12 United States Patent

Duluk, Jr. et al.

US008228338B1

US 8.228.338 B1
Jul. 24, 2012

(10) Patent No.:
45) Date of Patent:

(54)

(75)

(73)

(%)

(21)

(22)

(60)

(1)

(52)
(58)

HARDWARE OVERRIDE OF APPLICATION
PROGRAMMING INTERFACE
PROGRAMMED STATE

Jerome F. Duluk, Jr., Palo Alto, CA
(US); Henry P. Moreton, Woodside, CA
(US); Steven E. Molnar, Chapel Hill,
NC (US); John S. Montrym, Los Altos
Hills, CA (US)

Inventors:

NVIDIA Corporation, Santa Clara, CA
(US)

Assignee:

Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 154(b) by 1055 days.

Notice:

Appl. No.: 11/625,136

Filed: Jan. 19, 2007

Related U.S. Application Data

Provisional application No. 60/864,3°74, filed on Nov.
3, 2006.

Int. CI.

GO6F 13/14 (2006.01)

GO6F 11/00 (2006.01)

GO6T 1/00 (2006.01)

US.CL ... 345/520; 345/501; 345/522; 714/49

Field of Classification Search 345/520,

345/501, 522; 711/122; 712/244; 714/10,
714/49

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
6,046,752 A * 4/2000 Kurklandetal. 345/520
7,382,366 Bl 6/2008 Klock et al.
7,548,238 B2 6/2009 Berteig et al.
7,548,244 B2 6/2009 Heirich
7,739,556 B1* 6/2010 Duluketal. 345/501
2004/0030834 Al1* 2/2004 Sharmaoooovvveenvvnnn, T711/122
2007/0220370 A] 0/2007 Branda et al.
2009/0219288 Al 0/2009 Heirich
2011/0018884 Al1* 1/2011 Rattsetal.oovvveninnin, 345/522
OTHER PUBLICATIONS

Eggers, et al. “Simultancous Multithreading: A Platform for Next-
Generation Processors,” IEEE Micro, vol. 17, No. 5, pp. 12-19,

Sep./Oct. 1997,
Notice of Allowance, U.S. Appl. No. 11/934,686, dated Feb. 2, 2010.

* cited by examiner

Primary Examiner — Chante Harrison
(74) Attorney, Agent, or Firm — Patterson & Sheridan, LLP

(57) ABSTRACT

A method and system for overriding state information pro-
grammed 1nto a processor using an application programming
interface (API) avoids introducing error conditions in the
processor. An override monitor unit within the processor
stores the programmed state for any setting that 1s overridden
so that the programmed state can be restored when the error
condition no longer exists. The override monitor umt over-
rides the programmed state by forcing the setting to a legal
value that does not cause an error condition. The processor 1s
able to continue operating without notifying a device driver
that an error condition has occurred since the error condition
1s avoided.

10 Claims, 9 Drawing Sheets

Receive stale
bundle

€00

i

Decode the state
bundle

605

h 4

Store the API
programmed state
in the shadow state
far the setting
640

Error

Condition?

645

Override the
setting

655

l

Cutput the
bundle state |«

660

U.S. Patent Jul. 24, 2012

Application
Program
140

Sheet 1 of 9 US 8,228,338 B1
PRIOR ART
Processing
System

Shadow

State
120

Device

Driver
110

Figure 1

/ 105

Processor
100

\

Error Notification
150

U.S. Patent Jul. 24, 2012 Sheet 2 of 9 US 8,228.338 B1

Processing
System
205
Application
Program
240 Processor
200

Override
State
225

Figure 2

U.S. Patent

Jul. 24, 2012

Sheet 3 of 9

US 8,228,338 Bl

Host Memory
312

API
330

Application

Program
340

Device
Driver

309

Host Computer 31

Host Processor
314

System Interface
315

Graphics Subsystem

370

Local Memory

349

Graphics
Processor
390

Shadow
State
220

Override
State
325

Figure 3

U.S. Patent Jul. 24, 2012 Sheet 4 of 9 US 8,228.338 B1

Input

Bundles
400

Graphics Processor
350

Front End

410
Bundles
— 417

Pipeline Override
Unit State
440-A 425-A
Bundles
Momory < Memory A
240 Interface
430 Pipeline Override
Unit State
440-B 425-B
Bundles
-~ 437

Pipeline | Shadow || Override

Unit State State
440-C 420-C 425-C

Figure 4A

U.S. Patent Jul. 24, 2012 Sheet 5 of 9 US 8.228.338 B1

Input
Bundles
405
Pipeline Unit
44
440 Bundle Decoder Decoded
439 State
Bundles
s ___— 445
To/From _
Memory Override | Shadow || Override
Interface(Monitor State State
430 430 420 425

Bundle State
g — 455

Functional Logic

460

\ 4

Output

Bundles
465

Figure 4B

U.S. Patent

Recelve state
bundle

200

l

Decode the state
bundle

205

i

Jul. 24, 2012

Store the API

programmed state
N the shadow state

for the setting
208

-~
<
e

Y
f“ﬂf \K\x"‘x_

-~ T
s Error e

-~

T
Rx“x 510 g 7
-~
\\hf"f

Y

\ 4
Set the override
flag for the
setting
245

l

Override the
setting

200

\ 4
Output the unit

209

Condition?

-

P

e
el

T

T

Sheet 6 of 9

~ T

-~

T

T

T _ .
7 Override Iy
flag set? P

T

515

T

ff,f’
-~
e

N

Y

-

<
s

T

T

I

T

A

T

/f’f Error
removed?
517

i

T

~
e

N

T

fa

T

T

o
-

7

US 8,228,338 Bl

Y

~

f,,ff

v

Restore the API
programmed state
for the setting

020

v

Clear the override
flag for the setting

229

state o

Figure 5A

U.S. Patent Jul. 24, 2012 Sheet 7 of 9 US 8.228.338 B1
Recelve data
packet
201
f!a PN T
f/f RHH f_,,.r’j E“mx ff; x"&x
7 Error " Qverride . v " Error v
< Condition? »__ flagset? > > removed? =
RHH 511 _f,ﬁ’f H“‘“ah 516 f,,f”’f w218 .
Y
N N v
Restore the API
M . programmed state
Set the override for the setting
flag ff:_'r the 521
setting
246
v h 4
Override the |
setting Clear the override
551 flag for the setting
T 0260
v
Qutput the unit
state < b

220

Figure 5B

U.S. Patent Jul. 24, 2012 Sheet 8 of 9 US 8.228.338 B1

Input
Bundles
405
Pipeline Unit
440
— Bundle Decoder Decoded
435 State
Bundles
__—" 445

To/From

Memory _ Override Override
Interface Monitor Logic
430 60 625

Bundle State
— 455

Functional Logic

460

v

Output
Bundles
465

Figure 6A

U.S. Patent Jul. 24, 2012 Sheet 9 of 9 US 8.228.338 B1

l Receive state \
bundle
600

l

Decode the state |
[bundle

605

'

Store the API
programmed state
In the shadow state
for the setting

640

Error N

Condition?
64V |

Y

[Overr;:le the |

setting
099

Y
Qutput the l !

bundie state |«
660

Figure 6B

US 8,228,338 Bl

1

HARDWARE OVERRIDE OF APPLICATION
PROGRAMMING INTERFACE
PROGRAMMED STATE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims benefit of U.S. provisional patent
application Ser. No. 60/864,374, filed Nov. 3, 2006, which 1s
herein incorporated by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

Embodiments of the present invention relate generally to
application programming interface and processor interac-
tions and more specifically to a method and system for over-
riding programmed state in a processing pipeline.

2. Description of the Related Art

Unless otherwise indicated herein, the approaches
described 1n this section are not prior art to the claims in this
application and are not admaitted to be prior art by inclusion in
this section.

Graphics APIs are used to specily state controls used by a
processor to process data and produce 1images. Ideally, the
various state controls are orthogonal and any possible setting,
ol a particular state control 1s valid. Unfortunately, certain
state control combinations are “illegal” since they can pro-
duce an undefined result or cause an error condition that
hangs the processor when the particular state control combi-
nation 1s used to process data. Examples of some 1llegal
combinations include enabling both logic operations and
alpha blending, enabling dual-source blending when the
color target format 1s not blendable, or setting the active
render target layer number to a number that exceeds the
number of available layers 1n the render target.

Conventionally, a variety of schemes have been used to
handle 1llegal state control combinations. One scheme 1s to
simply program the processor without regard to whether or
not the state control combinations are legal or illegal, and
have the processor detect and report any 1llegal state control
combinations as errors and halt any processing. Unfortu-
nately, most graphics APIs do not provide a mechanism for
indicating these errors to a user, so there 1sn’t an effective way
to remedy the error and allow the processor to resume pro-
cessing. Therefore, that scheme 1s not usetul 1n a production
system.

Another scheme 1s to have the processor detect and report
any 1llegal state control combinations as errors and halt any
processing until a device driver intervenes and programs a
legal state control combination. The device driver 1s burdened
with maintaining the state control settings that were pro-
grammed by the API 1n order to determine a legal state control
setting during error handling. The tracking of the pro-
grammed state controls and error handling performed by the
device driver requires complex code and reduces the system
processing performance since the processor 1s halted during
the error handling.

Another scheme 1s to have the device driver detect and
correct 1llegal state control combinations before sending
them to the processor. This also requires the device driver to

maintain the state control settings that were programmed by
the API. In addition, 1t burdens the device driver with tests to

detect illegal state control combinations, and then with the
task of overriding 1llegal state control settings with legal ones.
The tracking of the programmed state controls, checking for
illegal state combinations, and checking to see 11 state con-

10

15

20

25

30

35

40

45

50

55

60

65

2

trols have become legal again, requires complex code and
reduces the system processing performance because of the

storage and testing overhead, even 1f no error conditions are
actually present.

FIG. 1 1s a simplified diagram of a prior art processing,
system 105 1n which the device driver detects and corrects
illegal state control combinations. Processing system 105
includes a device driver 110 that maintains a copy of the API
programmed state as shadow state 120. An application pro-
gram 140 provides data and program instructions that specity
state controls defined by an API 130. Application program
140 calls a runtime component of API 130 that calls device
driver 110 to translate the program instructions for execution
by a processor 100. Device driver 110 determines 11 a particu-
lar state control combination 1s illegal, as defined by API 130,
and replaces the illegal state control with a legal state control.
Device driver 110 also preserves the desired state control that
was provided by application program 140 by saving a copy of
the API programmed state controls as shadow state 120.
Shadow state 120 1s used to detect 1llegal state control com-
binations and to determine legal state control settings during
error handling.

As previously explained, the error detection, notification,
and handling reduces the data processing throughput of pro-
cessing system 105. In particular, device driver 110 includes
complex code for performing the detection and error han-
dling. Execution of this code for error condition detection,
even when errors don’t exist may also reduce the data pro-
cessing throughput of processing system 105.

As the foregoing illustrates, a mechanism 1s needed to
detect and correct API programmed state control error con-
ditions without requiring a processor to halt while the error
condition 1s remedied and without requiring the device driver
to validate state combinations and to maintain shadow copies
of overridden state.

SUMMARY OF THE INVENTION

A method and system for overriding state information pro-
grammed 1nto a processor using an application programming
interface (API) avoids introducing error conditions in the
processor. An override monitor unit within the processor
stores the programmed state for any setting that 1s overridden
so that the programmed state can be restored when the error
condition no longer exists. The override monitor unmt over-
rides the programmed state by forcing the setting to a legal
value that does not cause an error condition. The processor 1s
able to continue operating without notifying a device driver
that an error condition has occurred since the error condition
1s avoided. Therefore, the processing throughput of the sys-
tem 1s not reduced when error conditions occur. Additionally,
a device driver 1s not burdened with maintaining a copy of the
desired API programmed state, detecting error conditions,
and remedying the error conditions.

Various embodiments of a method of the mvention for
detecting and overriding graphics API programmed state set-
tings include recerving a first graphics API programmed state
setting, determining that an error condition will result from
using the first graphics API programmed state setting in com-
bination with other graphics API programmed state settings
that are stored 1n a shadow state memory, overriding the first
graphics API programmed state setting with a {irst override
value to avoid the error condition and producing a first unit
state that includes the other graphics API programmed state
settings and the first override value, and processing data using,
functional logic that 1s configured as specified by the first unit
state to produce processed data.

US 8,228,338 Bl

3

Various embodiments of the invention include a system for
detecting and overriding graphics API programmed state set-
tings. The system includes functional logic configured to
process data according to state settings that include at least a
portion of the graphics API programmed state settings and
override values and an override monitor. The override moni-
tor 1s coupled to the functional logic and configured to receive
the graphics API programmed state settings and override a
first graphics API programmed state setting with a first over-
ride value when a combination of the graphics API pro-
grammed state settings will cause an error condition.

BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features of
the present mvention can be understood in detail, a more
particular description of the mvention, briefly summarized
above, may be had by reference to embodiments, some of
which are illustrated 1n the appended drawings. It i1s to be
noted, however, that the appended drawings 1illustrate only
typical embodiments of this invention and are therefore not to
be considered limiting of its scope, for the invention may
admuit to other equally effective embodiments.

FIG. 1 1s a simplified diagram of a prior art processing
system 1ncluding a device driver that maintains a copy of the
API programmed state.

FIG. 2 1s a simplified diagram of a processing system
including a processor that maintains a copy of the API pro-
grammed state in accordance with one or more aspects of the
present invention.

FIG. 3 illustrates a computing system including a host
computer and a graphics subsystem in accordance with one or
more aspects of the present invention.

FI1G. 4 A 1llustrates a block diagram of the graphics proces-
sor shown 1n FIG. 3 1n accordance with one or more aspects of
the present invention.

FI1G. 4B 1llustrates a block diagram of a pipeline unit shown
in FIG. 4A 1n accordance with one or more aspects of the
present invention.

FIGS. 5A and 5B illustrate methods for overriding and
restoring the API programmed state 1n accordance with one or
more aspects of the present invention.

FI1G. 6 A 1llustrates another block diagram of a pipeline unit
shown 1n FIG. 4A 1n accordance with one or more aspects of
the present invention.

FIG. 6B 1llustrates a method for overriding the API pro-
grammed state in accordance with one or more aspects of the
present invention.

DETAILED DESCRIPTION

A method and system for detecting and overriding API
programmed state controls that produce error conditions 1n a
processor 1s described. In the following description, for the
purposes ol explanation, numerous specific details are set
forth 1n order to provide a thorough understanding of the
present invention. It will be apparent, however, to one skilled
in the art that the present invention may be practiced without
these specific details.

FI1G. 2 15 a simplified diagram of a processing system 205
including a processor 200 that maintains a copy of the API
programmed state as shadow state 220, 1n accordance with
one or more aspects of the present mnvention. Shadow state
220 can be the raw bits sent via the API, or shadow state 220
can be alogical translation of the raw bits sent via one or more
APIs (e.g., the same conditions encoded into fewer bits). An
application program 240 provides data and program instruc-

5

10

15

20

25

30

35

40

45

50

55

60

65

4

tions that specily state controls defined by an API 230. Appli-
cation program 140 calls a runtime component of API 130
that calls device driver 210 to translate the program instruc-
tions for execution by processor 200. Processor 200 receives
the program instructions and data from device driver 210,
detects and remedies any error conditions caused by 1llegal
API programmed state controls, and executes the program
instructions to process the data.

In contrast with processing system 103 where shadow state
120 1s stored and maintained by device driver 110, shadow
state 220 1s stored within and maintained by processor 200.
Unlike device driver 110, a device driver 210 1s not burdened
with detecting and remedying error conditions or handling
error notifications (resulting from API programmed state con-
trols) received from processor 200. Therefore, the processing
throughput of processing system 205 1s improved compared
with the processing throughput of processing system 103 that
1s hindered by error notification handling.

Processor 200 determines 1 a particular state control speci-
fied by a program instruction 1s 1llegal, as defined by API 230,
and overnides the 1llegal state control with a legal state con-
trol. Processor 200 may be configured to detect 1llegal indi-
vidual state control settings and override each setting as 1t 1s
received. Processor 200 may also be configured to detect
illegal combinations of state control settings before starting
any data processing. Processor 200 also preserves the desired
state control that was provided by application program 240 by
saving a copy of the API programmed state controls as
shadow state 220.

Shadow state 220 may be stored 1n a centralized storage
resource, €.g., random access memory, register file, cache, or
the like, within processor 200 or shadow state 220 may be
stored 1n a distributed manner by specific processing units
that use each portion of shadow state 220. Shadow state 220
1s used to detect illegal state control combinations and to
determine legal state control settings during error handling.
Shadow state 1s also used by processor 200 to restore the API
programmed state control settings when a subsequent state
change removes the error condition.

FIG. 3 illustrates a computing system 300 including a host
computer 310 and a graphics subsystem 370, 1n accordance
with one or more aspects of the present invention. Computing
system 300 may be a desktop computer, server, laptop com-
puter, palm-sized computer, tablet computer, game console,
cellular telephone, computer based simulator, or the like.
Host computer 310 includes host processor 314 that may
include a system memory controller to iterface directly to
host memory 312 or may communicate with host memory
312 through a system interface 315. System interface 315
may be an I/O (input/output) interface or a bridge device
including the system memory controller to interface directly
to host memory 312.

A graphics device driver 305 i1s stored in host memory 312
and 1s configured to interface between applications, such as
application program 340 and a graphics subsystem 370.
Graphics device driver 305 1s executed by host processor 314
to translate 1nstructions for execution by graphics processor
350 based on the specific capabilities of graphics processor
350. The mstructions are specified by an API 330 which may
be a conventional graphics API such as Direct3D or OpenGL.
Because graphics processor 350 1s configured to detect and
override error conditions resulting from the API programmed
state controls, device driver 305 does not need to maintain a
copy of the desired state controls specified by the program
instructions included 1n application program 340.

Graphics processor 350 stores and maintains a shadow
state 320 that represents the API programmed state controls

US 8,228,338 Bl

S

specified by application program 340. Graphics processor
350 also determines and maintains an override state 325 for
state controls that have been overridden to avoid an error
condition. In some embodiments of the present invention,
shadow state 320 and/or override state 323 are stored 1n local
memory 343. In addition to detecting and overriding 1llegal
state conditions that are explicitly defined by API1 330, graph-
ics processor 350 may be configured to detect and override
error conditions that are unique to graphics processor 350
based on a particular hardware limitation. Furthermore,
graphics processor 350 may be configured to detect different
illegal state conditions or specily different overrides depend-
ing on the particular API 330 that1s used 1n computing system
300. Examples of conditions and override values that are used
to avoid the possible error conditions are listed in TABLE

TABL

(L]

1

Condition Override value(s)

When LogicOp 1s enabled Blending is disabled for all

render targets

If dual source blending 1s enabled Multiple render target mode is

disabled
Multisampling is disabled AlphaToCoverage 1s disabled
Zero color targets are enabled Alphatest 1s disabled
If a target format 1s not blendable Blending for that render target is
disabled
If the target format 1s not alpha Alphatest for that render target is
testable disabled.

The logicop function i1s over-
ridden to COPY
Compression for the render
target 1s disabled.

The value of SwapRAndB is
ignored and treated as FALSE

For targets having a floating-point
format or an sRGB format.
When compression is disallowed

When ComponentBitWidths does
not immclude both R and B
components

If the viewport MinZ value is
outside the range represented by
the Z butfer

If the render target layer select 1s
outside the programmed range

The viewport MinZ value 1s
clamped to the range of the Z
butfer format

The render target layer select is
treated as zero

Host computer 310 communicates with graphics sub-
system 370 via system intertace 315. Data received by graph-
ics processor 350 1s processed according to the translated
program 1nstructions and the processed graphics data 1s writ-
ten to a local memory 345 or host memory 312. Graphics
processor 350 uses graphics memory to store graphics data
and program instructions, where graphics data 1s any data that
1s input to or output from units within graphics processor 350.
Graphics memory can include portions of host memory 312,
local memory 345, register files coupled to the components
within graphics processor 350, and the like. Graphics proces-
sor 350 includes one or more processing units that may each
read and/or write graphics memory. In alternate embodi-
ments, host processor 314, graphics processor 350, system
interface 315, or any combination thereof, may be integrated
into a single processing unit. Further, the functionality of
graphics processor 350 may be icluded 1n a chip set or 1n
some other type of special purpose processing unit or co-
Processor.

In a typical implementation graphics processor 350 per-
forms geometry computations, rasterization, pixel texture
mapping and shading computations and raster operations. In
some embodiments of the present invention, graphics proces-
sor 350 1s optionally configured to deliver data to a display
device, network, electronic control system, other computing
system 300, other graphics subsystem 370, or the like. Alter-
natively, data 1s output to a film recording device or written to
a peripheral device, e.g., disk drive, tape, compact disc, or the
like.

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 4A 1llustrates a block diagram of graphics processor
350 shown 1n FIG. 3, 1n accordance with one or more aspects
of the present invention. Graphics processor 350 includes a
front end 410, pipeline units 440-A, B, and C, and a memory
interface 430. Front end 410 recerves input commands 400
from device driver 305. In some embodiments of the present
invention, mput commands 400 may be stored in graphics
memory and read by front end 410.

In one embodiment, Shadow state 320 and override state
323 are distributed within graphics processor 350 and stored
in portions within each pipeline unit 420-A, B, and C rather
than being stored 1n a single centralized location. Pipeline
unmt 440-A receives stream 417 that includes data packets and
state bundles from the front end. Data packets contain ren-
dering data to be processed by the graphics pipeline. State
bundles are packets containing one more individual state
settings that travel through the graphics pipeline 1n line with
rendering data. State bundles may be 1dentified with a flag,
which distinguishes them from rendering data. In one
embodiment, each state bundle has a state payload and an
identifier tag (address), which indicates what state 1t contains
and allows umits to identily 1t and copy the state from the
bundle when 1t 1s recerved. Pipeline unit 440-A includes a
shadow state 420-A that includes the API programmed state
control settings that are relevant for pipeline unit 440-A.
Pipeline umit 440-A also includes an override state 425-A that
may store a flag for each state control setting that 1s relevant
for pipeline unit 440-A and may be overridden by pipeline
unit 440-A.

Pipeline unit 440-A outputs a stream 427, including data
packets and state bundles, to pipeline unit 440-B. Stream 427
may include all of the state bundles receirved by pipeline unit
440-A, or stream 427 may include fewer state bundles. Over-
ride values that are generated by pipeline unit 440-A are used
within pipeline unit 440-A and are not included in stream 427 .
Pipeline unit 440-A may be configured to access graphics
memory via memory interface 430 to process the data.

Similarly, pipeline unit 440-B processes the data included
in stream 427 according to the state bundles that are also
included in stream 427 and outputs stream 437 to pipeline unit
440-C. Shadow state 420-B and override state 425-B may
include some of the same state control settings and override
flags that are stored 1n shadow state 420-A and C and override
state 425-A and C, respectively. Theretfore, the override val-
ues for a particular setting may vary for one or more of
pipeline units 440-A, B, and C based on how that particular
setting 1s used within each pipeline unait.

Finally, pipeline unit 440-C processes the data included 1n
stream 437 according to the state bundles that are also
included in stream 437 and outputs the processed data to
memory 1nterface 430 for storage in graphics memory. In
other embodiments of the present invention, pipeline unit
440-C outputs the data to another device, such as another
processor or a device configured to display image data.
Graphics processor 350 may include other processing units
and/or additional or fewer pipeline units such as pipeline units
440-A, B, and C.

In some embodiments of the present inventions, pipeline
units 440-A, B, and C, are configured to perform data assem-
bly and vertex processing, primitive assembly and rasteriza-
tion, and fragment processing and raster operations, respec-
tively. In particular, pipeline unit 440-A may be configured to
collect vertex data for high-order surfaces, primitives, and the
like, and transform the vertex data as specified by the state
bundles included 1 bundles 417. For example, pipeline unit
440-A may be programmed to transform the vertex data from
an object-based coordinate representation (object space) to an

US 8,228,338 Bl

7

alternatively based coordinate system such as world space or
normalized device coordinates (NDC) space.

Pipeline unit 440-B may be configured to construct graph-
ics primitives, e.g., points, lines, triangles, or the like, and
transform the graphics primitives as specified by the state
bundles 1n stream 427. For example, pipeline unit 440-B may
be programmed to subdivide the graphics primitives 1into one
or more new graphics primitives and calculate parameters,
such as plane equation coellicients, that are used to rasterize
the new graphics primitives. Pipeline unit 440-B may also be
configured to rasterize the new graphics primitives and output
pixel fragments and coverage data to pipeline unit 440-C as
stream 437.

Pipeline unit 440-C may be configured to execute fragment
shader programs, transforming pixel fragments recerved from
Pipeline unit 440-B. For example, pipeline unit 440-C may be
programmed to perform operations such as perspective cor-
rection, texture mapping, shading, blending, and the like, to
produce shaded pixel fragments. Pipeline unit 440-C may
read texture map data that 1s stored 1n graphics memory
through memory interface 430 for use 1n processing the frag-
ment data. Pipeline umit 440-C may also be configured to
perform near and far plane clipping and raster operations,
such as stencil, z test, and the like, and output pixel data to
memory interface 430 for storage 1n graphics memory.

FI1G. 4B 1llustrates a block diagram of a pipeline unit 440-
A, B, orC, shown n FIG. 4A, in accordance with one or more
aspects of the present invention. Pipeline unit 440 may be any
one of pipeline units 440-A, B or C of FIG. 4A. Similarly,
shadow state 420 and override state 425 may be shadow state
420-A, B, or C and override state 425-A, B, or C, respectively.
Pipeline unit 440 includes a bundle decoder 4335, an override
monitor 450 and functional logic 460. Bundle decoder 435
receives input stream 405 and decodes the bundles included
in iput stream 405 to produce decoded state bundles 4435 that
are output to override monitor 450. Bundle decoder 435 out-
puts a portion of the state bundles recerved via input stream
405 as a portion of output stream 465. Functional logic 460
receives data packets imncluded 1n input stream 405 for pro-
cessing according to the state bundles and produces data
packets that include the processed data. Data packets output
by functional logic 460 are merged (using a multiplexer) with
the state bundles output by bundle decoder 435 to produce
output stream 465.

Override monitor 450 recerves decoded state bundles 445
and detects any error conditions that may exist for the API
programmed state controls. As previously described, error
conditions may be explicitly defined by API 330 or may be
based on a particular hardware limitation of functional logic
460. Override monitor 450 also detects when an error condi-
tion that has been overridden no longer exists, and restores the
desired API programmed state control settings using shadow
state 420 or using the current decoded state bundle. Override
monitor 450 maintains shadow state 420 and override state
425 as described 1n conjunction with FIGS. SA and 5B.

Override monitor 4350 provides functional logic 460 with a
unit state 455 that 1s used to control the processing of data
performed by functional logic 460. Unit state 455 represents
API programmed state control settings that do not cause error
conditions and any override values for API programmed state
control settings that do cause error conditions. At any point 1n
time, one or more API programmed state control settings may
be overridden with override values determined by override
monitor 450. As previously described, the override values
may be determined based on a particular API and they may be
unique to each pipeline unit 440. Importantly, the override

10

15

20

25

30

35

40

45

50

55

60

65

8

values are determined by API behaviors and the override
function 1s transparent to the API 330, device driver 305, and
host processor 314.

FIG. SA illustrates a method for overriding and restoring,
the API programmed state controls, in accordance with one or
more aspects of the present mvention. In step 500 bundle
decoder 435 recerves a state bundle. In step 505 bundle
decoder 435 decodes the state bundle and outputs a decoded
state bundle to override momtor 450. In step 508, override
monitor 450 stores the API programmed state setting pro-
vided by the decoded state bundle 1n shadow state 420. In step
510 override monitor 450 determines 1f an error condition
will be caused by processing the decoded state bundle to
update the bundle state. The error condition may be related to
any setting specified by the decoded state bundle. In some
embodiments of the present invention, override monitor 450
only checks for error conditions when a data packet is present,
to avoid triggering overrides during 1llegal configurations that
can temporarily occur as state settings change from one legal
configuration to another. Such an embodiment is described 1n
conjunction with FIG. 5B.

If, 1n step 310 override monitor 4350 determines that an
error condition will be caused by processing the decoded state
bundle to update unit state 435, then 1n step 545 override
monitor 450 sets the override flag for the API programmed
state setting that 1s overridden to avoid the error condition. In
some instances the API programmed state setting that 1s over-
ridden 1s the setting provided by the decoded state bundle 1n
override state 425. In other 1nstances the API programmed
state setting that 1s overridden 1s a setting was provided by a
previously received decoded state bundle. The override flag
indicates that the API programmed state setting has been
overridden and does not match the setting stored 1n shadow
state 420.

In step 550, override momtor 450 overrides a bundle state
setting by providing an override value for the setting that does
not cause an error condition. Importantly, the setting that 1s
overridden corresponds to the override flag that was set 1n step
545. In some 1nstances override monitor 450 overrides the
API programmed state setting provided by the decoded state
bundle. In other instances override monitor 450 overrides an
API programmed state setting stored in shadow state 420 that
causes an error condition 1n combination with the API pro-
grammed state setting provided by the decoded state bundle.
In step 355, override monitor 450 outputs the unit state to
functional logic 460 via unit state 435, including the API
programmed state stored in shadow state 420 and any over-
ride values corresponding to override flags that are set in
override state 425.

If, 1mn step 310 override monitor 4350 determines that an
error condition will not be caused by processing the decoded
state bundle to update the bundle state, then 1n step 3515
override monitor 450 determines 11 an override tlag 1s set that
1s related to the API programmed state setting provided by the
decoded state bundle. Note that 1t 1s necessary to examine the
override flag not just for the API programmed state setting
provided by the decoded state bundle, but also for any other
setting that may have been overridden to avoid an error con-
dition.

For example, a first state bundle that sets blend enable true
may not cause an error condition when logic operations are
disabled. When a second state bundle 1s received that enables
logic operations, blend enable 1s overridden to false to avoid
an error condition and the blend enable override flag 1s set. At
a later time, a third state bundle 1s recerved that disables logic
operations, eliminating the error condition that caused the
blend enable setting to be overridden. When the third state

US 8,228,338 Bl

9

bundle is received, the blend enable setting should be restored
and the override flag corresponding to the blend enable set-
ting should be cleared. It 1s necessary to restore overridden
settings 1n order to process the data as specified by the API
used by the application program, 1.¢. to process the data as
specified by the decoded state bundles.

If, in step 315 override monitor 450 determines that an
override flag 1s not set that 1s related to the API programmed
state setting provided by the decoded state bundle, then 1n step
535 override monitor 450 outputs the bundle state. Otherwise,
in step 517 override monitor 450 determines 11 any setting that
corresponds to an override tlag identified 1n step 5135 can be
restored to the setting stored in shadow state 420 without
causing an error condition. If no setting can be restored with-
out causing an error condition, then in step 5535 override
monitor 450 outputs the overridden state to functional logic
460 via unit state 455. Otherwise, 1n step 520 override moni-
tor 450 restores one or more settings that each correspond to
an override flag identified 1 step 515. In step 515 override
monitor 450 clears the override flag for each setting that 1s
restored.

FIG. 5B illustrates another method for overriding and
restoring the API programmed state controls, 1n accordance
with one or more aspects of the present mvention. In this
embodiment, the API programmed state specified by decoded
state bundles 455 1s stored 1n shadow state 420 whenever a
state bundle 1s recerved. Rather than detecting errors when a
state bundle 1s processed, errors are detected when data pack-
ets are recerved to avoid triggering overrides during illegal
configurations that can temporarily occur as state settings
change from one legal configuration to another when a
sequence of state bundles 1s processed. In step 501 bundle
decoder 435 recerves a data bundle and signals override moni-
tor 450 to determine 11 the state specified by shadow state 420
needs to be overridden or 1f overridden state can be restored.
Prior to recerwving the data bundle in step 501, one or more
state bundles or data bundles may have been recerved by
bundle decoder 435.

In step 311 override monitor 450 determines whether the
settings stored in shadow state 420 will cause an error condi-
tion. If, 1n step 511 override monitor 450 determines that the
state settings stored 1n shadow state 420 will cause an error
condition, then the method completes steps 546, 551, and
556. Steps 346, 551, and 556 correspond to previously
described steps 345, 550, and 555. I, in step 3511 override
monitor 450 determines that the settings stored 1n shadow
state 420 will not cause an error condition, then the method
completes one or more of steps 516, 518, 521, and 526 belfore
proceeding to step 556. Steps 516, 518, 521, and 526 corre-
spond to previously described steps 5135, 517, 520, and 525.

FI1G. 6 A 1llustrates another block diagram of a pipeline unit
440 shown in FIG. 4A, 1n accordance with one or more
aspects of the present invention. In this embodiment, a stored
override state, such as override state 425 1s replaced by com-
binational logic, override logic 625. Override logic 625
includes override values that are embedded 1n the combina-
tional logic. Shadow state 420 may be shadow state 420-A, B,
or C and override logic 625 may replace override state 425-A,
B, or C of FIG. 4A. Override monitor 650 receives decoded
state bundles 445 and detects any error conditions that may
exist for the API programmed state controls based on the API
programmed state stored 1n shadow state 420, ¢.g., raw state
programmed by the API.

Override monitor 650 maintains shadow state 420 as pre-
viously described and override logic 625 intercepts the API
programmed state output by shadow state 420 and modifies
any API programmed state controls included 1n bundle state

10

15

20

25

30

35

40

45

50

55

60

65

10

4355 that would result 1n an error condition. When the error
condition no longer exists, override logic 625 eflectively
restores the API programmed state controls corresponding to
the API programmed state that 1s stored 1n shadow state 420.
Override logic 625 may include one or more pipeline stages
as needed to decode and modily the API programmed state
controls. In particular, override logic 6235 may include output
registers that pipeline bundle state 455. Note that unit state
4355 produced by override monitor 650 1s the same as unit state
43535 produced by override monitor 450.

Override monitor 650 provides functional logic 460 with a
unit state 455 that represents the API programmed state con-
trol settings that do not cause error conditions and any over-
ride values for API programmed state control settings that do
cause error conditions. As previously described, the override
values are determined by API behaviors and the override
function 1s transparent to the API 330, device driver 305, and
host processor 314.

FIG. 6B illustrates a method for overriding the API pro-
grammed state in accordance with one or more aspects of the
present invention. Steps 600, 605, and 608 correspond to
steps 300, 505, and 508 of FIG. 5, respectively. In step 645
override monitor 630 determines 11 an error condition exists
for the combination of API programmed state settings that are
stored 1n shadow state 420, and, 1 not, then override monitor
650 proceeds to step 660. The overridden API programmed
state control setting 1s maintained by override logic 625 for
output to functional logic 460 until the error condition no
longer exists. When an error condition 1s removed, any pre-
viously overridden API programmed state settings are
restored with the API programmed state settings that are
stored 1n shadow state 420.

If, 1n step 645 override monitor 630 determines that an
error condition will be caused by the API programmed state
settings stored in shadow state 420, then 1n step 655, override
monitor 650 overrides the API programmed state setting out-
put by shadow state 420 to avoid the error condition. In some
instances the API programmed state setting that 1s overridden
1s the setting provided by the current decoded state bundle. In
other instances the API programmed state setting that 1s over-
ridden 1s a setting was provided by a previously recerved
decoded state bundle. In step 660, override monitor 650 out-
puts unit state 455 to functional logic 460, including the API
programmed state stored in shadow state 420 and any over-
ride values corresponding to API programmed state setting
that are modified by override logic 625.

Distributing the detection and overriding of API pro-
grammed state settings that cause error conditions allows
cach pipeline unit 440 to continue processing data while
avoiding the error conditions. Offloading the detection and
overriding tasks from a device driver may also improve the
system processing throughput since the device driver does not
need to track the shadow state, does not need to check for
incompatible state settings, and does not need to handle error
notifications generated by processor 200 or graphics proces-
sor 350 for each occurrence of an error condition. Although
the detection and state override mechanisms have been
described with specific reference to graphics API state set-
tings, the detection and state override mechanisms may be
used to avoid error conditions 1n a processor for other types of
programmed state. Persons skilled 1n the art will appreciate
that any system configured to perform the method steps of
FIG.5A, FIG. 3B, FIG. 6B, or their equivalents, are within the
scope of the present invention.

In one implementation, to verily the proper operation of the
error condition detection and overriding mechanism used for
cach override monitor 4350 are first described 1n a configura-

US 8,228,338 Bl

11

tion file. The bundles to be decoded by each bundle decoder
435 may also be defined in a separate definition file. The
definitions of the bundles for each bundle decoder 435 may
tollow certain predefined naming conventions, imitialization

values, and default values to facilitate automatic generationof 3

files for verification, stmulation, and synthesis. A global build
process can then take all the files mentioned above nto
account and generate a Verilog module for each bundle
decoder 435 and override monitor 450 or 650 1n graphics
processor 350. These Verilog modules may be verified and
synthesized to produce a semiconductor device that 1s con-
figured to override API programmed state to avoid error con-
ditions. Specifically, these Verilog modules may be used to
produce the circuitry of override monitor 450 or 650.

The 1nvention has been described above with reference to
specific embodiments. Persons skilled in the art, however,
will understand that various modifications and changes may
be made thereto without departing from the broader spirit and
scope of the invention as set forth in the appended claims. The
foregoing description and drawings are, accordingly, to be
regarded in an 1llustrative rather than a restrictive sense.

The mvention claimed 1s:

1. A system for detecting and overriding graphics applica-
tion programming interface (API) programmed state settings
to avoid an error condition, comprising:

functional logic configured to process data according to

state settings that include at least a portion of the graph-
ics API programmed state settings and override values
representing at least one graphics API state setting to be
modified to avoid the error condition;

an override monitor implemented 1n hardware and coupled

to the functional logic and configured to:

receive the graphics API programmed state settings,

override the at least one graphics API programmed state
setting with a first override value representing the at
least one graphics API state setting to be modified to
avoid the error condition when a combination of the
graphics API programmed state settings will cause the
error condition, and

later restore the at least one graphics API programmed
state setting when another combination of the graph-
ics API programmed state settings does not cause the
error condition; and

a shadow state memory within the override monitor that 1s

configured to store the graphics API programmed state
settings that are used to detect illegal graphics API pro-
grammed state setting combinations and to determine
the override values for the graphics API programmed
state settings.

2. A system for detecting and overriding graphics applica-
tion programming interface (API) programmed state settings
to avoid an error condition, comprising;:

functional logic configured to process data according to

state settings that include at least a portion of the graph-
ics API programmed state settings and override values
representing at least one graphics API state setting to be
modified to avoid the error condition;

an override monitor implemented 1n hardware and coupled

to the functional logic and configured to:

receive the graphics API programmed state settings,

override the at least one graphics API programmed state
setting with a first override value representing the at
least one graphics API state setting to be modified to
avold the error condition when a combination of the
graphics API programmed state settings will cause the
error condition, and

10

15

20

25

30

35

40

45

50

55

60

65

12

later restore the at least one graphics API programmed
state setting when another combination of the graph-
ics API programmed state settings does not cause the
error condition; and

an override state memory within the override monitor that

1s configured to store a tlag for each one of the graphics
API programmed state settings that the override monitor
1s configured to override, wherein a particular flag cor-
responding to a particular graphics API programmed
state setting indicates whether or not the particular
graphics API programmed state setting has been over-
ridden to avoid an error condition.

3. The system of claim 2, wherein override monitor 1s
turther configured to clear a flag corresponding to the first
graphics API programmed state setting when the first graph-
ics API programmed state setting 1s restored by overwriting
the first override value with the first graphics API pro-
grammed state setting.

4. A system for detecting and overriding graphics applica-
tion programming interface (API) programmed state settings
to avoid an error condition, comprising;:

functional logic configured to process data according to

state settings that include at least a portion of the graph-
ics API programmed state settings and override values
representing at least one graphics API state setting to be
modified to avoid the error condition;

an override monitor implemented 1n hardware and coupled

to the functional logic and configured to:

receive the graphics API programmed state settings,

override the at least one graphics API programmed state
setting with a first override value representing the at
least one graphics API state setting to be modified to
avoid the error condition when a combination of the
graphics API programmed state settings will cause the
error condition, and

later restore the at least one graphics API programmed
state setting when another combination of the graph-
ics API programmed state settings does not cause the
error condition; and

additional override monitors and additional functional

logic that are configured to process the data using a
different portion of the graphics API programmed state
settings, wherein each one of the additional override
monitors 1s configured to detect and override a unique
set of error conditions.

5. A system for detecting and overriding graphics applica-
tion programming 1nterface (API) programmed state settings
to avoid an error condition, comprising;:

tfunctional logic configured to process data according to

state settings that include at least a portion of the graph-
ics API programmed state settings and override values

representing at least one graphics API state setting to be
modified to avoid the error condition;
an override monitor implemented 1n hardware and coupled

to the functional logic and configured to:

receive the graphics API programmed state settings,

override the at least one graphics API programmed state
setting with a first override value representing the at
least one graphics API state setting to be modified to
avoid the error condition when a combination of the
graphics API programmed state settings will cause the
error condition, and

later restore the at least one graphics API programmed
state setting when another combination of the graph-
ics API programmed state settings does not cause the
error condition,

US 8,228,338 Bl

13

wherein circuitry of the override monitor 1s generated
using a configuration file that defines a set of error con-
ditions and corresponding override values for the graph-
ics API programmed state settings.

6. A method for detecting and overriding application pro-
gramming 1ntertace (API) programmed state settings to avoid
an error condition, comprising:

receiving at least one graphics API programmed state set-

ting;
determining that the error condition will result from using,
the at least one graphics API programmed state setting in
combination with other graphics API programmed state
settings that are stored 1n a shadow state memory;

overriding the at least one graphics API programmed state
setting with a first override value representing the at least
one graphics API state setting to be modified to avoid the
error condition, wherein the first override wvalue 1s
selected by an override monitor implemented in hard-
ware;

producing a first unit state that includes the other graphics

API programmed state settings and the first override
value:

processing data using functional logic that 1s configured as

specified by the first unit state to produce processed data;
and

setting an override flag that corresponds to the first graph-

ics API programmed state setting and 1s stored in an
override memory.
7. The method of claim 6, wherein the override memory
includes an override flag for each one of the graphics API
programmed state settings that an override value 1s specified
for.
8. The method of claim 6, further comprising:
receiving a second graphics API programmed state setting;;
determining that an error condition will not result when the
second graphics API programmed state setting 1s used in
combination with the other graphics API programmed
state settings that are stored 1n the shadow state memory;

clearing the override flag that corresponds to the first
graphics API programmed state setting and 1s stored 1n
the override memory; and

restoring the first graphics API programmed state setting

by replacing the first override value 1n the first unit state
to produce a second unit state that includes the second
graphics API programmed state setting and the first
graphics API programmed state setting.

9. A method for detecting and overriding application pro-
gramming 1ntertace (API) programmed state settings to avoid
an error condition, comprising:

10

15

20

25

30

35

40

45

14

recerving at least one graphics API programmed state set-
ting;

determining that the error condition will result from using
the at least one graphics API programmed state setting 1n
combination with other graphics API programmed state
settings that are stored 1n a shadow state memory;

overriding the at least one graphics API programmed state
setting with a first override value representing the at least
one graphics API state setting to be modified to avoid the
error condition, wherein the first override wvalue 1is
selected by an override monitor implemented in hard-
ware;

producing a first unit state that includes the other graphics
API programmed state settings and the first override
value; and

processing data using functional logic that 1s configured as
specified by the first unit state to produce processed data,

wherein the first graphics API programmed state setting
enables blending and the first override value disables
blending for all render targets when the other graphics
API programmed state settings enable logic operations.

10. A method for detecting and overriding application pro-

gramming interface (API) programmed state settings to avoid
an error condition, comprising:

recerving at least one graphics API programmed state set-
ting;

determiming that the error condition will result from using,
the at least one graphics API programmed state setting 1n
combination with other graphics API programmed state
settings that are stored 1n a shadow state memory;

overriding the at least one graphics API programmed state
setting with a first override value representing the at least
one graphics API state setting to be modified to avoid the
error condition, wherein the first override wvalue 1is
selected by an override monitor implemented in hard-
ware;

producing a first unit state that includes the other graphics
API programmed state settings and the first override
value; and

processing data using functional logic that 1s configured as
specified by the first unit state to produce processed data,

wherein the first graphics API programmed state setting
enables dual-source blending and the first override value
disables a multiple render target mode when the other
graphics API programmed state settings enable the mul-
tiple render target mode.

	Front Page
	Drawings
	Specification
	Claims

