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APPARATUS AND METHOD FOR RAY
TRACING WITH BLOCK FLOATING POINT
DATA

BACKGROUND

1. Field

The present invention generally relates to rendering two-
dimension representations from three-dimensional scenes,
and more particularly to using ray tracing for accelerated
rendering of photo-realistic two-dimensional representations
ol scenes.

2. Description of Related Art

Rendering photo-realistic images with ray tracing 1s well-
known 1n the computer graphics arts. Ray tracing 1s known to
produce photo-realistic 1images, including realistic shadow
and lighting effects, because ray tracing models the physical
behavior of light interacting with elements of a scene. How-
ever, ray tracing 1s also known to be computationally inten-
stve, and at present, even a state of the art graphics worksta-
tion requires a substantial amount of time to render a
complicated scene using ray tracing.

Ray tracing usually involves obtaining a scene description
composed of geometric primitives, such as triangles, that
describe surfaces of structures in the scene, and modeling
how light interacts with primitives in the scene by tracing
light rays 1n the scene. A ray 1s a vector of virtual light with an
origin and a direction in 3-space.

For example, a scene may comprise a car on a street with
buildings on either side of the street. The car in such a scene
may be defined by a large number of triangles (e.g., 1 million
triangles) that approximate a continuous surface. A camera
position from which the scene 1s viewed 1s defined. A ray cast
from the camera 1s often termed a primary ray, while a ray cast
from one object to another, for example, to enable reflection
1s oiten called a secondary ray. An image plane of a selected
resolution (e.g., 1024x768 for an SVGA display) 1s disposed
at a selected position between the camera and the scene.

A principal objective of ray tracing 1s to determine a color
and 1ntensity for each pixel of the image plane, such that this
image can thereafter be displayed on a monitor, for example.
In the physical world, viewing such a scene from the camera’s
perspective would result in light rays reaching the camera that
owe their existence to one or more light sources, including
diffuse and directed light sources. In the physical world, these
light sources project light energy into the scene, and this light
energy 1s transmitted, difiracted, reflected, and/or absorbed
according to the types of materials that the light contacts, and
the order 1n which they are contacted, during its journey from
light source to the camera. This process 1s what ray tracing
attempts to duplicate.

Although the physical world operates by light energy being
traced from a source to the camera, because only a small
portion of the light generated by a source arrives at the cam-
era, 1t has been recognmized that rays, for most circumstances,
should be traced from the camera back to determine intersec-
tions with light sources, 1nstead.

A simplistic ray tracing algorithm involves casting one or
more rays from the camera through each pixel of the image
into the scene. Fach ray 1s then tested against each primitive
composing the scene to identily a primitive which that ray
intersects, then it 1s determined what effect that primitive has
on the ray, for example retlecting and/or refracting 1t. Such
reflection and/or refraction causes the ray to proceed 1n a
different direction, and/or split into multiple secondary rays,
which can take different paths. All of these secondary rays are
then tested against the scene primitives to determine primi-
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tives they intersect, and the process recursively continues
until the secondary (and tertiary, etc.) ray terminates by, for
example, leaving the scene, or hitting a light source. While all
of these ray/primitive intersections are being determined, a
tree mapping them is created. After a ray terminates, the
contribution of the light source 1s traced back through the tree
to determine its elfect on the pixel of the scene.

As can be readily understood, the computational complex-
ity of testing 1024x768 (for example) rays for intersection
with millions of triangles 1s computationally expensive—and
such ray numbers do not even account for all of the additional
rays spawned as a result of material interaction with inter-
secting rays). Since a ray traverses a scene 1n a straight line, 1t
has been understood that the “brute force” testing of each ray
against each primitive 1s costly, and by testing a ray first
against sub-portions of the primitives, a group of fewer primi-
tives can be 1dentified to test for imtersection. Many ways to
provide these sub-portions have been proposed and generally
are referred to as acceleration structures.

Implicit 1n the above overview i1s that each primitive, and
acceleration structure has a defined position and extent in the
scene. Each ray also must have a specified origin, and a
direction. Generally, more accuracy in specifying these items
1s thought to provide a better ray tracing result, 1n that more
accuracy can allow for greater precision 1n intersection test-
ing. Many general purpose processors are used to implement
ray tracing, and these processors provide full-precision IEEE
tfloating point units, and ray tracing software can benefit from
this built-in floating point capability.

Using fixed point math in ray tracing also has been consid-
ered. Fixed integer math used in ray tracing generally calls for
sub-dividing an extent of a scene 1nto equally si1zed subdivi-
s1ons of a si1ze that depends on an available number of bits 1n
the integer format being used, and a size of the scene being
rendered. Then, positions of objects 1n the scene and ray data
are quantized to a nearest number representable within the
number of bits provided. Fixed point arithmetic allows for a
much smaller range of representable numbers than floating,
pomnt arithmetic. Fixed point arithmetic also generally
involves an analysis of a particular scene to be rendered, such
that the scene can be adapted to fixed point representation in
an intelligent way, and generalizing the use of fixed point

arithmetic to full-resolution problems and for more arbitrary
scenes may be difficult.

SUMMARY

Aspects of the invention include a method of itersection
testing for ray tracing, that comprises recewving ray data
defining a ray. The method also comprises recerving geomet-
ric shape data including 3-D positional information for the
shape represented by block floating point format data com-
prising a plurality of significant sharing a common exponent.
The method also comprises testing the ray for intersection
with the geometric shape based on the received ray data and
the geometric shape data, and outputting an intersection result
in response to the testing indicating a possible intersection of
the ray with the geometric shape. In other aspects ray data also
can be provided in a block floating point format additionally
or 1nstead of the geometric shape data.

The geometric shapes can include acceleration data and
primitives, 1including spheres, triangles, axis-aligned
bounded boxes, and the like. A higher precision floating point
format representation of the geometric shapes can be main-
tained, for example, 1n a system memory and converted to
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provide the block floating point format representation. Such
conversion can be done on a host processor, or 1n another
resource.

Other aspects can include a ray tracing system comprising,
a converter operable to receive geometric shape data, which
defines at least one point in 3-D space with three tloating point
components expressed as three exponents and three signifi-
cant, and converts the geometric shape data for the at least one
point 1mnto geometric shape data comprising three significant
and one exponent shared among the three significant. The
system also comprises an intersection testing resource oper-
able to receive ray data defining a ray to be intersected tested
with the geometric shape, to recerve the converted geometric
shape data, and to determine an 1ntersection test result based
on the ray data and the converted geometric shape data.

Still further aspects include test cells and/or other func-
tional units that operate for intersection testing of a ray with
geometric shapes, comprising an interface for recerving data
defining a geometric shape with a plurality of attributes. At
least one of the attributes 1s defined by data comprising a first
exponent shared among a first plurality of FP significant. The
test cell interface also 1s operable for recerving data defining
a ray to be tested for mtersection against the geometric shape,
where the origin of the ray 1s defined with one or more second
exponents and a second plurality of floating point significant.

The test cell also comprises a normalizer operable to 1den-
tify a testing exponent based on the first exponent and the one
or more second exponents, and to round one or more of the
first plurality of floating point significant and the second
plurality of floating point significant based on a value of the
testing exponent; and intersection test logic implementing an
algorithm for testing the ray for intersection with the geomet-
ric shape, the intersection test logic using the testing expo-
nent, and the rounded one or more of the first plurality of
floating point significant and the second plurality of floating
point significant

BRIEF DESCRIPTION OF THE DRAWINGS

For a fuller understanding of aspects and examples dis-
closed herein, reference 1s made to the accompanying draw-
ings 1n the following description.

FIG. 1 and FIG. 2 illustrate aspects of systems 1in which
block floating point ray tracing aspects described herein may
be implemented;

FI1G. 3 1llustrates an example intersection testing resource
that may use block floating point formatted data;

FI1G. 4 illustrates an example method comprising method
aspects of a driver and of an intersection testing resource
using block floating point data;

FIGS. 5-7 illustrates example of ray and primitive data
formatting and flow to test cells; and

FIGS. 8-10 illustrate examples of implementations of
intersection testing resources, and supporting functionality
for using block floating point format data in ray/geometric
shape ntersection testing.

DETAILED DESCRIPTION

The following description 1s presented to enable a person
of ordinary skill 1n the art to make and use various aspects of
the 1nventions. Descriptions of specific techniques, imple-
mentations and applications are provided only as examples.
Various modifications to the examples described herein may
be apparent to those skilled 1n the art, and the general prin-
ciples defined herein may be applied to other examples and
applications without departing from the scope of the mven-
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4

tion. For clarity in description, data for a certain type of
object, e.g., a primitive (e.g., coordinates for three vertices of
a triangle) 1s described simply as the object 1tself, rather than
referring to the data for the object.

Introduction

A 3-D scene 1s converted into a 2-D representation for
display. In an example conversion, a camera position (can be
diffuse) 1s selected from which the scene 1s to be viewed. The
camera position frequently represents a location of a viewer
of the scene (e.g., a gamer, a person watching an animated
f1lm, etc.) The 2-D representation 1s usually at a plane location
between the camera and the scene, such that the 2-D repre-
sentation comprises an array of pixels at a desired resolution.
Rays are instantiated to pass through the image plane at
known locations. These rays are tested for intersection with
primitives composing the scene. Because the scene will have
many primitives, acceleration structures are often used to
provide ways to eliminate portions of the scene primitives that
do not need to be tested for a given ray.

Usually, these acceleration structures comprise geometric
shapes that bound portions of scene primitives or scene space,
and intersection testing of rays with those geometric shapes 1s
conducted to determine whether further testing with the
boundary of that geometric shape 1s required.

In order to determine whether a primitive and/or an accel-
eration structure 1s 1ntersected by a given ray, the primitive,
the acceleration structure, and the ray all need to have loca-
tions and other information (e.g., radius, direction, etc.)
specified 1n the scene.

Many ray tracing systems use IEEE compliant floating
point (FP) math, as provided 1n many modern CPUSs, to rep-
resent such locations. For example, modern CPUs can have
SIMD single-precision FP units that can execute an instruc-
tion on 4 single-precision floating point numbers at a time.
Here, any FP implementation that has at least single-precision
floating point accuracy 1s termed “full-precision” FP, and
would include for example, both single and double precision
FP. In general, FP number presentation provides a significand
(often also called a mantissa) having a number of bits, and an
exponent. The significand 1s normalized to have no more than
1 significant bit to the left of the decimal point (which
“floats™), and the exponent 1s adjusted to scale the significand
appropriately. It 1s conventional to consider that a floating
point number, S, is defined (aside from sign bit) by 1.£:2¢°
where 1 1s a fraction composing the significand of S (where
the “1” 1s usually implied, given normalization of the FP
number), and € 1s an exponent value biased by b. The sign bit
establishes whether the number 1s positive or negative, and 1f
negative numbers are not of interest for a given purpose then
the sign bit would not be required. In single precision IEEE
format, the significand comprises an unsigned 23 bit value.

By way of further explanation, in many computer graphics
applications and implementations, triangles are used as a
shape for a primitive, as they offer a variety of well-known
advantages for producing wire frame models of scenes to be
rendered. A triangle 1s composed of 3 vertices, which each
define a point 3-D space. A point in 3-D space can be repre-
sented using three independent variables. The XYZ coordi-
nate system represents the familiar conventional independent
variables of X, Y, and Z and will be used herein. However, any
set of three independent variables can represent a position 1n
3-D space, and fits within the examples and other aspects
described herein.

Considering a simple location 1n 3-D space (e.g., a vertex),
as an example, a vertex can be described relative to a scene
origin, which also 1s a defined point for a given scene 1n 3-D
space. Since the scene origin and vertex are relatively posi-
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tioned 1n 3-D space, 3 variables are required to fully specily
their relative location. One way to specily such relative loca-
tion 1s to specily a distance between origin and vertex location
in each o1 3 directions, which generally are mutually orthogo-
nal.

Thus, each number describing a vertex can represent a
distance from the scene origin in one of three directions, and
collectively, the vertex 1s fully specified by three FP numbers.
To that end, Table 1 presents a single-precision tloating point
(FP) representation of a vertex with three FP numbers, each
comprising a respective exponent and a respective significand
and each being 32 bits (single precision) long.

TABLE 1
Ex- Ex-
ponent  Significand Exponent Significand ponent  Significand
X Y Z
32 bits 32 bits 32 bits
96 bits

By contrast with full-precision FP representations,
example systems and methods according to aspects presented
herein use a number format to represent scene locations of
rays, primitives, and acceleration data that allows more effi-
cient memory use than full-precision FP formats, while also
maintaining suitability for large scene ray tracing, with
widely dispersed objects. FIGS. 1-2 illustrate logical and
physical organizations of an exemplary rendering system
100, and aspects of rendering system and 1ts configuration are
described more particularly with respect to later figures.

FIG. 1 presents a logical organization of a rendering sys-
tem 100. System 100 comprises a driver 1035 that interfaces
with an application 110 that uses rendering services provided
through driver 1035. Driver 105 can access a memory 120, and
provide data to and receive data from shaders 115 and to
display driver 150. Driver also provides data to and receives
data from an intersection testing resource 123. Driver 105 and
shaders 115 are often programs running on a general purpose
processor, while intersection testing unit 125 can include
specialized hardware for performing parallelized intersection
testing, as will be described below.

For example, FIG. 2 illustrates hardware 200 aspects for
the rendering system 100 of FIG. 1. A Host CPU 2035 provides
computation resources for executing code for driver 105,
shaders 115 and aspects of display driver 150. Host CPU 205
uses a chipset 215, which may comprise graphics logic 216
that also may provide other rendering services to application
110, as well as interfacing with display driver 150. Chipset
215 communicates with an I/O bridge 230, which 1n turn
communicates with intersection testing resource 1235 and
with user interface devices 240 (e.g., mice, keyboards, j0y-
sticks, trackballs, etc.) Chipset 215 also communicates with a
system memory 225, which provides working memory for
various code running on CPU 205 (memory 120 can be a
virtual memory comprising portions of memory 225). Hard-
ware 200 provides a high-level context useful in describing
various 1nventive aspects, but any of a variety of different
computer systems can be used, and many substitutions and
changes could be made with hardware 200, including, for
example, provision of one or more discrete graphics cards,
integration of the I/O bridge 230 into chipset 215, and/or
integration of the chipset into CPU 205. The system 100 and
the configuration of hardware 200 can include, 1n one aspect,
a computer executing a soitware driver for interfacing with
the intersection testing resource 125 and with application(s)
using rendering services.
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The operation of intersection testing resource 1235, which
receives rays, primitives, and acceleration structures from the
driver for use 1n determining ray/primitive intersection pairs,
which are returned to the driver, will be described with respect
to FIG. 3, following an explanation of how these forms of data
can be represented according to aspects herein.

Data Used 1n Scene Rendering/Intersection Testing,

The following paragraphs describe aspects and examples
of how primitives, acceleration structures, and rays may be
represented for use 1 systems according to FIGS. 1 and 2.

Table 2, below, shows a data structure according to an
example block floating point (BFP) representation of a ver-
tex. In this BFP representation, the point 1n 3-D space repre-
sented by the vertex 1s represented by an exponent shared
among an X distance, a Y distance, and a Z distance from a
defined origin (again, with the example XY Z coordinate sys-
tem, although more general applicability exists). The data
structure also includes a separate significand for each of the
X, Y, and Z distances. Thus, as compared to a full-precision
floating point representation, each X, Y, and Z distance does
not include a separate exponent. Also, 1n one aspect, each
significand (18 bit integer) for each of X, Y, and Z 1n Table 2
1s represented 1n twos-complement, although a sign bit with
an unsigned integer can also be used. Further, rather than the
typical IEEE bias selection of 149, a bias applied to the shared
exponent can be set at 143.

TABLE 2
Exponent Significand Significand Significand
Shared X Y Z
8 bits 18 bits 18 bits 1% bits
62 bits

The representation of a vertex 1n this format 1s a deviation
from accepted practice, which calls for separate normaliza-
tion of each tloating point number (1.e., X, Y, and 7)) such that
cach FP number has only one significant digit to the left of the
point. Normalization provides better precision within the
available bits. Practically, to effect the proposed vertex rep-
resentation, some of the FP numbers representing a given
scene element will be denormalized, resulting in a loss of
precision 1n representing those numbers.

For example, assuming that a vertex has the following
location with respect to an ongin, [1.0437362x10 A6,
1.7463000x10 A9, 1.0480000x10 A13] (using base 10 here,
for convenience, but 1t would be understood that base 2 1sused
generally). Also, this example significand has 7 significant
digits (not including the implied 1 to the lett of the decimal).
There 1s an exponent difference between the X value (10 A6)
and both the’Y and Z values (10 A9 and 10 Al13, respectively).
Reformulating these normalized FP numbers into a BFP rep-
resentation requires denormalization of at least two of the
numbers.

These numbers can be denormalized 1n different ways. One
possibility 1s to reduce the exponent of the larger numbers to
be equal to that of the smallest number, and then shifting the
significant of the larger numbers to reflect the changes 1n
exponents. This way 1s less desirable than the other possibili-
ties since 1t causes loss of more significant digits in the larger
numbers (having shifted the decimal point to the left).

Another way 1s to adjust the smaller numbers to have an
exponent equal to the largest number, and then shift the deci-
mal point in their significant accordingly. Since this approach
causes loss of least significant bits, this approach 1s preferable
to the above method. Another alternative 1s to shift the small-
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est and largest numbers to an intermediate value, which also
causes loss of some precision in the most significant bits of
the larger number, which may be more of a concern that
maintaining significance in the least significant digits of the
smaller number.

Thus, 1 this example, a denormalized version of these
floating point numbers could include selecting a shared expo-

nent of 10 A13, which would require denormalization of two
numbers: 1.0437562x10A6 would become 0.0000001x10

A3 and 1.7463000x10A9 would become 0.0001746x10
AL13. As can be seen, a given number, when compared only to
its pre-adjustment value, can change dramatically 1n preci-
sion when denormalized.

In preferred applications of embodiments ol aspects
described, a scene composed of primitives will be rendered
using ray tracing, the primitives are defined with respect to a
scene origin, and the scene will be viewed from a camera
location approximately coincident with the scene origin. By
locating the scene origin and the camera location 1n close
proximity, defining scene primitives with a block floating
point format allows a point 1n space defined by 3 spatial
components sharing a primitive to behave, for precision 1n
specification of position, like a radial coordinate system.
Such behavior allows higher precision for points closer to the
origin than for those farther away. Especially in systems
where 1t 1s desired to perform many intersection tests in
parallel, with many rays and/or geometric shapes, BEP pro-
vides a precision tradeoil 1n favor of reduced computation
requirements, reduced bandwidth, and memory requirements
that can prove beneficial.

BEFP Primitives (e.g., Triangles)

The present example focuses on triangular primitives,
although from these disclosures, 1t will be apparent that other
primitives can be represented according to the teachings dis-
closed here. Triangles are usually stored/represented 1n tri-
angle strips, such that vertices of one triangle also form ver-
tices for another. Table 3 presents a floating point
representation of 3 triangles, where each FP numbers repre-
sent respective distances from a scene origin 1n each of the
XY Z directions for each of three vertices (1.e., nine FP num-
bers of 32 bits total each). The first two vertices specily a first
line, and then the next two vertices specily two triangles,
using the first two vertices. An 1implied build order can be used
to determine which vertices will be grouped to form triangles.
Thus, to specily the first two triangles 1n this example, full-
precision floating point would be expected to use 384 bits (see
Table 3, below), and since each pair of vertices that follows
can specily two more triangles, the average to represent a
triangle would be expected to gradually converge on 96 bits
(the amount of memory to represent one vertex). Different
processing systems can store data differently, and this
example 1s not to imply that a full-precision format may end
up using more or fewer bits 1n some implementations.

TABLE 3

Significand  Exponent  Significand Exponent
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nents of a vertex with a shared exponent and respective sepa-
rate significant (1.e., each of the X, Y, and Z components are
formatted so that they share an exponent and have separate
significant). Then, for the example triangle strip 1mplemen-
tation, where four vertexes represent two triangles (and each
subsequent two vertexes represent two more triangles), the
first two triangles are represented with 248 bits, for example,
and the long-term convergence 1s that each subsequent tri-
angle can be represented with 62 additional bits. In this rep-
resentation each vertex has an exponent independent of expo-
nents of other vertexes.

TABLE 4
Shared Exponent Significand  Significand  Significand
Vertex 1 Lk, X Y, Z,
Vertex 2 E5 X5 Y5 /oy
Vertex 3 E, X3 Y3 Ve
Vertex4  E, X, Y, Z,
8 bits each 18 bits each 18 bits each 18 bits each
32 bits 72 bits 72 bits 72 bits
248 bits

In a representation according to Table 4, each vertex can be
stored 1n 2 32 bit words. A memory format for 4 byte (32 bit)
reads from a memory storing vertex data can include storing
in one 32 bit segment a portion of a first significand (e.g., Y, )
a second significand (e.g., Z,), and the exponent, and 1n a
second 32 bit segment, storing the remainder of the first
significand, and a third significand (e.g., X, ). Other data that
can be stored 1n the 32 bit segment include an opacity flag and
a termination flag shared between consecutive pairs of ver-
texes. The termination flag can be used 1n some examples to
indicate an end of a series a triangles bounded by an element
ol geometry acceleration data (described below).

Table 5, below, shows a second example format includes
representing each component distance for each of the three
vertices in BFP format, such that all the X distances share an
exponent, all the Y distances share an exponent and all the Z
distances share an exponent. Then, each component direction
for each vertex 1s represented by an exponent that may be
reasonably similar, because 1t would generally be expected
that differences 1n values 1n the same dimension between
different vertices of the same primitive would be fairly low

(1.e., primitives are generally small). It would be expected that
numbers more similar i value could be represented 1n BFP
format with less loss of precision than widely divergent num-
bers. This BFP format may be appropriate for some imple-
mentations of ray tracing algorithms. However, by linking the
exponent of different vertexes within a block of FP data, using
triangle strips becomes more complicated. Also, the radial-
coordinate like loss of precision for far-away, from a shared

Significand  Exponent

Vertex 1 X Y, Z,
Vertex 2 X5 Y, Z-
Vertex 3 X3 Y3 /s
Vertex 4 X4 Y, /4
32 bits each 32 bits each 32 bits each
128 bits 128 bits 128 bits
384 bits
65

A first example BFP triangle representation, as shown 1n
Table 4 below, includes representing the directional compo-

camera/scene origin, objects 1s based on sharing of an expo-
nent among components ol a vertex.
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TABLE 5

Significand Significand
Vertex 1 Shared X X SharedY Y, Shared Z
Vertex 2 Exponent X, Exponent Y, Exponent
Vertex 3 X3 Y,
Vertex 4 X, Y4

8 bits 16 bits each 8 hits 16 bits each 8 bits
64 bits 64 bits
216 bits

A variation on these implementations 1s to use the same
exponent for all components (1.e., X, y, and z) of more than one
vertex 1n a series of vertexes, such as a series of vertexes
forming a triangle strip. For example, the same exponent
would be used both for all the components of four vertexes.
Other bits can be included in actual implementations to
enable additional functionality. For example, opacity bits can
be specified for every other vertex, as well as indications of
what triangles are bounded by an acceleration shape, for some
implementations.

In this implementation, the significant sharing an exponent
correspond to different vertices. If used with triangle strips,
this format thus ivolves using the same exponent for a block
of vertex data (e.g., data for the X direction) that spans a
number of triangles. For example, 1n a triangle strip, a next
triangle can be specified by two previous vertexes and an
additional vertex, and so on for a subsequent triangle. Thus,
cach triangle to be intersection tested uses two vertices from
another triangle and there 1s overlap 1n the shared exponent
among the floating point values of these triangles. So, 1n one
implementation, a triangle strip can be specified with one
shared exponent, such that the strip may end when the expo-
nent can not adequately represent a subsequent triangle.
Then, a new strip can be started with another exponent that
will be shared among vertexes of that strip, and so on.

It a string of these vertexes includes a shared exponent,
then vertexes of a next triangle have the same exponent as
those of a previous triangle. Thus, a range of values available
between a first vertex in the block and the last vertex in the
block 1s limited by the exponent that was selected or deter-
mined 1nitially. So, if this approach 1s used, then as more
vertexes share the same exponent, the available range of
representable numbers may be an impediment. To avoid that
impediment, an implementation according to this example
can provide a way to update or change the exponent within a
triangle strip or some other series of primitives that share
vertexes.

Regarding how such strip data can be stored 1n memory, in
an example implementation, vertex data, for example a tri-
angle strip, 1s arranged sequentially in memory, such that an
indication to repeat exponents for the next vertex can be
included rather than repeating the exponent itself. For
example, 1f vertexes are encoded as 16 bits each, then atfter the
16 bits for the last significand of a vertex 1s read, then the next
bit can be a flag indicating repetition of the previous exponent
for the components of the next vertex. Thus, 1n such an
example, a given exponent can be repeated across compo-
nents of a single vertex and across multiple vertexes. Using
such an implementation can reduce memory usage for storing
exponents. Also, 1n some test cell implementations, 11 mul-
tiple primitives are to be tested against a given ray, then
having components of vertexes defining those multiple primi-
tives can also reduce a number of normalization and rounding,
operations required 1n intersection testing, which can reduce
an average number of computations required to intersection
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test a ray with a number of primitives. Such reduction can
allow more efficient software and/or hardware implementa-
tion. Table 6 1s an example of data included 1n a short triangle
strip where an exponent 1s shared among components of
vertexes and among vertexes.

TABLE 6
Significand  Significand Significand
Vertex 1 Shared X Y, Z,
Vertex 2 Exponent X5 Y5 /5
Vertex 3 X3 Y3 e
Vertex 4 X4 Y, Z,
8 bits 16 bits each 16 bits each 16 bits each
64 bits 64 bits 64 bits
200 bits

From the above description, it can be understood that a BFP
format can be applied to any of a variety of primitive types,
other than triangles, since at the minimum, the components of
a single point 1n space can be represented by an exponent
shared among the components, and separate significant.
Geometry Acceleration Data

Geometry acceleration data (heremnafter referred to as
GAD) can be used to approximate (or abstracting) boundaries
for one or more primitives 1n a scene to accelerate intersection
testing. GAD may mnclude elements that each bound a collec-
tion of the primitives in the scene. GAD may include a num-
ber of distinct elements that can be interrelated to each other.
For example, elements of GAD can be a plurality of spheres,
where each sphere bounds a portion of geometry describing
an aspect or portion of a scene to be rendered. Another useful
type of GAD element 1s an Axis Aligned Bounding Boxes
(AABBs), which bound portions of geometry within a vol-
ume enclosed by the box.

First addressing a spherical GAD element, a sphere can be
defined at least in part by the data shown in Table 7, below,
comprising an origin for the sphere 1n BFP format and a
radius.

TABL.

(L]

7

Sphere Origin

Exponent Significand Significand Significand
Shared X y 7 Radius
8 bits 12 bits 12 bits 12 bits 11 buts

Spheres of the plurality can be interrelated with each other,
such that after determining that a ray intersects the surface of
a given sphere, one or more other spheres that also bound
primitives of that intersected sphere can be i1dentified for
subsequent testing (usually, those next tested spheres bound
fewer primitives, and intersection testing converges on a
smaller set of primitives that are tested ultimately for inter-
section with the ray.) Information in a data structure for a
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sphere can define what geometric shape or shapes should be
tested next. For example, a sphere data structure can include
a memory location of a start of a sequence of sphere that are
to be tested upon determining that the sphere tested 1s inter-

12

Thisisrelevantas I'TR 125 may testrays out of scene traversal
order, such that a second, farther primitive intersection may
be 1dentified before a true, first primitive mtersection. In one
implementation, 4 4-byte words can be used to store infor-

sected. For example, spheres of such a sequence can bound ° mation for 1 ray, where distance traveled and origin exponent
subsets of primitives bounded by the intersected sphere, and are grouped 1n 1 4 byte sequence.
TABLE 8
Ray Origin Intersection
Exponent  Significand  Significand  Significand Direction Information
Shared X y 7 X y 7 t,. t
8 bits 16 bits 16 bits 16 bits 16 16 16 8 bits 15 bits
bits  bits  bits

by testing spheres of the sequence, smaller groups of primi- There may be a number of situations where rays have
tives can be identified, which ultimately will be tested. In - origins that are reasonably close together. For example, rays
other cases, a sphere can include a reference to a memory may be generated for Monte Carlo sampling of a surface, and
location at a start of a sequence of primitives to be tested. A these rays may all have origins reasonably close together, and
flag can be included to indicate whether spheres or primitives be defined relatively close 1in time. A BFP ray representation
are referenced or indicated by a given sphere, which can be for such rays can include an exponent shared among a number
used by software or hardware. Other examples of GAD ,5 of these rays. If the origins among the rays were exactly the
include kd-trees, octrees, sub-divisions of scene space, and same (e.g., sampling of an intersection point for occlusion of
the like. Data for such GAD elements also can be represented defined light sources), then the entire origin can be shared.
in BFP format based on disclosures herein, and a particular BEFP representations of rays need not employ a data structure
AABB example also 1s addressed below. like that of Table 8, and can include BFP origin data and ray

Now, aspects of AABB GAD elements are addressed. One 30 directional information that can be used 1n a recursive ray
way to express an AABB element 1s by specitying two ver- tracer.
texes forming one of the major diagonals of the box, for In 1mtroducing formats for rays, primitives, and GAD ele-
example, a top left corner and a bottom right corner. Because ments mvolved 1n intersection testing, examples and other
the bounding box 1s axis aligned the remaining 6 vertexes considerations related to how these formats can help save
(corners) of the BB can be inferred from the positions of these 35 memory space, reduce bandwidth requirements and compu-
two vertexes. Since AABBs can be specified by two vertexes, tation requirements were also itroduced. Any of the primi-
a series of AABBs can be stored similarly to storage of a tives and GAD elements can be considered also as geometric
series of triangle primitives. The ways 1n which AABB data shapes, 1n that more generically they each represent shapes,
can be specified in BFP format are also thus similar to BFP such as triangles, spheres, boxes, etc. Also, subportions of
formats for triangle data, and examples include that each 40 these geometric shapes also can be considered geometric
vertex 1s specified by a common exponent shared by three shapes, 1n that for example, a section of a sphere can be a
significant (like Table 4), multiple vertexes can have compo- circle, and a side of an AABB 1s a portion of a plane. Finally,
nents sharing an exponent (like Table 5), as well as using a objects used 1n intersection tests (rays and geometric shapes)
common exponent for multiple significant within a vertex, can be considered to have attributes. For example, a sphere
and among multiple vertexes (like Table 6). 45 has aradius and an origin, a ray has an origin, a direction, and

The interpretation of the vertex data can be that each set of potentially other attributes, an AABB has attributes of an
two consecutive vertexes would specily diagonal corners of a arrangement of planes, etc. Now, further explanation is pro-
bounding box. In some implementations each additional ver- vided concerning use of this data for intersection testing 1s
tex can be interpreted with the one preceding 1t, such that one provided with respect to FIG. 3.
additional vertex specifies another bounding box. For a dis- 50  FIG. 3 illustrates an example intersection testing resource
crete section or series of AABBs, a format flag or another (ITR) 125 (FIGS. 1-2) in more detail. ITR 125 includes a host
indication can be provided as to what data 1s present for those interface 310 for interfacing with 1/0O Bridge 230 (e.g., over a
AABBSs, such that multiple formats can be used within a given PCI-E connection), and logically with driver 105. ITR 125
scene. receives groups of rays from driver 105 to be intersection

Thus, according to aspects presented herein, when render- 55 tested. For example, driver 1035 can provide groups of camera
ing a scene with ray tracing, both primitive data and GAD are rays to be tested. Incoming rays are processed at ray intake
used by an intersection testing resource for identifying a 315; such processing can include for example decompressing
primitive, 1f any, first intersected by a given ray. rays. Decompressing can include, for example, determining
Rays that certain rays were specified with a shared origin, and then

Similar to vertexes, rays also require origin information. 60 decompressing would include constructing independent data
Thus, 1n example BFP formats, a ray origin can be repre- structures for those rays to be stored in ray buflers 320.
sented by an exponent shared among 3 significant, one for Output from ray intake 3135 would generally include a data
cach directional distance from a scene origin. Table 8 1llus- structure for each ray to be intersection tested. For example,
trates one example of a ray data structure, and a number of bits cach ray would be represented with a data structure according
for each component. Rays typically used with ITR 125 also 65 to Table 8, above.

have intersection information included that tracks a current
shortest distance traveled to a first ray/primitive for that ray.

Ray butiers 320 are for storing these data structures until a
ray represented by a given data structure 1s to be tested for
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intersection. The intersection testing resource 1235 1s adapted
for storing many such rays at a given time in order to increase
parallelism of ray testing.

Each ray 1s generally first tested for intersection with geo-
metric shapes comprising acceleration structures (e.g.,
spheres) that encompass various amounts of primitives. After
testing the rays against some number of acceleration struc-
tures, a set of primitives, one of which may be first intersected
by each 1s identified, and these geometric shapes are then
tested. In intersection testing resource 125, a plurality of
GAD test units 341a-341%n for testing acceleration shapes
(¢.g., spheres) 1s provided along with a plurality of primitive
test units 346a-346xn.

Each test unit 341a-341% can test a GAD element with one
ray, in one implementation, a plurality of rays in another
implementation, or a plurality of rays with a plurality of GAD
clements 1n a further implementation. Simailarly. each test unit
346a-346n can test a primitive with one ray, in one 1mple-
mentation, a plurality of rays in another implementation, or a
plurality of rays with a plurality of primitives 1n a further
implementation.

In one example, each test unit 341a-341#% tests an 1dentified
acceleration shape against a respective ray from a collection
of rays provided to the test units 341a-341% under control of
a ray collection unit 330. Ray collection unit 330 manages a
plurality of ray collections stored in a ray collection builer
325. Aray collection can include an 1dentifier of a shape (e.g.,
a GAD element) and a listof rays (e.g., a list of ray 1dentifiers)
that are to be tested against geometric shapes identified based
on a relationship with the identifier of the geometric shape.

In an example implementation, the shapes to be tested are
identified based on a relationship to the 1dentified geometric
shape, such as being logically associated with the identified
geometric shape 1n a hierarchical graph of GAD eclements.
The logically associated shapes are fetched (e.g., by a DMA
transaction i1mtiated by ray collection umt 330) through a
memory interface 305 to a DRAM that can hold GAD ele-
ments and primitives for testing. Where the logically associ-
ated shapes are GAD elements, the DMA targets can be test
units 341a-341», and where the associated shapes are primi-
tives, the DMA targets can be test units 346a-346mn, or ray
collection unit 330 can be the DMA target, and can distribute
shapes appropriately to the test unaits.

FIG. 3a illustrates an example test cell 3414 1n the context
of a spherical geometry acceleration shape, with the under-
standing that description provided with respect to FIG. 3a can
be applied to other acceleration structures and shapes, as well
as to primitive testing. In FIG. 3q, data for a ray and a sphere
are mputted to test cell 341a. The data for the ray includes an
origin defined with three separate signmificant, each sharing a
common exponent. The data for the sphere also includes an
origin, also defined with three separate significant, each shar-
ing a common exponent. The origins are submitted to a nor-
malizer 353, where a larger exponent 1s determined, and the
smaller exponent normalized to the larger. The significant
associated with the smaller exponent are rounded to reflect
the normalization, and therefore normalizer controls gates
355 and 3356, which respectively control whether the ray
significant or the sphere significant are sent to rounder 365,
and which are provided directly to intersection test logic 370.
In other words, only one set of significant needs to be
rounded, and that set 1s provided to rounder 363, and the other
set goes directly to intersection test logic 370. Thereafter, the
intersection test logic 370 can complete an intersection test
algorithm and return an indication of a detected intersection.
Other implementations of such functionality are possible, for
example, 1t was disclosed above that an exponent intermedi-
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ate of two exponents could be selected as an exponent to be
used 1n testing, and in such a circumstance, more than one
normalization/rounding operation may be performed. In
some situations, the term normalizing may be used to refer
both to selection of an exponent and conforming significant of
interest to that exponent (1.e., normalizing also would include
the rounding operation above). Usage of such terminology
also falls within the scope of these examples.

Depending on an implementation test cells 341a-3417 and
testcells 346a-346n canrepresent any of a variety of compute
resources used as test cells, including examples of fixed func-
tion cores, and programmable cores or other processing ele-
ments executing threads or processes for performing inter-
section testing. These elements also can represent, 1n some
implementations, threads executing on a multithreaded pro-
cessor or group of multithreaded processors, or a processor
virtualized 1into multiple processors, and the like.

FIG. 4 illustrates steps of an example method 400 1includ-
ing operational aspects both of driver 105 and ITR 125.
Method 400 may provide a large scale intersection testing
resource to a more general purpose CPU through an appro-
priate soltware interface. Method 400 provides for such par-
allelized intersection testing in a way that allows largely
operation of intersection testing resource 125 to proceed
independently of mvolvement by driver 105 or other func-
tionality operating on host CPU 205. By example, intersec-
tion testing resource 1235 can maintain state for and testing
portions of about 10,000 rays at a time. This large scale ray
tracing resource calls for performing functions and/steps that
would not be considered relevant 1n host CPU ray tracing, or
other hardware accelerated testing, where a relatively small
number of rays are “in tlight”, complete, and are replaced
with different rays.

Method 400, driver 103 receives 402 rays 1n a full-preci-
s1on format from an application requiring rendering services.
Driver 105 butfers 404 (e.g., 1n a FIFO buller) the full-preci-
sion rays, and obtains 407 free memory locations to store the
tull-precision format rays, such as locations 1n a reserved
section of main memory, and stores 408 these full-precision
rays in respective memory locations. Free locations can be
obtained from a replenished stack, as described further below.
In some examples, an address of the location of the ray in
memory can be used as an 1dentifier for the ray, such that the
identifier can be passed as a reference rather than transferring
the ray data 1tself.

Driver 105 converts 406 the full-precision rays to a BFP
format, such as example BFP formats for rays described
above, or another format, as appropriate. The BFP formatrays
can be bullered during transfer 410 to ITR 125 to handle the
large quantity of rays desired. ITR 1235 receives 412 the BFP
format rays, and stores 414 them.

In an example ITR 1235, testing of rays begins by testing the
rays first with GAD element that can be for example, root
nodes of a tree of related GAD elements. The rays can be
grouped of rays can be tested for intersection with a sequence
of GAD elements. For example, a group of rays can be asso-
ciated with a GAD element, and rays of that group can be
tested for intersection 418 with a sequence of GAD elements
or primitives starting at a memory location 1dentified in data
related to that GAD element. Often, a number of GAD ele-
ments are tested for intersection before a ray finds itself
grouped with rays ready to be tested for intersection with
primitives. A decision 420 determines when a ray group 1s
ready to be tested for primitive intersection (for example,
based on a flag associated with a GAD element associated
with the group). If the next geometric shapes to be tested for
that ray group are GAD elements, then those elements are
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fetched 416 and tested 418. IT primitives are next to be tested,
then those primitives are fetched 425 and tested 435 for inter-
section with the BFP format rays. A distance traveled (known
as “t”) 1s tracked 1n each ray data structure for a respective
identified possible intersection. Each time a potential inter-
section 1s 1dentified, a distance traveled to a previously 1den-
tified intersection 1s compared, and a closest 1ntersection 1s
retained 440.

After identifying a closest ray/primitive intersection, an
identifier for the ray and an 1dentifier for the primitive are
outputted 445. These 1dentifiers are buiiered 450. Based on
the ray identifier, a full-precision ray 1s obtained from its
storage location (e.g., the ray identifier can be used to identily
a memory location for the full-precision ray, or can be derived
from the memory location, or vice versa). After retrieval 455
of the full-precision ray, the memory location storing that
information can be freed 460, to allow reuse of that location
for another ray to be submitted for testing to intersection
testing resource 125.

In method 400, because of the large number of rays tested,
ray 1dentifiers are passed between intersection testing
resource 125 and driver 105. By contrast, typical ray tracing,
would also return other information useful for shading that 1s
created during intersection testing. For example, 1t 1s neces-
sary that a closest intersection be i1dentified for a given ray,
and this usually involved identifying a smallest distance trav-
cled (1) for that ray before an intersection. The distance trav-
cled can be usetul 1n shading algorithms. Also, some 1nter-
section testing methods, e.g., barycentric coordinates, also
provide other information useful 1n shading, such as the 2-D
projected coordinates (u,v). Since this information 1s calcu-
lated during intersection testing, 1t 1s usually obtained “for
free” from the 1ntersection testing process.

Since ray identifiers are passed, driver 105 can use the
tull-precision ray specification and primitive specifications
obtained from intersection testing resource 125 to calculate
462 the {u,v,t} for that intersection. In other words, driver 105
can “redo” the intersection test for only that ray and that
primitive so that the driver 105 can provide 465 the {u,v,t} and
other information, as necessary or desirable, to a shading
routine. In this fashion, bandwidth at the interface 285
between driver 105 (i.e., through hardware of system) and
intersection testing resource 125 1s conserved, even though 1t
can result 1n more overall calculations, and even redundant
calculations, being performed.

For purposes ol providing a convenient example, a “driver”
was 1dentified as performing various functions in the preced-
ing paragraphs. However, from the present description it
should now be apparent these functions can be provided 1n a
variety of ways 1n different implementations. For example,
how these functions are provided can vary depending on how
the BFP testing functionality 1s provided, and there can be
more native support for controlling BFP testing functionality,
or such functionality can be provided 1n development kits, or
integrated 1nto applications, or other ways appropriate for the
particular situation. For example, if test cells were pro-
grammed 1nto or provided with (e.g., integrated or bundled)
with host processor functionality, then driver-type function-
ality can be provided natively 1n the system or combination.
Test Cells and Intersection Testing with BFP Format Data

Algorithms for testing for intersection between a ray and a
triangle include using plane equation techniques, 6D Pliicker
space techniques, and barycentric coordinates techniques.
Intersection testing between a ray and a sphere also 1s known
and can mvolve formulating a quadratic equation from a
definition of a sphere (origin and radius) and a definition of a
ray (direction and origin), then solving for the discriminant of
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that quadratic to determine whether real roots exist for it.
Other optimizations, such as normalizing a sphere to unit
radius can be provided. Intersection testing AABBs can be
accomplished by testing planes of the AABB for ray intersec-
tion, and handling cases such as where a ray 1s parallel to an
AABB. As there are a variety of techniques for intersection
testing of GAD elements and primitives, which can be
selected based on 1implementation-specific considerations, all
these techniques are not detailed. Also, other techniques can
be realized for such mtersection testing, and BFP techniques
disclosed herein can be applied to such techniques based on
these disclosures.

Concerning a particular example involving a ray/sphere
intersection tester, test cells 346a-346» can be implemented
to use BFP format input data as follows. Assuming that a ray
(R,) 1s defined 1n parametric form as R, (t)=0+Dt, where O
represents a3-D origin, D 1s a unit direction vector, and t 1s the
parameter that varies to specily the ray in space. In example
BFP ray implementations, the origin O 1s representable by
three separate significant for each independent direction, and
a shared exponent. Thus, determining whether R, intersects
with a given sphere, a discriminant can be formed and solved
to determine whether i1t has any real roots. I1 there are no real
roots, then there 1s no intersection. If using full-precision
floating point representations of this data, then each respec-
tive component of the origin of the sphere and of the ray
would be separately normalized and rounded before addi-
tional processing would occur. In a hardware implementa-
tion, this normalization would occur either 1n separate hard-
ware units or 1n a pipelined sequence within a hardware unat.
In a BFP format example, because an exponent 1s shared
among the component directions of a ray origin and another
exponent 1s shared among the component directions of the
sphere, only one normalization and rounding 1s done for those
two exponents.

In other implementations, exponents can be shared among,
additional data elements. For example, a sequence of rays
sharing an origin, or having a similar origin (e.g., rays gen-
erated for a shading effect, like determining whether a given
intersection point 1s in shadow of enumerated light sources)
can each share one exponent, such that all components of each
origin share an exponent that also 1s shared with components
of other origins.

Examples of how ray data and geometric shape data can be
provided from storage within I'TR 125, from other memories,
and from driver 105 through interface 283 are presented with
respect to FIGS. 5-7. FIGS. 5-7 are 1llustrated from the per-
spective of primitive testers, although disclosures 1n this con-
text are to be understood as application also to GAD element
(e.g., sphere) testers, such as test cells 341a-3417.

FIG. 5 1llustrates an example where ray butlers 320 (FIG.
3) provide a distinct ray (R1-Rn representing a first, second
and an nth ray) to each of n different test cells. In FIG. §, only
data for the ray origins are shown (elements 510, 515, and 520
respectively for ray origins 1, 2 and n) to 1llustrate the use of
BFP format data for such origins, with the understanding that
other data, such as direction vectors can also made available
to the test cells. Each ray origin 1s represented as a shared
exponent and three significant (R1oe, R1ox, R1oy, R1oz 510
respectively are the exponent and sigmificant for ray 1, and
515 and 520 represent the exponent and origins for rays 2 and
n, respectively). In particular, vertexes 1, 2 and 3 (355, 556
and 557) are each provided to test units 346a-3461, such that
cach test unit will be testing a different ray (origins 510, 515,
520) for intersection with a primitive formed from those three
vertexes.
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In this example, the vertexes composing triangles being
tested are shown to be originating from ray collection unit
330, showing that ray collection unit 330 may 1nitiate or cause
to have initiated a DMA transaction that obtains triangle data
from memory 280 (FIG. 3.) Depending on the format of such
data, ray collection unit 330 may provide some intermediate
processing of that data, determine a more granular destination
for 1t, buffer 1t, or pass 1t through to test cells, or some com-
bination thereof. Each portion of 510, 515, 520 can represent
a register where data can be stored, and/or that such data 1s
being communicated according to the interconnections illus-
trated. For example, each test cell 346a-346n can be config-
ured to read such data from appropriate registers, in response
to a signal, or each test cell 346a-346% can latch data trans-
mitted to 1t, and determine when valid data 1s receirved and
testing can begin. Likewise vertexes 555, 556, 557 can be
stored 1n registers to be read by each test unit, or can be
transmitted for storage 1n separate registers in each test cell
346a-346n.

FI1G. 6 illustrates another example, where ray butiers 320
provide origin information (and direction information, not
illustrated) for rays 1, 2, and n to test cells 346a-346%. Here,
these rays are represented with a shared exponent 610 and
respective separate significant 620, 630, and 640. Shared
exponent 610 thus applies to each signmificand of each ray (1.e.,
X, y, z for each of 620, 630, and 640). This implementation
allows memory storage savings compared with a separate
exponent for each ray, may be appropriate for example, 1n a
soltware-controlled implementation, since certain groups of
rays may have a similar origin, but 1t may be undesirable to
“hardwire” a common origin exponent to a large number of

ray testers.

FI1G. 6 also illustrates that different vertexes can be tested
in each test cell 346a-3467 and that data for the vertexes can
be provided 1n an overlapping fashion to the test cells. For
example, vertexes 650, 651, and 652 are provided to test cell
346a, vertexes 631, 652, and 653 are provided to test cell
346b. In ahardware implementation, this implementation can
save routing as test cells can be collocated 1n such a way that
independent routing need not be provided for three vertexes
to each test cell.

FIG. 7 illustrates aspects that can be provided 1n further
variations, including where different rays are provided to
different of the test cells, and where different primitives are
provided to each test cell, such that each test cell can test a
distinct ray against different primitives. For clarity, only test
cells 346a and 3465 are 1llustrated, but it would be understood
that more or fewer test cells can be provided 1n a particular
implementation, as evidenced by the 1-n numbering used
with previous figures for such test cells.

FI1G. 7 illustrates an implementation where test cell 3464
can test primitives of a first triangle strip and test cell 3465 can
test primitives of a second triangle strip. Exponent control
705 operates to determine an exponent provided to test cell
346a, such as by latching of data on transmission lines, or by
storage 1n a register for test cell 346a to read when required.
As described above, an exponent for primitives of a triangle
strip can be constant for a period and then change. Exponent
control 705 determines when to change the exponent 710
presented to test cell 346a. Also, vertexes for the primitives of
the triangle strip are provided from ray collection unit 330 (as
discussed, can be a DMA transaction from memory 280, or
may involve mtermediate processing by ray collection unit
330). If test cell 3464 15 to test each primitive of a triangle
strip, and each subsequent primitive of a triangle strip builds
on previously used vertexes, an additional vertex can be pro-
vided to test cell 346a for each subsequent primitive tested.
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Thus, 725 represents information comprising the X, y, and z
components for each of the n, n+1, and n+2 vertexes.

Similarly, test cell 3465 recerves exponent 720 for a second
triangle strip (or for a number of primitives in the strip deter-
mined by exponent control 705), 730 represents X, y, and z
components of each of the p, p+1, and p+2 vertexes forming
a primitive next to be tested by test cell 3465. 740 and 750
represent a generalization of presentation of rays to each of
testcells 346a and 3465. In some implementations, a different
ray can be presented to each of test cells 346a and 3465H, such
that the respective ray can be tested against the primitives of
a different triangle strip. In other implementations, each ray
740 and 750 can be cycled such that a group of rays can be
tested against each primitive of each separate triangle strip.
Rays can be streamed from ray butifers 320 1n synchronization
to latching reads by each test cell 346a and 3465b.

From the above description, 1t can be discerned that using
a BFP format for data used in ray/geometric shape intersec-
tion testing results in savings of both memory space for stor-
ing a large number of rays, but also 1n reductions in the
amount of processing capability (e.g., having fewer gates
and/or fewer operations and/or fewer pipeline stages)
required to perform a given intersection testing algorithm
than 11 using full-precision floating point data. Thus, test cells
using BFP format data having a given throughput can be
provided 1n a smaller silicon area, and more test cells may be
provided within a given amount of space.

In all of the above description, results of systems and
methods 1nclude determinations of potential intersection
results of rays with geometric shapes, including acceleration
structures, and primitives that compose a scene. These inter-
section results can be used to simulate interaction of light and
other directed electromagnetic energy, such as infrared radia-
tion, with physical objects. As such, intersection testing of
rays with primitives can be a predicate to a result of deter-
mining a final rendering of a scene to display, when that 1s a
desired objective, but the intersection testing results them-
selves can provide concrete and physically meaningtul infor-
mation, aside from a potential final render product, which can
be outputted, stored, or otherwise used.

From the above description, it can be discerned that 1n a
specific implementation, exponents can be shared amongst
different kinds and amounts of data, such as sharing only
within component directions of a vertex, among all the ver-
texes ol a primitive, within the component directions of a
sphere or ray origin, within a number of sphere or ray origins,
ctc. The software and/or hardware implementing the BFP
testing 1n that implementation would be adapted accordingly.
For example, certain BFP formats may be useful primarily 1n
a soltware configuration, e.g., sharing an exponent for origins
of a number of rays, where providing a permanent routing
configuration for that format may not be desirable, but 1t may
occur regularly enough to present a worthwhile optimization
in soitware. Other BFP formats and optimizations can be
ascertained or implemented from the various examples pre-
sented herein.

Such other formats and optimizations can be implemented
in a principal example and application having using a rela-
tively large number (e.g., 32 GAD testers and 32 primitive
testers) of test cells provided 1n custom hardware, many varia-
tions and implementations of the BFP aspects disclosed here
are possible. Other formats and optimizations can be 1mple-
mented 1n systems and/or software having different configu-
rations, as described with respect to FIGS. 8-10, where each
of the example systems disclose variations 1n the amount of
coupling or involvement of a main general purpose processor
in 1ntersection testing.
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The system implementation of FIGS. 2-3 illustrated an
example where the intersection testing resource 123 can inter-
section test a large number of rays and geometric shapes
without software control. In FIG. 8, a first example alternative
system 800 includes an intersection testing resource 823 pro-
vided within a chip that may primarily be devoted to 1/O

activities (I/0 bridge 230). Integrating an ITR 825 within I/O
bridge 230 can reduce a latency to initiate intersection testing,
by allowing ITR 825 to be a component addressable by a
processor without performing a PCI transaction, for example.
It may still be the case, however, that an additional memory
for storing data required by ITR 825 can be provided via an
expansion port, such that data can be streamed to ITR 8235
without arbitrating for access to the main system memory. In
some examples, ITR 825 can be streamed data from chipset
215 which 1t accessed from memory 225.

Another example 1s system 900 illustrated 1in FIG. 9. In
system 900, Intersection Testing Resource 925 1s located 1n
chipset 215. Chipset 2135 can include graphics logic 216,
which 1n conventional systems can include hardware for per-
forming calculations useful for rasterization-based rendering
and for shading. Chipset 2135 thus can be adapted for perform-
ing ray tracing based rendering using intersection testing
resources according to present examples, represented as I'TR
925. ITR 925 can, for example, a number of test units for
geometric shapes including primitives and acceleration
shapes that 1s selected based on a desired performance level of
graphics implemented in the chipset, and other consider-
ations such as cost, power consumption, and the like. For
example, 1n a higher performance/higher cost graphics sys-
tem, such as for gaming, ITR 925 may include more test cells
than an entry-level implementation. A different alternative
having similarities to aspects illustrated in FI1G. 9 1s a further
example where graphics logic 216 and I'TR 9235 are provided
together, potentially 1n a discrete chip, and potentially inter-
facing with the chipset 215 or the host CPU 205 via an
expansion connection, such as PCI express, a bus or another
suitable interface. Also, I'TR 925 may share a graphics
memory with graphics logic 216, and this memory may be
separate from main memory 225, including a virtual separa-
tion, as well as dedicated read and write ports for graphics
related accesses.

FIG. 101llustrates an example where an intersection testing,
resource 1025 1s integrated into CPU 10035. In this example,
I'TR 1025 may comprise some number of shape testers (1.e.,
testers for shapes representing primitives and/or acceleration
shapes) and other functionality implemented 1n hardware 1n
FIG. 3, except for storage functions, can be managed/imple-
mented 1n soitware. In such an example, the shape testers can
function largely as computation resources to which specific
tasks are allocated tasks. For example, disclosed examples of
shape testers using BFP data would require fewer operations
to complete a given intersection test than would a general
purpose full-precision floating point unit. As such, some
number of shape testers could be provided in additional to one
or more general purpose FP units, such that CPU 1005 could
allocate intersection tests to the shape testers and other float-
ing point computation to the general-purpose FP units. CPU
1005 also can be tailored for a given target market by includ-
ing more shape testers for higher performance, or for a CPU
designed for graphics operations (e.g., CAD or gaming, a
dedicated processor for a gaming console, a dedicated co-
processor for a more general purpose computer, and the like.
For example, 1n a multi-core chip, a CPU 1003 can be pro-
vided along with a more conventional CPU 205. Primitives
can be provided that can use the shape testers 1n an optimized
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manner such that programmers do not have to write code
specifically for using the shape testers.

The above figures presented various examples and 1mple-
mentations of a plurality of intersection testers that can test a
geometric shape for intersection with a ray. In some cases,
these intersection testers were implemented 1n hardware, and
they can also be implemented in soitware, or in hardware
units configurable for particular test algorithms, including for
particular shapes.

Generally, examples of systems were presented where rays
and geometric shapes to be tested were both specified for
testing 1n a block tloating point format. However, benefits can
be realized by using either rays or geometric shapes specified
in block floating point format, while the other can be provided
in regular format, with a separate exponent for each signifi-
cand.

Also, examples presented generally related to performing
intersection testing for a given set of primitives and/or accel-
eration shapes (e.g., the primitives and shapes for 1 scene of
a series of scenes) 1n BFP format. However, it also 1s possible
that some portion of these geometric shapes (i.e., primitives
and/or acceleration shapes) can be tested in full-precision
floating point while other portions are tested 1n a BFP format.
For example, where a system comprises a general purpose
CPU and one or more BFP test cells according to any of the
examples and other aspects presented, then the general pur-
pose CPU may have one or more tloating point units that can
assistin intersection testing and a driver or other management
functionality can divide rays to be intersection tested among
any of the available testing resources (1.¢., the FP units of the
general purpose processor and the test cells). So, 1t also
should be apparent that no disclosed example precludes such
implementations.

Physically, the components of various systems and system
components described and 1llustrated herein can be fabricated
as a monolithic integrated circuit, or can include multiple
discrete pieces of silicon that communicate within a package
and/or by interconnection on a circuit board. For example, a
high-performance CPU for gaming may include an intersec-
tion testing resource on a separate piece of silicon integrated
into a multichip module with a CPU.

Software for implementing configurations and methods
described and/or claimed may be executed 1n a special pur-
pose or general-purpose computer. Such hardware, firmware
and software can also be embodied on a video card or other
external or internal computer system peripherals. Various
functionality can be provided in customized FPGAs or ASICs
or other configurable processors, while some functionality
can be provided 1n a management or host processor. Such
processing functionality may be used 1n personal computers,
desktop computers, laptop computers, message processors,
hand-held devices, multi-processor systems, microprocessor-
based or programmable consumer electronics, game con-
soles, network PCs, minicomputers, mainframe computers,
mobile telephones, PDAs, pagers, and the like.

The above description mostly 1involved examples of BFP
formats, hardware and software localized within server, a
workstation, a gaming console, a personal computer, and the
like. However, these systems can exist in the context of larger
systems and components of systems. For example, process-
ing can be distributed over networks, such as local or wide
area networks and may otherwise be implemented using peer
to peer technologies and the like. Division of tasks can be
determined based on a desired performance of the product or
system, a desired price point, or some combination thereof. In
embodiments implementing any of the described units at least
partially 1 software, computer-executable instructions rep-
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resenting unit functionality can be stored on computer-read-
able media, such as, for example, magnetic or optical disks,
flash memory, USB devices, or in networks of storage devices
such as NAS or SAN equipment, and the like. Other pertinent
information, such as data for processing, intermediate and
final results, can also be stored on such media.

In this description and 1n the following claims, a system
may 1nclude one or more data links that enable the transport of
clectronic data between computer systems and/or modules.
When information 1s transierred or provided over a network
or another communications connection (either hardwired,
wireless, or a combination of hardwired or wireless) to a
computer, the computer uses that connection as a computer-
readable medium. Thus, by way of example, and not limita-
tion, computer-readable media can also comprise a network
or data links which can be used to carry or store desired
program code means in the form of computer-executable
instructions or data structures and which can be accessed by
a general purpose or special purpose computer.

Computer-executable instructions comprise, for example,
instructions and data which cause or otherwise configure a
general purpose computer, special purpose computer, or spe-
cial purpose processing device to perform a certain function
or group of functions. The computer executable instructions
may be, for example, binaries, mtermediate format mnstruc-
tions such as assembly language, or source code. Although
some subject matter may have been described 1n language
specific to examples of structural features and/or method
steps, 1t 1s to be understood that the subject matter defined 1n
the appended claims 1s not necessarily limited to these
described features or acts. Rather, the described features and
steps are disclosed as examples of components of systems and
methods within the scope of the appended claims.

We claim:

1. A machine-implemented method of intersection testing
for ray tracing, comprising:

accessing ray data defining a ray from a non-transitory

machine readable medium:

accessing geometric shape data, from a non-transitory

machine readable medium, defining a position of a geo-
metric shape 1n a 3-D scene, the geometric shape data
being 1n a Block Floating Point (BFP) format compris-
ing a plurality of significands sharing a common expo-
nent, the plurality of significands being one or more of
significands associated with a single vertex defining the
geometric shape, and significands associated with a plu-
rality of vertexes defining the geometric shape, wherein
the geometric shape 1s one or more of a primitive defin-
ing an object 1n the 3-D scene and an element of an
acceleration structure used for itersection testing rays
in the 3-D scene;

testing, by a processor, the ray for intersection with the

geometric shape based on the ray data and the geometric
shape data; and

outputting an intersection result in response to the testing,

indicating a possible intersection of the ray with the
geometric shape.

2. The machine-implemented method of claim 1, wherein
the geometric shape 1s a primitive, and the intersection result
includes an 1identifier for a ray and identifying information for
the primitive that potentially first intersects the ray, and fur-
ther comprising identifying a full-precision specification for
the identified ray and using the full-precision specification for
the 1dentified ray for shading.

3. The machine-implemented method of claim 2, further
comprising performing the shading in a processor configured
by computer executable mstructions.
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4. The machine-implemented method of claim 1, turther
comprising;

maintaining a higher-precision floating point format rep-
resentation of the geometric shape 1n a memory; and

converting representations of the geometric shapes from
the higher-precision format into the block floating point
format.

5. The machine-implemented method of claim 4, turther
comprising maintaining the higher-precision floating point
format representation of geometric shapes 1 a memory
accessible to a host processor, and further comprising storing
the block tloating format data for retrieval by an intersection
tester to perform the testing.

6. The machine-implemented method of claim 1, wherein a
management process executes on a host processor, and main-
tains a higher-precision tloating point format representation
ol geometric shapes in a memory accessible to the host pro-
cessor, and further comprising converting the higher-preci-
s10n floating point format representation of geometric shapes
to produce the block floating format data to be accessed by an
intersection tester.

7. The machine-implemented method of claim 1, wherein
the geometric shape data comprises a plurality of vertexes,
cach vertex specified by three distinct significands and an
exponent 1n common with the three significands.

8. The machine-implemented method of claim 7, wherein
the plurality of vertexes represent one or more of a triangle
primitives and an axis-aligned bounding box.

9. The machine-implemented method of claim 1, wherein
the geometric shape data comprises data for a plurality of axis
aligned bounding box acceleration elements each bounding
selections of scene primitives, and defined by at least one set
of three mantissas, sharing a common exponent, and wherein
cach of the mantissas 1s associated with a different axis of the
axis aligned bounding box and the method further comprises
testing the ray for intersection with the axis aligned bounding
box using the at least one set of three mantissas sharing the
common exponent.

10. A ray tracing system comprising:

a converter to convert geometric shape data, read from a
non-transitory medium, the geometric shape data defin-
ing at least one point 1n 3-D space with three floating
point components expressed as three exponents and
three signficands, and to convert the geometric shape
data for the at least one point 1nto converted geometric
shape data in a Block Floating Point (BFP) format com-
prising a plurality of significands and one exponent
shared among the plurality of significands, the plurality
of signficands being one or more of significands associ-
ated with a single vertex defining the geometric shape,
and significands associated with a plurality of vertexes
defining the geometric shape, wherein the geometric

shape 1s one or more of a primitive defining an object in
the 3-D scene and an element of an acceleration struc-
ture used for intersection testing rays in the 3-D scene;
and
an mtersection tester coupled to the converter for recerving
the converted geometric shape data and further operable
to read, from a non-transitory medium ray data defiming
aray to be intersected tested with the geometric shape, to
determine an intersection test result based on the ray
data and the converted geometric shape data, and to
output an 1ndication of a result of intersection testing.
11. The ray tracing system of claim 10, wherein the con-
verter 1s further operable to store the converted geometric
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shape data 1n a non-transitory memory, to which the intersec-
tion tester 1s coupled for receving the converted geometric
shape data.

12. The ray tracing system of claim 11, wherein the system
turther comprises a host processor operable to execute code
tor applications, and the non-transitory memory 1s a segment
of graphics memory separate from memory used by the host
Processor.

13. The ray tracing system of claim 10, wherein the con-
verter 1s further operable, 1n response to an indication that the
geometric shape for that geometric shape data 1s to be tested,
to retrieve the geometric shape data defiming at least one point
in 3-D space with three dimensional components expressed
as three exponents and three significands from a memory for
conversion into the converted geometric shape data.

14. The ray tracing system of claim 10, wherein the con-
verter 1s 1implemented in a driver for execution on a host
processor, wherein the geometric shape data in a non-transi-
tory memory accessible by the host processor.

15. The ray tracing system of claim 10, wherein the geo-
metric shape data includes a plurality of spheres, each sphere
bounding a selection of the geometric primitives, and defined
in part by an origin, and converted geometric shape data for
the origin comprises an exponent shared among three signifi-
cands.

16. The ray tracing system of claim 10, wherein the geo-
metric shape data comprises vertexes for defining one or more
ol axis-aligned bounding boxes and primitives, each vertex
positionally specified with respect to a scene origin with
converted geometric shape data comprising three significands
tor each of three directional measurements with respect to the
scene origin and one exponent shared among the three sig-
nificands.

17. A machine-implemented method of intersection testing
for ray tracing, comprising: accessing, ifrom a non-transitory
medium ray data defining a ray in a three-dimensional (3-D)
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space, accessing, from a non-transitory medium geometric
shape data defining a geometric shape, wherein the geometric
shape comprises an axis aligned bounding; box, one or more
vertexes of the axis aligned bounding box having a location in
the 3-D space determinable from Block Floating Point (BFP)
format data in the geometric shape data comprising a plurality
of significands that share the same exponent; testing the ray
for intersection with the geometric shape, 1n a tester, based on
the accessed ray data and geometric shape data; and output-
ting an intersection result 1n response to the testing indicating
a possible 1intersection of the ray with the geometric shape.

18. The machine-implemented method of claim 17,
wherein the geometric shape data further comprises a primi-
tive, and the intersection result further includes 1dentifying,
information for the primitive 1f found to potentially intersect
the ray, and further comprising i1dentifying a full-precision
specification for the identified ray and providing the full-
precision specification for the identified ray to shader code.

19. The machine-implemented method of claim 18, further
comprising the shader code returning secondary rays for
intersection testing 1n a full-precision floating point format;
and converting the full-precision floating point format for the
secondary rays 1nto a block floating point format representa-
tion.

20. The machine-implemented method of claim 17, further
comprising, 1n a management process for the intersection
tester:

maintaining a higher-precision floating point format rep-

resentation of the ray to be intersection tested with the
geometric shape; and

converting the higher-precision floating point format rep-

resentation of the ray 1nto a block floating point repre-
sentation 1n which a location of the ray 1n the 3-D space
1s specified by a plurality of mantissas sharing a single
exponent.
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