US008214849B2
a2 United States Patent (10) Patent No.: US 8.214.849 B2
Cooper 45) Date of Patent: Jul. 3, 2012
(54) SYSTEM FOR LOADING DEVICE-SPECIFIC 5339432 A * 8/1994 Crick ...ocoooviviiiiiiiiiinn 713/1
CODE AND METHOD THEREOF 5,459,867 A * 10/1995 Adamsetal. 719/321
5,465,364 A * 11/1995 Lathropetal. 719/321
_ : 5,491,813 A * 2/1996 Bondyetal. 719/323
(75) Inventor: Neil A. Cooper, Newmarket (CA) 5.581.766 A * 12/1996 Spurlock ... 713/2
5,586,324 A * 12/1996 Satoetal.cooeevninnnn. 713/2
(73) Assignee: Advanced Micro Devices, Inc., 5,613,123 A * 3/1997 Tsangetal.cceconnnn... 713/1
Sunnvvale. CA (US 5,700,476 A * 12/1997 Fengercovvveeeninnnn, 713/2
yvale, CA (US)
5,752,032 A * 5/1998 Kelleretal. 719/311
(*) Notice: Subject to any disclaimer, the term of this g’;gg’ggg i : gﬁggg %?tfaajl”e'{;l “““““““““““ 71; }332”/%
patent 1s extended or adjusted under 35 5.867.730 A * 2/1999 Leyda ..o, 710/10
U.S.C. 154(b) by 1234 days. 5,896,141 A * 4/1999 Blahoetal. ... 345/541
6,148,346 A * 11/2000 Hansoncoeeeeeen.. 719/321
(21) Appl. No.: 09/904,989 6,216,188 B1* 4/2001 Endoetal. 710/302
6,226,788 B1* 5/2001 Schoeningetal. 717/107
(22) Flled Jul. 13. 2001 6,518,976 B1* 2/2003 Curtisetal. 345/621
* cited by examiner
(65) Prior Publication Data
US 2003/0014561 A1~ Jan. 16, 2003 Primary Examiner — Diem Cao
(51) Int. CL (57) ABSTRACT
GO6F 3/00 (2006.01) ‘ _ _
GOGF 9/44 (2006.01) A system and methods are provided for loading device-spe-
GO6F 9/46 (2006.01) cific functions 1nto a device driver. Upon boot-up an operating
GOGF 13/00 (2006.01) system 1nitiates a device driver to be loaded into kernel mode
(52) U.S.Cl 719/323- 719/327 memory. Functions that are device independent are loaded
(58) Fi.el.d . f Clasmﬁcatlon Search """ ”719 1397 into memory and form a first portion of the device driver. An

identifier associated with a particular device being used 1s
received. The device 1dentifier 1s compared to a table of sup-
ported devices to i1dentity a device-specific image from a

719/323,321, 322, 324
See application file for complete search history.

: plurality of executable image files. The 1dentified device-
(56) References Cited L7 . .
specific image 1s then loaded to form a second portion of the
U S PATENT DOCUMENTS device driver in kernel mode memory.
4,649479 A * 3/1987 Advanietal. 718/1
5,136,709 A * 8/1992 Shirakabe etal. 717/164 29 Claims, 4 Drawing Sheets
A ORY USER MODE
— 124
KERNEL MODE 122
DISPLAY DRIVER 130 OPERATING SYSTEM
FUNCTIONS
DEVICE-INDEPENDENT | | 126
FUNCTIONS 132

CPU DEVICE-SPECIFIC MINIPORT DRIVER

110 FUNCTIONS 134 42

A -

SYSTEM BUS 150
SR N,
Y DISK MEMORY 140
DISPLAY ADAPTER 160
M peare | | SECOND DEVICE-
CRAPHICS v SPECIFIC IMAGE
PROCESSOR 185 146
144
DEVICE ID 187

100

U.S. Patent

Jul. 3, 2012 Sheet 1 of 4

MAIN MEMORY | USER MODE '
120 124

KERNEL MODE 122

DISPLAY DRIVER 130 OPERATING SYSTEM
FUNCTIONS

DEVICE-INDEPENDENT 126

FUNCTIONS 132

CPU

110

DEVICE-SPECIFIC MINIPORT DRIVER
FUNCTIONS 134 142

SYSTEM BUS 150

DISK MEMORY 140

DISPLAY ADAPTER 160

FIRST DEVICE-

SPECIEIC SECOND DEVICE-

GRAPHICS
PROCESSOR 165

L_DEVICE ID 167

SPECIFIC IMAGE
146

IMAGE
144

US 8,214,849 B2

FIG. 1

100

U.S. Patent Jul. 3, 2012 Sheet 2 of 4 US 8,214,849 B2

INITIATE SYSTEM
BOOT-UP
210

LOAD MINIPORT

DRIVER
220

LOAD DEVICE-
INDEPENDENT
FUNCTIONS
230

QUERY DEVICE
IDENTIFIER
240

ENTIFY DEVICE-
SPECIFIC IMAGE
FILE

250

DISABLE DEVICE-
NO SPECIFIC

DEVICE-SPECIFIC
MAGE FILE FOUND?

FUNCTIONALITY
270

YES

LOAD DEVICE-
| SPECIFIC IMAGE FILE

280

FIG. 2

U.S. Patent Jul. 3, 2012 Sheet 3 of 4 US 8,214,849 B2

REQUEST
FUNCTION

POINTERS
310

DISABLE DEVICE-
SPECIFIC
FUNCTIONALITY
325

POINTERS
RECEIVED?

320

FUNCTION
VERSIONS MATCH
AP! VERSION?
330

YES

INITIALIZE

FUNCTION POINTER
TABLE

340

INITIATE DEVICE-
SPECIFIC
FUNCTIONS
350

FIG. 3

U.S. Patent

FIG. 4

Jul. 3, 2012 Sheet 4 of 4

ISOLATE DEVICE-
INDEPENDENT

FUNCTIONS
410

PROVIDE DEVICE-
INDEPENDENT

FUNCTIONS
420

DETERMINE

DIFFERENT DEVICES
TO BE SUPPORTED
430

PROVIDE IMAGES
FOR EACH

SUPPORTED DEVICE
440

GENERATE A TABLE
MATCHING EACH
IMAGE TC EACH

| SUPPORTED DEVICE

450

| PROVIDE REQUEST

FOR DEVICE
IDENTIFIER
460

| PROVIDE COMMAND |

TO LOAD IMAGE
470

US 8,214,849 B2

US 8,214,849 B2

1

SYSTEM FOR LOADING DEVICE-SPECIFIC
CODE AND METHOD THEREOFK

FIELD OF THE DISCLOSUR.

L1l

The present invention relates generally to display drivers
and more particularly to loading display driver code.

BACKGROUND

Within an information handling system, software and hard-
ware generally work together. A host processor 1s used to
process commands from soiftware applications. An operating,
system handles tasks among various software applications
and hardware components of the information handling sys-
tem. To allow an operating system to best communicate with
peripheral hardware devices, software drivers are generally
provided. The software drivers include functions that the
operating system, and system applications, may call. These
functions are generally used to generate specific commands
tor the peripheral hardware, allowing the peripheral hardware
to handle processes for the information handling system.

New system drivers are generally needed to match new
hardware revisions. As hardware devices, such as display
adapters, are upgraded, several versions of the same device
may exist. While some driver functions may be used indepen-
dent of the hardware version being used, other functions are
device-specific. To make full use of upgraded features of a
new hardware peripheral, some functions are made to specifi-
cally make use of the new features. Such device-speciiic
drivers 1mprove system performance using the improved
hardware device and user experience.

While 1t 1s often desired to make full use of a new hardware
peripheral’s capabilities, 1t becomes difficult for a user to
upgrade system drivers when switching between different
versions of a particular hardware device. To match the speci-
fications of each hardware version, different device drivers
may be provided for each version of a hardware device. When
switching between hardware devices with different drivers, a
driver associated with a removed device must be removed
from the system and a new driver must be installed to match
the new device.

To simplily device installation, a single device driver may
be made to support a variety of device versions. Functions
that are device-independent are 1solated and used for all ver-
sions of the device. Device-specific Tunctions for every sup-
ported device version are provided in the driver as separate
tfunctions. Once the driver 1s loaded by the operating system,
only functions that are device independent or specific to the
device being used are called. While such a driver may support
a variety of hardware device versions, the driver loaded into
main memory becomes large. Furthermore, as the driver sup-
ports more hardware device versions, more of the driver func-
tions become dead code that are loaded into memory but
never used, due to association with an unused hardware
device. Such a driver also becomes difficult to build, to debug,
and to support. From the above discussion, 1t 1s apparent that

an improved method of supporting multiple devices would be
usetul.

BRIEF DESCRIPTION OF THE DRAWINGS

Specific embodiments of the present invention are shown
and described i the drawings presented herein. Various
objects, advantages, features and characteristics of the
present invention, as well as methods, operations and func-
tions of related elements of structure, and the combination of

10

15

20

25

30

35

40

45

50

55

60

65

2

parts and economies of manufacture, will become apparent
upon consideration of the following description and claims

with reference to the accompanying drawings, all of which
form apart of this specification, and wherein:

FIG. 1 1s a block diagram 1llustrating a system for loading
device-specific functions into a system driver, according to
one embodiment of the present invention;

FIG. 21s aflow diagram illustrating a method of identifying,
and loading a device-specific image file into a system driver,
according to one embodiment of the present invention;

FIG. 3 1s atflow diagram illustrating a method of identifying,
device-specific functions associated with a device driver,
according to one embodiment of the present invention; and

FIG. 4 1s a flow diagram 1llustrating a method of providing
a device-independent driver, according to one embodiment of
the present invention.

DETAILED DESCRIPTION OF THE FIGURES

At least one embodiment of the present invention provides
for a method of generating a device-specific display driver in
kernel mode memory. The method includes loading device-
independent driver code into kernel mode memory. The
device independent driver code 1s used to form a first portion
of a display driver. The method 1ncludes receiving a device
identifier. The device 1dentifier indicates a current version of
a particular device being used. The method also includes
identifving a particular device-specific driver portion from a
plurality of driver portions. The driver portions may include
executable image files. The particular device-specific driver
portion 1s 1identified using the device identifier. The method
turther includes loading the particular device-specific driver
portion into kernel mode memory. The device-specific driver
portion 1s used to form a second portion of the display driver.

Referring now to FIG. 1, a block diagram illustrating a
system for loading device-specific functions 1s shown and
referenced generally as system 100, according to one embodi-
ment ol the present invention. A display driver 130 1s stored in
main memory 120 of system 100. Device independent func-
tions 132 are loaded 1nto a first portion of display driver 130
regardless of the hardware device being used. Device-specific
functions 134 are loaded into a second portion of display
driver 130 from a device-specific driver portion known as an
executable image file, such as first device specific image 144,
associated with a particular hardware device, such as display
adapter 160.

In one embodiment, system 100 includes a general-pur-
pose mformation handling system that includes a data pro-
cessor, central processing unit (CPU) 110. CPU 110 handles
processes from various system components, such as software
applications (not shown) or hardware devices, such as display
adapter 160. Data 1s passed to and from CPU 110 through a
system bus 150. In one embodiment, system bus 150 includes
a peripheral component interconnect (PCI) bus. In one
embodiment, system components, such as CPU 110, main
memory 120, disk memory 140 and display adapter 160, are
linked through system bus 150. Data passed among the sys-
tem components 1s passed through system bus 150. Peripheral
hardware devices, such as display adapter 160 may be added
to system 100 through connections with system bus 150.

In one embodiment, display adapter 160 1s connected to
system 100. Display adapter 160 includes a graphics proces-
sor 165 for handling graphics and video processing within
system 100. In one embodiment, display adapter 160 1s used
for two-dimensional and three-dimensional graphics pro-
cessing and rendering. In one embodiment, graphics proces-
sor 165 represents one particular version of a variety of graph-

US 8,214,849 B2

3

ics processors. Graphics processor 165 handles various
graphics processing functions. Some functions, such as two-
dimensional graphics processes, are capable of being pro-
cessed by a vaniety of graphics processors, including graphics
processor 165; however, some functions are device-specific.
For example, some three-dimensional graphics processing
functions, such as direct 3D (D3D) or direct draw (DD) func-
tions are supported by particular graphics processors and may
only be processed correctly through the particular graphics
processor, such as graphics processor 165. A display driver
130 is constructed in main memory 120 to provide both
device-independent functions 132 and device-specific func-
tions 134 for system 100 to use with graphics processor 165 of
display adapter 160.

In one embodiment, during a boot-up of system 100, an
operating system (not shown) loads essential system drivers
and functions in system memory, such as main memory 120.
In one embodiment, a miniport driver 142 1s loaded into
kernel mode memory 122, through system registry informa-
tion (not shown) stored in disk memory 140. Miniport driver
142 is used to load and 1nitialize a display driver 130, asso-
ciated with display adapter 160, in kernel mode memory 122
of main memory 120. Some operating systems, such as the
Unix operating system or Windows 2000 operating system,
partition main memory 120 into different memory portions or
memory modes. The different memory modes are associated
with different levels of access provided to functions located
within the memory portions.

In one embodiment, the level of memory that provides the
most access of system 100 1s known as ring0 memory, or
kernel mode memory 122. Kernel mode memory 122 is used
to store operations or functions that have the most access to
hardware processes of system 100. An application mode
memory or user mode memory 124 provides less access, than
kernel mode memory 122, to general application functions
stored therein. After functions are stored in kernel mode
memory 122, the stored functions are allowed to run 1n a
protected mode of memory and provide services to other
functions i user mode memory 124. Kernel mode memory
122 protects and 1solates hardware, such as graphics proces-
sor 165, from applications running functions in user mode
memory 124. In one embodiment of the present invention,
disk memory 140 includes hard drive memory. Disk memory
140 may also include floppy disk memory, compact disk data,
or other form of memory media. Disk memory 140 may also
include other memory devices, such as RAM memory
devices, without departing from the scope of the present
invention.

In one embodiment, the kernel mode memory 122 1s com-
posed of four sub-systems, an executive sub-system, a hard-
ware abstraction layer (HAL), a device driver sub-system,
and a microkernel. The executive sub-system performs mput/
output (I/0) and object management services. The executive
sub-system 1s also responsible for security I/O and 1s broken
into system services accessible by functions of user mode
memory 124 and internal services accessible only by other
executrve sub-system functions. The executive subsystem
includes components such as an I/O manager, a virtual
memory manager, a plug and play manager, an object man-
ager, and a process manager. The executive sub-subsystem
may also include a graphical device interface (GDI) for man-
aging windows display systems.

The device driver subsystem translates 1/O requests 1nto
hardware functions, such as display driver 130 and miniport
driver 142. In one embodiment, device drivers are also sepa-
rated 1nto various levels. A high-level device driver, such as
file allocation table drivers and other file system drivers,

10

15

20

25

30

35

40

45

50

55

60

65

4

require support from lower-level drivers, such as intermedi-
ate- and low-level drivers. An intermediate-level driver, such
as display driver 130 or minmiport driver 142, provides support
for high-level drivers and requires support from lower level
drivers. Low-level drivers don’t require support from other
drivers and generally include drivers to maintain function to

control physical peripheral devices, such as system bus 150.
The microkernel 1s used to translate information, such as I/O
requests, to the processor, CPU 110. The HAL 1s used to
manage translation services for I/O functions, interrupt con-
trollers, and processor communications functions.

In one embodiment, kernel mode memory 122 includes
display driver 130 for handling functions and services for
display adapter 130, miniport driver 142 and operating sys-
tem functions 126. Upon boot-up, the operating system may
be used to load miniport driver 142. Miniport driver 142 may
be used to initialize display driver 130 1n kernel mode
memory 122. Miniport driver 142 may also load various
device-independent functions 132 in display driver 130. As
previously discussed, device-independent functions 132
include functions, such as two-dimensional graphics pro-
cesses, that are capable of being processed on a variety of
graphics processors, different from graphics processor 165.

Upon boot-up, device-specific functions 134 may also be
loaded 1nto display driver 130 1n kernel mode memory 122.
The device-specific functions 134 include functions that are
specific to graphics processor 165. In one embodiment, sys-
tem 100 queries display adapter 160 to determine a device
identifier (ID) 167 associated with graphics processor 165.
The device ID 167 may include a graphics processor 1denti-
fier, indicating a particular version of graphics processor 165.
The device ID 167 may also include an application-specific
integrated circuit (ASIC) 1dentifier associated with graphics
processor 165. The device ID 167 may then be compared to a
table (not shown) of supported graphics processors to select a
device-specific driver portion known as an executable image
file, such as first device-specific image 144, from a collection
of 1image files, such as device-specific images 144 and 146,
stored 1n disk memory 140. For example, 1n one embodiment,
first device-specific 1mage 144 matches device ID 167.
Accordingly, device-specific functions 134 from first device-
specific image 144 are loaded 1nto display driver 130. In one
embodiment, a function capable of moving a block of execut-
able code 1nto kernel mode memory 122 1s called to load first
device-specific image 144 into kernel mode memory 122. It
should be noted that the function used may be dependent on a
particular operating system being run on system 100. In one
embodiment, a Windows 2000 or Windows XP operating
system function, Engl.oadlmage 1s used to load first device-

specific image 144. In one embodiment, Engl.oadlmage 1s
called as follows:

Engl.oadlmage (IN LPWSTR pwszDriver <>);

The parameter “pwszDriver” points to a null-terminated
string which names the file containing an executable 1mage to
be loaded, such as first device-specific image 144. If the call
to Engl.oadlmage 1s successiul, a handle to the image that
was loaded 1s returned. Engl.oadlmage allows an executable
image, such as first device-specific image 144 or second
device-specific 1image 146 to be loaded into kernel mode
memory 122. In one embodiment, once Engl.oadlmage
returns a handle to first device-specific image 144, another
function 1s called to find addresses associated with the begin-
nings ol procedures or functions within the loaded executable
image. In one embodiment, the function EngFindImagePro-
cAddress 1s used to return pointers to addresses of particular

US 8,214,849 B2

S

functions found within first device-specific image 144. Eng-
FindImageProc Address may be called as follows:

EngFindImageProcAddress (IN HANDLE hModule
<> IN LPSTR IpProcName <>);

The parameter “hModule” 1s a handle to the image 1n which
a desired function may be found. The handle may be obtained
through Engl oadlmage, as previously described. The param-
cter “lpProcName” 1s a pointer to a string that specifies the
desired function. IT successtul, the function EngFindImageP-
rocAddress returns a base address of the desired function’s
executable code. Once the pointers of the desired functions of
first device-specific image 144 have been loaded, system 100
may use the functions to process device-specific operations
through graphics processor 165. In one embodiment, once
display adapter 160 or graphics processor 165 1s switched
with an alternate version of a graphics processor, a new
device-specific image, such as second device-specific image
146, will be matched to the new graphics processor version
being used. Second device-specific image 146 may then be
loaded and used to generate a new set of device-speciiic
functions, associated with the new graphics processor version
being used.

It should be noted that device-specific images 144 and 146
may need to be named as dynamic linked library (DLL) files.
While the device-specific images 144 and 146 are not truly
DLL files, the naming convention may need to be kept for the
device-specific image files 144 and 146 to be understood by
the Engl oadlmage function described above. In one embodi-
ment, first device-specific image 144 and second device-
specific image 146 are part of a greater plurality of device-
specific 1mages (not shown). Furthermore, while only first
device-specific image 144 and second device-specific image
146 are shown, 1t should be appreciated that more device-
specific images may be included for supporting all desired
versions of a device, such as graphics processor 165.

Referring now to FIG. 2, a flow diagram describing a
method of loading a device-specific driver portion 1s shown,
according to one embodiment of the present invention. A
display driver 1s mmitialized and loaded mto kernel mode
memory within an information handling system. A particular
peripheral device, such as a display adapter or graphics chip,
1s 1dentified and matched to a driver portion, such as an
executable 1mage file. The driver portion 1s loaded by the
information handling system to allow device-specific func-
tions associated with the peripheral device to be loaded within
the display driver. The peripheral device may then be used to
handle specific processes for the mnformation handling sys-
tem.

In step 210, a system boot-up for the information handling
system 1s 1nitiated. The boot-up may be mitiated by a user or
by an operating system 1n response to a need to re-imitiate
system drivers. The boot-up may also be part of the informa-
tion handling system being recently turned on. During a boot-
up sequence, an operating system associated with the infor-
mation handling system begins to load device drivers into
memory. The device drivers are drivers used to handle various
functions for peripheral devices. In one embodiment, a dis-
play adapter connected to the information handling system
includes a graphics chip of a particular version.

In step 220, a miniport driver associated with the display
adapter 1s loaded by the operating system. The miniport driver
may be mitialized through registry settings. In one embodi-
ment, the mimiport driver 1s used to mitialize a display driver
that 1s loaded 1nto kernel mode memory of the information
handling system. In step 230, the miniport driver 1s used to
load device-independent functions 1nto the display driver 1n

5

10

15

20

25

30

35

40

45

50

55

60

65

6

kernel mode memory. The device-independent functions
include functions that are capable of being processed by the
system despite the particular version of the graphics proces-
sor being used by the display adapter.

In step 240, the information handling system queries the
display adapter to determine the version of the graphics pro-
cessor being used. The query may include a function under-
stood by the graphics processor for providing a device 1den-
tifier. In one embodiment, a device 1dentifier associated with

the graphics processor 1s returned and used to determine the
version. In step 250, a device-specific executable file 1s 1den-
tified as being associated with the graphics controller. In one
embodiment, the device 1dentifier returned from step 240 1s
compared to a table of supported devices. Once the device
identifier 1s matched 1n the table, a name of an executable
image file associated with the graphics processor 1s identified.
In step 260, it 1s determined if the device-specific 1image file
identified 1n step 250 exists 1n the information handling sys-
tem. In step 260, 1f the device-specific image file 1s not found,
the device-specific functionality provided by the 1image file 1s
disabled, as 1n step 270. For example, D3D or DD commands
may be disabled in the information handling system 1f the
appropriate 1mage file 1s not found. It should be noted that
while an available image file may be provided 1n 1ts place, the
image file may cause the information handling system to run
with reduced performance.

In step 260, 1f the 1dentified device-specific image file 1s
found, the information handling system loads the desired
device-specific image file, as 1n step 280. System function
calls may be made to load the identified image file. As previ-
ously discussed, 1n one embodiment, the image file 1s loaded
using an FEngl.oadlmage command, as identified and
described according to the Microsoit Driver Development
Kit. If the desired 1image file does not exist, the Engl.oadlm-
age command returns a null value. It should be noted that
while an 1image {file was 1dentified and found, the 1mage file
itself may be of an incorrect version, as will be discussed 1n
reference to FIG. 3. Furthermore, while the image file has
been loaded, the functions within the image file are not ready
to be called. In one embodiment, addresses associated with
the functions must be determined, as will be discussed 1n
reference to FIG. 3.

Referring now to FIG. 3, a flow diagram describing a
method of processing functions associated with a loaded
image file 1s shown, according to one embodiment of the
present mnvention. A particular image file 1s identified from a
collection of 1mage files as being associated with a particular
device, such as a particular graphics processor. Once the
image file 1s 1dentified, 1t must be analyzed to ensure the
image file 1s valid.

In step 310, pointers associated with the loaded 1mage file
are requested. In one embodiment, the function pointers are
requested using an operating system ftunction call, such as the
EngFindIlmageProc Address command provided through the
Microsoit Driver Development kit. In one embodiment, 1f the
command called 1s successtul, a pointer to the requested
function within the loaded 1mage file 1s returned. In step 320,
it 15 determined 11 the pointers to the desired functions were
returned. In one embodiment, the command returns a null
value 11 the address pointers were not found. In step 320, 11 no
pointers were received, the device-specific functionality
associated with the desired functions 1s disabled, as 1n step
325. For example, 1f pointers associated with a D3D function
were not returned, D3D functionality 1s disabled. In one
embodiment, all functions associated with the image file are

disabled.

US 8,214,849 B2

7

In step 320, 1f the pointers to the addresses of the desired
functions are returned, the system continues to process the
commands, as 1n step 330. In step 330, the versions of the
functions are compared to versions expected by an applica-
tion program interface (API) running in the information han-
dling system. A function may be called to query the current
API for a version 1dentifier. In one embodiment, the function
called to determine the API version 1s not allowed to change
tfor the life of a driver associated with the loaded 1mage. An
API 1s an interface between application functions found in
user mode memory and functions or services 1n kernel mode
memory. The API allows applications to access operating,
system functions and other services, such as the device-spe-
cific functions. In step 330, 11 the versions of the device-
specific functions do not match the function versions
expected by the API, the functions and the functionality asso-
ciated with the functions 1s disabled, as 1n step 325.

In step 330, if the function versions match the expected
versions, a function pointer table 1s mitialized using the
returned function address pointers, as 1n step 340. The point-
ers indicate addresses for running executable code associated
with the device-specific functions. In step 350, the device-
specific functions are mnitiated as needed. When needed, the
functions may be called by executing the code found at the
addresses provided through the table mitiated through step
340.

Referring now to FIG. 4, a flow diagram illustrating steps
for providing a device-independent driver 1s shown, accord-
ing to one embodiment of the present invention. Portions of a
computer readable medium may be used to provide support
for generating a device-independent driver. Two portions of a
device driver are provided through the computer readable
medium. Device-independent functions form a first portion of
the device driver and device-specific functions form a second
portion of the device driver. The device-independent func-
tions may be provided for loading into a system regardless of
the particular device being used. Images for the device-spe-
cific functions are provided through the computer readable
medium to allow the device-specific functions to be loaded
separately, dependent on the particular device being used.
The computer readable medium may include memory storage
devices such as a computer disk, a compact disc (CD), a
digital versatile disk (DVD), or a computer hard drive.

In step 410, device independent functions are 1solated.
Various sets of device driver functions for different devices
are compared to 1dentify functions that may be used by all the
devices that will be supported. It should be noted that some
functions may need to be altered slightly to be device-inde-
pendent. Functions that are difficult to be made device-inde-
pendent should be left alone and 1dentified as being device-
specific functions. In step 420, the device-independent
functions are provided together. The device independent
functions may be combined to form a single file or image. The
device-independent functions will be loaded upon a system
boot-up regardless of the device being used.

In step 430, the different devices to be supported by the
driver are determined. All versions of the devices to be sup-
ported should be considered. A list of devices to be supported
by the device driver may then be generated. It should be noted
that future versions of a device driver being used may add
extra devices to the list of supported devices, allowing the
device driver to continue to support new devices. In step 440,
images for each of the supported devices determined 1n step
430 are generated. A unique 1mage may be constructed for
cach supported device. Alternatively, an image may support
one or more devices of a greater plurality of devices. The
image should include most of the functions that were found to

10

15

20

25

30

35

40

45

50

55

60

65

8

be device-specific for the particular device supported by the
image. In one embodiment, the 1mages must be provided as
DLL files to satisfy an Engl.oadlmage function naming con-
vention. In step 450, a table 1s generated. The table provides
a link to match each image generated 1n step 440 to the
devices supported by the image. In one embodiment, a device
identifier 1s used to 1dentily the supported devices within the
table.

In step 460, a system command 1s provided to request a
device 1dentifier during system boot-up. The device identifier
1s to indicate which device or device version 1s currently being
used by the system. The device i1dentifier may include an
ASIC 1dentifier to indicate the device being used. In step 470,
a system command to load animage 1s provided. The image to
load 1s determined by comparing a device 1dentifier returned
from the request in step 460. The device identifier 15 com-
pared to the table generated 1n step 450 to identify an associ-
ated 1mage. In one embodiment the command includes the
Microsoit command Engl.oadlmage to load the image and
the Microsoit command EngFindImageProcAddress to gen-
erate pointers to functions within the loaded image. When
processed by a system, the driver generated through the steps
described 1n FIG. 4 allows a device-specific driver to be
loaded 1nto kernel mode memory.

The systems described herein may be part of an informa-
tion handling system. The term “information handling sys-
tem” refers to any system that 1s capable of processing infor-
mation or transferring information irom one source to
another. An mformation handling system may be a single
device, such as a computer, a personal digital assistant (PDA),
a hand held computing device, a cable set-top box, an Internet
capable device, such as a cellular phone, and the like. Alter-
natrvely, an information handling system may refer to a col-
lection of such devices. It should be appreciated that the
system described herein has the advantage of selectively
loading only functions which are associated with a particular
device 1n a driver within main memory.

In the preceding detailed description of the embodiments,
reference has been made to the accompanying drawings
which form a part thereof, and in which 1s shown by way of
illustration specific embodiments 1n which the invention may
be practiced. These embodiments are described 1n suificient
detail to enable those skilled 1n the art to practice the mnven-
tion, and 1t 1s to be understood that other embodiments may be
utilized and that logical, mechanical and electrical changes
may be made without departing from the spirit or scope of the
invention. To avoid detail not necessary to enable those

skilled 1n the art to practice the invention, the description may
omit certain information known to those skilled in the art.
Furthermore, many other varied embodiments that incorpo-
rate the teachings of the invention may be easily constructed
by those skilled 1n the art. Accordingly, the present invention
1s not mtended to be limited to the specific form set forth
herein, but on the contrary, 1t 1s intended to cover such alter-
natives, modifications, and equivalents, as can be reasonably
included within the spirit and scope of the ivention. The
preceding detailed description 1s, therefore, not to be taken in
a limiting sense, and the scope of the present invention 1s
defined only by the appended claims.

What 1s claimed 1s:

1. A method comprising;:

loading device-independent driver code 1nto kernel mode
memory, wherein the device-independent driver code
forms a first portion of a display driver;

US 8,214,849 B2

9

requesting a device identifier after loading the device-1n-
dependent drniver code into kermel mode memory,
wherein the requested device 1dentifier 1s to 1dentily a
particular device;

receiving the requested device identifier associated with a 5

particular device;
identifying a particular device-specific driver portion from
a plurality of driver portions associated with the device
identifier based on a comparison of versions associated
with functions of the device-specific driver portion to 10
versions expected through an application program inter-
face; and
loading the particular device-specific driver portion into
kernel mode memory, wherein the device-specific driver
portion forms a second portion of the display driver; 15

wherein loading the device-specific driver portion includes
calling a function to load a block of executable code 1n
kernel mode memory; and

wherein the function includes Engl oadlmage function.

2. The method as 1n claim 1, wherein the device 1dentifier 20
includes an application-specific integrated circuit identifier.

3. The method as 1n claim 2, wherein the device 1dentifier
includes a graphics chip identifier.

4. The method as 1 claim 1, wherein the device-specific
driver portion includes direct draw functions. 25
5. The method as in claim 1, wherein the device specific

driver portion mcludes direct 3D functions.

6. The method as 1n claim 1, further including 1dentifying
addresses of functions associated with the device-specific
driver portion through a EngFindlmageProcAddress func- 30
tion, after loading the device-specific driver portion 1nto
memory.

7. The method as 1n claim 1, wherein the device-indepen-
dent driver code includes two-dimensional graphics func-
tions. 35

8. The method as in claim 1, wherein 1dentifying the
device-specific driver portion includes locating a name asso-
ciated with the device-specific driver portion 1n a table using
the device identifier.

9. A method comprising; 40

providing a set of device-independent functions, wherein

the device-independent functions are capable of
manipulating a processor to support a plurality of differ-
ent display devices;
providing a plurality of device-specific driver portions, 45
wherein each device-specific driver portion of the plu-
rality of device-specific driver portions include func-
tions capable of manipulating a processor to support
only a portion of the plurality of different display
devices: 50

providing a {irst function to manipulate a processor to load
one or more device-independent functions of the set of
device-independent functions 1nto kernel mode
memory;

providing a second function to manipulate a processor to 55

request for a device identifier after the one or more

device-independent functions are loaded into kernel

mode memory, wherein the device 1dentifier 1s capable

of identifying a particular display device of the plurality

of different display devices; and 60
providing a table linking device identifiers to idividual

device-specific driver portions of the plurality of device-

specific driver portions;

providing a third function to manipulate a processor to load

a particular device-specific driver portion into kernel 65
mode memory based on the table and the device 1denti-
fier, wherein the particular device-specific driver portion

10

1s associated with the particular display device of the
plurality of different display devices; and

wherein the third function includes a call to an Engl.oad-

Image function.

10. The method as 1n claim 9, wherein the device-indepen-
dent functions include two-dimensional graphics processing
functions.

11. The method as 1n claim 9, further including providing a
fourth function to determine addresses associated with func-
tions of the particular device-specific driver portion, after
providing the third function.

12. The method as in claim 11, wherein the fourth function
includes a call to an EngFindlmageProcAddress function.

13. The method as 1n claim 9, wherein functions of the
plurality of device-specific driver portions include direct 3D
functions.

14. The method as in claim 9, wherein functions of the
plurality of device-specific driver portions include direct
draw functions.

15. The method as 1in claim 9, wherein the device 1dentifier
includes a graphics processor identifier.

16. The method as 1n claim 9, wherein the device identifier
includes an application specific integrated circuit identifier.

17. A system comprising:

a data processor having an interface;

memory having an intertface coupled to the interface of the

data processor, said memory having:

a kernel mode memory including;:

a miniport driver to
imitialize a display driver to be accessed as a portion of
said kernel mode memory;
load device-independent driver code 1nto said display
driver 1n said kernel mode memory;
determine a device identifier associated with a display
adapter;
1dentity device-specific driver code from a plurality of
executable i1mages, wherein the device-speciiic
driver code 1s associated with said device identifier:
load a portion of device-specific driver code for
access as a portion of said display driver;
said display driver, wherein said display driver includes:
said device-independent driver code;
said device-specific driver code;
said plurality of executable 1images;
display adapter having:
an 1nterface coupled to the mterface of the data proces-
sor; and
said device 1dentifier.

18. The system as in claim 17, wherein the device identifier
includes an application specific integrated circuit identifier.

19. The system as in claim 17, wherein said display adapter
includes a graphics processor.

20. The system as 1n claim 19, wherein the device identifier
includes a graphics processor 1dentifier.

21. The system as 1n claim 17, wherein said device-inde-
pendent driver code includes two-dimensional graphics func-
tions.

22. The system as 1n claim 17, wherein the device-specific
driver code 1ncludes direct 3D functions.

23. The system as 1n claim 17, wherein the device-specific
driver code 1ncludes direct draw functions.

24. The system as in claim 17, wherein individual execut-
able 1mages of the plurality of executable 1mages include
functions unique to a particular device.

25. A non-transitory computer readable medium tangibly
embodying a plurality of programs of instructions, the plu-
rality of programs including;:

US 8,214,849 B2

11

a set of device-independent functions to manipulate a pro-
cessor to support a plurality of different display devices;

a plurality of device-specific driver portions, wherein each
device-specific driver portion of the plurality of device-
specific driver portions includes functions to manipulate
a processor to support only a portion of the plurality of
different display devices;

a first function to manipulate a processor to load one or
more device-independent functions of the set of device-
independent functions into kernel mode memory;

a second function to manipulate a processor to request a
device 1dentifier after the one or more device-indepen-
dent functions of the set of device-independent func-
tions nto kernel mode memory;

a third function to manipulate a processor to i1dentity a
particular device-specific driver by locating a name
associated with the particular device-specific driver por-
tion 1n a table using the device 1dentifier; and

10

15

12

a fourth function to manipulate a processor to load the
particular device-specific driver portion into kernel
mode memory;

wherein the second function includes a call to an Engl.oad-
Image function.

26. The computer readable medium as 1n claim 25, turther
including a third function to determine addresses associated
with functions of the particular device-specific driver portion.

277. The computer readable medium as 1n claim 26, wherein
the third function 1includes a function call to an EngFindIm-
ageProcAddress function.

28. The computer readable medium as in claim 25, wherein
the device i1dentifier includes an application specific inte-
grated circuit identifier.

29. The computer readable medium as 1n claim 25, turther
including a table linking device identifiers to individual
device-specific driver portions of the plurality of device-spe-
cific driver portions.

	Front Page
	Drawings
	Specification
	Claims

