaled by a

magnitude 2, as shown in examples 907,908, and 909 and in
equation (14):

Or/ i/ =2Ysf (14)

The product of two scaling basis functions of the same

support 1s the scaling basis function ot the same support,
scaled by a magnitude 2, as shown 1n examples 910, 911, and
912 and in equation (15):

q)k/ 'q);:f =2 q)k/ (15)

The product of a child basis function and a parent basis
function 1s the child basis function, scaled by a sign + and a
magnitude 2, where the sign is the same as the sign of the
portion of the support of the parent basis function that the
support of the child basis function covers, and where the
magnitude 2 is a function of the scale j of the parent basis
function, as shown 1n examples 913, 914, and 915 and 1n
equation (16):

J+lg j_ 1 j+1
bkf bk _12}5;{3

(16)

For example, 1n example 913, the sign of the product 1s
negative, because the support of the child basis function cov-
ers a portion of the support of the parent basis function that 1s
negative, where the diagram 1s black. The magnitude of the
product 1s one, because the scale 1 of the parent basis function
1s zero. However, 1n example 915, the sign of the product i1s
positive, because the support of the child basis function cov-
ers a portion of the support of the parent basis function that 1s
positive, where the diagram 1s white.

The examples shown 1n FIG. 9 1llustrate basis functions of
the basis set 200 as shown i FIG. 2, but the principles
outlined generally apply to all basis functions, including basis
functions that are not shown in FIG. 2. Additionally, the
principles outlined generally can be applied to determine the
product of more than two basis functions, as described below.

FIG. 10 1s a diagram 1llustrating example products of more
than two basis functions, and example equations for calculat-
ing such products. Just as with the product P> of two basm
tunctions, a product P# of g basis functions b, ... b, ;. b,
another basis function b, scaled by a sign, which may be
positive or negative, and amagnitude |P#|, which may be zero,
as shown 1n equation (17):

Pg:bl'... b

g_

(b, ==|PE|b,g (17)

The product P# of g basis functions can be calculated by
multiplying two of the basis functions together to produce a
product P, as described above with reference to FIG. 9. The
product P? can then be multiplied by the next basis function in
the set of g basis functions. After (g—2) products have been
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calculated, the set of g basis functions 1s reduced to a set of
two basis functions: one being the product P&~" and the other
being the basis function b, as shown in equation (18), below:

PE=(=|P5 b g-1)-b =+ PE|b ¢ (18)

The product P is zero if the product P* of any two basis
functions 1n the set of g basis functions 1s zero. As described
above, the product P~ of any two basis functions is non-zero if
the two basis functions are related as parent and child or 1f the
two basis functions have the same support. Therefore, the
product P# 1s non-zero if and only 1f each basis functions in the
set of g functions lies 1n a node that 1s on a direct path through
the basis function tree to the node occupied by every other
basis function in the set of g basis functions. In other words,
the product P® 1s non-zero 1f and only if all of the basis
functions lie 1n nodes that are on a single direct path through
the basis function tree. Otherwise, the product P# of g basis
functions 1s zero.

For example, an arbitrary set of basis functions 1020 1s
shown 1n example 1004 of F1G. 10. The basis functions lie on
a single direct path 614 through the basis function tree 600 1n
FIG. 6. Therefore, the product 1022 of the set of basis func-
tions 1020 1s not zero, as shown 1n FIG. 10.

Determining the product P# 1s facilitated by placing the
basis functions 1n a ranking order. Basis functions having
finer scales are positioned 1n earlier positions 1n the ranking
order than basis functions having coarser scales, and among
basis functions having the same scale, wavelet basis functions
of a given scale are positioned in earlier positions in the
ranking order than the scaling basis function of that scale. As
a result, a basis function having a finest scale j_ of the setof g
functions appears 1n an earliest position in the ranking order.
It should be noted that the term “finer scale” means a scale
that 1s numerically greater than another “coarser scale”, the
terms finer and coarser denoting the resolution with which
such basis functions are able to represent entities 1n the wave-
let domain.

For example, the set of basis functions 1020 1s organized in
an arbitrary order in example 1004, and the same set of basis
functions 1020 1s organized 1n the ranking order 1n example
1006. An arrow 1024 moves 1n the direction of earlier posi-
tions 1n the ranking order, and terminates at an earliest posi-
tion 1026 occupied by one of the basis functions having the
finest scale j_, which in the set 1020 happens to be a scale j of
2. In the example 1006, the earliest position 1026 in the
ranking order 1s the position that 1s farthest to the left on the
page, although any position on the page can be defined as the
carliest position as long as the basis functions are positioned
relative to each other according to the rule defined above.

Because the multiplication of basis functions 1s commuta-
tive, organizing the set of g basis functions in the ranking
order does not change the product P2, as can be seen by
comparing the product 1022 1n example 1004 with the prod-
uct 1028 1 example 1006. However, organizing the basis
functions 1n the ranking order does facilitate determining the
sign, the magnitude |P%|, and the basis tunction b s of the
product P%.

In cases 1n which the product P# 1s not zero, the magmtude
of the product P# can be determined using equation (19):

where 2, 1s the determined by taking the sum of the scale of
cach basis function 1n the set of g functions and then subtract-
ing the finest scale 1, appearing in the set of g functions. As
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noted above, the finest scale 7 1s the scale of at least the basis
function appearing 1n the earliest position 1026 1n the ranking
order. The sign can be determined by multiplying together a
series ol signs, the series of s1igns including one sign for each
parent basis function in the product P#, the sign for the parent
basis function being the sign of the portion of the support of
the parent basis function that 1s covered by 1ts child basis
functions. It should be noted that a negative magnitude effects
a reversal of the colors 1n the diagram because, as mentioned
above, the diagram 1s white where the magnitude 1s positive,
black where the magnitude 1s negative, and gray where the
magnitude 1s zero.

For example, 1n example 1006, the set of basis functions
1020 includes five basis functions having a scale 1 of 2, two
basis functions having a scale j of 1, and two basis functions
having a scale j o1 0. The finest scale j_ appearing 1n the set of
basis functions 1020 1s j of 2, which 1s the scale of the basis
function 1n the earliest position 1026. Therefore, the magni-
tude of the product 1028 is [P?[=2{(2+2+2+2+2+1+1400)=2) " A
negative portion of the support of the parent basis function
v} lml 1s covered by the supports of 1ts child basis functions. A
positive portion of the support of the parent basis function
{\) 3m1 1s covered by the supports of 1ts child basis functions. A
positive portion of the support of the parent basis functiona)
1s covered by the supports of its chuld basis functions, and a
positive portion of the support of the parent basis function ¢°
1s covered by the supports of 1ts child basis functions. There-
fore, the sign of the product 1028 1s negative, or (=) (+)-(+)-
(+)=(=).

The basis function b ¢ of the product P can be determined
by 1solating the subset of m basis functions having the finest
scale 1_, and taking the product P™ of the basis functions in the
subset. In cases 1n which the product P# 1s not zero, the basis
tunction b ¢ appearing in the product P® 1s the same as the
basis function b~ appearing in the product P™ ot the subset of
m basis Tunctions having the finest scale j_. This result occurs
because the product of a child basis function and a parent
basis function 1s the child basis function, scaled by a sign and
a magnitude, as explained above with reference to examples
913 through 916 of FI1G. 9.

For example, 1n example 1006, the finest scale 7, 1n the set
of basis functions 1020 1s ascale ofj_ of 2, and the subset 1030
includes all of the basis functions having this scale. In
example 1008, the product of the basis functions 1n the subset
1030 1s taken. The basis function 1032 of the product 1034
that results is the scaling basis function ¢,,~ and therefore the
basis function 1036 of the product 1028 1s also the scaling
basis function ¢, >, as shown in example 1006.

Alternatively, the basis function b - appearing in the prod-
uct P® of g basis functions can be determined from the sup-
ports <),k 1> and basis function types of the basis functions in
the subset of m basis functions having the finest scale 1. In
cases 1 which the product P# 1s not zero, the support of the
basis function b s appearing in the product P# 1s the same as
the support of the m basis functions having the finest scale 7.
Note that each basis function 1n the subset of m basis func-
tions having the finest scale 1 has the same support<j,.k,1>;
otherwise, at least two basis functions would not lie on a
direct path through the basis function tree and their product P~
would necessarily be zero, causing the product P® of the set of
g basis functions to also be zero.

The basis function type of the basis function b ¢ appearing
in the product P# can be determined from the parities of three
numbers, each number corresponding to one wavelet function
type and being the aggregate number of times the wavelet
function type appears 1n the subset ol m basis functions hav-
ing the finest scale 1_. FIG. 11 15 a table that tabulates the basis
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tunction type ofthe basis function b s appearing in the product
P# as a function of the parity of the aggregate number of each
wavelet function type 1n the subset of m basis functions hav-
ing the finest scale 7. It should be noted that, for the purposes
of this disclosure, the parity of zero 1s considered to be even.

For example, in example 1006, cach basis function 1n the
subset of basis functions 1030 having the finest scale j_has the
support <2,1,1>, and therefore the basis function 1036
appearing 1n the product 1028 has the support <2,1,1>. The
subset of basis functions 1030 includes three basis functions
of wavelet function type 1,, one basis function of wavelet
function type 1., and one basis function of wavelet function
type ;. The aggregate number of wavelet function type 1, 1s
three, and the parity of this aggregate number 1s odd. The
aggregate number of wavelet function type 1, 1s one, and the
parity of this aggregate number 1s odd. The aggregate number
of wavelet function type 1V, 1s one, and the parity of this
aggregate number 1s odd. Therefore, according to FIG. 1 the
basis function type of the product P* 1s the scaling basis
function ¢, which 1s the basis function 1036 appearing 1n the
product 1028 1n example 1006.

Regarding the integral of basis functions, the itegral of
any one of the wavelet basis functions y,, 4y, or, 1s zero, as
shown 1n equation (20):

[P/ dxdy=0

However, the integral of a scaling basis function ¢ is 27, as
hown 1n equation (21):

(20)

o

[P dxdy=27

Returning to block 108 of FIG. 1, the N” order integral
coefficient C" is determined for each contributing product
appearing in the wavelet domain representation of the integral
u. FI1G. 12 1s a block diagram 1llustrating an embodiment of a
method 1200 for determining the N order integral coeffi-
cient C", the method employing the principles described
above with reference to FIGS. 7-11. In block 1202, 1t 1s
determined whether the N basis functions b, that appear 1n the
product PV lie in nodes on a single direct path through the
basis function tree. If the N basis functions b, do not lie in
nodes on a single direct path, the product P* of the N basis
functions 1s zero, as shown 1n block 1204. In such case, the
N” order integral coefficient CV is also zero, as shown in
block 1206. If the N basis functions b, do lie 1n nodes on a
single direct path through the basis function tree, the product
P" is nonzero, as shown in block 1208.

In cases in which the product PV is nonzero, the N order
integral coefficient C" is also nonzero if the basis function
type ot the basis function b » appearing in the product PYisa
scaling basis functions ¢, according to equation (21). Other-
wise, the basis function type 1s one ol the wavelet basis
functions Y, 1, or ., and the N” order integral coefficient
C" is zero, according to equation (20). Therefore, in block
1210, the basm function type of the basis function b » appear-
ing in the product P" is determined. In block 1212, 1t 1s asked
whether the basis function type of the basis funetlen b v
appearing in the product PV is a scaling basis function ¢.

FIG. 13 1s a block diagram 1llustrating an embodiment of a
method 1300 for determining the basis function type of the
basis function b_, , appearing in the product P*. In block
1302, the N basis functions b, that appear in the product P*
are placed in the ranking order, such as the ranking order
described with reference to FI1G. 10. Inblock 1304, a subset of
m basis functions b, having a finest scale j_, are 1solated from
the N basis functions that appear in the product P". In block
1306, the aggregate number of times each of the three wavelet
function types appears 1n the subset of m basis functions are
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counted. In block 1308, the parity of each of the three aggre-
gate numbers 1s compared. In block 1310, 1t 1s asked whether
the parities of the three aggregate numbers are the same. If the
parities of any of the three aggregate numbers 1s different
from the other numbers, then the basis function b~ of the
product PV is one of the wavelet basis functions, as shewn n
block 1312. Specifically, the basis function b~ ot the product
1s the wavelet basis function that corresponds to the aggregate
number having a parity that differs from the other two aggre-
gate numbers. If the parities of each of the three numbers are
the same, the basis functionb » of the product PV is the scaling,
basis function ¢, as shown 1n block 1314.

Returning to FI1G. 12, 11 the basis function type of the basis
function b~ appearing in the product PY is not the scaling
basis funetlen type, the N” order integral coefficient C is
zero, as shown 1n block 1214. If the type 1s the scaling basis
function type, the N” order integral coefficient C¥ is nonzero,
as shown 1n block 1216. In such a case, the nonzero value of
the N order integral coefficient C is found using equation
(22), which results from combining equations (19) and (21):

Cﬂl by =+ = 2%~ (22)

In equation (22), 2, 1s the sum of the scales of the N basis
functions and j_ 1s the finest scale of the N functions. The sign
1s determined by multiplying together a series of signs, the
series of signs including one sign for each parent basis func-
tion in the product PV, the sign for the parent basis function
being the sign of the portion of the support of the parent basis
function that 1s covered by its child basis functions, as
described above.

The methods 1200 and 1300 can be implemented by com-
puter. In such case, a system and/or a computer readable
medium can be employed, the system and/or computer read-
able medium comprising logic configured to perform the
steps of the method 1200 and/or 1300, as described in further
detail below.

With reference back to FIG. 1, if the N” order integral
coefficient C” is zero, the product that includes the N order
integral coefficient C" is eliminated from the sum of the series
of contributing products in block 110. In block 112, ifthe N*
order integral coefficient C”V is nonzero, the product that
includes the N order integral coefficient CV is added to the
sum of the series of contributing products. For example, 1n
example 600 of FIG. 6 the integral of the product of the
functions 1s represented as the sum of the series of contribut-
ing products that includes products 602, 604, and 606. In
product 602, the basis coellicients correspond to basis func-
tions that lie on a single direct path through the basis function
tree, as shown 1n example 612. The number of each wavelet
function type appearing in the subset of finest scale basis
functions 1s zero, and according to FIG. 11 the basis funetion
type of the basis function b+ of the product P, , , *is the
scaling basis function ¢. Therefore the 4” order 1ntegral
coellicient Cbl:bl:blzbl in the product 602 1s not zero, meaning
the product 602 contributes to the integral and sheuld not be
climinated from the series of contributing products.

In product 604, the basis coellicients correspond to basis
functions that do not lie on a single direct path through the
basis function tree, as shown 1n example 614. Therefore, the
product of the basis function 1s zero, and the corresponding
4™ order integral coefficient in the product 604 is zero, mean-
ing the product 604 does not contribute to the integral and can
be eliminated from the series of contributing products.
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In product 606, the basis coellicients correspond to basis
functions that lie on a single direct path through the basis
function tree. Theretfore, the product of the basis function 1s
nonzero. However, the aggregate numbers of each wavelet
function type are not all of the same parity, as shown 1 5
example 616. Therefore, the 4” order integral coefficient
appearing in the product 606 1s zero, meaning the product 606
does not contribute to the integral and can be eliminated from
the series of contributing products.

In some embodiments, the systems and methods disclosed 10
herein can be implemented 1n software, firmware, hardware,
or combinations thereof. Furthermore, the components of the
systems and methods can reside on one computer system, or
can be distributed among more than one computer system. In
some embodiments, the systems and methods are imple- 15
mented 1n software, as an executable program or programs,
and are executed by a special or general-purpose digital com-
puter, or combination of computers, such as a personal digital
assistant (PDA) or personal computer (PC).

Reference 1s now made to FIG. 14, which 1s a block dia- 20
gram 1llustrating a general-purpose computer system 1400
that can be used to implement embodiments of the systems
and methods disclosed herein. Generally, in terms of hard-
ware architecture, the computer 1401 includes a processor
1402, memory 1403, and one or more mput or output (I/O) 25
devices or peripherals 1404 that are communicatively
coupled via a local interface 1403. The local interface 1405
can be, for example but not limited to, one or more buses or
other wired or wireless connections, as 1S known 1n the art.
The local interface 1405 may have additional elements (omit- 30
ted for simplicity), such as controllers, buflers, drivers,
repeaters, and recervers, to enable communications. Further,
the local interface 1405 may include address, control, and
data connections to enable appropriate communications
among the aforementioned components. 35

The processor 1402 1s a hardware device for executing
soltware, particularly that stored in memory 1403. The pro-
cessor 1402 can be any custom made or commercially avail-
able processor, a central processing unit (CPU), an auxiliary
processor among several processors resulting from the com- 40
puter 1401, a semiconductor based microprocessor (in the
form of a microchip or chip set), a microprocessor, or gener-
ally any device for executing software instructions.

The memory 1403 can include any one or combination of
volatile memory elements (e.g., random access memory 45
(RAM, such as DRAM, SRAM, SDRAM, etc.)) and nonvola-
tile memory elements (e.g., ROM, hard drive, tape, CDROM,
etc.). Moreover, the memory 1403 may incorporate elec-
tronic, magnetic, optical, or other types of storage media.
Note that the memory 1403 can have a distributed architec- 50
ture, where various components are situated remote from one
another, but can be accessed by the processor 1402.

The software in memory 1403 may include one or more
separate programs, each of which comprises an ordered list-
ing of executable instructions for implementing logical func- 55
tions. In the example of FI1G. 14, the software in the memory
1403 includes one or more components of the systems and
methods disclosed here, and a suitable operating system
1406. The operating system 1406 essentially controls the
execution of other computer programs, such as the systems 60
and methods disclosed herein, file and data management,
memory management, and communication control and
related services.

The systems and methods disclosed herein may be a source
program, executable program (object code), script, or any 65
other function comprising a set of istructions to be per-
formed. When a source program, the program needs to be
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translated via a compiler, assembler, interpreter, or the like,
which may or may not be included within memory 1403, so as
to operate properly in connection with the operating system
1406.

The peripherals 1404 may include mput devices, for
example but not limited to, a keyboard, mouse, scanner,
microphone, etc. Furthermore, the peripherals 1404 may also
include output devices, for example but not limited to, a
printer, display, facsimile device, etc. Finally, the peripherals
1404 may further include devices that communicate both
inputs and outputs, for mnstance but not limited to, a modula-
tor/demodulator (modem; for accessing another device, sys-
tem, or network), aradio frequency (RF) or other transceiver,
a telephone 1nterface, a bridge, a router, etc.

I1 the computer 1401 1s a PC, workstation, or the like, the
soltware 1n the memory 1403 may further include a basic
iput output system (BIOS). The BIOS 1s a set of essential
soltware routines that mnitialize and test hardware at startup,
start the operating system 1406, and support the transier of
data among the hardware devices. The BIOS 1s stored 1n the
ROM so that the BIOS can be executed when the computer
1401 1s activated.

When the computer 1401 1s 1n operation, the processor
1402 1s configured to execute software stored within the
memory 1403, to communicate data to and from the memory
1403, and to generally control operations of the computer
1401 1n accordance with the software. The systems and meth-
ods disclosed herein, in whole or i part, but typically the
latter, are read by the processor 1402, and perhaps butlered
within the processor 1402, and then executed.

It should be noted that the systems and methods disclosed
herein can be stored on any computer readable medium for
use by or 1n connection with any computer related system or
method. In the context of this document, a “computer-read-
able medium”™ can be any means that can store, communicate,
propagate, or transport the program for use by or 1n connec-
tion with the instruction execution system, system, or device.
The computer-readable medium can be, for example but not
limited to, an electronic, magnetic, optical, electromagnetic,
inirared, or semiconductor system, system, device, or propa-
gation medium. A non-exhaustive example set of the com-
puter-readable medium would include the following: an elec-
trical connection having one or more wires, a portable
computer diskette, a random access memory (RAM), a read-
only memory (ROM) an erasable programmable read-only
memory (EPROM, EEPROM, or Flash memory), and a por-
table compact disc read-only memory (CDROM).

In an alternative embodiment, in which the systems and
methods disclosed herein are implemented in hardware, they
can be implemented with any or a combination of the follow-
ing technologies, which are each well known 1n the art: a
discrete logic circuit(s) having logic gates for implementing
logic functions upon data signals, an application specific
integrated circuit(s) (ASIC) having appropriate combinato-
rial logic gates, a programmable gate array(s) (PGA), a field
programmable gate array(s) (FPGA), etc.

Any process descriptions or blocks in tflowcharts should be
understood as representing modules, segments, or portions of
code which include one or more executable instructions for
implementing specific logical functions or steps in the pro-
cess. As would be understood by those of ordinary skill in the
art of software development, alternate implementations are
also included within the scope of the disclosure. In these
alternate implementations, functions may be executed out of
order from that shown or discussed, including substantially
concurrently or in reverse order, depending on the function-
ality mvolved.
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Implementing the method 100 described above using a
computer may be computationally expensive, for example, on
the order of O(M™*N), where M is the number of basis func-
tions used to represent each function and N 1s the number of
functions whose product 1s being integrated. FIG. 15 1s a table
illustrating seven cases that facilitate determining the N”
order integral coefficient C” using a recursive approach. The
seven cases are used to construct tree-traversal algorithms for
determining the integral u of the product of the plurality of
tfunctions. The tree-traversal algorithms may be relatively less
computationally complex than the method 100, and therefore
relatively faster when implemented by computer.

The seven cases of FIG. 15 apply 1n cases 1n which the
product of more than two functions N 1s being integrated. In
such cases, the N order integral the coefficient CV can be
determined by placing the basis functions appearing in the
product P in the ranking order, determining a product P*~! of
the first (N—1) basis functions appearing 1n the ranking order,
and comparing the basis function type and scale of the prod-
uct PY~! to the basis function type and scale of the basis
function b”. In such a case, the N order integral coefficient
C” is the integral of the N” order basis product P*:

(23)

N —1
C = | P - by
biy | Py s - Py bpy Phys -

Php_|

where P"~' is the product of the first (N-1) basis functions
appearing in the ranking order and b is the N basis function
appearing in the ranking order.

The N7 order integral coefficient C” is non-zero ifand only
if the basis function type of the product P? is a scaling basis
function, which only occurs 1f one of the following cases hold

for the ranked basis product P*=P"'b

1.b vrand b" are wavelet basis ﬁmctlons of the same type,

and both have identical support. In this case, C*=IP"'1.

2. Both b »-rand b, are both the mother scaling function. In
this case, C"=1.

3. bov11s a scaling basis function, and b, 1s a parent basis
function of b»1. In this case, C* — V%N where j is
the scale of b,, and where the sign i1s the sign of the
portion of the support of b, that1s covered by the support
of b 1.

Otherwise the basis function type of the product PV is a
wavelet basis function and therefore, the N order integral
coefficient C" is zero. In such case, one of the following rules
describes the ranked basis product PY=P"~'-b,

4. bov1 and b, have 1dentical supports. bpv1 1s a scaling
basis and b,; 1s a wavelet basis function. In this case,
IPY=4'xC"~! and b v is a wavelet basis function of the
same type and support as b ..

5. bov-1 and b,, have 1dentical supports. bv-1 1s a wavelet
basis function, b,,1s a child scaling basis function. In this
case, |PYI=2xIPY"'| and b~ is a wavelet basis function
of the same type and support as b 1.

6. b1 and b, have 1dentical supports. Each are wavelet
basis functions of different basis function types. In this
case, |IP"1=2x|P"~" and b v is the wavelet basis function
of the third type and the same support.

7. b, " is a child basis function and b, is its parent basis
function. b,~-1 1s a wavelet basis functlon In this case,
PY|=+2x|P"~'| where j is the scale of b,, and the sign is
the s1gn of the portion of the support oi' b, that 1s covered
by the support of b~1-b~1s a wavelet basis function of
the same type and support b 1.
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FIG. 16 1s a block diagram 1llustrating another embodiment
of a method 1600 for determining the integral of the product
of a plurality of functions. Like the method 100, the method
1600 1s employed with reference to equation (10) above.
Therefore, the method 1600 determines the integral u of a
plurality of functions that includes N functions F.(v), 1 being

an integer from 1 to N.

In block 1602, each of the plurality of functions F.(v)
whose product 1s being integrated 1s projected 1nto the wave-
let domain. Projecting the functions F,(v) into the wavelet
domain comprises, for example, performing the wavelet
transform on each function to project the function onto the
basis set B. The wavelet transform 1s the two-dimensional,
non-standard Haar transform and the basis set 1s the two-
dimensional, non-standard Haar basis set. Each of the func-
tions F.(v) 1s then represented 1n the wavelet domain as the
series of basis coetlicients 1, , scaling basis functions b, of the
basis set B. Specifically, the basis functions b, are the
restricted basis functions of the basis set and the basis coet-
ficients 1, , are the wavelet coetlicients of the wavelet basis
functionsy,,y,°, and y,° (except for the basis coefficient of
the mother scaling function ¢°).

In block 1604, the basis coetficients 1, ;, of each function
F.(v) are encoded 1n a wavelet tree W .. The wavelet tree W, 1s,
for example, a tree-shaped data structure that stores the basis
coefficients 1, ;, of one function F,(v), organizing the basis
coellicients according to the parent-child relationships
described above with reference to the basis function tree 700
and the basis coellicient tree 800. The wavelet tree W, has the
coefficient of the mother scaling function ¢° at a root of the
tree, and nodes w, depend from the root. Each node w,
includes the basis coetficients 1, , of the restricted basis func-
tions b, defined for the support <3, k, 1>, and each node points
to 1ts four immediate child nodes having supports <j+1, k, 1>.
For example, a mother node depending from the root stores
the mother wavelet coeflicients, and four immediate child
nodes having supports <1, k, 1> depend from the mother node.
The basis coetficients 1, , stored in the nodes w, are wavelet
coetficients, because each of the restricted basis tunctions b,
1s of a wavelet type except for the mother scaling function ¢,
the coetticient of which 1s stored in the root. Eachnode w, also
has a variable that stores a signed parent summation of the
node.

FIG. 17 illustrates an example wavelet tree W, 1n pseudo
code 1700. In line 1, the data structure augtree 1s defined, the
data structure augtree being one wavelet tree W . In line 2, a
variable dc 1s defined to store the mother scaling coelficient.
In line 3, a pointer node 1s defined to point to a data structure
augnode, which stores one node w, of the wavelet tree W.. In
line 5, the data structure augnode 1s defined. In line 6, an array
[3] 1s defined to store the three wavelet coetlicients of the
node w,. In line 7, a variable parentsum 1s defined to store the
signed parent summation of the node w,, which 1s described
below. In line 8, an array of four pointers ch[4] 1s defined, the
pointers of the array pointing to the node’s four immediate
child nodes w,, each of which also 1s stored using the data
structure augnode.

A person of skill may note that the wavelet tree W, 1s
similar to other data structures for encoding wavelet coelli-
cients, such as the quadtree structure described by Berman et
al. 1n “Multiresolution painting and compositing”, In Proc.
SIGGRAPH 94, 85-90, 1994, or the zero-tree structure

described by Shapiro mn “E

Embedded image coding using
zerotrees ol wavelet coetlicients”, IEEE Transactions on Sig-

nal Processing SP, 41 (December), 3445-3462, 1993, both of
which are imcorporated by reference 1n their entireties.
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With reference back to FIG. 16, in block 1604 the basis
coetlicients 1, ;, of the function F,(v) are encoded in the wave-
let tree W.. In some embodiments, each function F.(v) 1s
encoded 1nto 1ts own wavelet W, such that one wavelet tree W,
results for each of the N functions whose product 1s being
integrated, 1 being an integer from 1 to N. In other embodi-
ments, each function F,(v) may be encoded 1n a plurality of
wavelet trees W,

In block 1606, non-linear approximation 1s performed on
cach function F.(v) to discard insignificant basis coeificients
t, ,- Non-linear approximation 1s known 1in the art, and there-
fore a detailed discussion 1s omitted here. For example, non-
linear approximation 1s described in Devore, “Nonlinear-ap-
proximation,” Acta Numerica 7, 51-150 (1998). Generally,
however, non-linear approximation presupposes that if a
basis coefficient f,, 1s nsignificant with respect to a given
threshold, then all of the basis coeltlicients corresponding to
basis functions of higher scales 1 are also likely to be 1nsig-
nificant with respect to that threshold. Therefore, the 1nsig-
nificant basis coetticients f, , can be discarded.

In embodiments 1n which the non-linear approximation 1s
performed after the basis coetlicients {1, ;, are encoded, the
insignificant basis coetlicients are discarded by removing the
insignificant basis coetlicients from the wavelet tree W.. In
other embodiments, the non-linear approximation 1s per-
tormed betore the basis coetficients 1, ;, are encoded into the
wavelet tree W.. In such embodiments, the imnsignificant basis
coetlicients 1, , are discarded by only encoding the significant
basis coelficients into the wavelet tree W, without encoding
the 1nsignificant basis coetlicients. In such an embodiment,
blocks 1604 and 1606 of FIG. 16 are reversed. In still other
embodiments the non-linear approximation 1s omitted. In
embodiments 1n which the non-linear approximation 1s omit-
ted, determining the integral u of the plurality of functions
F (v) 1s relatively more computationally complex and 1s rela-
tively slower; however, the value determined for the integral
may be more accurate. In still other embodiments, the non-
linear approximation 1s performed on some but not all of the
wavelet trees W, such that some of the functions F.(v) are
approximated but others are not.

In block 1608, the 1ntegral u of the product of the plurality
of functions F(v) 1s determined by traversing direct paths
through the wavelet trees W, that represent the functions,
along which direct paths the N” order integral coefficients C
may be non-zero. Traversing direct paths through the wavelet
trees W, comprises synchronously traversing a plurality of
wavelet trees W, the wavelet trees W, storing the basis coet-
ficients of the functions whose product 1s being integrated, at
least one wavelet tree being traversed for each function F,(v)
whose product 1s being integrated. For example, exactly N
wavelet trees W, are synchronously traversed in embodiments
in which each function F,(v) 1s represented by exactly one
wavelet tree W ..

As the wavelet trees W, are traversed, a set of nodes
[W,, ..., Wx\] are synchronously processed. The set of nodes
[W,, ..., W,]includes one node w, from each of the wavelet
trees W .. The term “traversing direct paths through the wave-
let trees W.” denotes that the nodes w, that are synchronously
processed correspond to nodes 1n the basis function tree that
lie on a single direct path through the basis function tree, as
described above with reference to FIG. 7. In other words,
within the set of nodes [w,, . . ., W], no two nodes w,
correspond to nodes of the basis function tree that are not on
a direct path with each other. Alternatively stated, no two
nodes W, correspond to supports <,k,1>> that are completely
disjoint from each other. Instead, for any two nodes W, 1n the
set of nodes [w, ..., W], the supports <j.k,I> to which the
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nodes W, correspond are either the same or are related as
parent and child. In other words, for any two nodes W, 1n the
set, the support <7, k, 1> of one of the nodes W, completely
covers the support <3, k, 1> of the other node w.,.

Traversing the wavelet trees W, only on the direct paths
employs the principles described above: the N” order integral
coefficient C" of basis functions may be nonzero if each of the
basis functions lie on a single direct path through the basis
function tree; however, the N” order integral coefficient C* is
zero 11 the basis functions do not lie on a single direct path
through the basis function tree. Recall that the integral u of the
product of the plurality of functions F,(v) 1s the sum of a series
ol contributing products, as shown 1n equation (10). Each
contributing product includes one basis coeliicient from each
function F.(v) and one N” order integral coefficient C~,
which 1s the integral of the corresponding basis functions.
Because the basis coelficients are stored 1 nodes w, of the
wavelet trees W, the mtegral u can be determined by syn-
chronously processing one node w, from each wavelet tree
W.. However, synchronously processing nodes w, from dis-
parate wavelet trees W, that do not correspond to nodes on a
single direct path through the basis function tree 1s of little
value, because in such case, the N order integral coefficient
C" is necessarily zero. Therefore, confining the traversal to
direct paths through the wavelet trees W, while avoiding the
indirect paths enables accumulating contributing products
that could contribute to the integral u while avoiding those
that necessarily do not contribute to the integral u. As a result,
traversing the wavelet trees W, on direct paths determines the
integral u with the same accuracy but with fewer computa-
tions than other systems and methods.

FIG. 18 1s a block diagram illustrating an embodiment of a
method 1800 for traversing direct paths through a plurality of
wavelet trees W, to determine the integral u of the product of
the plurality of functions F,(v), which can be employed 1n
block 1608 of F1G. 16. In block 1802, the integral u 1s initially
incremented with the contribution of the roots of the wavelet
trees W.. The contribution of the roots 1s determined by mul-
tiplying together the mother scaling coetlicient ¢ stored 1n the
root of each wavelet tree W , because in such case the N” order
integral coefficient C" is one. In block 1804, a set of nodes
[W,, ..., Wy]1s synchronously processed. The set of nodes
[w,, ..., W] includes one node w, from each of the wavelet
trees W .. No two nodes w, 1n the set correspond to supports <],
k, I> that are completely disjoint from each other, because the
wavelet trees W, are traversed on direct paths. In block 1806,
a contribution to the mtegral u 1s determined for the set of
nodes [w,, . .., WJ]. In some embodiments, the contribution
of the set of nodes [w,, . . ., w,,] 1s determined by separating
the nodes mto a group of null nodes and a group of the
non-null nodes, determining a contribution of the null nodes,
and determinming a contribution of the non-null nodes. The
contribution of the null nodes 1s limited to the contribution of
their parent nodes, which 1s not ignored even though the
nodes themselves are null. The contribution of the non-null
nodes 1s determined either by recursively expanding the non-
null nodes to calculate the contribution of subsets of the
non-null nodes, or by iterating through the non-null nodes to
build a table that accumulates the magnitude of the contribu-
tion of the non-null nodes. Regardless of how the contribution
of the set of nodes [w, . .., w,] 1s determined, in block 1808
the integral u 1s incremented with the contribution determined
in block 1806. In block 1810, a set of child nodes [w, ..., w,/]
1s synchronously processed. The set of child nodes [w, . . .,
W, includes one node w, from each of the wavelet trees W,
the one node being the immediate child of the node most
recently processed. Because the child nodes w, immediately
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depend from the most recently processed nodes, the wavelet
trees W, are traversed along direct paths. The contribution of
the set of child nodes [w, . .., w.] may then be determined
in the manner described above, and the integral may be incre-
mented, and the process may be repeated for subsequent sets
of child nodes until the last set of nodes 1s reached.

In at least some embodiments, traversing direct paths
through wavelet trees W, 1n block 1608 of FIG. 16 comprises
applying a tree-traversal algorithm to the wavelet trees. FIG.
19 1llustrates in pseudo code 1900 an example tree-traversal
algorithm 1902 for determining the integral u and embodi-
ments of component routines, such as routine 1904, routine
1906, and routine 1908. The algorithm 1902 is defined as
FunctionProductIntegral in line 1. The algorithm 1902
accepts as iput a set of wavelet trees (W, ..., W,,), one for
each function F,(v) whose product 1s being integrated. In line
2, the 1integral u 1s mitially incremented to the product of the
mother scaling coeflicients, by multiplying together the vari-
able W_..dc of each wavelet tree 1n the set (W, ..., W,,). In
such case, the N” order integral coefficient C" is one, because
regardless of N the integral coellficient of a series of mother
scaling functions ¢° is one and need not be determined to
increment the integral u. In line 3, a routine traverse AugIrees
1s called, which 1s the routine 1904. The routine 1904 1s
configured to simultaneously process a set of nodes
(W,,...,W,)that includes one node w, from each wavelet tree
W, and to increment the integral u as a result of 1ts processing
of the set of nodes. For its 1nitial call, the routine 1904 pro-
cesses the set of nodes (W, .node, . . ., W,.node), which are
the mother nodes that include the mother wavelet coellicients.
The routine 1904 then 1teratively calls itself to capture the
contributions of later sets oI nodes, traversing the set of wave-
let trees (W, ..., W,,) from the top down along direct paths
through the wavelet trees.

Before the routine 1904 1s described 1n detail, the signed
parent summation of the node w,, which is stored in the
variable parentsum of the node w,, 1s described. The mother
node w, that holds the mother wavelet coellicients has the
value of the mother scaling coetlicient dc as its signed parent
summation. For all other nodes w, the signed parent summa-
tion 1s the signed parent summation of 1t’s immediate parent
node p, plus the sum of the wavelet coetfficients stored 1n the
immediate parent node p,, scaled by the magnitude of the
product of two basis functions, one in the node w, and the
other in the immediate parent node p,, as shown 1n equation

(23):

w; parentsum = p; parenisum + 2 [(p; a-sign (0, gi, g;)) + (23)

(pi.B-sign(l, gi, qi)) + (piy-sign(2, gi, q1))]

where p, 1s the immediate parent of the node w,, p,.c 1s the
wavelet coellicient in the parent node p, corresponding to the
basis function of type,, p,.  1s the wavelet coetficient in the
parent node p, corresponding to the basis function of type 1,
p,. v 1s the wavelet coetlicient 1n the parent node p, corre-
sponding to the basis function of type V., (4., q,) 15 the
quadrant of the immediate parent node p, that 1s covered by
the node w,, as described below with reference to equation
(24), and s1gn 1s an array described below with reference to
equation (23).

The node w, corresponds to a unique support <,k 1> that
covers a quadrant (q,, q;) of 1t’s immediate parent node p,,
where the values g, and g, are:

g, =k mod 2 and ¢,=/ mod 2 (24)
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The quadrant (q,, q;) 1s used to determine the sign of the
signed parent summation in conjunction with the array sign
that stores the signs of the four quadrants of the three mother
wavelet functions y,°, ", and " respectively, as shown in
equation (25):

Sigﬂ[:‘)][2][2]:{1?—151?—1;1?1?—1?—1;1?—15—151} (25)

A person of skill may note that the varniable w_.parentsum 1s
mspired by Ng i “Triple product wavelet integrals for all-
frequency relighting”, ACM Transactions on Graphics (SIG-
GRAPH *04) 23, 3, 477-48"7, which 1s incorporated by refer-
ence herein 1n its entirety.

An accumulated parent summation 1s stored in a variable
cum. Specifically, the variable cum 1s initially set to one,
which is the N order integral coefficient CV of a series of
mother scaling functions ¢°, regardless of N. As the set of
wavelet trees (W, .. ., W,,) are traversed, the accumulated
parent summation 1s incremented as described below.

The routine 1904 will now be described. In line 1, the
routine 1904 1s defined as traverseAuglrees, accepting as
inputs the variable cum and the sets of nodes (w,, ..., w,,). In
line 2, the nodes of the set (w,, . . ., wa,) are reorganized into
a two sets of nodes: one being a set of non-null nodes
(w,, . .., w,) and the other being a set of null nodes
(W..1, ..., Wsx). Up to this point, the subscript 1 has denoted
that a specific wavelet tree W, corresponds to a specific func-
tion F.(v), or alternatively that a specific node w, 1s a node of
a specific wavelet tree W .. For the remainder of the discussion
of the algorithm 1902, the subscript 1 merely indicates
whether the node w, 1s null or non-null, with non-null nodes
having subscripts w, to w, and null nodes having subscripts
w, ., to wa. It 15 likely that some of the nodes w, are null in
embodiments 1 which non-linear approximation 1s per-
formed.

Inline 3, the routine 1904 returns 1f at most one of the nodes
in the set (w,, . . ., w,) is null. In such case the N” order
integral coefficient C" is zero, because each node w, only
includes wavelet coetlicients and the integral of each wavelet
basis functions ,, VJ,, and 1, 1s zero.

The set of non-null nodes (w,, . .., w,)can contribute to the
integral u, however, the contribution of the set of null nodes
(W, (s .- .5 Wy 18 limited to the contribution of their parent
nodes p,. Therefore, the contribution of the nodes (w, . . .,
W) 1o the integral u 1s determined by first updating the signed

parent summation w,.parentsum for each node (w,, ..., wx,)
in line 4, updating the accumulated parent summation cum
with the contributions of only the null nodes (w,_,, ..., W)

in line 5, and calling a routine getProductlntegral to deter-
mine the contributions of the non-null nodes (w,, ..., w,) 1n
line 6. The 1ntegral u 1s then incremented with the product of
the accumulated parent summation cum and the return of
getProductIntegral, described below, such that the contribu-
tions of both the non-null nodes and the parents of the null
nodes are captured.

In lines 7 and 8, the routine traverseAuglrees 1904 then
iteratively calls itself four times to independently process the
next four sets of nodes, which are the immediate child nodes
of the non-null nodes. In other words, the routine 1904 calls
itself for the nodes (w,.chl1], ..., w,. ch[1]) 1n a loop, where
ch[1] 1s the pointer to the child node and 1 1s an integer from O
to 3.

Theroutine getProductintegral 1906, which 1s called by the
routine 1904 to determine the contribution of the non-null
nodes (w,, . .., w,), recursively calculates the non-zero N”
order integral coefficients C" using the first three cases of
FIG.15. Inline 1, the routine 1906 accepts a plurality of nodes
w. as mput, mitially processing the set of non-null nodes
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(W,,...,w,.). In lines 3-6 the routine 1906 recursively calls
itself and three instances of a routine getWaveletProduct
1908, passing in one fewer nodes with each call, and returning
the sum of the four routines scaled by variables of the node not
passed 1n for the call. Specifically, the routine 1906 1s scaled
by the parentsum of the node w, not passed 1n and each return
of the routine 1908 1s scaled by one of the three wavelet
coellicients of the node w, not passed 1n. In line 2, the routine
returns zero 1f only one node w, 1s passed 1n.

The routine getWaveletProduct 1908 uses cases 4, 6, and 7
of FI1G. 15 to evaluate the magnitude of the product where the
type of the basis function appearing in the product 1s one of
the wavelet basis functions. In line 1, the routine getWavelet-
Product 1908 accepts as input a plurality ot nodes w, and three
input parameters a, b, and c that differentiate the three differ-
ent wavelet types. In lines 3-7, the routine getWaveletProduct
1908 recursively calls the routine getProductintegral 1906
and three 1nstances of itself, passing 1n one fewer nodes with
cach call, and returming the sum of the four routines scaled by
variables of the node not passed in for the call, plus the
parentsum variables of the fewer nodes scaled by one of the
wavelet coellicients of the node not passed 1n for the call. In
line 2, the routine getWaveletProduct 1908 returns one of the
wavelet coetlicients 1f only one node w, 1s passed 1n.

The embodiment of the tree-traversal algorithm Function-
Productlntegral 1902 may have a computational complexity
on the order of O(m4"), where m is the number of significant
basis coetlicients . , retained after the nonlinear approxima-
tion, and N 1s the number of functions F .(v) whose product 1s
being integrated. By eliminating repetitive operations, the
algorithm 1902 can be optimized such that the computational
complexity 1s on the order of O(mN). For example, the
embodiment of the routine getProductlntegral 1906 traverses
the wavelet trees W, from the top down, recursively expand-
ing the nodes w, to calculate the product of one fewer nodes,
but in other embodiments of the routine the recursive expan-
s10on 1s eliminated to increase the speed of the algorithm.

For example, FIG. 20 1llustrates in pseudo code 2000 an
optimized tree-traversal algorithm 2002 for determining the
integral u, and embodiments of component routines, such as
the routine 2004, the routine 2006, the routine 2008, and the
routine 2010. As shown, the algorithm 2002 1s the same as the
algorithm 1902 and the routine 2004 1s the same as the routine
1904 described above. However, the routine getProductlnt-
egral 2006 differs from the routine getProductlntegral 1906.
Specifically, instead of recursively expanding the nodes w,
from the top down to determine the N” order integral coeffi-
cients C", the routine getProductIntegral 2006 employs an
intermediate table T [N], an embodiment of which 1s 1llus-
trated with example pseudo code 2100 1n FIG. 21.

In line 1 of FIG. 21, the table T [N] 1s defined to have N
records, the fields of which are described with reference to a
subset of nodes. In line 2, the field ¢ 1s defined, which stores
the magnitude of the product of a subset of the nodes w, that
have a scaling basis function ¢ appearing 1n the product. In
line 3, the field YP[O0] 1s defined. The field [0] stores the
magnitude of the product of a subset of the nodes w, that have
a wavelet basis function of type 1, appearing in the product.
In line 4, the field 1[1] 1s defined. The field y[1] stores the
magnitude of the product of a subset of the nodes w, that have
a wavelet basis function of type 1, appearing 1n the product.
In line 5, the field [2] 1s defined. The field y[2] stores the
magnitude of the product of a subset of the nodes w, that have
a wavelet basis function of type 1\, appearing in the product.
In line 6, the field cum 1s defined. The field cum stores the
accumulated parent summation of the subset, meaming the
sum of the parentsum variables of each node w, 1n the subset.
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The routine getProductintegral 2006 incrementally builds
the table T by iterating through the set of non-null nodes
(W,,...,w.). Inline 2, the routine 2006 returns zero 11 only
one node w, 1s input 1nto the routine. In lines 3-4, a first record
in the table T [1] 1s updated with the basis coetlicients of the

node w,. A field T [1]. ¢ 1s set to zero because the node w,
does not include a basis coellicient for the scaling basis func-
tion. A field T [1].4[0] 1s updated with the wavelet coelficient
tor the basis function of type 1,, the field T [1].[1] 1s
updated with the wavelet coetlicient for the basis function of
type 1,, and the field T [1].4[2] 1s updated with the wavelet
coellicient for the basis function of type 1 ,. Additionally, the
field T [1].cum 1s set to the signed parent summation of the
node w,, because as mentioned above, the field cum accumu-
lates the signed parent summations of a subset of nodes. In
lines 5-10, the routine 2006 iterates through all of the remain-
ing nodes w, except for the last node, updating a record [1] 1n
the table T for each node. The field T [1].cum accumulates the
signed parent summations of the nodes 1 the subset
(W,, ..., w,) by multiplying the signed parent summation
parentsum of the node w, by the value of the accumulated
parent summation cum stored i the previous record,
T [1-1].cum. The field T [1]. ¢ 1s updated with a value returned
from a routine getP, and the fields T[1].[O0], T [1].[1],and T
[1].[ 2] are each respectively updated with a value returned
from a routine getW, both of which routines are described
below. Inline 11, the routine 2002 returns the value of getP for
the last node w,, as described below.

The routine getP(1) 2008 1s defined on line 1 to accept the
integer 1as mput. In line 2, the routine returns zero 11 the value
of11s one. In line 3-6, the routine 2008 returns a magnitude of
the product of the subset of the nodes (w, ..., w,) 11 the basis
function appearing 1n the product 1s the scaling basis function.
Recall that a product of two basis functions is a scaling basis
function 1f a child scaling basis function 1s multiplied by 1ts
parent basis function or 1f a wavelet basis function 1s multi-
plied by 1tself. Therefore, the routine 2008 returns the sum of
the signed parent summation w,.parentsum multiplied by the
stored magnitude of the product of scaling basis function type
in the preceding record T [1-1]. ¢, and each of the wavelet
coellicients, w, Ap[0], w,.P[1], and w, Ap,[0], multiplied by
cach of the stored magnitudes of the same wavelet type 1n the
preceding record, T [1-1]p[0], T [1-1].[1], and T [1-1].4)
[2], respectively.

The routine getW(a, b, ¢, 1) 2010 15 defined on line 1 to
accept the integer 1 as mput and three input parameters a, b,
and ¢ that differentiate the three different wavelet types. In
line 2, the routine 2010 returns the wavelet coetlicient of type
a 1f the value of11s 1. In lines 3-6, the routine 2010 returns a
magnitude of the product of the subset of the nodes (w, . . .,
w.) 1f the basis function appearing 1n the product 1s the wave-
let basis function of type a.

As mentioned above, the computational complexity of
cach of the tree-traversal algorithms 1s linearly related to m.,
the number of significant basis coellicients retained after the
non-linear approximation 1s performed. For example, the
algorithm 1902, which 1s recursive, may have a computa-
tional complexity on the order of O(m4"), and the algorithm
2002, which employs the table, may have computational
complexity on the order of O(mN). Of course, the computa-
tional complexity of the algorithm affects the speed with
which the integral u 1s determined, and therefore reducing the
computation complexity 1s desirable.

The computational complexity can be turther controlled by
varying the traversal depth of the tree-traversal algorithm.
Traversing at higher traversal depths denotes traversing sub-
sets of nodes that have relatively lower scales and are located
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relatively closer to the root of the wavelet tree, while travers-
ing at lower transversal depths denotes traversing subsets of
nodes that include relatively higher scales and are located
relatively farther from the root node. In some embodiments,
the traversal depth of the algorithm may be controlled, such
that the need for fast computation can be balanced against the
need for accurate computation on a case by case basis.

FIG. 22 1s an embodiment of a system 2200 for determin-
ing the integral u of the product of a plurality of functions
F.(v). The system includes logic 2202 configured to project
the functions F,(v) of the plurality of functions into the wave-
let domain, logic 2204 configured to encode basis coellicients
t, ;, of each function in a wavelet tree W, logic 2206 config-
ured to perform non-linear approximation on the functions
F,(v) to discard 1nsignificant basis coefficients 1, ,, and logic
2208 configured to traverse direct paths through the wavelet
trees W, where the N” order integral coefficients C*¥ may be
non-zero, to determine the integral u of the product of the

functions F,(v) represented by the wavelet trees W ..

In some embodiments, the systems and methods described
above are employed by graphics rendering applications to
re-light and shade objects 1n a scene. Typically, the graphics
rendering application models objects in the scene, and the
lighting and shading of the objects 1s determined using a light
transport model that simulates the interaction of light with the
objects. FIG. 23 1s a diagram 1illustrating an example scene
2300. An object 2302 1n the scene 2300 has a point x on a
surtace 2304 of the object, and a radiance B exiting the point
X 1s a function of a direction of view 0. Generally, determining,
the radiance of the point X requires integrating the product of
a plurality of functions that contribute to the model, as shown
in equation (26):

g (26)
B(x, 0) = fs L{glp(x, ¢ © 0)O(x, sa)(D-sa)]_[ Oi(x, 9)d ¢
i=1

FIG. 24 1s a block diagram 1llustrating an embodiment of a
method of rendering a graphical scene 1n which the radiance
of a point X 1n the scene 1s determined by integrating the
product of a plurality of functions contributing to a light
transport model of the scene. The method 2400 will be
described with reference to the example scene 2300 shown 1n
FIG. 23. In block 2402, the plurality of functions that con-
tribute to the light transport model of the scene 2300 are
determined. The plurality of functions include, for example, a
distant environment lighting function L{¢), a bi-directional
reflectance distribution function (BRDF) p(x, ¢<-m), a local
visibility function O, (X, ¢), a cosine term (D-¢) and a plurality
of dynamic occlusion functions O,(x, ¢). The distant environ-
ment lighting function L(¢) represents distant environment
lighting as a function of a vector ¢, the vector ¢ representing
the incident direction of the light. The BRDF p(x, ¢<n)
models the interaction of the incident light L with the surface
2304 of the object 2302. The local visibility function O, (X, ¢)
represents the local visibility at the point x due to self-occlu-
sion. The cosine term (D-¢) represents Lambert’s law: the
exitant radiance B 1s directly proportional to the dot product
of a vector D and the vector ¢, the vector D being a vector that
1s normal to the surface 2304 of the object 2302 at the point x.
Each dynamic occlusion function O,(x, ¢) represents the
dynamic occlusion at the point x caused by an i” neighboring
object 2306 1nthe scene 2300, where 1 can be any integer from
1 to g, g being the total number of neighboring objects 2306
that contribute to the light transport model. Three neighbor-
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ing objects 2306 are shown 1n FIG. 23 for illustrative pur-
poses, although greater or fewer neighboring objects could be
included.

In some embodiments, the cosine term (D-¢) can be com-
bined with the local visibility O,(x, ¢) term as shown in
equation (27):

. g (27)
B(x, 0) = f L{g)p(x, ¢ © 0)0L(x, sﬂ)]_[ O;(x, @) do
S i=1

where O, (x,9) represents the combined local visibility func-
tion O,(X, ¢) and cosine term (D-¢). For a fixed point X and

direction of view 0, equation (27) 1s simplified to equation
(28):

s (28)
B = f Lpp(@)0ue)| | 0ip)dy
=1

Thus, the exitant radiance B at the fixed point x 1s the integral
of the product of g+3 functions, g being the number of neigh-
boring objects 2306 that could dynamically occlude and cast
a shadow upon the point x. To determine the exitant radiance
B, the product of the functions 1s integrated with respect to all
incident directions ¢ surrounding the point x.

For example, 1n FI1G. 23 a cubemap S surrounds the point x,
and 1n equation (27) the integral 1s taken over the cubemap S.
However, 1n equation (28) the integral 1s taken over one face
2308 of the cubemap S. Therefore, to determine the exitant
radiance B using equation (28), the integral 1s taken s1x times,
once for each face 2308 of the cubemap S, and the six itera-
tions are summed together. In such an embodiment, each
function that contributes to the light transport model of the
scene 15 represented as a cubemap function 2310, and 1n block
2402 determining the plurality of functions comprises deter-
mining the cubemap functions.

Example cubemaps functions 2310 are shown in FIG. 23,
where the distant environment lighting function L{(¢) 1s rep-
resented by the cubemap function 2312, the BRDF p(¢) 1s
represented by the cubemap function 2314, the local visibility
function O, (¢) is represented by the cubemap function 2316,
and three dynamic occlusion functions O,(¢), O,(¢), and
O,(¢) are represented by the cubemap functions 2318, 2320,
and 2322, respectively, one for each neighboring object 2306
in the scene 2300. Again, three neighboring objects 2306 are
illustrated by way of example. Although the cubemaps func-
tions 2310 can be determined 1n a variety of ways that are
known or will later be known to a person of skill 1n the art, one
example embodiment of determining the cubemap functions
1s described below.

In the example embodiment, data 1s collected about the
scene by sampling the objects and lighting within the scene.
The sampled data 1s then processed to create the cubemap
functions 2310. The sampled data may compiled interactively
or 1n advance of run-time, and in cases 1 which the sampled
data 1s compiled 1n advance, the cubemap functions 2310 may
be pre-computed 1n advance or computed interactively.

The lighting cubemap function 2312 is interactively deter-
mined from interactively sampled data of the high dynamic
range 1llumination, as described in Debevec et al., “Recover-
ing high dynamic range radiance maps from photographs,” In
Proc. SIGGRAPH ’97, 369-378, which 1s incorporated by
reference herein 1n 1ts entirety. For example, the 1llumination



US 8,232,993 B2

29

may be sampled at a resolution of 6x64x64, where 6 denotes
the number of faces 2308 of the cubemap and 64x64 denotes
the number of samples taken per face. Sampling the 1llumi-
nation at a resolution that 1s the same as the resolution used to
sample the visibility and BRDF may be desirable because,
sampling at a higher resolution merely captures basis coelli-
cients of a finer scale that will not contribute to the light
transport model 1f comparable basis coelficients are not cap-
tured for other functions.

The BRDF cubemap function 2314 1s interactively deter-
mined from pre-computed data. Prior to run-time, the pre-
computed data 1s tabulated by, for example, sampling Phong
BRDF’s with a resolution mm 0 X ¢ of up to (6x64x64)x(6x
64x64), where 0 . 1s a reflection vector of the direction of view
0 about the vector D that 1s normal to the surface. The Phong
BRDF’s can have a shininess of up to, for example, 200. In
some embodiments, the pre-computed BRDF data can be
gathered as described 1n the Ng paper previously incorporated
by reference. At run-time, the BRDF cubemap 2314 1s inter-
actively interpolated from the tabulated data.

The local visibility cubemap function 2316 is pre-com-
puted using pre-computed data, and the dynamic occlusion
cubemap functions 2318, 2320, and 2322 are determined
interactively using pre-computed data. For each object 2302,
2306 1n the scene 2300, a local visibility field of the object 1s
sampled at points x on its surface 2304. A global visibility
field 1s sampled 1n nearby surrounding regions, such as on a
virtual ground plane of the object that 1s a lower plane of a
bounding box of the object. Sampling the global visibility
field 1s accomplished using schemes such as a planar sam-
pling scheme and/or a spherical sampling scheme. The planar
sampling scheme samples the visibility in the form of con-
centric circles on each object’s virtual ground plane. The
center of each concentric circle 1s the projection of the object
center on the virtual ground plane, the radius of the concentric
circles varying from about 0.05 r to about 10, r being a radius
ol the projection of the object on the virtual ground plane. For
example, one hundred concentric circles may be used, with
about 200 sample points being collected per concentric circle.
The spherical sampling scheme samples the visibility of the
region surrounding each scene entity in the form of concentric
spheres. The centers of the concentric spheres may coincide
with the centers of the concentric circles. Twenty concentric
spheres may be used, the radius of the concentric spheres
varying from about 0.2 R to about 6 R, R being the radius of
the bounding sphere. Fach concentric sphere 1s sampled at
about 6x9x9. Such a sampling scheme 1s similar to the object
occlusion field described i Zhou, et al., “Precomputed
shadow field for dynamic scenes,” ACM Transactions on
Graphics (SIGGRAPH °035),24,3,1196-1201, which 1s incor-
porated by reference herein in its entirety. The difference
between the radiuses of neighboring concentric circles and
spheres, 1 the planar and spherical sampling schemes respec-
tively, increases linearly with increasing distance from the
projection of the object center on the virtual ground plane.

The local wisibility cubemap function 2316 and the
dynamic occlusion cubemap functions 2318, 2320, and 2322
are pre-computed from the sampled data by rasterizing the
coarse model using graphics hardware. Each cubemap 1s ras-
terized at a resolution of 6x64x64. In some embodiments,
multiple objects 2302, 2306 in the scene 2300 share the same
geometry and visibility field, in which case each of the objects
1s represented by the same cubemap function 2310. For
example, 11 a scene includes multiple 1dentical chairs, the
cubemap function 2310 of the chair 1s determined only once.

As can be seen from equation (28), the light transport
model 1s a specific implementation of equation (10). Equation
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(10) generically represents determining the integral u of the
product of a plurality of functions including N generic func-
tions F.(v). In equation (28), the N functions F,(v) are the
functions that contribute to the light transport model, includ-
ing the distant environment lighting function L(¢), the bi-
directional reflectance distribution (BRDF) function p(¢), the
local visibility function combined with the cosine term O, (¢),
and a plurality of dynamic occlusion functions O,(x, ¢),
where 11s an 1iteger from 1 to g.

Because the light transport model 1s known 1n the art, a
through discussion of the model 1s omitted. However, a per-
son of skill would understand that the above equations of the
light transport model are merely examples, and 1n other
embodiments, the model may take other forms. For example,
in some embodiments some of the functions that contribute to
the light transport model may be omitted, or additional func-
tions may be included. Additionally, the cosine term (D-¢)
need not be combined with the local visibility function O, (X,
¢). Italso should be noted that the equations above are defined
in terms of a global coordinate system, although other coor-
dinate systems could be employed. Further, a variety of con-
ventions can be employed for integrating over all incident
directions, as required by equation (27). In the illustrated
embodiment the cubemap S 1s employed, but in other
embodiments other conventions such as a hemisphere can be
employed. Additionally, the functions that contribute to the
light transport model need not be represented as cubemap
functions 2310, or the cubemap functions can be determined
in manners other than those described 1n the example embodi-
ment above.

Once the functions that contribute to the light transport
model are determined 1n block 2402, the method 2400 1s
similar to the method 1600. This 1s because the method 1600
was employed with reference to equation (10) and because
the light transport model of equation (28) 1s a specific imple-
mentation of equation (10), as described above. In block
2404, cach of the plurality of functions that contribute to the
light transport model 1s projected into the wavelet domain, as
described above with reference to block 1602 of FIG. 16. In
embodiments in which the functions are represented as cube-
maps 2310, the sampling resolution used to determine the
cubemap function may determine the resolution n of the basis
set B onto which the cubemap function 1s projected. For
example, 1n embodiments in which the sampling resolution of
6x64x64 1s used, the basis set B may have a resolutionn of 7,
although other resolutions may be used.

In block 2406, the basis coefficients of each function are
encoded 1n a wavelet tree W, In embodiments in which the
functions are represented as cubemap functions 2310, encod-
ing the basis coellicients of the functions 1n the wavelet trees
W. comprises encoding the basis coellicients of each face
2308 of each cubemap function 2310 1n a separate wavelet
tree W.. Thus, six wavelet trees W, are encoded for each
cubemap function 2310, one per face 2308 of the cubemap
function 2310. In other embodiments, each function can be
represented with greater of fewer wavelet trees W..

In block 2408, non-linear approximation 1s performed on
cach function to discard insignificant basis coellicients, as
described above with reference to block 1606 of FIG. 16. In
some embodiments, the non-linear approximation block
2408 1s performed before the encoding block 2406, the non-
linear approximation block 2408 1s performed on only a sub-
set of the functions, or the non-linear approximation block
2408 1s omitted completely. In embodiments 1n which all-
frequency lighting 1s desirable, the distant environment light-
ing function L(¢) 1s approximated using a relatively larger
number of basis coeflicients than the other functions, such
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that the high-frequency components of the lighting are rep-
resented. For example, in embodiments 1n which about 60 to
120 basis coellicients are retained per face 2308 of the cube-
map functions 2314 to 2322, up to 300 basis coellicients may
be retained per face 2308 of the lighting cubemap function
2312, each face corresponding to one wavelet tree W ..

In block 2410, the radiance B of the point x, which 1s the
integral of the product of the functions that contribute to the
light transport model, 1s determined by traversing direct paths
through the wavelet trees W,, where the N” order integral
coefficients C may be nonzero, as described above with
reference to block 1608 of FIG. 6. For example, traversing,
direct paths through the wavelet trees W, may comprise per-
forming the method 1800 described above with reference to
FIG. 18 or applying a tree-traversal algorithm to the wavelet
trees W, such as either the algorithm 1902 or the algorithm
2002 described above with reference to FIG. 19 and FIG. 20.
In embodiments in which the functions are represented as
cubemap functions 2310, traversing the wavelet trees W, may
determine the radiance of the point x over one face 2308 of the
cubemap S. In some such embodiments, each function 1is
represented by a plurality of wavelettrees W, as aresult of the
faces 2308 of the cubmap functions 2310 being encoded 1n
separate wavelet trees W .. In such cases, traversing the wave-
let trees W. comprises traversing sets ol wavelet trees to
determine the radiance B over face 2308, each set correspond-
ing to one face 2308 of the cubemap and each set including
one wavelet tree W, for each function. In other words, the
wavelet trees W, that correspond to a given face 2308 are
traversed to determine the radiance B per face, and the six
radiances B per face 2308 are summed to determine the
radiance B over the entire cubemap S.

To render the point x 1n block 2412 the graphics rendering
application may require three colors, one for each of three
independent color channels. However, the radiance B over the
entire cubemap S may represent one color value for the point
x. This 1s because, for example, the lighting function L(¢) and
BRDF function p(¢) may be different for different color
channels at a single point x. In such case, traversing the
wavelet trees W, comprises iteratively traversing the wavelet
trees to determine three color values for the point x. There-
fore, the tree traversal 1s 1terated six times, once per face of the
cubemap to determine the first color, and the six iterations are
repeated for the second and third color value. As a result, the
tree-traversal 1s 1terated eighteen times per point X, once per
cubemap face 2308 per color channel. In some embodiments,
the depth to which the wavelet trees W, are traversed 1s 1nter-
actively controlled, the purpose of which 1s described below.

In block 2412, the scene 1s rendered. Because graphics
rendering 1s known, a thorough discussion 1s omitted here.
Rendering generally comprises, for example, using a graph-
ics rendering application to rasterize the scene using graphics
hardware. The graphics rendering application sets the color of
the point x using the color values determined 1n block 2410.
The algorithm then 1terates for the next point X, each visible
point X being processed, a plurality of points x producing
objects, and a plurality of objects producing the rendered
scene.

The method 2400 can be used to interactively render
dynamic, high-glossy objects 2302 with realistic, all-fre-
quency shadows. The shadows cast by neighboring objects
2306 on the object 2302 appear in the rendered scene due to
the dynamic occlusion functions O,(X,p), even 1t the objects
are moving. The shadows cast on an object 2302 by itself also
appear in the scene, due to the local visibility function O, (¢).
Further, the shadows cast on the virtual ground plane of the
objects are represented, because the visibility on the virtual
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ground plane was considered 1n creating the cubemap func-
tions. The BRDF p(¢) enables reproducing the lighting
allects caused by materials and textures 1n the scene, includ-
ing glossy materials, and the distant environment lighting
function L(¢) can describe all-frequency lighting, such that
specular highlights and non-diffuse shadows, including mate-
rial specific highlights and shadows, appear in the rendered
scene. Both the lighting and the direction of view can be
varied, and the objects can be interactively manipulated. Note
that any or all of the above-described effects can be simulta-
neously or individually produced, because each of the above-
described functions simultaneously contributes to the integral
B. Therefore, the method 2400 has applicability 1n fields such
as industrial lighting and computer gaming, among others, 1n
which fields interactive lighting 1s desirable.

Further, the speed of rendering and/or richness of the
lighted scene can be interactively controlled by varying the
traversal depth. Limiting the traversal to relatively higher
(lower scale) nodes w, 1n the wavelet trees W, reduces the
computational complexity, which 1s related, such as linearly
related, to the number of nodes w, processed. However, in
cases 1n which the traversal depth 1s limited, the relatively
lower (higher scale) nodes w, may not be traversed, and there-
fore the contributions of these nodes to the lighting of the
scene are not considered. Because the lower nodes w, corre-
late to higher scales, generally representing more resolved or
higher-frequency information, not traversing the lower nodes
w, may eliminate higher-frequency components of shadows
and view-dependent specularities from the light transport
model and therefore the rendered scene. Conversely, travers-
ing relatively lower nodes w, enables the contributions of
relatively more basis coelficients to be considered, the addi-
tional basis coelficients including higher-frequency and/or
more resolved lighting information. Therefore, the rendered
scene may have more detail but may take longer to render due
to the 1increased complexity of determining the lighting.

FIG. 25 1s a block diagram illustrating an embodiment of a
system of rendering a graphical scene 1n which the radiance B
of a poimnt X 1n the scene 1s determined by integrating the
product of a plurality of functions contributing to a light
transport model of the scene. The system 2500 includes logic
2502 configured to determine a plurality of tunctions that
contribute to a light transport model of a scene, logic 2504
configured to project the functions of the plurality of func-

tions into the wavelet domain, logic 2506 configured to
encode basis coefficients of each function 1n a wavelet tree,
logic 2508 configured to perform non-linear approximation
on the functions to discard insignificant basis coefficients,
logic 2510 configured to traverse direct paths through the
wavelet trees to determine the integral of the product of the
functions that contribute to the light transport model, and
logic 2512 configured to render the scene.

FIG. 26 1s a block diagram 1llustrating a method 2600 for
approximating the integral of the product of a plurality of
functions. The method 2600 1s relatively less computationally
complex and 1s relatively faster than the method of other
embodiments; however, the method approximates the inte-
gral more so than the methods of other embodiments.

In block 2602, the plurality of functions F (v) whose prod-
uct 1s being integrated are factored into sets of functions.
Generally speaking, the plurality of functions F.(v) includes
N functions, and the N functions can be factored into a plu-
rality of sets. For example, 1n equation (29) the N functions
are factored 1into two sets, a first set having functions F (v) for
1from 1 to p, and a second set having functions F,(v) for1{rom

(p+1) to N:
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N (29)

dav

For each set, the product of the functions F,(v) in the set can
be represented 1n the wavelet domain as a vector 1. Continu-
ing the above example, the product of the functions of the first
set can be represented as a vector T, and the product of the
functions of the second set can be represented as a vector T,
as shown 1n equation (30):

(30)

N
]_[ Fi(v)

i=p+1

P
T, = ]_[ F:(v) and Ty =
=1

In cases 1n which the products of the functions in the set are
represented as vectors, the integral u of the product of the
functions 1s the integral of the product of vectors, or alterna-
tively, the mner product of the vectors. For example, the
integral of the product of the functions shown in equation (29)
can alternatively be expressed as shown 1n equation (31):

u=|(T)-T)dv=<T\, 15> (31)

where T, and T, are the vectors defined 1n equation (29), and
<T,,T,> denotes the inner product of the vectors.

The integral u can be approximated by fixing at least one of
the vectors in advance while allowing at least one of the
vectors to vary. In cases 1n which at least one of the vectors 1s
fixed, approximating the integral 1s relatively less computa-
tionally complex, and theretfore relatively faster, than 1n cases
in which none of the vectors are fixed. For example, 1n equa-
tion (31), the vector T, can be fixed while the vector T, varies,
Or VICe versa.

Although 1n equations (29) through (31) the N functions
are factored 1nto two sets and one of the sets 1s fixed, a person
of skall would understand that the N functions can be factored
into more than two sets, each of the sets having one or more
functions, and that one or more of the sets can be fixed or can
vary. The remainder of the discussion 1s directed to an
embodiment 1n which all of the functions F,(v) are fixed
except for one function that 1s permitted to vary, as shown 1n
equations (32) to (34). In such an embodiment, the relative
computational complexity 1s further decreased, and the rela-
tive speed of computation 1s further increased.

In block 2602, the plurality of functions F,(v) whose prod-
uct 1s being integrated are factored into a set of fixed functions

and one variable function as shown 1n equation (32):

N (32)

In equation (32), the set of fixed functions 1s the set
[F,(v), ..., Fy_,(v)], and the one varying function 1s the
function F,{v).

In block 2604, a first vector T 1s determined. The first
vector T represents the product of the set of fixed functions
[F,(v),...,F\x_;(v)] inthe wavelet domain as a series of basis
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coellicients (t;, . . ., t,,) or alternatively as the sum of the
series of basis coefficients t, scaling corresponding basis
functions b, as shown in equation (33)

T=(t,... .1, ... , ) where (33)

=

-1 M

Fi= > ltn-bp(v)]
=1

i

Il
| —

In equation (33), t, 1s the basis coellicient corresponding to
the h”” basis function in the basis set B, and M is the number
of basis functions used to represent the product of the set
functions in the wavelet domain. The first vector T 1s deter-
mined using amethod 2700 described below with reference to
FIG. 27, which 1s a block diagram illustrating an embodiment
ol a method for determining the basis coellicients of a vector
representing the product of a plurality of functions 1n the
wavelet domain. In some embodiments, determiming the first
vector T comprises pre-computing the first vector T prior to
run-time. The first vector T can be pre-computed because the
functions whose product is represented by the first vector T
are fixed 1n advance of run-time.

In block 2606, a second vector F 1s determined. The second
vector F 1s the wavelet domain representation of the one
varying function F,; (v), expressing the function F,, (v) as a
series of basis coeflicients (1, . .., 1,,), or alternatively as the
sum of a series of basis coellicients 1, scaling corresponding,
basis functions b,, as shown 1n equation (34):

(34)

F=({fi,..., fgs ..., fug) where

M
Fy) =) [fa-bu)]
h=1

Determining the second vector F can comprise, for example,
projecting the one varying function F,{v) into the wavelet
domain by performing a wavelet transform, encoding the
basis coetficients (1,, . . . , I,,) of the second vector F 1n a
wavelet tree W,,, and performing non-linear approximation
on the one varying function F,, (v), as described above with
reference to blocks 1602 through 1606 of FIG. 16. In some
embodiments, determining the second vector F comprises
computing the second vector F at run-time. Computing the
second vector at run time, such as interactively or 1n real-time,
may be desirable because the function F,; (v) 1s permitted to
vary, 1n which case the second vector F varies also.

In block 2608, the inner product of the first vector T and the
second vector F 1s determined to approximate the integral u of
the product of the functions represented by the vectors, as
shown 1n equation (35):

[ T-Fp (V) dva<TE>=(t fi+ . . . +fiy) (35)

In equation (35), the integral u 1s an approximation because
the first vector T 1s fixed and does not vary. However, because
the first vector T 1s fixed, approximating the itegral u using
the method 2600 1s relatively less computationally complex,
and therefore relatively faster, than other methods. For
example, 1n embodiments 1n which the first vector T 1s pre-
computed 1n advance of run-time, the method 2600 can be
employed to approximate the integral u interactively and/or 1n
real-time. In such embodiments, both the second vector F and
the inner product of the vectors are computed interactively
and/or 1n real-time.
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FIG. 27 1s a block diagram illustrating a method 2700 for
determining the basis coelficients of a vector representing the
product of the functions 1n the wavelet domain. For illustra-
tive purposes, the method 2700 1s described with reference to
an example embodiment, in which the plurality of functions 1s
the set of fixed functions [F,(v), . . ., Fx_;(v)] shown in
equation (33). However, a person of skill would understand
that the method 2700 generally determines a vector that rep-
resents the product of a plurality of functions in the wavelet
domain, independent of the method 2600 and regardless of
the functions whose product 1s being represented.

As shown 1n equation (33), the product of a plurality of
functions F,(v) can be expressed as a series of basis coelli-
cients (t,,...,t,,) scaling corresponding basis functions. The
series of basis coelficients (t,, .. ., t,,) constitutes a vector that
represents the product of the plurahty of tunctions F,(v) in the
wavelet domain. The basis coefficients (t;, . . ., t ) of the
vector T can be determined by projecting the vector onto the
basis functions of the basis set B. In such case, the k™ basis
coellicient t, of the vector T 1s determined by taking the dot
product of the vector T and the corresponding basis function
b, of the basis set B as shown 1n equation (36):

=<1by> (36)

Replacing the vector T 1n equation (36) with the product of the
plurality of functions from equation (33) yields equation (37):

(37)
y bk dv

- _
D iy by
=1 |

M
=f2(ﬁhlbhl
| f11=1
MM M
DI

Z (IN-1hp_ Oy |- Ordv

fips_1=1

N—1 coefficients N bases
flhl '”fN—th_lfbk ‘bhl ] th_ldv

S50 [

h=1 hp=1  hpy_p=1"
=[fi1 for--..
fiz o 11 Chy by
i fon -
Sim o

|—|.

. .cN ]
IN-1,1-Cp b by, by ] T

,b1]+'“+

N RETRELoN | +
In-1m=1"Ch by bar s by

f OV ]
N=LM “Cb barbug,... by

In other words, the k” basis coefficient t, of the vector T is
the sum of a series contributing of products. Each contribut-
ing product in the series 1s the product of multiple basis
coetficients 1, ;, and one N order integral coefficient C, the
multiple basis coetlicients including one basis coetlicient 1, ,
from each of the N-1 functions, and the N order 1ntegral
coefficient C" being the integral of the product of the basis
tunctions b, that correspond to those basis coefficients 1,
along with the basis function b, that corresponds to basis
coelficient t, being calculated. It should be noted that h 1s an
integer from 1 to M and 1 1s an mteger from 1 to (N-1), M
being the number of basis functions b, used to represent a
function F,(v) and (N-1) being the number of functions F .(v)
whose product 1s represented by the vector T.
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Because the similarities between equation (37) and equa-
tion (10) are immediately apparent, the differences between
these equations are now described. Equation (10) determines
the integral u of the product of a plurality of functions F .(v),
while equation (37) determines one basis coellficient t, of a
vector T that represents the product of a plurality of functions
F (v) in the wavelet domain. Although either equation gener-
ally applies to any number of functions, equation (10) 1s
expressed in terms of a plurality of functions F (v) that
includes N functions, and equation (37) 1s expressed 1n terms
of a plurality of functions F (v) that includes N-1 functions.
Both equations require taking the sum of a series of contrib-
uting products, each contributing product one including one
basis coeflicient 1, , from each function F,(v) and one N
order integral coefficient CV. In equation (10), each contrib-
uting product 1n the series includes N basis coelficients and in
equation (37), each contributing product in the series includes
(N-1) basis coellicients. While the number of basis coelli-
cients 1n a contributing product depends on the equation, 1n
either case the contributing product includes the N order
integral coefficient C*V. This means that the order of the N
order integral coefficient C" matches the number of basis
coellicients 1 equation (10), but 1s one greater than the num-
ber of basis coetficients 1n equation (37). In equation (10), the
N order integral coefficient C” is the integral of the N basis
functions that correspond to the basis coellicients appearing
in the product. The N” order integral coefficient C" in equa-
tion (37) 1s similar except that the basis function b, corre-
sponding to the basis coeflicient t;, being determined 1s also
included. Thus, while the two equations represent different
problems, the efficient solution to both lies 1n determining the
N” order integral coefficient C. In both cases the principles
described above with reference to FIGS. 1-15 are applied.

Returning to the method 2700, 1n block 2702 each function
F.(v) whose product 1s to be represented in the wavelet
domain 1s projected into the wavelet domain. In the example
embodiment, the plurality of functions includes the functions
F.(v) of the set of fixed functions [F,(v), . . ., F,_(V)].
Projecting the functions F,(v) mto the wavelet domain com-
prises, for example, performing the wavelet transform on
each function, as described above with reference to block
1602 of FIG. 16. Each function F (v) of the set 1s then repre-
sented as the series of basis coetlicients 1, ;, scaling basis
functions b,

In block 2704, the basis coefficients 1, ;, of each function
F.(v) are encoded 1n a wavelet tree. Encoding the basis coet-
ficients 1, , 1s described above with reference to block 1604 ot
FIG. 16, and the wavelet trees W, are described above with
reference to FIG. 17. In some embodiments, each function
F.(v) 1s encoded 1into one wavelet tree W, although 1n other
embodiments each function F.(v) can be represented using
more than one wavelet tree. In the example embodiment, each
function F,(v) of the set of fixed functions [F,(v), . . .,
F.._,(v)] 1s encoded, and if one wavelet tree 1s used to repre-
sent each function 1n the set, then (N-1) wavelet trees W,
result.

In block 2706, non-linear approximation 1s performed on
cach wavelet tree W, to discard insignificant basis coellicients
t, - Non-linear approximation 1s described above with refer-
ence to block 1606 of FIG. 16. In some embodiments, the
non-linear approximation block 2706 1s performed before the
encoding block 2704, the non-linear approximation block
2704 1s pertormed on only a subset of the functions F (v), or
the non-linear approximation block 2704 1s omitted com-
pletely.

In block 2708, the wavelet trees W, are traversed on direct
paths, along which an N order integral coefficient C*¥ may be
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non-zero, to determine the basis coetlicients t, of the vector T
representing the product of the tunctions F ,(v) 1n the wavelet
domain. Traversing direct paths through the wavelet trees W,
1s generally described above with reference to block 1608 of
FIG. 16. However, unlike the embodiment of FIG. 16 1in
which the imntegral u 1s incremented as the wavelettrees W, are
traversed, 1n this embodiment the basis coefficients t, of the
vector T are determined. For example, an output wavelet tree
W, may be encoded as the input wavelet trees W, are tra-
versed, the output wavelet tree W, having nodes w, 1nto
which the corresponding basis coelficients t, of the vector
Tare encoded. Therefore, 1 this embodiment, traversing
direct paths comprises synchronously traversing a plurality of
wavelet trees W, the wavelet trees W, storing the basis coet-
ficients of the functions [F,(v), . . ., F.._;(v)] whose product
1s being represented 1n the wavelet domain, simultaneously
processing a set of nodes [w,, . .., wa._,] that includes one
node w, from each wavelet tree W, incrementing affected
basis coellicients t,, and encoding the basis coellicients t, in
output nodes w, of an output wavelet tree W,. For example,
(N-1) wavelet trees W, may be synchronously traversed in
embodiments in which each function [F,(v), ..., Far (V)]
1s represented by exactly one wavelet tree W .

As described above, the term “‘traversing direct paths
through the wavelet trees W . denotes that the nodes w, that
are synchronously processed correspond to nodes 1n the basis
function tree that lie on a single direct path through the basis
function tree, as described above with reference to FIG. 7.
Traversing the wavelet trees W, only on the direct paths
employs the principles described above: the N order integral
coefficient C" of basis functions may be nonzero if each of the
basis functions lie on a single direct path through the basis
function tree; however, the N” order integral coefficient C* is
zero 11 the basis functions do not lie on a single direct path
through the basis function tree. Recall that each basis coetii-
cient t, 1s the sum of a series of contributing products, as
shown 1n equation (37), each contributing product including
one basis coellicient from each function [F,(v), ..., F\_ (V)]
and one N”” order integral coefficient C*, which is the integral
of the corresponding basis functions and the basis function b,
whose basis coellicient t; 1s being determined. Confining the
traversal to direct paths through the wavelet trees W, while
avoiding the indirect paths enables accumulating contributing
products that could contribute to the basis coetlicient t, while
avolding those that necessarily do not contribute to the basis
coellicient t,. As a result, traversing the wavelet trees W, on
direct paths determines the basis coeflicients t, of a vector T
with the same accuracy but with fewer computations than
other systems and methods.

FI1G. 28 1s a block diagram 1llustrating an embodiment of a
method 2800 for traversing direct paths through a plurality of
wavelet trees W, to determine the basis coellicients t, of a
vector T representing the product of the functions F (v) in the
wavelet domain, which can be employed 1n block 2708 of
FI1G. 27. In block 2802, a basis coefficient 1n a root of an
output wavelet tree W, 1s 1nitially incremented with contri-
butions of basis coellicients 1in roots of input wavelet trees W ..
The contribution to the root of the output wavelet tree W, 1s
determined by multiplying together the mother scaling coet-
ficient stored 1n the root of each mput wavelet tree W,
because in such case the N order integral coefficient C” is
one. In block 2804, a set of nodes [w,, . .., w,._,] ol the input
wavelet trees W, are synchronously processed. The set of
nodes [w,, . .., W, ] includes one node w, from each of the
input wavelet trees W .. No two nodes w, in the set correspond
to supports <, k, 1> that are completely disjoint from each
other, because the mput wavelet trees W, are traversed on
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direct paths. In block 2806, contributions of the set of nodes
[W,,...,W,_,] tothe basis coetlicients t, of output nodes w,,
of the output wavelet tree W, are determined. In some
embodiments, the contribution of the set of nodes [w, . . .,
W] 18 determined by separating the nodes 1nto a group of
null nodes and a group of non-null nodes, determining a
contribution of the null nodes, and determining a contribution
ol non-null nodes. The contribution of null nodes 1s limited to
the contribution of their parent nodes, which 1s not 1gnored
even though the nodes themselves are null. The contribution
of the non-null nodes 1s determined by iterating through the
set of nodes to build a table that accumulates the magnitude of
the contribution of the non-null nodes. In block 2808, basis
coetlicients t, of output nodes w, are incremented with con-
tributions of the set of nodes [w,, . . ., Wa_,]. In some
embodiments, both the basis coefficients t, of both the output
node w, and the parent of the output node w, are updated. In
block 2810, a set of child nodes 1s synchronously processed.
The set of chuld nodes includes one node w, from each of the
input wavelet trees W, the one node w, being the immediate
child of the node most recently processed. Because the child
nodes immediately depend from the most recently processed
nodes, the input wavelet trees W, are traversed along direct
paths. The contribution of the set of child nodes may then be
determined in the manner described above, and the basis
coellicients t, of the output nodes w, may be incremented, and
the process may be repeated for subsequent sets of child
nodes until the last set of nodes 1s reached.

In at least some embodiments, traversing direct paths
through the wavelet trees W 1n block 2708 of FIG. 27 com-
prises applying a tree-traversal algorithm to the wavelet trees.
FIG. 29 illustrates in pseudo code 2900 an example tree-
traversal algorithm 2902 for determining the basis coetfi-
cients of a vector representing the product of a plurality of
functions 1n the wavelet domain, and embodiments of com-
ponent routines such as a routine 2904, a routine 2906, a
routine 2908, a routine 2910, and a routine 2912. The algo-
rithm 2902 1s defined as FunctionProduct 1n line 1, accepting
as input a set of wavelet trees (W, ..., W, ). The wavelet
trees (W,, . . ., W,._,) include one wavelet tree tor each
function 1n the set of fixed tunctions [F,(v), ..., Fr (V)]
whose product 1s being represented in the wavelet domain.
The wavelet tree W, 1s an output wavelet tree into which basis
coellicients determined by the algorithm 2902 are encoded,
the basis coellicients being the basis coellicients t, of the
vector T representing the product of a plurality of functions in
the wavelet domain.

In line 2, the product of the mother scaling coelficients of
each of the fixed functions (F,(v), ..., F,._, (v)) are encoded
in the variable W,.dc, which 1s determined by taking the
product of the variables W..dc for wavelet trees W, for 1 from
1 to (N-1). In line 3, the routine getCoelficients 2904 1is
called. The routine 2904 is configured to simultaneously pro-
cess a set of nodes (w,, ..., w,,,) that includes one node w,
from each wavelet tree W, and to encode the result of pro-
cessing the nodes 1n the corresponding node w, of the output
wavelet tree W,. For 1ts 1ni1tial call, the routine 2904 processes
the set of mother nodes (W, .node, . . ., W,._,.node) that
include the mother wavelet coellicients. The routine 2904
then 1teratively calls 1tself to process sets ol nodes corre-
sponding to higher scales and located at lower traversal
depths, traversing the set of wavelet trees (W, .. ., W)
along the direct paths to determine and encode the basis
coellicients 1n the output nodes w,. It 1s worth noting that 1n
a single call to the algorithm 2902, all of the basis coelfficients
ol the vector are determined and encoded 1n the output wave-
let tree W,
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The routine getCoellicients 2904 1s defined 1n line 1 to
accept as input the variable cum, and a set of nodes (w,,, . . .,
W1 ). When the routine 1s mitially called 1n line 3 of algo-
rithm 2902, the value one 1s passed into the routine for the
variable cum. Note that the variable cum 1s described above
with reference to the pseudo code 1900 and 2000, and there-
fore a complete discussion 1s omitted here. In line 2, the nodes
of the set ol nodes (w,, ..., w,._,) are reorganized into a two
sets of nodes: one being a set of non-null nodes (w,, ..., w,)
and the other being a set of null nodes (w,_ ;, ..., wa_;). Up
to this point, the subscript1 has denoted that a specific wavelet
tree W. corresponds to a specific function F,(v), or alterna-
tively that a specificnode w, 1s anode of a specific wavelet tree
W._. For the remainder of the discussion of the algorithm 2902,
the subscript 1 merely indicates whether the node w, 1s null or
non-null, with non-null nodes having subscripts w, to w, and
null nodes having subscripts w,_, to w,,_,. It 1s likely that
some of the nodes w, are null 1n embodiments 1n which non-
linear approximation 1s performed.

In line 3, the routine 2904 returns 1if all of the nodes 1n the
set (W, ..., w,,_,)arenull. This 1s because 1t all of the nodes
are null, then all of the nodes of higher scales at lower tra-
versal depths will also be null as a result of the non-linear
approximation. In line 4, the variable w,.parentsum 1s updated
for each node 1n the set (w,, ..., w,.,). The variable parent-
sum 1s described above with reference to the pseudo code
1900 and 2000, and therefore a complete discussion 1s omit-
ted here. In line 5, the variable cum 1s updated for the set of
null nodes (w,.,, ..., Wa_,). In line 6, the routine update-
Parents 2906 1s called, as described 1n detail below. In lines
7-9, the three wavelet coetficients Y[0], Y[1], and P[2] of the
output node w,, are updated with the value of cum multiplied
by the return of the routine getW(1) 2912. In lines 10-11, the
routine 2904 then iteratively calls 1tself to four times to inde-
pendently process the next four sets of nodes, which are the
immediate child nodes of the non-null nodes. In other words,
the routine 2904 calls 1tself for the nodes (w,. ch[1], ..., w,.
ch[1])naloop, where ch|1] 1s the pointer to the child node and
11s an integer from O to 3.

The routine updateParents 2906 1s defined in line 1 to
accept as inputs the output node w,, corresponding to the set of
nodes (w,, . .., W,._,) currently being processed, and the
variable cum multiplied by the return of getProductlntegral
2908 for the non-null nodes (w,, . .., w,) of the set currently
being processed. In line 2, the output node w, of the output
wavelet tree W, 1s updated with a varniable val, which 1s the
product of the vaniable cum and the return of the routine
getProductintegral 2908 described below. In other words,
output node w,, 1s updated with the contributions of the non-
null nodes (w,, ..., w,) 1n the set of nodes currently being,
processed, and the contributions of the parents of the null
nodes (w,_, ..., Wa._; ) 1n the set currently being processed.
In lines 5-7, the three basis coetlicients t, 1n the parent of the
output node w, are also updated with the product of the
variable val, a sign, and the magnitude of a parent basis
function multiplied by an immediate child basis function.

The routine getProductIntegral 2908 is the exact same as
the routine getProductIntegral 2006 described above. Further,
the routines that 1t calls, including the routine getP(1) 2910
and the routine getW(1) 2912, are the exact same as the rou-
tines getP(1) 2008 and getW(1) 2010 described above. There-
fore, the reader 1s referred to the prior discussion. Note that
the output of the algorithm 2902 1s the wavelet tree W, and
the nodes w, of the wavelet tree W, include the basis coetli-
cients t, of the vector T that represents the product of the
plurality of functions (F,(v), .. ., FA.; (v)) 1n the wavelet
domain.
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The computational complexity of the algorithm 2902 1s the
order of O(mn), where m 1s the number of basis coefficients
retained after the non-linear approximation and N 1s the num-
ber of functions F.(v) whose product 1s being represented in
the wavelet domain. Note that the algorithm 2902 determines
all of the basis coellicients 1n a single call and need not be
applied iteratively.

FIG. 30 1s a block diagram 1illustrating a system 3000 for
determining the wavelet domain representation of the product
of a plurality of functions. The system 3000 includes logic
3002 configured to factor a plurality of functions into a set of
fixed tunctions and one varying function, logic 3004 config-
ured to determine a first vector that represents the product of
the fixed functions 1n the wavelet domain, logic 3006 config-
ured to determine a second vector that represents the one
varying function 1n the wavelet domain, and logic configured
to determine an imner product of the first vector and the
second vector.

As shown, the logic 3004 configured to determine a first
vector that represents the product of the fixed functions 1n the
wavelet domain may include logic 3012 configured to project
the functions of the set of fixed functions 1nto the wavelet

domain, logic 3014 configured to encode basis coetlicients of
cach fixed functions in a wavelet tree, logic 3016 configured
to perform non-linear approximation on each fixed function,
and logic 3018 configured to determine basis coeltlicients of a
vector by traversing direct paths through the wavelet trees.

Described above are systems and method for determining,
the integral u of the product of a plurality of functions, with
reference to FIGS. 1-22. Such systems and methods are
applied to determine the radiance B of a point X 1n a scene
using a light transport model of the lighting and objects 1n a
scene, with reference to FIGS. 23-25. Also described above
are systems and methods for approximating the integral of the
product of a plurality of functions by {ixing at least some of
the functions whose product 1s being integrated, with refer-
ence to FIGS. 26-30. Such systems and method for approxi-
mating the integral are employed to approximate the radiance
B of the point x 1n the scene, with reference to FIGS. 31-32
below.

FIG. 31 1s a block diagram illustrating an embodiment of a
method 3100 for rendering a graphical scene by approximat-
ing the radiance B of a point x 1n the scene using a light
transport model of the scene. The scene 1s a scene such as the
scene 2300 described above with reference to FI1G. 23, and the
light transport model of the scene 1s represented, for example,
in equation (28), which 1s repeated below:

g (28)
B = fS L(sﬂ)p(sa)OL(sﬂ)]_[ Oilp)dy
=1

In block 3102, a plurality of functions F,(¢) that contribute to
the light transport model of the scene are determined. For
example, the functions F.(¢) can include the distant environ-
ment lighting function L(¢), the BRDF p(¢), the local visibil-
ity function O, (¢), and one or more dynamic occlusion func-
tions O.(¢). Determining the plurality of functions F.(¢) 1s
described above with reference to block 2402 of FIG. 24. In
some embodiments, determining the functions F.(¢) com-
prises determining cubemap functions 2310, such as from
sampled data 1n the scene, as discussed above. The sampled
data may be compiled interactively or in advance of run-time,
and 1 cases in which the sampled data 1s compiled 1n
advance, the cubemap functions 2310 may be pre-computed
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or may be computed interactively. However, all of the cube-
map functions 2310 do not need to be determined at the same
time. More specifically, the cubemap functions 2310 that
correspond to the functions that are fixed can be pre-deter-
mined, while the cubemap function that corresponds to the
one varying function can be determined interactively. For
example, in embodiments in which the lighting 1s permitted to
vary but the other functions are fixed, the distant environment
lighting function L(¢) may be determined interactively, while
the BRDF p(¢), the local visibility function O, (¢), and the
one or more dynamic occlusion functions O ,(¢) may be com-
puted 1n advance.

In block 3104, the functions that contribute to the light
transport model are factored into a set of fixed functions

[F(¢),...,F,r_;(¢)] and one varying function F,{¢), as shown
in equation (38):

o (38)
B = f L@ | 0ip)de
=1

f

Factoring the functions 1s generally described above with
reference to block 2602 of FI1G. 26. In some embodiments, the
one varying Iunction F.{¢) 1s pre-determined and 1is
unchangeable, but 1n other embodiments the one varying
function F,{(¢) 1s determined interactively, such as 1n
response to user mput. For example, in one embodiment a
user can select an object 1n the scene, and in response to the
selection, the dynamic occlusion function O,(¢) of the object
1s allowed to vary while the other functions are fixed.

In block 3106, a first radiance transfer vector T 1s deter-
mined. Determining the first radiance transier vector T 1s
generally described above with reference to block 2604 of
FIG. 26. The first radiance transier vector T represents the
product ofthe set of fixed tunctions [F,(¢), ..., F,_,(¢)] inthe
wavelet domain as a series of basis coelflicients (t,, . . ., t,,),
or alternatively, as a series of basis coelficients t, scaling a

series of basis functions b,, as shown 1n equation (39):

(N-1

]__[ Fi(g)

| ]

-Fy(e)dy

(39)

"~

= (1y, . In, ... , Iyy) wWhere

=

-1

F; =Z[fh'bh(50)]

M
h=1

I
[a—

i

Theretfore, determining the first radiance transfer vector T
comprises determining a series of basis coefficients (t,, . . .,
t, ). Using the method 2700 described above with reference to
FIG. 27, determining the series of basis coefficients (t,, . . .,
t,,) generally comprises projecting each function F.(¢) in the
set of fixed functions [F,(¢), . . ., Fa_,(¢)] 1nto the wavelet
domain (block 2702), encoding each function F (¢) 1n a wave-
let tree W, (block 2704), subjecting each function F (¢) to
non-linear approximation (block 2706), and traversing the
wavelet trees W, along direct paths to determine the basis
coellicients of the vector (block 2708). Traversing the wavelet
trees W. along direct paths may comprise performing the
method 2800 described above with reference to FIG. 28 or
applying the tree-traversal algorithm 2902, described above
with reference to FIG. 29. In such case, the output wavelet
tree W, of the tree-traversal algorithm 2902 stores the basis
coellicients (t,, . . ., t,,) of the first radiance transier vector T.
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In embodiments 1n which the functions F,(¢) are cubemap
functions 2310, the first radiance transfer vector T corre-
sponds to one face 2308 of the cubemap S. Theretfore, deter-
mining the first radiance transfer vector T comprises deter-
mining a set of first radiance transter vectors [T, ..., T,],
cach vector T, of the set corresponding to one face of the

cubemap S.
In some embodiments, determining the first radiance trans-

ter vector T comprises pre-computing the first radiance trans-
ter vector T prior to run-time, although 1n other embodiments
the first radiance transfer vector T 1s computed interactively.
Also, 1n some embodiments, determining the first radiance
transier vector T comprises determining a plurality of first
radiance transier vectors T corresponding to distinct sets of
fixed functions [F,(¢), . . ., Fr_,(¢)]. For example, if the
lighting function L(¢ ) 1s permitted to vary, the functions in the
set of fixed functions are different than 1f the BRDF p(¢) 1s
permitted to vary. Especially in embodiments in which the
first radiance transier vector T 1s pre-computed but the one
varying function F,, (¢) 1s selected interactively, it may be
desirable to determine a plurality of first radiance transfer
vectors T corresponding to distinct sets of fixed functions
[F,(¢), ..., F.x_,(¢)] sothat regardless of the function F,; (¢)
interactively selected to vary, the corresponding first radiance
transier vector T 1s already pre-computed and ready for use in
real-time. In embodiments in which the functions F,(¢) are
cubemap functions 2310, determining the plurality of first
radiance transier vectors T comprises determining a plurality
of sets of first radiance transier vectors [T, . . ., T«], each
vector T, of the set corresponding to one face 2308 of the
cubemap S, and each set [T, . . ., T«] of the plurality of sets
corresponding to one of the potential sets of fixed functions
[Fl(q)): s FN—l(q))]'

In block 3108, a second radiance transfer vector F 1s deter-
mined. The second radiance transier vector F represents the
one varying function F ., (¢) 1n the wavelet domain as a series
of basis coellicients (1, .. ., 1,,), or alternatively, as a series
ol basis coellicients I, scaling a series of basis functions b, , as
shown 1n equation (40):

(40)

F=({fi,..., fgs ..., fug) where

i
Fym) = ) Lfuba(@)]
h=1

Determining the second radiance transier vector F 1s gener-
ally described above with reference to block 2606 of FIG. 26
and can comprise projecting the one varying function F,; (¢)
into the wavelet domain by performing a wavelet transtorm,
encoding the basis coetflicients (1, . . . , 1,,) of the second
vector F 1n a wavelet tree W, and performing non-linear
approximation on the one varying tunction F,; (¢).

In embodiments 1n which the functions F,(¢) are cubemap
functions 2310, the second radiance transfer vector T corre-
sponds to one face 2308 of the cubemap function. Therefore,
determining the second radiance transier vector T comprises
determining a set of second radiance transfer vectors
[F,, ..., F¢], each vector F, of the set corresponding to one
face 2308 of the cubemap function.

In at least some embodiments, determining the second
radiance transfer vector F comprises iteratively determining,
the second radiance transfer vector F 1n response to changing
conditions 1n the scene 2300. While the first radiance transfer
vector T can be fixed because the functions [T,(¢), ..., T,
(¢)] represented by the vector T do not change, the same 1s not
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true for the second radiance transier vector F, which repre-
sents the one varying function F,; (¢). Therefore, it may be
desirable to determine the first radiance transfer vector T
once, while determining the second radiance transier vector F
iteratively and interactively, 1n response to changing condi-
tions 1n the scene 2300.

In block 3110, an 1nner product of the first radiance transier
vector T and second radiance transfer vector F 1s determined.
Taking the inner product of the first radiance transier vector T
and second radiance transier vector F approximates the radi-
ance B of the point x, as shown by re-writing equation (38) 1n
terms of equation (39) and equation (40):

L8 (41)
B = f Lig)p@)01@)| | oitpde
=1

.y :
:f]_[ Filp) |- Fn(p)dg
| 1=1 i

~ (T, F)

In equation (41), the radiance B 1s an approximation because
the first radiance transfer vector T 1s fixed and does not vary.

However, because the first radiance transier vector T 1s fixed,
approximating the radiance B using the method 3100 1s rela-
tively less computationally complex, and theretfore relatively
faster, than other methods. For example, in embodiments 1n
which the first radiance transier vector T 1s pre-computed and
the second radiance transier vector F 1s determined interac-
tively, the method 3100 can be employed to approximate the
radiance B interactively and/or in real-time by taking the
inner product of the two vectors interactively and/or 1n real-
time.

In embodiments in which the functions F.(¢) are cubemap
tfunctions 2310, the inner product of the first radiance transier
T vector and second radiance transier vector F corresponds to
one face 2308 of the cubemap S. Theretfore, determining the
inner product comprises determining imner products of a set
of first radiance transfer vectors [T, . .
second radiance transfer vectors [F,, . .., F] and summing
the inner products together, each inner product corresponding
to one face 2308 of the cubemap S and the sum of the inner
products representing the radiance B over the entire cubemap
S.

In block 3112, the scene 1s rendered, as described above
with reference to block 2412 of FIG. 24. The radiance B for
the point x determined 1n block 3110 1s used by the graphics
rendering application to set the color of the point X. In at least
some embodiments, the radiance B of the point x represents
one color value for the point, but to render the scene the
graphics rendering application requires three color values,
one for each of three independent color channels. Therefore,
in such embodiments the above blocks are iterated to 1nde-
pendently process each of the three independent color chan-
nels, such that three color values are available to the graphics
rendering application for the point x. The above steps are also
iterated for each visible point x before the final scene is
rendered, because a plurality of points x are combined to
produce objects, and a plurality of objects are combined to
produce the rendered scene.

The method 3100 can be employed to generate all-fre-
quency shadows in real-time. In embodiments 1n which the
first radiance transier vector T 1s pre-computed but the second
radiance transier vector F 1s determined interactively, the
method 3100 can be considered a method of just-in-time

., T¢] and a set of
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radiance transfer (JRT), unlike prior pre-computed radiance
transier (PRT) methods, such as those disclosed by Sloan et
al. 1n “Precomputed radiance transier for real-time rendering
in dynamic-low-frequency lighting environments,” ACM
Transactions on Graphics (SIGGRAPH °02) 21, 3, 527-536,
which 1s incorporated by reference herein in 1ts entirety.

Allowing only one function to vary is reasonable in some
cases, such as in lighting design systems, in which the
designer typically adjusts only one variable at a time. For
example, the designer may experiment with the lighting by
varying the lighting function L(¢) without varying the direc-
tion of view 0 or the objects 2302, 2306 1n the scene 2300. The
designer may also render the scene from different directions
of view 0 while maintaining the current lighting I.(¢) and
objects 2302, 2306 in the scene 2300. In other cases, the
designer may change the location of one object 2302 or 2306
in the scene 2300 while holding the lighting function L(¢) and
direction of view 0 constant. As long as only one varying
function F,{¢) 1s selected, the method 3100 can be employed
to generate all-frequency shadows 1n real-time.

Because the method 3100 employs pre-computed data on
individual objects 2302, 2306 1n the scene 2300 instead of
pre-animated models of the scene as a whole, the objects 1n
the scene can be manipulated 1nteractively, such as by clon-
ing, scaling, and/or translating the objects. Even 1in such cases
of interactive manipulation, the method 3100 can be 1is
employed to render the objects with all-frequency shadows 1n
real-time. Glossy materials are also supported, such that
dynamic high-glossy objects can be rendered in real-time
with realistic, all-frequency shadows.

The method 3100 supports interactively changing the func-
tion selected as the one varying function F,{¢). In embodi-
ments 1n which a plurality of first radiance transier vectors T
are pre-computed 1 block 3106 for different sets of fixed
tunctions [F,(¢), . . . , Fx_,(®)], the one varying function
F.{¢®) can be changed 1n real-time without repeating block
3106. For example, 11 the distant environment lighting func-
tion L(¢) 1s selected as the one varying function F.{¢), ren-
dering the scene for a variety of lighting conditions 1n real-
time reduces to iteratively determining the second radiance
transier vector F of the lighting function in real-time and

taking the inner product of the two radiance transier vectors T
and F 1n real-time, because the first radiance transfer vector T
for the set of fixed functions [p($),0, (¢), O, (¢), . . ., O, (9)]
was determined in advance. If the one varying function F,(¢)
1s interactively changed from the distant environment lighting
function L(¢) to the first dynamic occlusion tunction O, (¢),
rendering the scene for the moving object in real-time reduces
to 1teratively determining the second radiance transfer vector
F of the dynamic occlusion function 1n real-time and taking
the inner product of the two radiance transier vectors in
real-time, because the first radiance transfer vector T for the
set of fix functions [L (¢), p(9), O, (§), 0, (), . . ., O, (¢)] was
pre-computed 1n advance.

FIG. 32 1s a block diagram 1illustrating an embodiment of a
system 3200 for rendering a graphical scene by approximat-
ing the radiance ofthe point X 1n a scene using a light transport
model of the scene. The system 3200 includes logic 3202
configured to determine a plurality of functions that contrib-
ute to a light transport model of a scene, logic 3204 config-
ured to factor the plurality of functions into a set of fixed
functions and one varying function, logic 3206 configured to
determine a first radiance transier vector for the set of fixed
functions, logic 3208 configured to determine a second radi-
ance transier vector for the one varying function, logic 3210
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configured to determine the inner product of the first and
second radiance transfer vectors, and logic 3212 configured
to render the scene.

While particular embodiments of systems and methods for
determining the integral of the product of a plurality of func-
tions, and for determining the product of a plurality of func-
tions, have been disclosed 1n detail in the foregoing descrip-
tion and figures for purposes of example, those skilled in the
art will understand that variations and modifications may be
made without departing from the scope of the disclosure. All
such variations and modifications are intended to be included
within the scope of the present disclosure, as protected by the
following claims.

At least the following 1s claimed:
1. A non-transitory computer readable medium configured
to approximate the mtegral of the product of a plurality of
functions, the computer readable medium comprising:
logic configured to factor the plurality of functions into a
set of fixed functions and one varying function, the fixed
functions being invariable during the rendering and the
varying function being interactively determinable and
therefore permitted to vary during the rendering;
logic configured to determine a first vector that represents
the product of the fixed functions in the wavelet domain;

logic configured to determine a second vector that repre-
sents the one varying function in the wavelet domain;
and

logic configured to determine an inner product of the first

vector and the second vector.

2. The non-transitory computer readable medium of claim
1, wherein the logic configured to determine the first vector
includes:

logic configured to project each function of the set of fixed

functions into the wavelet domain;

logic configured to encode basis coetlicients of each fixed

function 1n a wavelet tree; and

logic configured to determine basis coelficients of the first

vector by traversing direct paths through the wavelet
trees, along which direct paths an mtegral coeflicient
may by non-zero.

3. The non-transitory computer readable medium of claim
2, wherein the logic configured to project the fixed function
into the wavelet domain comprises logic configured to per-
form a two-dimensional nonstandard Haar wavelet transform
on the fixed function.

4. The non-transitory computer readable medium of claim
2, wherein the logic configured to traverse direct paths
through the wavelet trees to determine basis coellicients of
the first vector comprises:

logic configured to synchronously process a set of nodes

that includes one node from each wavelet tree;

logic configured to determine a contribution of the set of

nodes to basis coellicients of the first vector;

logic configured to increment the basis coellicients;

logic configured to encode the basis coetlicients 1n an

output wavelet tree; and

logic configured to synchronously process a child set of

nodes.

5. The non-transitory computer readable medium of claim
4, wherein no two nodes 1n the synchronously processed set
correspond to supports that are completely disjoint from each
other, and each node in the child set of nodes 1s an immediate
child of the most recently processed node 1n the wavelet tree.

6. The non-transitory computer readable medium of claim
5, wherein the logic configured to determine the contribution
of the set of nodes comprises:
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logic configured to separate the set ol nodes into a group of
null nodes and a group of non-null nodes;
logic configured to determine a contribution of parents of
the null nodes; and
logic configured to determine a contribution of the non-
null nodes.
7. The non-transitory computer readable medium of claim
6, wherein the logic configured to determine the contribution
of the non-null nodes includes logic configured to iteratively
build a table that accumulates contributions of subsets of the
nodes.
8. The non-transitory computer readable medium of claim
2, wherein the logic configured to determine the first vector
turther comprises logic configured to perform non-linear
approximation on the fixed functions to discard insignificant

basis coellicients.
9. The non-transitory computer readable medium of claim

1, wherein the logic configured to determine the second vec-

tor comprises:

logic configured to project the one varying function into the

wavelet domain;

logic configured to encoding the basis coellicients of the

one varying function into a wavelet tree; and

logic configured to perform non-linear approximation on

the one varying unction to discard insignificant basis
coellicients.

10. The non-transitory computer readable medium of claim
9, wherein the logic configured to project the one varying
function nto the wavelet domain comprises logic configured
to perform a two-dimensional nonstandard Haar wavelet
transiform on the one varying function.

11. The non-transitory computer readable medium of claim
9, wherein the second vector and the imnner product are deter-
mined 1n real-time.

12. The non-transitory computer readable medium of claim
1, wherein the first vector 1s pre-computed 1n advance of
run-time, the second vector 1s determined interactively, and
the inner product 1s determined interactively.

13. A non-transitory computer readable medium config-
ured to determine a vector that represents the product of a
plurality of functions in the wavelet domain, the computer
readable medium comprising:

logic configured to project each function of the plurality of

functions into the wavelet domain;

logic configured to encode the basis coelficients of each

function of the plurality in a wavelet tree; and

logic configured to determine basis coelficients of the vec-

tor by traversing direct paths through the wavelet trees
along which direct paths an integral coetlicient may by
non-zero.

14. The non-transitory computer readable medium of claim
13, wherein the logic configured to project each function of
the plurality of functions into the wavelet domain comprises
logic configured to perform a two-dimensional nonstandard
Haar wavelet transform on each function.

15. The non-transitory computer readable medium of claim
13, wherein the logic configured to traverse direct paths
through the wavelet trees to determine basis coelficients of
the first vector comprises:

logic configured to synchronously process a set of nodes

that includes one node from each wavelet tree;

logic configured to determine a contribution of the set of

nodes to basis coefficients of the vector;

logic configured to incrementing the basis coetlicients;

logic configured to encode the basis coelfficients 1n an

output wavelet tree: and
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logic configured to synchronously processing a child set of

nodes.

16. The non-transitory computer readable medium of claim
15, wherein no two nodes 1n the synchronously processed set
correspond to supports that are completely disjoint from each
other, and each node 1n the child set of nodes 1s an immediate
child of the most recently processed node 1n the wavelet tree.

17. The non-transitory computer readable medium of claim
15, wherein the logic configured to determine a contribution
of the set of nodes comprises:

logic configured to separate the set of nodes 1nto a group of

null nodes and a group of non-null nodes;

logic configured to determine a contribution of parents of

the null nodes; and
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logic configured to determine a contribution of the non-

null nodes.

18. The nor-Iransilory computer readable medium of claim
17, wherein the logic configured to determine the contribu-
tion of the non-null nodes 1ncludes logic configured 1tera-
tively build a table that accumulates contributions of subsets
of the nodes.

19. The non-transitory computer readable medium of claim
15, further comprising logic configured to perform non-linear
approximation on each function to discard imnsignificant basis
coellicients.
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