12 United States Patent

Navas

US008214325B2

US 8.214,325 B2
Jul. 3, 2012

(10) Patent No.:
45) Date of Patent:

(54) FEDERATING BUSINESS EVENT DATA

WITHIN AN ENTERPRISE NETWORK

(75) Inventor: Julio Navas, Concord, CA (US)
(73) Assignee: SAP AG, Walldort (DE)
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 218 days.
(21) Appl. No.: 12/622,383
(22) Filed: Nov. 19, 2009
(65) Prior Publication Data
US 2010/0125545 Al May 20, 2010
Related U.S. Application Data
(60) Provisional application No. 61/116,622, filed on Nov.
20, 2008.
(51) Int.CL
GO6l 17/00 (2006.01)
(52) US.ClL ., 707/602
(58) Field of Classification Search 707/602,

70°7/6077, 608, 609, 648, 7035, 821
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,931,392 B1* 82005 Skeen
7,383,255 B2 6/2008 Desai et al.
2008/0033958 Al 2/2008 Richards et al.

OTHER PUBLICATTONS

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

European Search Report for European Application No. 09014493 .2
Mailed Mar. 17, 2010, 9 pages.

Non-Final Office Action for U.S. Appl. No. 12/622,396, Mailed Oct.

26, 2011.

Non-Final Office Action for U.S. Appl. No. 12/622,387, Mailed Jan.
5,2012.

Cohen, et al., “Descriptive Naming of Context Data Providers”, 2005
Context, pp. 112-125.

Langegger, Andreas et al., “Sharing Data on the Grid using Ontolo-
gies and distributed SPARQL Queries”, Database and expert systems
application, 2007. 18th International conference, IEEE, Piscataway,
NIJ, USA, Sep. 1, 2001, 5 Pages.

Moy, John T., “Multicast Extensions to OSPF”, Request for Com-
ments 1584 (rfc1584). Mar. 1994; downloaded on Mar. 17, 2009 from
http://wwwric-editor.org/rfc/rfc1584.txt, 51 pages.

Moy, John T., “OSPF Version 27, RFC 2328 (rfc2328). The Internet
Engineering Task Force, 48377 Fremont Blvd. Suite 117, Fremont,
CA 94538, USA, Apr. 1998; downloaded on Mar. 17, 2009 from
http://rfc.dotsrc.org/ric2328 html, 246 pages.

Thuraisingham, Bhavani , et al, “Design and Implementation of a
Distributed Database Inference Controller”, Proceedings of the
annual international computer software and applications Conference,
Phoenix, Nov. 1-5, 1993; Los Alamitos, IEEE Comp. Soc. Press, US,
vol. Conf. 17, Nov. 1, 1993, 7 Pages.

* cited by examiner

Primary Examiner — Fred 1 Ehichioya

(74) Attorney, Agent, or Firm — Blakely Sokoloil Taylor &
Zatman LLP

(57) ABSTRACT

Parsing of event queries in an enterprise system 1s described.
The enterprise system recerves queries, which are broken
down 1nto query components. The query components each
represent segments of the query. The enterprise system 1den-
tifies sources of event data and sends queries towards the
sources of the event data. The query components are pro-
cessed close to the data source. The responses are combined
to generate an event query response that indicates the event
data of each of the query components.

23 Claims, 13 Drawing Sheets

] . - a L 1 I 1 i

A e A TR T o S T O e !

LM%%WH#WMW
1

' LTI e BT W e IS /

T —— 5

##

¥]
[] . . Wk ot agkl e g g e - gk - . r " - ¥
; ENTERTGIE BUENT SERVER QEQENER BVERTQUERY 148 :
by ' sl
¥
’ ii i
bOAIVEDOY SRR ARG PR 0N BT DTN BT L
]
erﬁ‘r‘rﬁ‘r‘rﬁ‘r‘v*r‘rﬁ‘r‘vﬁ‘r‘r‘r‘r‘vﬁ‘r‘vﬁ‘r‘vﬁ‘r‘ri
; ############################### t -‘"‘-‘-‘""-‘-‘“"""""“""“"““""“""“""“"1
' CD N GERAER IENTHIE S QMY GUNR B 72 :
e e eemmn et ol
;-.-I.*-.;
bRV T SO AYRS DR ANINGD NOW TLA AT Qo Ry DONIOMENTY]
y TR L SoAneh T g
e e e e e e e e e e e e ke e e e e e e e ol o e e ol e ke e ol e e e ol e ke e sl e ok sl ol e ol ol e o ol i
MWW%%WW
F—— d a ¢ . Ehal - | . T a4 g i
; AOOTTIONEL EVERT SHRER aY SURYNER hhE OURRY ;
: TOMPONELTYE 2 :
L _______________________ l"-- _________________________
+
] i
' ey & S WSSOI QLR DO OMENT 40 :
SO
- fd LD L] LD L] T dph - LEFL L [T FLE"1 B | LML L] ey [Er| L L L]

; FUENT G A SOUNCE CRONE SIS DUESY COAMONEAT 130 5
Mm#ﬂ#ﬂ#ﬂ#ﬁﬁﬂ#ﬂmmmm#ﬂ#ﬂﬁmw
1
;- i------------------------------}
PEVENT DATA SIUPOE FETURNSG (QOUNSDNEWT (otiy RESHONEES 7232 4
b a0 B BB 8 B B 0 !
Y

)
! = - -y B e g B Ly] 4 P F i
; EVENT SEMNACE DO T GOMGE G FO0 GO DARALE LA NRY ;
! TR AR O T W AN D §
a | :
- - _~ " ;
; SN EER DN DI IR ONSE 100 :
t- ****************************** *l‘-‘- ******************************

--

11

______ %iﬁ:_:m
w :

US 8,214,325 B2

llllll

B A M A MY

JJJJJJJJ

..-._.u\

.r-__:..-wuv.-.. _u..t_..u..

_-:l:l }l_jl

...

JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ

Sheet 1 of 13

CSRRRRRRERRRRRERRRRRRRRRE.

_.. . . [n U T S T 25

Jul. 3, 2012

e hm ; ki T wﬁamﬁfﬁumuﬂuﬂu
: .ﬁﬁmﬁm w.w .ew LR _

A A A A A M A AP

U.S. Patent

US 8,214,325 B2

Sheet 2 of 13

Jul. 3, 2012

U.S. Patent

- iy Ll el iy WY d L]

............. . s . . . e .

............. A% e :

. T ”.m.,.ﬁ“\. T R ek < . R % ‘

........ . - . v - w . .”i__. .._ .-.._. r W _ = - » R R 1.. e .
. o R ' r e S . A o e i,. - . . . - g . . e l.. Mw...

~u _“..--..n_nu.%~
»

....................i ,.MESJEE-}".}F;J{J_{

A0 _ ! e i "l G L . W P, ”M”
.................. A XU NP iiii#@.ﬂﬁ%.ﬂﬂww

................. . _.._MVWH._.-“_A .er{.}r}f}{r{“}r}rrff{}?
- kunwﬁ

=
e W e e P
s v YR
- 1 PR !

L |] [
L.

- o wn

P . . ' “. ...‘l. -
HER -RE wE -

US 8,214,325 B2

Sheet 3 0f 13

Jul. 3, 2012

U.S. Patent

: S Lo Enissosmangincngoannincssnand g R

..................................

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

..................................

. P - T R - o T T T T o S T ~ O - O 41 T NN

. - T T T - T e k. W . B I T 2 TR T L e o 2 - TR

111

G an ey
Ui et

............................

S R T T M S
X R

y
o
s,
.

."n..._

T I
X R X LY

e e

@wﬁ |

. . . - B -

US 8,214,325 B2

Sheet 4 of 13

Jul. 3, 2012

U.S. Patent

ettt ettt et

-- e

Y pirig

o e e __ m _ ,
#&wwwmm{@a e i oy " B Hmﬁ M

#ﬁaﬁfﬂ.}..ﬂrgﬁg.ﬂ?}?%

US 8,214,325 B2

Sheet So0f 13

Jul. 3, 2012

U.S. Patent

PE O YRR
MR LI

L EEEEEEEE T e EEEY
=

O

. T, 8
.1..

-Iq . .
[F ok

mmm S

__________________ MW&M&MW L

...W _,.. Wmm ; x

- ! :
--
rrr

US 8,214,325 B2

Sheet 6 0of 13

Jul. 3, 2012

U.S. Patent

...........

JJ

aa

EAR wm&ﬁmwﬁw

L T S R S NN N NN N N NN R NN R N R R)
LN NN RN RN NN

Jeleieio{misieieieioisisieieieieisisisieieieisis!

ATy

ﬁimﬁﬁﬁwﬁ#w e w _ mmmemeamwm

..

L N S NN NN N NN R NN NN R N R R R R]
U N RN IR RN RN NN

..,.-.-l..ll.-.-l..ll

w\wf mmm mﬁm_ﬂé *

5 wwmw m.ﬁ”.- J..Hmw ,w __

..

..

L -
rrr

ere

(nieio{m{inie{e{wiieie{oim{sieie{o{minieie{misieieisimisisieis{minieieio{mieieie{sisisieis{misieieis{minisieis{sisieieimimisieie{minieieio{misieieisimieieisimnieieisimisisieis{misieieimisisieieimisieieieimisieieie}

”” ”3”3” ”3”3””3” ”Q”Q”Q”Q”@WWWAHMHWF@%m”mwAW

RN IR R R RN

jj

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

MR AR

.| L T T S RN R N N N N]
e e

...

NN SR STE BO0N HIAUS 3

.........................

, '-z-:-.hhhhﬁhhhhhhﬁ%ﬁhﬁ‘-.ﬂﬁ-hﬁ%

US 8,214,325 B2

Sheet 70f 13

Jul. 3, 2012

U.S. Patent

..

...

R

__ ﬁx%vﬁw.wﬂ%.wm.ﬁ.

Eari ot b

e

FEE S50 SHITY

-...__...__.. .-_...__..

rrrrrrrrrrr

US 8,214,325 B2

Sheet 8 0f 13

Jul. 3, 2012

U.S. Patent

Wk b bk bk F R F B F ok bk bk F k F h F bk F bk F bk k h b b bk bk F ok F h F b F b b b b b b b F bk b F bk bk bk bk F h F bk F ko F bk bk b b b bk F k F h F ok F b b b b b bk F h F b F bk bk bk F bk F h F bk F ko F h kb b b bk F k F k F h kb F b b b b kb b b F h ok b F bk bk b Bk F h F bk F bk F h kb kb bk F bk F bk F h kb F b b b b kb b b F bk F b F bk bk b Bk F h F bk F bk F h kb kb bk F k F bk F h F b F b b b b kb b b F b F b F bk bk b Bk F h F bk F kb bk F bk b bk F k F bk F B F b F b b b b b b b F h F b F bk b bk Bk F h F bk F bk b bk b B b bk b bk F bk F R F b kb B
T T T T R A T T U PR N T TR T N T N DR NN N U O T T PR T T P N A | k.
a_ ..

R N N R N R N N R N R N R R N N N N N N N Ny

U.S. Patent Jul. 3, 2012 Sheet 9 of 13 US 8,214,325 B2

|||||||||||||

..

...
nnnnnnnnnnn

EVENT SERVER PARSES BVENT GUERY INTO COMPONENT PARTS 218

i3

mm &:-ﬁw‘:;i::%% mmw&m@m M,.ﬁ“ 13 mm‘e ‘fs'é: m;w"f mﬁ’%‘wmwm fii*s
2R - mmm mm:&***t-—a... ' B

ﬁ;ﬁ %’E’iﬁﬁ*&ﬂi Ef""ﬁ%"ﬁ ﬂﬁﬁw’g? ?ﬁ'..;".5L*E ;-‘;; ﬁ"ﬁ Eﬁ 3’-’5}’3&‘"‘{ ﬁ ﬁi&iﬁ“
. ﬁmﬂﬂ"‘ﬁ%ﬁ%?&ﬂ i ‘?:g'“ o

HHH

| EVENT DATA SOURCE ﬁmgmgw ﬁs;aw{: CRPORENT 738

'''

w *ﬁ' mm "-:‘:f}iﬁxxa‘”? R?ﬁmﬁ G o gﬁs&?i}mw; o f-mv FMW}& S L:w i

_________ gnﬁgg,;?wggwgﬁr}mm%gggﬁg:{{}g?{*ggﬁg,{;gﬁgthggg

e e e e B S B e S S e A S SO B S S BB R ‘-@-M-M-hiﬁiﬁi&iﬂtﬁhﬁiiﬁhhﬁiiiﬁhﬁ-ﬁnh‘-Ehhihiﬁﬁ-hﬁhhﬁhHhi%iﬁhﬁhhﬁhhﬁhﬁhﬁhﬁﬁhi% -

H*’-:a{‘ 533 tﬁ" ‘”%Tﬁﬁﬁ ﬁ?f‘?ﬁh’fﬂ Ml“”ﬁf“ *Hﬁ Eii %“ ??’ﬁi »—"ﬁﬁ.ﬁi"’ i’” %?i“?wé"’”" {'m"’{.s% W"‘*’%

'''

U.S. Patent Jul. 3, 2012 Sheet 10 of 13 US 8,214,325 B2

i% M% *:-C'* H*M &%%@H&'ﬂ s ﬁ*"*f H f}eii?ﬁ"{ P Hﬂ HaE '5.""* gggﬁ |

||||||||||

..

EVERNT SERVER PARBES EVENT QUERY é_é&’?ﬁ' 438 %i"’@%ﬁ&é 25 m BoiG

e s el e e e et

F‘JF?&? *«?R"ﬁf%{ ?\%M" HiNTERY E?Ji}ii ﬂ?*i: HIERY i’:{“}éﬁﬁﬁk@?%ﬁi 1394

"""""

LL

s'ﬁw*gz KT BF SRR CORABINES SAME O EEY SORBARENTS INTO *"f;?‘%ﬁﬁi ol
{}iﬁﬁé‘%‘r ﬁ’%hi’f E‘Jﬁ"?}m’%ﬁi%ﬁfﬂ ﬁf"‘sﬁ"—i Ty ﬁfﬁé?ﬁi EE i}ﬁ"*’ff’s E‘}&ﬂﬁ‘ ﬁc:z ' :'?

. uﬂuuﬂﬂhhhﬂhﬂAhhﬂhﬂﬂhhhAﬂhﬂﬂhﬂﬂﬂﬂh5ﬂhhﬂhﬂﬂh5ﬂhﬂﬂh5ﬂh5ﬂhﬂhhﬁhﬁhﬁhﬂhﬁhﬁhﬂhﬂhﬁhﬂhﬂﬂﬂ' ﬂﬂuﬂﬂhhaﬂﬂhﬂﬂh5ﬂh5ﬂh5ﬂh5ﬂﬂhhhﬂhh5hhﬂhh5hh5hh5hﬂ5Aﬂ5ﬂﬂﬂhﬂﬂhﬂﬂhﬂﬂhﬂﬂhﬂﬂhﬂﬂﬂﬂﬂhﬁhﬂﬂ ;

EVENT SERVER SENDS SINGLE GUERY TO DATA SOURCE 818

wﬂ«fﬂ mm SUHIRCE i'{%:‘” WES BINGLE wzam

EVENT SERVER DUPUCATES QUERY RESPONSE TO EACH QUERY
D SOURCE 824 S

FIG. 8

U.S. Patent Jul. 3, 2012 Sheet 11 of 13

US 8,214,325 B2

ENTE Wmi%: &3
i}i?{ ":.:-%i.,-ﬂ-"f"'% 5 EVE ?’eﬁ ﬁf} ?;" k] iﬁ'ﬁ-‘; "“E- ;l"{.%
a.?"' iw“ ‘? f:s 3 h%‘a& {éi’ﬁ Mh?«izﬁ iy iﬁs‘iﬁé i;ziﬂ. E;% % ?{:‘&e ij.-jg:j mg- £3 90K

...

g ﬂ m % w&.ﬁ. :: mg—%’s&m t *}f{;?‘é‘é s”sm a-zf s-'az Py s'*“s? 14 H.,zazs.:;ﬁ. 4 m e 3 419

||

mm

lll

...

5:.:“-:?‘%.:""%* %:ﬁ?*%:‘é%‘ E‘e‘?ﬁ"f i}fa"&:f-%‘?-&%%hf: ‘**%:: a.}ﬁ ‘?"”" L “&“ﬁé 5'5:’-‘- 535'..,."".'{31 3 .RT{.Z’L} %‘3"'?&

wwa m* *-'w { s"mmmw s shAR i’,}ﬁwf‘v £ h‘*aﬁgﬁm&wk‘* .,=:.;§.-{.;.13;f%wﬂ;f
f-mij% HY ﬁiﬁiﬁ U}&H:WMW% H“‘"‘*"’J? ": ,?'g%: ?""’ Qﬁ:"ﬁﬁ Qifﬁﬂﬁﬁ "§!~h

mﬁ ENT R w%:}»;f N BIMGLE QUERY 102 DATA BOURCE
 REQUESTING HIGHEST SECURITY LEVE if"a;:{;iiﬂil 331

.:"

E:%:f%:ﬁ? é?ﬁi- H@ bﬁiﬁwiﬁ: 223 fﬁ%#‘cf%:‘lﬁ- "’-»E“’nﬁf -eih%x ﬂﬁhﬁ"‘f fwﬁ

bbbbbbbb

E‘ -?‘é 3’%"’?’ E:iﬁ%%"a. T}i}ﬁiﬁﬁ ﬁwi}iﬁl% EE s«i}E?ﬁ"? 3%-* ﬁ f‘éﬁ{?‘ i‘%wEm‘«ﬁ &ég

'''

111

lllllllllllllll

% f’f{? SERY W FLTERS RESPONSE COMPONENTS BASED ON

i.vi"?. ?“-’ Hf "f'“ ALHIRIEE RGO Eﬁ '?E,""‘* W? ?5"- ﬁ&§&?§“* ‘"'f,}ﬁﬁw 3 %

mw ‘a"f’%f%ﬁs‘% &fa.ié"?"‘a?é*‘é f',%:.; Efﬁéﬁ%mﬁ % 5:5-3& %ﬁﬁ-ﬁi‘“ %%Hﬁ Bﬁa%ﬂ |

LIMITED YO ACUESS LEVEL OF w;}é; BYSTEM GG

U.S. Patent Jul. 3, 2012 Sheet 12 of 13 US 8,214,325 B2

111

g;;;- kﬁ 5 3 5: ____ e —— S -

Y

£

ot
B

ft |‘p W & E . . ;;11 nqr_ll ra

t:E ".' 3‘-‘5'.- ; . :’:.“.‘.i.'s__.‘.,

. . I) . -t
ﬁ*iwi‘-i _"L?E,,_ P03 DOmETRDR

ﬁ'ﬂﬂ'ﬂ'ﬂ"ﬁ‘ﬁﬂﬁ"ﬁ‘ﬁﬂﬂ"ﬁﬂﬂ :
USER
PR

"L R TR YR VO VO R N YO YO N R O VO VO RN O O VO YO Y| . . . P, TR, PR N R O RN NN PR RN NN DU DN DN NN NN NN DO DN N PN DN N PR DN DN DR DN DN PN RN DN PR DN DN DR DN DN JRNL DN R PR DN DN NN DN DN DU DN N DU NN DR DN DN PO DN N DR DR DN DR DN R PR DN N PN DN NN DU DN DN DR DN DN DR DN NN DU DN NN PR DR RN DR DN DN DR NN DR DN NN PR DR DN DU DN DN PR DN DN PR DN DN DO DN DN DO DN DR DR R NN DO DN DN DR DN DN PO DN DN PR DN DR DR DN DN DO DR DR RN DEN N - BN
£ s X 5 E E L EE L E L L L LR LY - g R R b R

. l-hﬂ'ﬂﬂ'ﬂﬂ'ﬂlvhﬂ"»ﬂ'ﬂﬂ'ﬂﬂ'ﬂﬂ'ﬂﬂ'ﬂﬂ'ﬂﬂ"ﬁﬂﬂ"ﬁ‘ﬁlﬁﬂﬂ !

tnlnlininlnieleieleieleieleiel

L

METADATA
ENIUNE MBS

[l

13**-*
.....“'.

5:""-‘ "3‘-“-.;- %

statstaielsllntetatetalely il tstatetately e e tatetat ettt tet ol

"""'""""""‘"‘"‘""""'"""""-"-" - """'"‘"‘""‘""""‘" ""'"""'"‘"'"‘"‘"""'"‘"'""""'"‘"‘"""'-""'""""""'""""‘"" -‘""""""T-‘h' LA " L J -' LA B A -' L J -' LALR A A -' L] " L J -' LA A A A AN -' TEETEFETEFEFTFERF

Ak ok bk ok ok ak ok kb ok ok ab ok kb ok kb ok kb ok kb ok kb ok kb ok kb ok kb ok
.-.-'.-'---------.-.-'.-'---------------------.ﬁ

e

.
e g e kﬂkfkfkﬂhf'

eimmmmmm el
o e

o=y R R Ry R R Ry R R Ry R R R R R ke R R R R R R

;mmmmmmmm R R R R %W‘fi -- "
| . . ! . A)
A e et . e G - . .
i ST ?gg g g..,v :kin.< ,g:g;{}} 52:- 2y 'fig 3 S .-
:. l- L) ""‘ ‘.if. » l- " - ""' ' - 1.‘ . :"
3 R L
X X
" . . . -+
" . .o . -+
. R e E 4 4 . -+
* - o
)
3 : ?-:' ‘*:?;‘ v x" | H :'"ﬁ f’- ‘e"s:?-:? i
:E "ip"i hF- ? ‘u‘-"- ,'l.l h-"-'..q ""t h-" “::‘:: R b'i-' .-'i i-' 1 .? .k ‘: :E)
. R A L 4 aieis.
I' R . o »
A 1 N -‘:::,-_ . . L .3
' 1 4‘) "# . - -.-"- . l_"
0 SR e x 3
+ - i
a . o, a, & ¥
" -ﬁ - , * .
X %—5‘ "“:*"*. N . ¥ 3
+ o S
A : ._I'.I hi) I'b-l i3 ¥
:: . g: __i_ t‘- ,-'5 $i"._‘:"' :: : 5
A L 3
4 s i
:: * 4
‘F. E ...‘-. . I..I
* Ll .
:: a.;' ﬁ 5 f."'.. ::: : _ 5
a : * 2 >,
:: g:ih'l ? 1- l:"'"".,‘ -.{' _.: TR ¥ g 5
" X + 3
3 % S 3
* - - .
A " - '-',i L] ¥ LN ' P o 3
' T 8 z IR e v .
:: . ::: -ae g}?ﬁ:‘; :'l _ " v:- . 5
X s oy o * 5
' Wy o " SO N
:: $‘ “{a}‘{:.ﬂ':-:) h- .l -? o '_ ::] 5
]) &,
o Tl @ L A L >
A 55.'5-: -.-k 3 ":‘5-:-'7 = . b3
i) . : ™ . . .
A - . e e e e e L .
E o e, e e, e e, e e e e, e e * iﬁHHHHHﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁhﬁhﬁf_ :-ﬁHHHHHﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁhﬁﬁ E
1,. R . . . - . R . . R - K I..I
' * g gL S "‘" >,
:: ,:. i "'iﬁ ; % ."';' K 3.\- .._- ;'..J:.:: 3 }'.‘:'l h_:_"- ? ;
3 e . i k]
.‘. e m .-- -r‘-- -’l (L) § 4 0 b ".I
3 W E;"-'-: £o 3 R R RIS ":é" 3 g 3 S 3
| | i3 n J'I!l - - &y il B
: L B8 3 G RRONNG & 3 R3sxe :
" .-“-_ ._:'h__i o Y ’ A . : »
b) e * - Ny
4 ‘ ‘5"'“ '-5‘-".' T s
n % 3
X 2 &,
N, LI A
]) &,
] X A
:: *) ::
1!. . :‘_ . | L | 1'% '1._ "‘." _ l...
X = "-':': e - "':::.E """ .t 4
*
.2
N
L3
.
&,
.
.2
. : .. R . a -] _ . .,) o s L
3WWHﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬂﬁﬁﬂﬁﬁﬁﬁﬁﬁﬁﬁ-ﬁﬁﬁﬁﬁHﬁﬁﬁﬁﬁHﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁHﬁﬁHﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁHﬁﬁﬁﬁﬁHﬁﬁﬁﬁﬁﬁﬁﬁﬂﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁw!FF# Cg £ N, R I Ak S : 'i}:*uég' i
‘ . ry E R e .,' -l |."
N N
3 iﬁi? SFEEH, Mi,tw?‘?%ﬁ ':~' :
:. "'.'n. k . . ' *
" e ? ﬁ.'_ g ':;F Y
i) . l- l *,) ;
" o . -
:l '--i- : ":"-‘a'h‘ar gl tu ‘. »
] : &,
" »
X 4
1-. P_
‘. 4
1-. P
s _ &
A . -8 . v
4) . v
) . Jﬂ) .y vyt 5. .2
" > oo ; o Wi I “ -
3 : R -:{;5' }g".r. | 3 PEr AN S :
1'l - n’a -..".
1 L J l' l' . . - L f] .
'] Q::. lj E"'-i $|- "t* - L*...'. g" .:‘. A S) ...l‘ l'. Y
3 ‘-El -'55- ? 3 *'-?' P ?""-'i E BT LaSwe :
i fl . . | W E
P S RO
no RORC S 3 AT SRR, L 3
b ‘ 1 .2
y N e A A A A R AR A AR - I - R e e A A A A A A AR A AR AR
s £
. <SP SRR SUPRNS TP TP SR 2

uuuunmmmmmmmmmnuun PR RRCRSCRCRCRRCRCRNSN R STCRON CRCRRCR RN N B

NETWDRK CORKECTIONS e |

U.S. Patent Jul. 3, 2012 Sheet 13 of 13 US 8,214,325 B2

COMPUTING SYSTEM 314

E *-s'?fi i‘-“ﬁ..:». E‘iﬁéﬁ%’ £33 :‘?’{E

L I‘I‘I‘I‘I‘I‘I‘

ROUTER {178

ETF—‘ §§é%§;. ARG
PRESIRNE 1188

'|"h"|'\'1'\'1'1'1'\'1'\'1'\'1 .

BB i

AL L AL AL

T T

03

I N P)

’ ' Il'l_ll_" \
NSO
_ 2w -,'H#

HETY ;;.;:?ﬂjséf:f

??"-éﬁ—-"' H’a :":i'

115D

LRI L I L L L L B L

o e o~] VSl Sl] “ Sl "l] V"l S San

BT ?“ﬁa{x«ﬁl
ETERPACE
ki éﬁ"

d
*11‘I11-I‘I11‘I111_.
N N N N LR LY

L B E B E E E EEEE E_E E_E.E E EEEE E E EE E_E E_E E EE E E_E E.E E E E E E E E E_E E_E E E EFE E E_E.E E E E E E EEE_E E.E E_E E E EE_E E E E E EE EE_E FE_E E E_E E EE E E E_E E E EEEE EE_E E E E E.E E EE E EE_E E_E E E E E E EE E_E E E E E EEE E E_E E E E _E E E E E_E E E E_E E E EE_E E_E_E_E_E E _EE E EE_E E_E E_E E E E FE_E E_E_E E_E_E EE_E E_E_E_E_E_E_E E_E_EFE_E _E_E_E_E_E_F |

US 8,214,325 B2

1

FEDERATING BUSINESS EVENT DATA
WITHIN AN ENTERPRISE NETWORK

RELATED APPLICATIONS

This application 1s based on U.S. Provisional Application
61/116,622 filed Nov. 20, 2008, and claims the benefit of
priority of that provisional application. Furthermore, the pro-
visional application 1s hereby incorporated by reference.

This application 1s related to U.S. patent application Ser.
No. 12/622,396, enfitled, “Stream Sharing for Event Data
within an Enterprise Network,” having common inventor-
ship, and filed concurrently herewaith.

FIELD

The invention 1s generally related to data access manage-
ment, and more particularly to selectively parsing and feder-
ating queries related to business event data 1n an enterprise
network.

COPYRIGHT NOTICE/PERMISSION

A portion of the disclosure of this patent document con-
tains material that 1s subject to copyright protection. The
copyright owner has no objection to the reproduction by
anyone ol the patent document or the patent disclosure as 1t
appears 1n the Patent and Trademark Office patent file or
records, but otherwise reserves all copyright rights whatso-
ever. The copyright notice applies to all data as described
below, and 1n the accompanying drawings hereto, as well as to

any soltware described below: Copyright© 2009, SAP AG,
All Rights Reserved.

BACKGROUND

Consider an enterprise having multiple systems and poten-
tially multiple geographic locations. Fach transaction of the
enterprise with an external entity, and many operations within
the enterprise on data and/or systems, generates data. The
data may indicate changes in mventory, information about
sales and customer relations, etc. Data 1s generally associated
with data objects, and frequently, business objects or data
objects having a business context. The change to data asso-
ciated with one or more objects (e.g., business objects or other
objects) 1s referred to herein as an event. Enterprises generally
need to keep track of the events, process the generated data (as
may be indicated by the event), and make decisions based on
the event. Traditionally, enterprises store events in opera-
tional databases (operational data stores) among many sub-
systems within the enterprise, which may include subsystems
that are hosted on separate machines, and may be geographi-
cally separated. An example of geographic separation of sub-
systems may be a system local to production plant 1n one city,
and a system local to a distribution plant that could be 1n a
different region, different state, different country, or different
continent. There 1s generally a problem within enterprises,
especially as the enterprise grows and as business expands
geographically, where the enterprise has “too much” data and
“too many” systems. While 1t 1s understood that “too much”
and “too many” are relative terms, the general problem 1s that
the amount of resources required to handle the data and the
systems 1s higher than the enterprise 1s capable of providing
or 1s willing to provide. When there 1s too much data and too
many systems, the enterprise loses operational data visibility
across the enterprise, and any process for handling events
becomes very time consuming and expensive.

10

15

20

25

30

35

40

45

50

55

60

65

2

For example, consider a business that has more than 100
different enterprise systems located in various locations

throughout the world. The data 1s gathered and stored 1n an
operational database, e.g., an online transaction processing
(OLTP) database. If someone within the business wanted to
answer a question based on the operational data, or the data
generated as events, creating a new operational report may
not be a possibility. In research on the subject, it was found
that 1n certain cases, such an operational report cannot be
created in less than 6 months. The business traditionally has to
search multiple stacks to extract and transform the data before
creating an operational report. The searching, extracting, and
transforming would need to be repeated for each of the dii-
ferent systems 1n place, which would require the use of many
people and systems. Thus, such an operational report 1s not
even considered a possibility because of the inability to
access and transform the data in a cost-elffective manner.

In general, i1t has been found that businesses do not have
tools that are specific to operational data. As mentioned
above, the operational data only exists as an interim state of
data that 1s then stored in data warehouses and a centralized
database to hold the operational data store. Use of the data has
then required a great deal of programming around the data-
base to make the data accessible.

Thus, event data within and outside an enterprise has been
inaccessible except through a vast amount of enterprise time
and cost to analyze and report on the data. The vast amounts
of time and cost make the data generally inaccessible to
information workers within the enterprise.

BRIEF DESCRIPTION OF THE DRAWINGS

The following description includes discussion of figures
having 1llustrations given by way of example of implementa-
tions of embodiments of the invention. The drawings should
be understood by way of example, and not by way of limita-
tion. As used herein, references to one or more “embodi-
ments” are to be understood as describing a particular feature,
structure, or characteristic included 1n at least one implemen-
tation of the invention. Thus, phrases such as “in one embodi-
ment” or “in an alternate embodiment” appearing herein
describe various embodiments and implementations of the
invention, and do not necessarily all refer to the same embodi-
ment. However, they are also not necessarily mutually exclu-
SIVE.

FIG. 1 1s a block diagram of an embodiment of an enter-
prise system that supports federation of real-time event data.

FIG. 2 1s a block diagram of an embodiment of an enter-
prise system that separates event queries into component
parts and combines results for the component part queries.

FIG. 3 1s a block diagram of an embodiment of an enter-
prise system that combines query components for stream
sharing.

FIG. 4 1s a block diagram of an embodiment of an enter-
prise system that selectively combines and filters query com-
ponents based on a security level of a query source.

FIGS. 5A-5C are block diagrams of embodiments of a
event pattern monitoring system.

FIG. 6 1s a block diagram of an embodiment of a data
source that generates real-time event data and processes que-
ries about items of data related to events.

FIG. 7 15 a flow diagram of an embodiment of a process for
federating event information.

FIG. 8 15 a flow diagram of an embodiment of a process for
stream sharing of event information.

FIG. 9 1s a flow diagram of an embodiment of a process for
applying security to event information requests.

US 8,214,325 B2

3

FIG. 10 1s a block diagram of an embodiment of a system
with an event server.

FIG. 11 1s a block diagram of an embodiment of a comput-
ing system on which embodiments of the mvention can be
implemented.

Descriptions of certain details and implementations follow,
including a description of the figures, which may depict some
or all of the embodiments described below, as well as discuss-
ing other potential embodiments or implementations of the
inventive concepts presented herein. An overview of embodi-
ments of the invention 1s provided below, followed by a more
detailed description with reference to the drawings.

DETAILED DESCRIPTION

An enterprise system includes multiple data sources that
generate data that may be associated with an event 1n the
enterprise system. Real-time and non real-time event data
may be obtained from the data sources via query. A query 1s
generated at a client device and propagated through the enter-
prise network to the data source. The query may be parsed
into component parts, and each component part 1s sent toward
an enterprise node coupled to a data source that generates the
event data associated with the component part of the query.
An enterprise node “coupled” to a data source may refer to
being directly coupled or located at the same node. “Coupled”
may also be understood in some instances as connected.
Based on routing information and data advertising by the data
source, each node (including nodes that receive queries) may
have information about what data 1s available or accessible
through other nodes 1n the enterprise network.

In one embodiment, the enterprise system 1dentifies query
components that are related to i1dentical or common event
information from a data source of the enterprise, and merges
the queries. Thus, the enterprise system can send a single
query to the data source for the event information, receive the
response, and send the response to the query sources. Note
that the queries are sent to the source of the event data, or to
an enterprise node coupled to the source, and are responded to
with event data, at least a part of which can be real-time event
data. Data from a data warehouse or data store may also be
returned 1n response to a query in addition to the real-time
event data. Contrast such an approach with current data ware-
housing and querying a repository of information.

The enterprise system that supports the event query pro-
cessing as described herein may be referred to as an “event-
ing” system or event network. It will be understood that
different terminology may be used, and an eventing system
could more specifically be implemented as a “business event
network™ that handles queries and data sources related to
business events with changes to business objects and business
processes. The general concept of an eventing system 1s a
system that resides on top of an enterprise system that allows
the system to provide greater understanding of the data within
the enterprise system. The eventing system 1n particular
allows access to operational or real-time event data, and per-
forming of actions based on the events (e.g., performing an
operation on a returned data object). For purposes of descrip-
tion herein, and not by way of limitation, such a system 1s
referred to below as a “Live Enterprise” (LE) system. The
teachings herein will be understood as being applicable to any
similar event network that accesses real-time data and/or
sends queries towards data sources, or otherwise handles
queries as described.

Asused herein, operational or real-time event data refers to
data that 1s substantially newly generated within the enter-
prise system. Newly generated data 1s data that 1s newer than

10

15

20

25

30

35

40

45

50

55

60

65

4

data that would generally be warehoused in the enterprise
system. Thus, operational or real-time data 1s data that has not
yet been warchoused 1n a database, and/or 1s not subject to
standard data query mechanisms. Non-real-time data, or data
that 1s stored in a data warehouse or database can also be
accessed 1n response to a query. Non real-time data can also
be referred to as historical data. The LE system can thus
access and provide event information, whether real-time or
non-real-time 1n response to queries.

An enterprise system refers to the network of computers
and interconnection equipment within a company or organi-
zation. The enterprise system includes software components
such as the servers and management systems. Each element
of hardware and software within the enterprise system may be
referred to as a subsystem, or simply “system” (thus, the
enterprise system may be considered a system of systems).
The enterprise system as described herein includes data
sources. The data sources may be any subsystem (e.g., supply
chain management (SCM), enterprise resource planning
(ERP), human resources, customer relations management
(CRM), information technology (I'T), etc.), database, or other
clement within the enterprise that implements a change to one
or more objects (e.g., structured objects, including business
objects that generally are part of a business context such as a
“Customer” object). Each change to an object may be referred
to as an event.

In one embodiment, as described herein, an enterprise sys-
tem includes query processing entities within the network.
The query processing entities may be soiftware and/or hard-
ware components within the enterprise network. The query
processing entities receive and process requests for the event
data. The query processing entities parse or separate user
queries into component parts and send the component parts to
the data sources that have the requested information. The
routing ol event queries for real-time event data 1s described
in more detail in related application Ser. No. 12/622,387,
entitled, “Intelligent Business Event Query Publish and Sub-
scribe System,” having common inventorship, and filed con-
currently herewith.

In response to the queries, 1n one embodiment, the data
sources provide a response to the query processing entities,
which then return results to the query source. Note that the
query components may be provided to enterprise nodes
directly coupled to the data sources, but for simplicity 1n
explanation, the description herein may refer simply to send-
ing a query to a data source. Sending a query to a data source
may include sending the query to a next hop on a path towards
a data source, as indicated by routing tables, routing indexes,
etc., based on what data the data source 1s advertised through-
out the network as providing. Note also that results may be
partial results from query components. Thus, to provide a
complete result, in one embodiment the query processing
entity compiles the query component responses to generate a
complete query response to send to the query source. In an
alternative embodiment, the query processing entity returns
all query responses to the query sources, and each query
source may include an agent to compile the component query
results into a complete query response. The composite of the
responses to the query components may be referred to as a
event, which 1s described in more detail below. In one
embodiment, a returned event includes an object, or an
instance of an object, that has particular data and actions
associated with i1t. Operation on the actions can result 1n
changes within the enterprise system. One or more enterprise
services enable interaction with the event.

FIG. 1 1s a block diagram of an embodiment of an enter-
prise system that supports federation of real-time event data.

US 8,214,325 B2

S

Enterprise network 100 illustrates a network of nodes within
the enterprise. The nodes 1llustrated are enabled for query
processing as described herein. For purposes of description,
such nodes will be referred to as “Live Enterprise” (LE)
nodes. It will be understood that other labels/designators
could be used to identily enterprise nodes that process queries
as described herein to provide access to real-time event data.
LE nodes 110, 120, 130, and 140 are not constrained to a
particular network architecture or physical layout. Rather, the
LE nodes may be geographically separated or at the same
geographic location, have the same or different network con-
nection types as each other, and may be connected via private
and/or public networks. In one embodiment, different nodes
are 1n different enterprise networks, such as business partners
or other cooperative networks. Thus, the nodes need not be all
within the same physical network, and need not be within the
same enterprise.

Query source 102 represents a client device that connects
with enterprise network 100. Thus, query source may be a
laptop or desktop computer, a handheld device (e.g., a net-
worked phone or other device), or any other type of device
that allows a user to interact with enterprise network 100. The
torm ofthe query 1s described in more detail below. The query
source has hardware components and user interface and soft-
ware components.

Hach node 110, 120, 130, and 140 1s illustrated with an
associated data source 112, 122, 132, and 142, respectively.
Each node may have zero or more associated data sources.
Each data source 1s an event producer. An event producer 1s a
source of events that may be of interest to someone within the
enterprise (e.g., the user of query source 102). Events include
any type of transaction or system operation change, such as an
inventory level dropping below a threshold, the occurrence of
a threshold number of faults within a system, etc.). Each data
source 112, 122, 132, 142 generates event data as business 1s
conducted and transactions occur. In one embodiment, these
data sources generate real-time event data. In one embodi-
ment, the event producer enriches situation-specific informa-
tion (such as an inventory level drop) with attributes and
contextual data related to the specific situation. By enriching
such imnformation, an event producer can create an instance of
an event that can be independently processed by other entities
in the enterprise, through other entities that can process query
information as described herein. The combination of all query
processing entities may be referred to, as an example, as a
Live Enterprise architecture, which may include event pro-
ducers, event brokers (e.g., entities that can route queries,
access event information, and return query responses), and
event consumers (e.g., the query source). In one embodiment,
the LE architecture 1s incorporated into an enterprise system
available from SAP AG, of Walldorf Germany. Subsystems
available under the SAP enterprise system include MySAP
ERP (enterprise resource planning), CRM (customer rela-
tionship management), SCM (supply chain management),
and SAP Bl (One, an ERP system directed to small and
medium sized enterprises). Additionally, the LE architecture
could be incorporated 1nto an enterprise system that includes
non-SAP systems and/or RFID (radio frequency identifier)
systems.

As mentioned above, each data source 112,122, 132, and
142 may represent one or more subsystems that generate
event data. The data sources at a single node need not be of the
same type. Thus, for example, any number of different sys-
tems could each produce event data, such as an ERP system,
a database interface system, a CRM system, etc., as well as
providing real-time or non real-time data. Thus, each data
source could be one or more of a CRM system, an ERP

10

15

20

25

30

35

40

45

50

55

60

65

6

system, a database, a flat file, etc. The CRM and ERP systems
may generate real-time data, while databases and flat files
represent examples of historical data warehouses. In one
embodiment, the event producer represented by the data
sources publishes or makes available all event data. Alterna-
tively, the event producer may internally filter events and
determine which events should be notified externally through
a determination algorithm. Such a determination algorithm
could be rules-based as to event type, event significance, etc.,
and data satistying the determination will be considered
information to share externally. Each data source can be con-
sidered to have a relationship with the events 1t produces.
Thus, the event 1s associated with a data source, 1n contrast to
a event being associated with an application that consumes
the event, as with current systems.

Each LE node 110, 120, 130, and 140 represents an event
broker, and the interconnection/networking of the nodes can
be considered an event bus. Each node 1s an LE node because
there are components local to each node that enables the node
to participate in the LE network, processing and routing event
data as described herein. Each node i1s an event broker
because 1t 1s a node coupled to a data source, and can thus
receive and process query components for the event data of
the associated source. The event broker can exist on a “plat-
form,” such as an enterprise system that 1s leveraged to
exchange query information. Examples of an event broker
platiorm may be software designed to facilitate the exchange
of information amongst a plurality of an enterprise’s systems,
such as SAP XI. In one embodiment, the event bus compo-
nents may be understood as logical entities 1n enterprise net-
work 100 to facilitate the transmission and propagation of
messages and events between clients, as well as enterprise
services to manage event metadata and context. Each LE node
as an event broker 1s at the same time a target and a source of
the events. Nodes 110,120, 130, and 140 filter, aggregate, and
manage the distribution of events received from the data
sources 112,122,132, and 142 (the event producers) to query
source 102 (an event consumer).

In one embodiment, a query may be considered a “real-
time” query that, may, for example exist before the event
information exists. The system may return results for the
query as soon as the information does exist. Another example
1s a continuous query that persists 1in monitoring a data source
until termination criteria are met (e.g., a certain number of
results, a certain number of days, a particular event 1s
returned). Thus, a user of query source 102 may subscribe to
particular events, or define certain events that are of interest to
the user. Event information can also be queried as would
normally be understood, by a user generating a query that 1s
then sent out. However, some queries may be “standing que-
ries” that represent momitoring of events within the enter-
prise. Such standing queries may be patterns ol occurrences
or events that would be of interest. Consider that query source
102 specifies interest in particular events by subscribing to the
events. LE node 110 as the broker works seamlessly behind
the scenes to expose query source 102 only to the events
related to the specified events. Therefore, the event broker
provides the ability to publish, route, orchestrate, and con-
sume events via a reliable, highly available enterprise-ser-
vices enabled technology platform. Context based intelli-
gence may be incorporated into these processes via a rules
engine. A rules engine at the data sources can filter what
information to make available, and a rules engine at the LE
nodes can filter what information to send to the query source.

As suggested above, the event data may be available
through a publish-subscribe mechanism. A subscription 1s a
umidirectional relationship between two endpoints where one

US 8,214,325 B2

7

endpoint, acting as a subscriber, pulls data feeds from the
other endpoint (which acts as a publisher). The data sources,
as publishers, make event data available, and may indicate the
types of information available to subscribe to. Publishing
may be propagated from the data source to nodes in the
enterprise network. Thus, the publishing can be considered to
advertise the data and e.g., the events, available from the data
source. The query source, as a subscriber, receives event data
from the data sources based on the subscription. A subscrip-
tion can define the exact type and the conditions under which
the events should be notified to the query source. The LE
nodes manage the distribution of events recerved from the
data sources to the query source. In one embodiment, the LE
nodes are enabled to aggregate event query data. For aggre-
gation of events, the LE nodes correlate various events which
may appear 1n any order and at different points of time.

The LE nodes have an understanding through rules, logic,
or code of the format 1 which a query source can receive
event data. Thus, event data produced by a data source may be
of a format that 1s inconsistent with the system through which
the query was generated, or incompatible with the format
expected by the user. In one embodiment, the LE node
through which the query source accesses the enterprise net-
work stores mformation that indicates the formatting of the
query source. Thus, the LE node may transform or modily
received event data for consumption by the query source. The
LE nodes provide connectivity to underlying enterprise sys-
tems, and link to metadata definitions of events. The LLE nodes
may also translate events to the format required by underlying
systems where actions are to be performed.

As mentioned above, query source 102 provides an
example of an event consumer. Note that 1n this sense there
may be a merging of terminology. Technically, a user inter-
face (UIl) component executing on a client device can be
considered an event consumer. However, the device as the
client executing the Ul, and/or the user that requests the
information can also be considered the event consumer for
purposes of simplicity in description herein. A user represents
the entity that acts upon received event information. Acting,
upon a event may involve mteraction with the event producer
(1.e., the underlying system or systems that generated the
data), the event broker (the LE nodes), or other systems. To
act on a event, the user may need to obtain event context, such
as context dertvable from master data within the enterprise
system. Master data 1s understood to be data stored and acces-
sible centrally within the enterprise. Instead of a human user,
the user may be automated system, such as an application
with built-in logic to consume and act upon the received
events.

As mentioned above, in one embodiment, “interest’” in data
may be mdicated through a subscription by the user, or oth-
erwise selecting to receive advertised data. Alternatively,
interest in data may be automatically deduced based on a role
of the user (e.g., all vice presidents (VPs) recetve certain
information, all project managers receive other event infor-
mation related to the particular project, etc.). For scalability,
the LE architecture can enable distributed parallel processing
across multiple local event routers. In one embodiment, event
routing uses a push (as opposed to a pull) mechanism.

A user can perform actions based on the event data. In one
embodiment, a user can create an event execution node by
interacting with the LE system, which interacting may
include personalizing a new event. The creating of the event
execution node 1s a separate computer process from the
obtaining the event data. The creating of the event execution
node 1s dedicated to detecting a single higher-level event

through the correlation of information from multiple different

10

15

20

25

30

35

40

45

50

55

60

65

8

sources or event streams. Once the event 1s detected, the LE
system (through the LE nodes) can enrich a event through
predetermined data access calls, cause changes to occur in
underlying systems, push information to the user 1n a selected
or preferred channel (e.g., SMS to a cell phone, email, etc.), or
publish one or more event streams of its own.

In one embodiment, each LE node may include a rendez-
vous point, which 1s a distributed metadata repository. The
distributed metadata repository can be operable 1n indexing
event data within the enterprise. Items within the metadata
repository may include publishable event definitions for com-
mon event defimitions across the enterprise, data source defi-
nitions to indicate what information 1s available where 1n the
enterprise network, and security access lists or other row level
filters for restricting query access based on security features
of the LE system. In one embodiment, such a rendezvous
point 1s accessible through a web-service or enterprise service
interface. The web service interface enables users to draft
their own event definitions and search for one or more desired
system-level event definitions, enables user or applications to
use a standard interface to create event execution nodes based
on a description of the desired event and the subsequent
response actions, and enables users or applications to enrich
event detection by asking queries through the web-service
interface. The queries access mformation from multiple data
sources throughout the enterprise, and return a response that
would appear as 11 1t were from a single unified data source. In
one embodiment, the rendezvous point 1s centralized rather
than distributed.

As a general description of the Eventing System or LE
system described herein, the eventing system automates pro-
cesses for finding and extracting data within an enterprise that
1s relevant for particular individuals and/or particular actions.
Such a system permits scaling to large numbers of servers and
locations 1n a parallel execution, and with consistent defini-
tion ol events across the enterprise. The LE system also
enables real-time push of information to users, as contrasted
to data cache/pull solutions that are 1n common use. The push
of information may result from the data source to the user
based on the query (and, e.g., a subscription), rather than a
user querying a data store or data warehouse.

The systems and databases within an enterprise need to be
searched and the data extracted to provide a response to a
query. Current implementation of the searching and extract-
ing mvolves the use of data warehousing, building and main-
taining of the data within the warehouses and the interfaces to
the warehouses, tools to perform queries, etc. A review of
some systems 1n use by companies reveals that the cost of a
query may be six man-years ol work, estimated at more than
$1M at current rates, and all just to report on 30 questions
($55K per question) regarding the events within an enterprise.
By contrast, implementation of the presently described event-
ing-system has been simulated to process the same query and
generate the same report 1n just three man-weeks, resulting 1n
a huge cost savings, and providing a greatly improved abaility
to act on operational data within the enterprise. The savings in
time and money from the distributing of the query compo-
nents (which may also be referred to as query fragments),
sending the query to the source, and the operating on real-
time event data 1s significant.

The LE system described herein enables companies to turn
their underlying systems nto exception-based process man-
agement platforms that enable stail to manage exceptions,
rather than to micro-manage steady-state processes.
Examples of exception-based process management platiforms
may include elements such as: escalation policies to ensure
corrective action 1s being taken, incorporation of resolution

US 8,214,325 B2

9

advice or workflow (such as expediting options and policies
for late shipments), performance trending, and root cause
analysis of disruptions and lead time fluctuations. The skilled
reader will understand that many other examples are possible.

From one perspective, the LE eventing system as described
herein could be considered to operate as a sitmilar model as the
Internet searches—where the Internet has many nodes, each
with data, and indexes exist to route queries for particular data

types, or data that might match certain criteria. However, the
Internet nodes employ IP (Internet Protocol) addresses,
which contain no information regarding the content. The
addresses simply indicate a location, without indicating what
information 1s at the address. In contrast, the LE system as
described herein can use descriptive names that indicate the
contents of data. The LE system can then index the descriptive
name information, which enables the system to determine
location and content. The LE system routes queries by corre-
lating the descriptive name information (content and loca-
tion) to queries, which indicates the relevant locations for
relevant content.

As mentioned above, the LE system sends queries out to
the data sources. In one embodiment, queries or query com-
ponents are not sent all the way to the data source (e.g., the
system where the underlying objects are stored and modified)
. Rather, the queries can be handled by logic that interfaces
directly with the source, for example. Such logic may reside,
for example, 1n the LE nodes. Thus, reference to sending out
queries, and sending the queries to the source can be under-
stood as sending queries toward the sources, which queries
may be answered by the source or an intermediary that has the
information to answer the query. The LE system can operate
locally near or at the data sources, and find the data very
quickly. A node of the LE system connects the data source to
the event network, and may be referred to as a node coupled
or directly connected to a data source (e.g., a last hop to the
data source from the query source), as opposed to a node 1n
the enterprise system that acts as an intermediary hop in a data
path between the data source and a query source. When the
LE system finds the information a user 1s looking for (e.g., a
particular event), the system pushes the information to the
user as the mformation 1s generated. Additionally, as men-
tioned above, the LE system can momitor the event data, and
detect when a particular event or series of events or conditions
takes place. When detected, the LE system can clip and push
the information to the user who queried for the particular
event, series of events, or conditions.

In one embodiment, the LE system employs global and
local schema definitions, as well as transformation definitions
to define the data relationships between the local and the
global data schemas. A local schema can be understood as a
standard or formatting used locally at a system to reference
data. A global schema 1s a standard or formatting that is
applicable to a management system that operates across the
enterprise. The transformation or translation definitions pro-
vide a mapping of the local schema to the global schema. The
transformation definitions may be implemented 1n the form of

a lookup table, rules, or other logic. Consider the following
tables:

TABL

(L.

1

(Global Schema

IL.ast Name First Name Cust_ID
JTacob Harry 1001
Williams Sally 1902

10

15

20

25

30

35

40

45

50

55

60

65

10
TABLE 1-continued

(7lobal Schema

L.ast Name First Name Cust ID
Smith Bobby 2098
Thompson Bill 1020
Ford William 2031
Donner Harriett 2087
Smith Theresa 1065
TABLE 2
IL.ocal Schema - Location 1

L.astName FirstName CustomerlID

Jacob Harry 01001

Williams Sally 01902

Thompson Bill 01020

Smith Theresa 01065

TABLE 3
L.ocal Schema - Location 2

[LName EFName CustID

Williams Sally 0-2001

Smith Bobby 0-2098

Ford William 0-2031

Donner Harriett 0-2087

The global schema represents a central data view of all of
the back-end integrated data. Thus, when users access a prod-
uct, the view 1s provided via the global schema, and will not
provide visibility to the underlying event source. Table 1
provides a simple example of a global schema with three
fields: a last name, first name, and customer ID. The fields are
labeled as Last_Name, First Name, and Cust_ID, respec-
tively, 1n Table 1. The example 1s mapped to two local sche-
mas (Location 1 as per Table 2, and Location 2 as per Table 3)
in two different event sources. The global schema view would
contain the superset of the data in the other tables.

Note the difference in representation of the fields 1n the
tables. Table 2 designates the fields as LastName, FirstName,
and CustomerlD, respectively, while Table 3 designates the
fields as LName, FlName, and CustID, respectively. The map-
pings and transformations allow the system to intelligently
reconcile different representations of data through a single
reconciled view via the global schema. In one implementa-
tion, the local data owners are generally responsible for map-
ping the local data schema to the global schema, allowing the
local data owners more control over the mappings and data
access.

Returning to the general description of the LE system, 1n
one embodiment, the system supports complex event pro-
cessing (CEP). In CEP, simple events can be aggregated to

form multiple, higher-level “complex™ (or derived) events.
When abstracting from these derived events, the system pro-
vides clearly defined problems or opportunities. In CEP,
events have the same relationship to one another as the activi-
ties they represent. Such correlation 1s a fundamental aspect
of the services provided by CEP systems: events can be
related to each other independently of their process context,
which provides a powerful means to define services based on
system-wide observations. CEP introduces a new dimension

US 8,214,325 B2

11

through interrelating events originated at different processes,
which themselves can be spread across enterprise boundaries.

In CEP, events are processed by means of rules including

event patterns, actions, and constraints. An event pattern 1s a
template that matches certain sets of events. In one embodi-
ment, the template or event pattern describes not only the
events but also their causal dependencies, timing, data param-
cters, and context. Examples may include: “All orders from
customer C in the last month”, “All orders from frequent
customers 1n the last month™, etc. An event pattern rule 1s a
reactive rule that specifies an action to be taken whenever an
event pattern 1s matched. An event pattern may be matched
with real-time as well as non real-time event data. A reactive
rule has two parts: a trigger, which 1s an event pattern, and an
action, which 1s an event that i1s created whenever the trigger
matches. A constraint expresses a condition that must be
satisiied by the events observed 1n a system. Constraints can
be used to specily not only how a target system should
behave, but also how its users should use 1t. When a pattern 1s
detected, the rule 1s triggered, and the user (human or auto-
mated) can take actions 1n response.
CEP can be implemented as a logical component separate
from the LE system, and may be implemented by a streaming
event correlation engine, such as CORALS, available from
Coral8 Inc. of Mountain View, Calif.; STREAMBASE, avail-
able from StreamBase Systems, Inc. of Lexington, Mass.; or
others. The CEP component consists of a rules engine that
interprets the event patterns and constraints. These are
expressed 1n a language such as a declarative language for
describing patterns, defining logical constraints, and the like.
In one embodiment, an event falls in one of the two catego-
ries: business process event, or structural change events.
Business process events refer to business process events
originated from a component that is part ol a business process.
Structural change events may be referred to as “meta-events,”
1ssued by the CEP component to trigger structural changes 1n
the management of business processes.

In one embodiment, each event returned as a result to a
query 1s self-contained, which refers to an event that has all
data and mechanisms present to enable systems to fully com-
prehend and act on the event for what 1t stands for. The
self-contained representation of events enables interoperabil-
ity between various event producers, brokers, and consumers
in a de-coupled architecture. Thus, an event consumer can
handle a particular kind of event irrespective of 1ts origin. An
example of a self-contained event includes an object on which
the user may perform a function to cause an action in the
enterprise system, such as imitiating a business process, or
causing a change to an enterprise system. Such a seli-con-
tained event may be contrasted, for example, with an email
notification that requires a user to access a separate business
application to perform an action in response to the event.

In one embodiment, an event as described herein has three
aspects: a form, a significance, and a relationship. The form of
an event 1s an object, which may have particular attributes,
and data components (e.g. message string, time stamps,
descriptive text, etc.). The significance is the activity that the
event signifies. The activity 1s related to other activities by
time, causality, and aggregation. Thus, the relationship 1ndi-
cates how the activities are related.

events can take any of a number of different forms.
Examples of event types include, but are not limited to: news
teeds on the over a network, email exchanges, information
about the physical world from a sensor (e.g., an RFID (radio
frequency 1dentifier)), RSS (really simple syndication) feeds
sent over the Web (e.g., latest prices at a competitor’s online
store), changes or incidents 1n the IT (information technol-

10

15

20

25

30

35

40

45

50

55

60

65

12

ogy) infrastructure, inventory levels falling below certain
thresholds, shipping order requests, shipment confirmations,
shipping order cancellation requests, shipment receipt notifi-
cations, 1nvoice notifications, etc. All the examples are
assumed to occur within specific processes. Thus, the events
described are events within the context of a process.

In the context of execution of a process, a event can be
defined as a meaningful change in the state of a object. A event
can be delivered along with 1ts context (e.g., additional infor-
mation Ifrom relevant objects such as related objects) making
it possible to take further actions by invoking tasks. In one
embodiment, a event 1s logically self-contained in represent-
ing all the information pertinent to the situation causing the
event. The event could directly contain all the relevant details
or provide links to the relevant details. Note that the seli-
contained aspect of a event does not rule out the need for
accessing additional data, rules, etc., for the purposes of pro-
cessing and acting upon the event. Thus, 1n one embodiment,
other data and/or rules are accessed in addition to receiving a
response query to enable action on the event.

The eventing system as described herein may be consid-
ered to have design-time and runtime aspects. In the design-
time, query patterns may be selected, indexing of the system
can be configured, and the data sources enabled to generate
data streams. The LE nodes are thus enabled to locate infor-
mation, and establish subscriptions with the data sources at
runtime. At runtime, a complex event processing (CEP) rules
engine can trigger events as the result of a positive pattern
match. In one embodiment, the CEP engine executes as a
separate process 1n parallel to a “worker” processes, or event
execution node (EN) that implements the logic of the events.

In one embodiment, the ENs essentially have two parts: an
event correlation module that interfaces with the underlying
CEP, and actions that are implemented as processes. The
event correlation module may inform the CEP of the event
stream(s) to which 1t needs to subscribe and the EN will pass
to the CEP the event correlation pattern that 1t wants to detect.
In one embodiment, the EN sleeps or idles while 1t waits for
the CEP to detect the event defined by the event pattern. When
the CEP detects the specific event pattern, 1t will wake up the
EN and pass the high-level event data that was detected to the
EN. When the EN 1s awake, 1t executes an action procedure
associated with the event pattern.

The action procedure may trigger one or more of the fol-
lowing, which 1s not meant to be an exclusive list of possible
actions: 1) enrich the event data with additional information/
data to make the event actionable (the associated data that
comes with the event data may not be suificient to make the
event actionable). The procedure may use a database connec-
tion to, for example, a federated database engine to access
data from one or multiple distributed sources through a single
unified interface and data organization; 2) directly trigger
another action, such as by directly connecting to a backend
server (e.g., mySAP ERP) to cause an action to take place.
The other action may simply change the value of a data item
within the server or 1t may cause a corresponding process 1o
execute; 3) publish one or more new events, such as generat-
ing one or more streams of data. In one embodiment, such
data streams are in the form of XML messages. Various
adapters are available to redirect these streams to a user 1n a
selected channel. The adapters may allow redirection via:
email (a message sent as email to one or more speciiic recipi-
ents), RSS (a feed can be produced and delivered pertinent
information and links to the laptop, desktop, or any mobile
device via an RSS Reader to which the user can subscribe),
computer dialog (a message can be sent to the user’s display
in any of a number of manners, such as a bar at the top of the

US 8,214,325 B2

13

user’s screen that could display alerts/messages as they

arrive, a web browser, or a MICROSOFT OFFICE task pane
(integrated with SAP through DUET)), or SMS to mobile
phone (a message can be sent to a specific user’s cell phone).

FIG. 2 1s a block diagram of an embodiment of an enter-
prise system that separates event queries into component
parts and combines results for the component part queries.
System 200 15 an eventing system or an LE system according
to any embodiment described herein. System 200 includes
various LE nodes, 210, 220, 230, 240, 250, and 260, each of
which may have one or more associated data source sub-
systems (not shown). For purposes of description, assume
that certain nodes are proximate to the data source for certain
information. Being proximate to the data source refers to the
node being the closest query processing element to data
source (which may be the data source itself). As 1llustrated,
the query response components are designated R1, R2, R3,
and R4, referring to respective responses for query segments
Q1, Q2, Q3, and Q4. The responses components R1, R2, R3,
and R4 represent event data that can be returned as data
objects, actionable content, or some other form. The separate
response components can then be selectively combined or
joined to form a complete response.

Query 202 includes query segments or query components
Q1, Q2, Q3, and Q4. LE node 210 1s the access node for the
user that generates query 202. Thus, node 210 recerves the
query for LE system 200, and parses the query into compo-
nent parts Q1, Q3, and Q2+Q4. LE node 220 may receive the
queries and route them to the data sources, based on descrip-
tive name 1dentifiers that indicate location and content of the
data. Thus, Q1 1s routed to LE node 230 and LE node 250,
which both have response components R1. LE node 240
includes data (represented by R2 and R4) to respond to (02
and 4, and thus, Q2 and Q4 are routed to LE node 240. To
receive a response to Q3, LE node 220 needs to route the
query component to LE node 260, which has data R3. As
illustrated in FIG. 2, LE node 220 can route Q3 either through
LE node 250 or LE node 240. In actual implementations of
systems, there may be similar situations where a query can be
routed 1n one of multiple ways to a data source. In the 1llus-
trated example, LE node 220 routes the query through LE
node 250. In one embodiment, the selection of routing
through LE node 250 1s random, and there may not be any
clear design choice to elect one route over the other. However,
design choices could be made, based for example, on tratfic,
on a type of connection (e.g., secure, protocol type, etc.), for
purposes of combining the query with another query gener-
ated at LE node 250 for data R3, or because LE node 250 1s
listed before LE node 240 on a list of potential next hops in a
routing table, or some other reason. Thus, routing can be
conscious of the traffic load. For example, perhaps the link
between LE node 220 and LE node 240 has more traffic than
the link to LE node 250. In another example, perhaps another
query Q3 (not shown) 1s also at LE node 250; 1n such a case,
Q3 from query 202 can be combined or joined with the other
(3 query to make a single query on LE node 260, and R3 1s
duplicated at LE node 250, which could send R3 to respond to
query 202, and to another query source (not shown).

In one embodiment, LE node 210 breaks query 202 into
component parts Q1, Q3, and Q2+Q4—meamng query 202 1s
only parsed three ways at LE node 210. The parsing and
routing can be iterative within system 200. Consider that an
additional LE node (not shown) 1s coupled to LE node 240,
which has data R2, while data R4 1s generated at LE node 240.
Thus, LE node 210 could parse the query as shown, and LE
node 220 as shown (or alternatively, LE node 240) could
turther parse the query Q2+Q4 into separate queries Q2 and

10

15

20

25

30

35

40

45

50

55

60

65

14

Q4. This 1illustration 1s intended to show and describe the
breaking down of the queries into component parts. The query
1s shown with various sub-elements, which get separated and
sent to the next node, which then further separates compo-
nents 3 and 4. The concept of sending a component part to
multiple nodes 1s shown with (Q1, and the concept that mul-
tiple component parts may be sent to the same node 1s shown
by node 240.

Thus, LE system 200 can parse queries 1n any number of
ways, and the system can 1teratively parse queries into sepa-
rate components. Additionally, system 200 i1s intelligent
enough to combine query components (e.g., the example
given above about an additional query Q3 at LE node 250),
and to duplicate queries (sending Q1 to both LE node 230 and
LE node 250). The responses are all combined as returned to
provide the desired information. In the case where a query
was duplicated, such as with Q1, the separate responses, Rla
and R1b are combined for a response R1 with all the infor-
mation from both data sources.

As discussed above, there 1s an assumption of knowledge
between the nodes for system 200 to operate in the manner
described. In one embodiment, system 200 configures 1tself
automatically. For example, system 200 could automate the
following: discovering the nearest nodes, registering with
those nodes, registering publishable events, and connecting to
subscribed event streams. In such a manner, each node 1s able
to access real-time data from other nodes. Other manners of
configuration and accessing real-time data are possible. The
nodes could push (e.g., broadcast) data to 1ts neighbor nodes,
which could then request specific data. Automated discovery
can be accomplished with a local network discovery, where
an expanding ring search 1s employed using publish-and-
subscribe. In one embodiment, a discovery could be per-
formed by a discovery request having an mitial TTL (time to
live) of one hop. If a node with routing information exists
within the one hop, the receiving node receives the request
and responds with 1ts IP address and port number. The
requesting node can then connect directly to the responding
node with TCP and register 1ts publishable events. If a node
with routing information does not exist within one routing
hop away, no response 1s sent. After time out (recall the
one-hop TTL), the node can send out a discovery request with
a two-hop TTL, and repeat the sequence.

Wide-area network discovery can employ a seeded
approach, where a node 1s configured with an IP address of a
primary node with routing information. The node can then
connect, for example, using an SOAP (simple object access
protocol), HT'TP-based (hypertext transier protocol), or RPC
(remote procedure call) protocol. After the 1initial connection,
a similar registration procedure as described above can com-
mence.

FIG. 3 1s a block diagram of an embodiment of an enter-
prise system that combines query components for stream
sharing. While the focus of FIG. 2 was on the parsing or
separating of query components from a query, FIG. 3 1llus-
trates the combining of query components (e.g., parsed seg-
ments of a query, or simple queries). Such combining (which
may also be referred to as joining) has at least one advantage
of reducing network bandwidth 1n that a single query can be
sent to a data source 1n lieu of several queries for the same
information. The implementation cost 1s that each node must
be intelligent enough to track or monitor the source of query
components, and what query sources should recerve what
response data. Additional system intelligence may include
nodes determining whether a similar query 1s being handled
at a nearby or neighboring node, and forwarding the query to
that node for purposes of joining the query.

US 8,214,325 B2

15

System 300 represents an LE system according to any
embodiment described herein. System 300 includes user 310,
user 320, and user 330, each of which are users that generate
queries 312, 322, and 332, respectively. Query 312 requests
data related to A and (B or C). Query 322 requests data related
to A and D. Query 332 requests data related to C or B or E.
Each query component 1s represented by a differently shaded
block. Thus, parsing the queries (for example, as may be
performed 1n FIG. 2), the query for user 310 can be broken
down as secking data for A, B, and C. Similar parsing is
performed for users 320 and 330. Consider that each user
connects to the enterprise system, as represented by network
350 via edge devices, which are LE nodes as described herein
for purposes of these examples. LE node 342, an edge device,
couples users 310 and 320 to enterprise network 350, which
LE node 344 couples user 330 to the network. The solid
arrows represent the queries, while the dashed arrows repre-
sent responses that will be returned. At LE node 342, queries
312 and 322 will be parsed into the component segments
illustrated, while LE node 344 will perform similar parsing
for query 332. For purposes of simplicity 1n this example,
consider that each query i1s completely parsed, rather than
having a process of 1terative parsing as discussed above with
respect to FIG. 2.

Network 350 includes various data sources, as shown by
ERP 360, CRM 370, and ERP 380. ERP 360 includes data to
respond to query segment A, CRM 370 includes data to
respond to query segments B and C, and ERP 380 includes
data to respond to query segments D and E. Query segment A
from queries 312 and 322 can be combined at LE node 342 to
send to ERP 360. Query segment D from query 322 1s sent to
ERP 380 via LE node 344. Also, segment E from query 332 1s
sent by LE node 344 to ERP 380.

Asto segments B and C, query 332 requests both segments,
which are also requested 1n query 312. Although not shown,
either B or C, or both, could also be requested by another user
accessing LE node 342. In one embodiment, LE node 344
sends B and C to LE node 342, where the query 1s combined
with the query from user 310. LE node 342 sends a single
query (for each component) to CRM 370. The response to the
queries are sent back to LE node 342, which can then return
the response components corresponding to the query compo-
nents to user 310, as well as to LE node 344, which can return
the response components to user 330.

FIG. 4 1s a block diagram of an embodiment of an enter-
prise system that selectively combines and filters query com-
ponents based on a security level of a query source. System
400 represents an LE system according to any embodiment
described herein. Thus, the parsing and joining mechanisms
described above with respect to FIGS. 2 and 3 could be
applied 1n system 400, although they will not be described 1n
detail with respect to the description of FIG. 4.

System 400 includes user 410 that 1s the query source of
query 412, which has component segments A, B, and C.
System 400 also includes user 420 that 1s the query source of
query 422, which has component segments A and D. Consider
for purposes of description that one or more component parts
of the queries have multiple levels of potential information
access. For example, 11 A represents customer information,
perhaps different items of the customer information may be
available to a sales representative versus a finance manager;
and, different 1tems of customer information may be available
to a project manager 1n charge of transactions with the cus-
tomer. Thus, consider that based on a security, privilege, user
identity, or other restriction, different information may be
available 1n response to a query. For example, i1 the sales
representative and the project manager were to make an 1den-

10

15

20

25

30

35

40

45

50

55

60

65

16

tical query related to certain customer information, different
data may be appropriate to respond to the two queries, even
though the queries may be i1dentical on their face.

System 400 also includes ERP 450 and CRM 460, which
represent data sources as has been described previously.
Users 410 and 420 1n this example can access ERP 450 and
CRM 460 via LE node 430, which 1s an eventing node. ERP
450 and CRM 460 are shown as part of network 440, of which
LE node 430 1s an edge device with respect to users 410 and
420. ERP 450 and/or CRM 460 separated from LE node 430
by any number of mntermediate LE nodes (not shown), and
they may not be directly connected to the same LE node.
Alternatively, one or both of ERP 450 and CRM 460 may be
connected to LE node 430.

ERP 450 generates event data A and C, which have differ-
ent respective levels of access A1, A2, and A3, and C1 and C2.
Thus, a query for A may return Al, A2, and/or A3, depending
on the security or privilege level of the query source. Such
privilege may be determined by password, digital certificate,
or other known authentication mechanism. Similarly, CRM
460 generates event data B and D, which may respective
levels of access B, and D1 and D2. The levels of access
associated with each element of event data 1s arbitrarily
selected herein for purposes of discussion, and any number of
levels of access may be provided. However, more levels of
access will require greater levels of control/management
logic to manage the access.

The different levels of access are illustrated for the users by
access 414 and access 424 for users 410, and 420, respec-
tively. Access 414 shows an access level for user 410 of some
arbitrarily-labeled ‘A3’ for element A, ‘B’ for element B, and
‘C1’ for element C. For user 420, access 424 shows access
levels of ‘A1’ for element A, and ‘D2’ for element D.

Security of the data can be implemented 1n a number of
different ways. In one embodiment, security 1s implemented
at the data source. Thus, ERP 450 and CRM 460 can imple-
ment security features and return only data that 1s approprate
for the query sent. For example, a query for ‘A’ at ERP 450
may be responded to with ‘A2’°, based on a determination
made by ERP 450. Alternatively, an LE node local to the data
source may perform some or all of the security. Thus, the LE
node could receive a query for ‘A’, query ERP 450 for ‘A2,
and then return the results to the query source. In one embodi-
ment, the security 1s implemented at least in part by LE node
430, or the node that 1s directed coupled to the query source.
Thus, the node recerving the query can identily the level of
privilege of the user, and send a query commensurate with the
level of access of the corresponding user. In yet another
embodiment, security may be implemented at least 1n part at
the user. Thus, a client entity (e.g., a software module that
implements security) could filter queries from the user, and
forward query elements that have security or access level
information associated with them. Note that the queries,
whether as {filtered at the client or by a node 1n the network,
can be altered for specific data based on access level, or they
may sumply have associated information (e.g., query meta-
data) that indicates the level of access associated with the
query. As 1llustrated, only the ultimate query 1s shown on the
solid arrows going to ERP 450 and CRM 460, representin
the final security decision. The figure does not intend to show
what entity generated the final query.

In one embodiment, LE node 430 implements query com-
ponent joining Thus, queries for the same event data are
combined, and a single query 1s submitted to a data source.
Such query component joining can be further extended with
security concepts. For example, observe that user 410 gener-
ates a query for ‘A’, and has an access level of ‘A3” with

US 8,214,325 B2

17

respect to A. Assume for this example that an access level of
‘A3’ means user 410 can access ‘Al’°, ‘A2’°, and ‘A3’. User
420 also generates a query for ‘A’, but has an access level of
‘A1’ with respect to A. In one embodiment, LE node 430 (or
another entity implementing security) receives both queries,
combines the queries nto a single query for event data of
access level ‘A3’, and forwards the request to ERP 450. ERP
450 then responds with the event data corresponding to the
access level of the request. LE node 460 can then filter the
reply data, sending event data corresponding to access level
‘A3’ to user 410, but sending only data corresponding to
access level ‘A1’ to user 420. As to the queries for C and D,
these queries may be sent as only requesting C1 and D2,
respectively, corresponding to the access level of the user
making the request. Assume that another node (not shown) 1s
between LE node 430 and ERP 450. LE node 430 could
forward a request for event data ‘C1’ to that node. If that node
also had a request from another user (not shown) for access to
event data ‘C2’, the node could forward a request to ERP 450
for event data ‘C2’, then return only event data ‘C1’ to LE
node 430. Thus, system 400 can selectively join and separate
and filter requests and data responses.

It will be understood that the description above with
respect to security levels of access may be implemented by
RBAC (role-based access control) or a similar mechanism.
RBAC 1s generally an access control system, or a system of
controlling access to data based on authorization of the entity
attempting to access the data. Roles may exist for various
functions within the enterprise or for various employee posi-
tions. Access permissions can then be tied within the enter-
prise system to a particular role, without the need for addi-
tional authentication information. The implementation of
RBAC systems 15 generally understood, and will not be dis-
cussed 1n detail here.

FIGS. 5A-5C are block diagrams of embodiments of a
event pattern monitoring system. System 500 represents an
eventing system according to any embodiment described
herein. System 500 shows elements that are common to all of
FIGS. 5A-5C. The differences 1n the figures are the inclusion
ol certain features of LE server node 510. The common ele-
ments are first described with respect to FIG. SA, followed by
the different features 1n the other figures.

System 500 includes query source 502, which represents a
human or electronic user that generates a query for event data.
Note that a query may be a question or a request for informa-
tion that 1s generated and then immediately sent to search for
information. Alternatively, a query may be a pattern of events
or conditions within the enterprise network that a user wants
to be apprised of. Both types of queries are supported 1n the
eventing system described herein. However, the simple type
should be understood based on the description above, and the
discussion here will focus more on the pattern of events.

The event pattern query type may be considered a moni-
toring query, 1n that a “query” i1s generated, and the system
“waits” for data that answers the query. Such a system may
also be referred to as an exception-based system, waiting for
a pattern to be matched (an exception), rather than being
informed of every detail of the system’s operation. Alterna-
tively, the system may be an alerting system, which responds
when an event 1s detected. In the event data system, a pattern
1s generated, which describes one or more conditions that
should be present for the pattern to be matched. The descrip-
tion may include one or more events, logical predicates, func-
tions, operators, etc. The logic of the pattern 1s not limited to
a single condition; rather, patterns could be defined that 1ndi-
cate dependencies of conditions (e.g., a pattern may only be
matched 1f two conditions are true, or only 11 one condition

5

10

15

20

25

30

35

40

45

50

55

60

65

18

occurs before another). Event pattern 504 1s a pattern associ-
ated with a query as described. Event components 562 may
represent individual queries that are sent, and/or they could
represent data stream subscriptions.

Query source 502 sends the query (not shown) with event
pattern 504 to LE server node 510. In one embodiment, LE
server node 510 stores event pattern 504, and responds when
the pattern 1s matched with enterprise event data. LE server
node 510 matches event pattern to real-time event data by
querying data sources 372. As referred to herein, “matching”
data refers to data that has a format and/or content related to
one or more conditions of a query. Query parser 520 includes
logic that breaks event pattern 504 into 1ts component ele-
ments, and each component can be queried separately, and
separately matched. In one embodiment, query parser 520
includes event data index 522, which includes an index of
event data for the enterprise. Event data index 3522 includes
information that indicates the type of content that 1s generated
by certain data source 572. Thus, not only does LE server
node 510 have addressing (e.g., routing) information for each
data source 572, but also knows what information type may
be at each one, to further be able to route queries only to those
sources that may be able to provide a response to the query.

Event components 562 represent the one or more query
components or query segments, or subscriptions to streams
from the data sources that provide data about such segments,
ol event pattern 504 that LE server node 510 sends through
the enterprise network. LE server nodes 370 represent other
nodes 1n the enterprise network, and will be interconnected as
configured within the enterprise. It should be expected that
while some configurations may overlap to some extent among
enterprises, the configuration will largely be custom for each
enterprise. LE server nodes 370 enable access to data sources
572, with LE server nodes having zero or more associated
data sources 572. The queries are processed as close to the
data source as possible within the enterprise configuration.
Some enterprises may be configured to have each data source
receive and process queries. Others may have the associated
server node process and respond to the queries. In one
embodiment, the event data 1s available from the data source
in the form of a data stream or data feed. Such streams or feeds
may work by the data source sending updates periodically or
as they occur. The data can be sent, for example, to the
associated server node, which can then respond to queries
with real-time data.

In one embodiment, the queries are responded to individu-
ally, and response components 364 represent the separate
responses to each individual event component 562. LE server
node 510 includes response generator 530, which receives the
response components 564, and generates a response answers
the query by matching the event pattern 504. Event response
506 indicates a change at a data source that matches the event
pattern, and thus represents such an event. In one embodi-
ment, event response 506 1s an actionable data object or a data
object through which an action may be mitiated. In one
embodiment, actions that can be performed on the data object
are generated or compiled (e.g., from available components
within the enterprise, or response components 564) by action
generator 532. Actions include operations that can be per-
formed 1n response to the conditions of event pattern 502. In
one embodiment, an action may include launching a process
of the enterprise system.

FIG. 3B illustrates an embodiment of LE server node 510
with a stream sharing engine. Stream sharing engine 540
includes various functional blocks for stream sharing func-
tionality in LE server node 510. The stream sharing refers to
the ability of LE server node 510 to reduce bandwidth by

US 8,214,325 B2

19

sharing combining event components 562 with other queries
for the same components. The “stream™ may be 1nitiated and
managed by the server node 1tself, apart from any other com-
ponent 1n the enterprise network. Alternatively, other server
nodes may cooperatively stream. For example, each node
may expose what event patterns 1t 1s looking for. When a node
receives a query, 1t may first look to each neighbor for the
response information. With exposed query data at the neigh-
bors, a node could then be able to determine whether a query
(component) of one of 1ts queries matches that of another
node. Matching query elements can be “combined” by one of
the nodes sending the query to the source, and then splitting,
out the response.

In one embodiment, LE server node 510 includes a “join
table,” (not shown) which refers to a table or data structure
that indicates an LE server that subscribes to a particular event
data feed. Different LE servers may subscribe to different
feeds, and not all LE servers will necessarily subscribe to all
feeds. Thus, a join table can indicate what LE server sub-
scribes to what feeds, and indicate the type of information that
may be available. In one embodiment, routing 1s probabilis-
tic, where queries are sent to nodes that may have, or have
access to, particular data content. The routing 1s performed
based on a description of the data content, where describing,
the data broadly would mean more inclusive access to the
data, while a more narrow definition 1s more selective, or
exclusive. More inclusive access to data increases the possi-
bility that all information relevant to answer a particular
query 1s included, but also increases the probability that infor-
mation not relevant to answering the particular query will be
accessed. More selective access decreases the possibility that
information not relevant to a query will be accessed. Nodes at
a core of the network may benefit from being more exclusive,
to prevent generating extra network bandwidth by having
other LE nodes access data through them that would produce
a “lalse hit"—meaning the data i1s not actually relevant to
answering a query. Edge devices on the network, on the other
hand, may be configured to be more inclusive to attempt to
make sure every possible data source 1s accessed. A network
could be designed where all nodes have the same level of
exclusivity. Additionally, one or more intermediate layers of
exclusivity may be provided.

Stream sharing engine 540 1s 1llustrated with stream 1den-
tifier 542, stream combiner 544, and response splitter 546.
Stream 1dentifier 542 enables stream sharing engine 540 to
identily and access data streams that may be related to a query
component recerved at LE server node 510. Stream combiner
544 enables stream sharing engine 540 to receive and com-
bine query components from other users of LE server node
510, or user of other nodes, which generate query compo-
nents for the same data as a stream subscribed to by LE server
node 510. Thus, LE server node 510 can add the user to the
stream. Stream combiner 544 includes a tracking mechanism
(e.g., a table or list of participants, with addresses and possi-
bly security access information) for the query sources.
Response splitter 546 enables stream sharing engine 540 to
split a response or a data stream to each query source. Such
splitting could be performed, for example, by the use of such
a table or list of participants, and sending the data to each one.
Alternatively, each participant may be informed of the data,
which could then cause a client agent to request and receive
the exact data.

FI1G. 5C illustrates an embodiment of LE server node with
a security engine. Security engine 550 includes various func-
tional blocks for implementing security at LE server node
510. Security engine 550 1s illustrated with secunity level
determiner 552, access list 354, and security filter 556. Secu-

10

15

20

25

30

35

40

45

50

55

60

65

20

rity level determiner 5352 enables security engine 550 to deter-
mine the level of access associated with a user, for example,
as described above. Determining the security level may alter
how LE server node 510 generates event components 562 for
query, and/or may alter how LE server node 510 manages
received data. For example, queries may be generated that
indicate the level of access. Received data may be filtered
according to the level of access.

Access list 534 represents one example of a type of row
level filter that enables security engine 550 to maintain lists of
security mformation for users, and levels of access available
from different data sources. Other row level filters may
include other mechanmisms to filter the event data based on the
information 1n each row of data, and separate 1t to the users
based on levels of access available. Security filter 356 enables
security engine 550 to filter the received data, as mentioned
above.

FIG. 6 1s a block diagram of an embodiment of a data
source that generates real-time event data and processes que-
ries about items of data related to events. Data source 600
represents a data source according to any embodiment
referred to herein. Data source 600 includes one or more
objects 620. The objects may be atfected by operation within
the enterprise of which data source 600 1s a part, or an opera-
tion outside the enterprise that the object tracks (e.g., stock
value, currency value, etc.). Transactions 622 and system
(sys) actions 624 represent operations that may change object
620. Transactions 622 refer to general dealings of the enter-
prise, or operations outside the enterprise, and system actions
624 refer to anything else, such as inventory recounts, system
audits, changes in configuration, etc., which might change the
object.

In one embodiment, data source 600 includes change log-
ger 626, which 1llustrates the logging and committing of the
changes to a repository. Note that access to real-time event
data described herein does not necessarily alter conventional
operation of the system, including logging and data ware-
housing the event data. However, 1n lieu of, or 1n addition to
the data being available from the data warehouse, the data can
be available “live.”” The real-time branch of the event data 1s
through event data monitor 610. Query processor 612 repre-
sents an element that receives and processes queries at the
data source level. Such a query processor may, 1n fact, include
the data stream components necessary to subscribe other
entities to a data stream of event data available from data
source 600. Response generator 614 sends out the event data
to query sources and/or subscribers. In one embodiment, data
source 600 performs processing of queries, which may
include enforcing security restrictions on data access. In an
implementation where data source 600 enforces security on
data access, security enforcement 616 may be included to
filter data returned based on security restrictions.

FIG. 7 1s a flow diagram of an embodiment of a process for
federating event information. Flow diagrams as illustrated
herein provide examples of sequences of various process
actions. Although shown 1n a particular sequence or order,
unless otherwise specified, the order of the actions can be
modified. Thus, the illustrated implementations should be
understood only as an example, and the process can be per-
formed 1n a different order, and some actions may be per-
formed 1n parallel. Additionally, one or more actions can be
omitted 1n various embodiments of the invention; thus, not all
actions are required in every implementation. Other process
flows are possible.

In one embodiment, an enterprise system stores event defi-
nitions, 702. The event definitions can describe possible
occurrences within the enterprise that might be of interest to

US 8,214,325 B2

21

a particular user. The definitions may be available to a user
through an application that enables the user to generate a
query, such as by building a pattern of events from the stored
event definitions. The user thus selects one or more events for
an event pattern, 704, or other query. The user system gener-
ates an event query for event information, 706. The event
information may request real-time as well as historical data.
Such a query may be generated, for example, by an agent or
user application on a client device. The query 1s sent to an
enterprise event server, which receives the event query, 708.
The enterprise event server includes an LE server as described
herein.

In one embodiment, the event server parses the event query
into component parts, 710. Parsing the query can be done with
lookup tables or other tables or matching mechanisms. Each
query can be filtered to match components with data descrip-
tions that indicate content available from a particular neigh-
bor node. Each component part will be forwarded through the
enterprise network as a separate query. The eventing system
will attempt to send the query as close to the data source(s) as
possible for processing. The event server identifies one or
more data sources that have information relevant to the query,
712. The event server determines how to route the query
components to the data sources, 714. For example, the event
server may access routing table information, and/or data
source index information to determine how to route the query
components. The event server then forwards the query com-
ponents toward the data sources.

In one embodiment, a query component may be further
parsed by an additional event server that 1s between the first
event server and a data source, 716. The event servers will
cach parse the queries based on the indexing information they
store and the routing information about where data 1s located
within the enterprise. The data source eventually receives one
or more query components, 718, which the data source may
process, 720. In some implementations, processing of query
components 1s not performed at the data sources, or may not
be performed at all data sources, or may not be performed at
data sources 1n all cases. In general, the query 1s processed as
close to the data source as possible to receive the most up-to-
date information (real-time events). Processing the query as
close to the data source also reduces the amount of data tratfic,
and the network distance traveled, which reduces the load on
communication resources. Whether at the data source, or
proximate to the data source ({or example, at an LE node that
interfaces directly with the data source, or at a server one or
more hops away from the data source).

The data source returns a query response, 722. In the case
where the query recerved 1s a query component, the response
will be to the query component, which will provide only some
of the information necessary to respond to the original user
query. The event server combines a complete response from
the separate query component responses recerved from all
data sources, 724. Combining of a response may be to com-
bine multiple component responses, each to a different query
component segment, as well as combiming multiple responses
for the same query component segment received from mul-
tiple different data sources. Combining the response may
require processing of the data. For example, overlapping data
or conflicting data may be compared and eliminated. Data
formatting may need to be modified to be actionable. The
event server returns the response to the user, 726. The user
system may receive an actionable, real-time event, 728. An

actionable event may allow the user to access an enterprise
backend for additional information, launch actions, initiate

processes, or other procedures.

10

15

20

25

30

35

40

45

50

55

60

65

22

FIG. 8 1s a flow diagram of an embodiment of a process for
stream sharing of event information. In one embodiment, an
enterprise system stores event definitions, 802. The event
definitions can describe possible occurrences within the
enterprise that might be of interest to a particular user. The
definitions may be available to a user through an application
that enables the user to generate a query, such as by building
a pattern of events from the stored event definitions. The user
thus selects one or more events for an event pattern, 804, or
other query. The user system generates an event query for
event information, which may include real-time and histori-
cal data, 806. Such a query may be generated, for example, by
an agent or user application on a client device. The query 1s
sent to an enterprise event server, which receives the event
query, 808. The enterprise event server includes an LE server
as described herein.

In one embodiment, the event server parses the event query
into component parts, 810. Each component part will be
torwarded through the enterprise network as a separate query.
The eventing system will attempt to send the query as close to
the data source(s) as possible for processing. In one embodi-
ment, the event server identifies duplicate query components,
812, or query components for the same information. Such
common query components across queries may be joined to
reduce network bandwidth, and improve system perfor-
mance. The duplicate query components may come from
other queries from the same user, other queries from other
users that access the same event server, and/or other queries
from other users of other event servers. In one embodiment,
the event server combines the same query components into a
single query, and determines how to route the single query to
the data source(s), 814.

The event server sends the single query to a data source,
816, which receives the query, 818. As discussed above, the
query may or may not be sent all the way to the data source,
but 1s described as such here for purposes of simplicity in
description, and not by way of limitation. The data source
may process the query, 820, and return a query response, 822.
In the case where the query received 1s a query component,
the response will be to the query component, which will
provide only some of the information necessary to respond to
the onginal user query. The event server receives the
response, and duplicates the response to each query source
that requested the component, 824. In addition to duplicating
response components to various query sources, the event
server may aggregate response as described above with
respect to FIG. 7. The event server returns the response to the
user system, which may receive an actionable, real-time
event, 826. An actionable event may allow the user to access
an enterprise backend for additional information, launch
actions, 1nitiate processes, or other procedures.

FIG. 9 1s a flow diagram of an embodiment of a process for
applying security to event information requests. In one
embodiment, an enterprise system stores event definitions,
902. The user thus selects one or more events for an event
pattern, 904, or other query for real-time event data within the
enterprise. The user system generates an event query for event
information, which may include real-time and historical data,
906. Such a query may be generated, for example, by an agent
or user application on a client device. The query 1s sent to an
enterprise event server, which recerves the event query, 908.
The enterprise event server includes an LE server as described
herein.

In one embodiment, the event server parses the event query
into component parts, 910. Each component part will be
torwarded through the enterprise network as a separate query.
The eventing system will attempt to send the query as close to

US 8,214,325 B2

23

the data source(s) as possible for processing. In addition to
being able to perform operations relating to separating and
aggregating query components as described above with
respect to FIGS. 7 and 8, the system may also perform secu-
rity operations with respect to the queries.

In one embodiment, the event server determines a level of
security associated with a query component, 912. The level of
security may be identified as part of the query generated by
the user, or may be accessed from access tables stored in the
event server. Such access tables could indicate a level of
security for particular users. In one embodiment, the event
server combines the same query components into a single
query, and determines how to route the single query to the
data source(s), 914. In one embodiment, the combined single
query has a level of security associated with the highest level
ol security of any user requesting the data.

The event server sends the single query to a data source
requesting the highest security level access, 916. The event
data, or other processing entity, recerves the single query, 918,
and processes the query, including potentially determining
the security level associated with the query, 920. In some
implementations, the data source can simply return data and
allow the event servers to control security. The data source
returns a query response with the highest security level data
associated with the query (or higher if the event servers are to
handle security), 922. In the case where the query received 1s
a query component, the response will be to the query compo-
nent, which will provide only some of the information nec-
essary to respond to the original user query. The event server
receives the response, and filters the response components
based on a security level access associated with each 1ndi-
vidual query source, 924. The event server returns the
response to the user system, which may receive an actionable,
real-time event limited to the access level of the user access-
ing the user system, 926. An actionable event may allow the
user to access an enterprise backend for additional informa-
tion, launch actions, initiate processes, or other procedures.

FIG. 10 1s a block diagram of an embodiment of a system
with an event server. System 1000 represents an enterprise
system according to any embodiment described herein. Sys-
tem 1000 may include additional details and/or alternative
implementations of an LE server and LE system.

System 1000 includes user GUI (graphical user interface)
1010, which provides a framework to build and send queries.
In one embodiment, user GUI 1010 1s built upon the industry-
standard Eclipse GUI Framework based tool for construction,
execution, and status tracking of quernies. Query builder 1012
enables a user to create and validate event queries as well as
to monitor event query execution. Entry and validation 1014
refers to components that enable the user to provide nput.
Execution control 1016 may set rules on the query and
include logic for the query to be sent 1n the LE system.

System 1000 may include multiple APIs (application pro-
gramming interfaces) that enable a user to interact with LE
server 1002. APIs 1018 represent such interfaces. In one
embodiment, two standard interfaces for clients exist: a Java
API and a Web Service API. In one embodiment, the web
service API can be implemented as a wrapper for the Java
APL.

LE server 1002 may include a number of components,
which may include some or all of the following. Additional
components could also be included. Security engine 1020 can
provide security throughout the LE system. In one embodi-
ment, security engine 1020 implements a two-level security
model, enforcing security ata global LE system level and at a
local data source level. At the global level, LE server 1002 can
authenticate a user and enforce the user’s access rights and

5

10

15

20

25

30

35

40

45

50

55

60

65

24

restrictions down to the row level with authorization service
1022 (to determine security access privilege) and encryption
and filtering 1024 (to enforce the security access). In one
embodiment, event queries and their result sets are encrypted
with a different key being used on a per query basis.

Metadata engine 1025 includes metadata server 1026 and
metadata store or repository 1028. Metadata engine 10235
contains run-time and configuration information about the LE
system. For mstance, as an example of configuration infor-
mation, metadata engine 1025 may have or contain global
schema, various local schemas, as well as the various map-
pings between schema. The schema metadata enables the
system to 1identily similar content even when different nam-
ing conventions for data are used. Thus, the data can be
indexed for routing based on the schema, and the schema can
enable the system to identity what data 1s available for access.
In terms of run-time information, metadata engine 1025 can
contain user defined event queries to indicate data the user
would like to recerve. It may also contain LE network topol-
ogy status information, which provides information for pur-
poses ol determining routing by knowing what nodes are
available.

Event query manager 1070 represents a central hub within
LE server 1002 for handling eventing data. Event query man-
ager 1070 may also be referred to as an eventing engine, and
it plans event queries and coordinates the execution of the
event queries.

Event query manager 1070 includes query execution 1072,
which implements finalized event query plans. Event query
manager 1072 may set up the paths down which the event
query and results sets will flow. The query plan will be
deployed amongst the underlying network adapters that con-
nect to the data sources and other LE servers, the remote LE
servers themselves, and CEP (Complex Event Processing)
engines 1088. If the LE system detects that multiple users
who have equivalent access rights are requesting common
event data, query execution 1072 implements stream sharing
to join query execution together.

Query execution 1072 includes pub/sub (publish/sub-
scribe) forwarding 1074, which represents publish and sub-
scribe mechanisms hosted by LE server 1002 and remote LE
servers to advertise and pass data throughout the LE system.
Note that query topics can be generated on the fly 1n an ad hoc
manner, and all topics can then be accessible through the
publish and subscribe mechanism. Thus, for example, query
topics do not have to be predefined. Query graph deployment
1076 represents a path plan, which can include 1dentifying
what nodes are preferred paths for certain query components
or query topics, and what nodes are alternate paths. In the case
of common queries, one node may recerve the common query
components and join them. In one embodiment, the LE nodes
implement an inter-node communication protocol to deter-
mine priorities and establish a query graph. The graph 1s not
necessarily fixed at any given point 1n time, but can be modi-
fied dynamically within the LE system. Transformation
engine 1078 enables query execution 1072 to modily or trans-
form query components to generate queries, and transform
responses to generate actionable event data. Stream sharing
1080 enables the joining of queries.

Event query manager 1070 includes query planning 1082.
When a client submits an event query for processing, event
query manager 1070 may first implement an execution plan.
The event query 1s analyzed, optimized, and federated (with
components such as federation service 1084 and optimizer
service 186) into simpler fragments composed of individual
raw event types and tables. Such a plan uses the global to local
mapping information 1n metadata engine 1025 to determine

US 8,214,325 B2

25

what transformations need to be performed to generate the
queries. Additionally, query planning 1082 may access index
information within indexing 1058 of routing engine 1040 to
determine whether the event query (or fragments, query com-
ponents) are to be executed remotely at other LE servers.

In one embodiment, all event queries are executed 1n a
publish-and-subscribe manner and event query manager
10770 acts as a hub for information tlowing between the net-
work adapters 1030, CEP engines 1088, and remote LE serv-
ers. If event information comes ifrom a network adapter, the
event information 1s transformed from the data source’s local
schema to the normalized global schema for use at LE server
1002. In one embodiment, the event query will be executed
continuously until the user specifically unsubscribes.

Event query manager 1070 processes an event query, and
may be able to handle the query locally at the data source or
sources local to the LE server. A local data source 1s one that
1s addressable directly using a local schema. In one embodi-
ment, a local data source 1s directly coupled to the LE server.
In the case of data from remote LE servers, the query pro-
cessing may be referred to as federated event query process-
ing. With federated processing, the LE server may use an
event federation grid to achieve fast performance. Such a grid
can assume that the data sources will be distributed 1n a
disjointed manner between several LE servers. The LE serv-
ers may or may not be in ditferent geographic locations. Once
the user defines the specific complex event pattern for the
event desired, the LE server receiving the query analyzes the
event and attempts to break 1t up into smaller and simpler
pattern fragments. If more than one data source applies to an
event pattern fragment, then copies of that fragment are sent
to all LE servers that are connected to the applicable data
sources and executed in parallel. Note that this process may
be recursive. Event pattern fragments themselves may be
broken up into even simpler patterns and also executed in
parallel.

When the fragment’s pattern 1s matched by the local data,
then the result 1s sent to the LE server where the query origi-
nated. The LE server that received the query from the user
collates the responses from the various fragments and per-
forms any last-minute calculations, joins, or functions. After
processing the responses, 1f the LE server detects that the
original event pattern has been matched, the response 1s for-
warded to the user.

Network adapters 1030 provide a framework to abstract
away underlying data sources. In one embodiment, LE server
1002 includes an adapter for each data source type. Each
adapter can present the same manager API to event query
manager 1070, and register with the event query manager to
enable to the event query manager to be aware of the data
sources. Adapters can be configured as either real-time event
sources (which may simply be referred to as “event sources™)
or historical data sources (which refers to data that 1s stored 1n
a repository). Adapters may include database-type adapters,
such as implemented by database single pull 1032, and data-
base polling 1034. Such adapters can access historical data.
Similar adapters may exist for enterprise system, such as
implemented by enterprise single pull 1036 and enterprise
polling 1038. Additionally, web service adapters may exist as
shown by web service (WS) polling 1035. In one embodi-
ment, the framework 1s provided as a solftware development
kit so that new adapters can be created 1n a straightforward
manner. Adapters may include a filtering capability that can
be configured on a per-event-query basis.

Routing engine 1040 enables the routing of queries and
response to queries. In one embodiment, routing engine 1040
1s based on a link-state routing protocol that allows event

10

15

20

25

30

35

40

45

50

55

60

65

26

queries and their corresponding responses to be transported
multi-hop through a network from a sender to a set of desti-
nations using a description of the receivers in the form of
multiple arbitrary identifying descriptive names. Destina-
tions can have multiple names, and these names can be
acquired or removed 1n a dynamic fashion.

Client connections 1042 may include discovery 1044 and
router election 1046. Each connection to other LE servers and
other clients 1s discovered, as 1s understood 1n the networking
arts. Additionally, each LE server can act as a event data
router (referred to as an LE router) within the LE system to
torward queries and responses through the LE system. As an
LE router, the LE server may also engage 1n router election
with neighboring LE servers to determine preferred paths,
shortest paths to data, etc.

Inter-server connections 1048 enable forwarding between
LE servers. In one embodiment, inter-server connections
1048 implements a Hierarchical Shortest-Path First (HSPF)
protocol. With HSPF, each LE router has a routing table entry
for each destination 1n the network. Each entry contains infor-
mation on a destination’s event and data content, IP address,
and the shortest path to the destination. The destination for a
message 1s defined as the event or data content that 1s sought.
When forwarding a message, an LE router uses 1ts routing
table information to determine the specific final destinations
that contain that event or data content and then forwards the
message on the shortest path to those destinations. Because
the destinations for a message are described using event or
data content, this allows for a decoupling of event consumers
and event producers, which, 1n turn, allows for new destina-
tions, locations, or companies, to be added quickly in an
uncoordinated fashion and without requiring that the system
be reprogrammed 1n any way.

From one perspective, HSPF can be considered a variation
of the standard Internet link-state routing protocol Open
Shortest-Path First (OSPF). Use of a protocol having simi-
larities to OSPF allows LE to have the following advantages:
1) automatically discover nearby LE servers and create con-
nections between them using the OSPF HELO protocol; 2)
dynamically distribute network knowledge throughout the
LE topology; 3) dynamically adjust to network topology
changes, such as server connections going down; 4) use of
router election protocols to enable each location to have a
primary LE server and a “hot stand-by” 1n case of a failure of
the primary server; and, 5) use of hierarchical routing to scale
to large numbers of destinations and to hide the orgamization
of different hierarchy areas from each other (such as when
different areas correspond to different companies).

However, HSPF, as being based on OSPF has limitations.
For instance, OSPF 1s a logical protocol that only understands
network links and the computer nodes on those links and has
no knowledge of the enterprise event and data content on
them. HSPF extends OSPF by inserting content information
in the LE system 1n the form of bit vectors into the routing
tables so that the LE routers understand the enterprise data
that 1s available on those networks and computer nodes. Also,
OSPF only allows two levels of hierarchy, which limits it to a
theoretical maximum of 200 companies and 4000 destination
computer nodes. HSPF extends OSPF further to enable an
arbitrary number of hierarchical levels to reach many thou-
sands ol companies and destinations. The OSPF HELO pro-
tocol only creates automatic connections between routers.
HSPF implements a variation of the HELO protocol to auto-
matically detect and connect routing clients.

Once a message has been forwarded all of the way from the
sender to all of the destinations, the routers will have created
a one-to-many shortest-path routing tree with the “root” at the

US 8,214,325 B2

27

sender and the “leaves™ at all of the destinations. Such a
routing tree 1s called a session and soft-state at each router, in
the form of a routing cached, and 1s used to maintain and
manage a record of this session. Because probabilistic equa-
tions are used for the indexing for engineering trade-oif rea-
sons, false positives may result during the forwarding phase.
Final checks at the destinations are performed and, 11 false
positives are detected, those routing paths may be pruned as a
result.

In accordance with the above, inter-server connections
1048 include HSPF forwarding 1050, and session manage-
ment 1052. HSPF forwarding 1s routing 1n accordance with
the HSPF protocol. Session management 1052 implements
the session and soft-state principles mentioned above. Also in
accordance with the above, router connections 1054 imple-
ments the connections to other LE servers as routers for event
data. HSPF linkstate 1056 indicates the link state of neigh-
boring LE servers. Discovery 1058 enables a router to dis-
cover other routers and a shortest path to a data source.

Indexing 1038 allows the use of the indexing mentioned
above, through which routing can be implemented. In LE
routing, the system 1s designed to allow computer hosts to
have multiple descriptive names, such as the event types that
they offer. Furthermore, these names or characteristics can be
acquired or removed by a host 1n a dynamic fashion with little
overhead. Using hash-based probabilistic equations, these
names are encoded into bit vectors to implement bitvector
indexing 1062. Bitvector indexing 1062 allows bit vectors to
encode only the existence of the descriptive names. Because
only existence information 1s stored, compression ratios of
200:1 have been achieved. The bit vectors can then be man-
aged by bitvector management 1064 using standard vector
mathematics to easily merge, compare, and normalize their
vector lengths.

Output adapters 1004 are designed to give multiple options
tor forwarding results for user access. Result sets can be sent
directly to an application via a web service, stored for later
perusal in an event store, and sent directly to a user via email,
instant messaging, or SMS. In one embodiment, LE server
1002 monitors a user’s online presence determine the right
output adapter to use accordingly.

The LE system as described herein i1s designed to be
deployed 1n a single location, multiple locations, and/or 1n
multiple companies. Single location deployment involves
deployment on a single physical server (typically) or on mul-
tiple physical servers. Deployment of the various LE system
components can be performed, for example, by implementing
the LE 1n Java, and having a Java runtime engine installed on
the server. Multiple location deployment involves istallation
of at least part of the LE system components, but all LE
system components are not needed at each location. An
administrator could push only the necessary components to
the different locations. In a multiple location scenario, the
individual components are designed to automatically dis-
cover each other and establish connections between each
other. In one embodiment, the servers should be on the same
L.AN subnet for the individual components to find each other.
Alternatively the servers can be specifically configured to
connect to each other.

Additionally, multiple company deployment 1s possible by
implementing a multi-location scenario across firewalls
between the compames. In one implementation, a secure
point-to-point connection 1s established across the firewalls,
while 1n another implementation, a trusted third party enables
the connection. The two companies can create a secure point-
to-point connection, such as a VPN tunnel, between the two
companies. The LE installations within each company can

10

15

20

25

30

35

40

45

50

55

60

65

28

then be joined together by connecting their network routers.

Since LE system routers are able to route multi-hop between
them, 1t 1s possible to route event queries and result sets
through a trusted third party. In this case, the third party at
least enabled as an LE router by the LE system components
necessary to implement the LE router (e.g., routing engine
1040). Both companies would then make secure connections
to the third party and connect their LE system routers to the
third party’s LE router.

FIG. 111s a block diagram of a computing system on which
embodiments of the invention can be implemented. Comput-
ing system 1100 represents hardware that might execute one
or more event server nodes, or LE nodes as described herein.
Computing system 1100 1s depicted with various components
that may be present 1n whole or 1n part, and additional com-
ponents or subcomponents may also be present. Computing
system 1100 includes one or more processors 1110, which
executes instructions and may perform various operations as
described herein. Processor 1110 may include any type of
microprocessor, central processing unit (CPU), processing
core, etc. Processor 1110 controls the overall operation of the
computing system 1100, and may be, or may include, one or
more programmable general-purpose or special-purpose
microprocessors, digital signal processors (DSPs), program-
mable controllers, application specific integrated circuits
(ASICs), programmable logic devices (PLDs), or the like, or
a combination of such devices.

Memory 1120 represents the main memory of the comput-
ing system 1100, and provides temporary storage for code
(e.g., software routines or series ol mstructions, commands,
operations, programs, data, etc.) to be executed by processor
1110. Memory 1120 may include read-only memory (ROM),
flash memory, one or more varieties of random access
memory (RAM), or the like, or a combination of such devices.
Memory 1120 stores data and instructions for performing
operations, including interacting with user clients, data
sources, and/or other event server nodes.

The various components of computing system 1100 are
coupled to bus 1102. Bus 1102 1s an abstraction that repre-
sents any one or more separate physical buses, communica-
tion lines, and/or point-to-point connections, connected by
appropriate bridges, adapters, and/or controllers. Therelore,
bus 1102 may include, for example, one or more of a system
bus, a Peripheral Component Interconnect (PCI) bus, a
HyperTransport or industry standard architecture (ISA) bus, a
small computer system interface (SCSI) bus, a universal
serial bus (USB), or an Institute of FElectrical and Electronics
Engineers (IEEE) standard 1394 bus (commonly referred to
as “Firewire™).

Computing system 1100 includes network interface 1130,
which represents hardware and software (e.g., drivers) that
enable computing system 1100 to communicate with remote
devices (e.g., clients, data sources, and/or other event server
nodes) over one or more networks. Processor 1110 may
execute various network stacks to control interfaces to vari-
ous networks through network mtertace 1130. Computing
system 1100 may include storage interface/adapter 1140,
which enables computing system 1100 to access attached
storage (e.g., a storage area network or other storage sub-
system) and may be, for example, a Fibre Channel adapter, a
SCSI adapter, etc. Computing system 1100 includes one or
more mput/output (I/O) interface(s) 1150, which may include
one or more interface components to connect with other elec-
tronic equipment, for example, custom connections, blade
adapters, etc. Additionally, I/O iterfaces 1150 can include
video, audio, and/or alphanumeric iterfaces through which a
user mteracts with computing system 1100. Computing sys-

US 8,214,325 B2

29

tem 1100 may include one or more mternal storage device(s)
1160. Storage 1160 can be any conventional medium for

storing large volumes of data 1n a non-volatile manner, such
as magnetic, optical, and/or semiconductor-based disks. Stor-
age 1160 may hold code and/or data 1162 1n a persistent state
(1.e., the value may be retained despite imterruption of power
to computing system 1100).

Computing system 1100 includes eventing engine 1170,
which 1s an abstraction to represent components (software
and/or hardware) that enable computing system 1100 to par-
ticipate 1 an eventing system as described herein. Note that
eventing engine 1170 may be an instance of an LE server
node, and other instances could also be executed on the same
hardware. That 1s, while certain hardware elements are nec-
essary for the execution of an LE server node, that hardware
may be shared with other LE nodes, and/or other enterprise
server nodes, or other enterprise systems.

Parser 1172 enables eventing engine 1170 to parse queries
into component parts. Index 1174 provides routing informa-
tion for eventing engine to 1identify data sources. Router 1176
enables eventing engine 1170 to route the queries to the
identified data sources, including determining a path 1n the
network, and 1dent1fy1ng other LE server nodes. Responder
1178 enables eventing engine 1170 to generate responses to
the queries based on the response components received from
the data sources. Stream sharing engine 1180 enables event-
ing engine 1170 to implement stream sharing to combine
duplicate query components into a single stream, as described
herein. Security engine 1182 enables eventing engine 1170 to
implement security on the query components, and combine
and maintain security access for queries generated by users
with different access privileges.

Various operations or functions are described herein,
which may be described or defined as software code, mnstruc-
tions, configuration, and/or data. The content may be directly
executable (*object” or “executable” form), source code, or
difference code (“delta” or “patch” code). The software con-
tent of the embodiments described herein may be provided
via an article of manufacture with the content stored thereon,
or via a method of operating a communication interface to
send data via the communication interface. A machine read-
able storage medium may cause a machine to perform the
functions or operations described, and includes any mecha-
nism that stores mformation in a form accessible by a
machine (e.g., computing device, electronic system, etc.),
such as recordable/non-recordable media (e.g., read only
memory (ROM), random access memory (RAM), magnetic
disk storage media, optical storage media, flash memory
devices, etc.). A communication interface includes any
mechanism that interfaces to any of a hardwired, wireless,
optical, etc., medium to communicate to another device, such
as a memory bus interface, a processor bus interface, an
Internet connection, a disk controller, etc. The communica-
tion 1nterface can be configured by providing configuration
parameters and/or sending signals to prepare the communi-
cation interface to provide a data signal describing the sofit-
ware content. The communication interface can be accessed
via one or more commands or signals sent to the communi-
cation interface.

Various components described herein may be a means for
performing the operations or functions described. Each com-
ponent described herein includes software, hardware, or a
combination of these. The components can be implemented
as soltware modules, hardware modules, special-purpose
hardware (e.g., application specific hardware, application
specific integrated circuits (ASICs), digital signal processors
(DSPs), etc.), embedded controllers, hardwired circuitry, etc.

Besides what 1s described herein, various modifications
may be made to the disclosed embodiments and implemen-
tations of the invention without departing from their scope.

10

15

20

25

30

35

40

45

50

55

60

65

30

Therefore, the illustrations and examples herein should be
construed 1n an illustrative, and not a restrictive sense. The
scope of the invention should be measured solely by reference
to the claims that follow.

What 1s claimed 1s:

1. A computer-implemented method comprising;:

receving a query requesting information about an event 1n

an enterprise system having multiple separate event data
sources distributed among separate enterprise nodes, the
receiving via a query routing node of the enterprise
system, where the event includes a change in one or
more structured data objects, the data sources being
separate enterprise subsystems that generate the
changes;

parsing the query mto component parts, where each com-

ponent part relates to an i1tem of information about the
event needed to respond to the query as a whole, each
component part 1s separately answerable by a different
response from a data source, and where at least two
component parts are related to events from data sources
at different enterprise nodes;

sending each component part to be routed to an enterprise

node local to, and associated with, a data source adver-
tised 1n the enterprise system as a source of the item of
information;

receving responses to component parts from the separate

enterprise nodes, at least one response including infor-
mation about the event from the data source associated
with each enterprise node, and not from a data ware-
house that aggregates event information; and
combining the responses to generate an event query
response mndicating a change of data at a data source.

2. The method of claim 1, wherein receiving the query
COmMprises:

receving a request to monitor a real-time stream of event

data for a pattern of events, where the event data includes
information about changes to one or more objects.

3. The method of claim 2, wherein combimng the
responses to generate the event query response further com-
prises:

processing the responses to selectively combine the

responses to generate an actionable event that enables a
user to react to the recerved responses about the pattern
of events.

4. The method of claim 1, wherein receiving the query
comprises receiving the query at an event server of a {first
enterprise subsystem, and wherein sending each component
part to a data source comprises sending a component partto a
second enterprise subsystem separate from the first enterprise
subsystem.

5. The method of claim 1, wherein recerving the query
comprises receiving a query component as previously parsed
by another network node, where the query component 1s part
of a larger query of a user; and wherein parsing the query
turther comprises parsing the recetved query component into
multiple sub-component parts, each requesting different
items of information.

6. The method of claim 1, wherein sending each compo-
nent part to a data source comprises:

duplicating at least one component part and sending the

one component part to two or more data sources within
the enterprise system.

7. The method of claim 1, wherein sending each compo-
nent part to a data source comprises:

sending each component based on an event data index that

indicates location and content of event data within the

enterprise system.

US 8,214,325 B2

31

8. The method of claim 1, wherein sending each compo-
nent part to a data source comprises:

subscribing to a data stream of the data source, where the
data stream provides information about the component
part.
9. The method of claim 1, wherein the data source com-
Prises:
one or more of a customer resource management (CRM)
system, an enterprise resource planning (ERP) system, a
database, or a flat file.
10. The method of claim 1, wherein receirving the response
turther comprises:
receiving at least one response including historical data
from a data warehouse.

11. The method of claim 1, wherein the query 1s recerved.,

parsed and sent prior to a data change at the data source.
12. The method of claim 1, wherein the event comprises a

structural change event indicating a structural change 1n a
business process.

13. A non-transitory machine readable storage medium
having content stored thereon to provide instructions, which
when executed, cause a processor of an enterprise system
node to perform operations, including:

receiving a query requesting information about an event 1n

an enterprise system having multiple separate event data
sources distributed among separate enterprise nodes, the
receiving via routing node of the enterprise system,
where the event includes a change 1n one or more struc-
tured data objects, the data sources being separate enter-
prise subsystems that generate the changes:

parsing the query 1into component parts, where each com-

ponent part relates to an item of information about the
event needed to respond to the query as a whole, each
component part 1s separately answerable by a different
response from a data source, and where at least two
query components are related to events from data
sources at different enterprise nodes;

sending each component part to be routed to an enterprise

node local to, and associated with, a data source adver-
tised 1n the enterprise system as a source of the item of
information;

receiving responses to component parts from the separate

enterprise nodes, at least one response including real-
time information about the event from the data source
associated with each enterprise node and not from a data
warchouse that aggregates event information; and
combining the responses to generate an event query
response 1ndicating a change of data at a data source.

14. The machine readable storage medium of claim 13,
wherein the content to provide instructions for receiving the
query comprises content to provide instructions for

receiving a request to monitor a real-time stream of event

data for a pattern of events, where the event data includes
information about changes to one or more objects.

15. The machine readable storage medium of claim 13,
wherein the content to provide 1nstructions for combining the
responses to generate the event query response further com-
prises content to provide mstructions for

processing the responses to selectively combine the

responses to generate an action responsive to the event.

16. The machine readable storage medium of claim 13,
wherein the content to provide instructions for or receiving,
the query comprises content to provide instructions for
receiving the query at an event server of a first enterprise
subsystem, and wherein the content to provide instructions
for sending each component part to a data source comprises
content to provide 1nstructions for sending a component part
over a public network to a second enterprise subsystem sepa-
rate from the first enterprise subsystem.

10

15

20

25

30

35

40

45

50

55

60

65

32

17. The machine readable storage medium of claim 13,
wherein the content to provide instructions for sending each
component part to a data source comprises content to provide
instructions for

duplicating at least one component part and sending the
one component part to two or more data sources within
the enterprise system.

18. The machine readable storage medium of claim 13,
wherein the content to provide instructions for sending each
component part to an event data source comprises content to
provide instructions for

sending each component based on a business event data
index that indicates location and content of business
event data within the enterprise system.

19. The machine readable storage medium of claim 13,
wherein the content to provide instructions for sending each
component part to an event data source comprises content to
provide instructions for

subscribing to a data stream of the event data source, where
the data stream provides information about the compo-
nent part.

20. A server node of an enterprise network, comprising:

a network interface circuit to recerve a query requesting,
information about an event in an enterprise system hav-
ing multiple separate data sources distributed among
separate enterprise nodes, the receiving via a query rout-
ing node of the enterprise system, where the event
includes a change 1n one or more structured data objects,
the data sources being separate enterprise subsystems
that generate the changes:

a query parser to parse the query mto component parts,
where each component part relates to an item of 1nfor-
mation about the event, each component part 1s sepa-
rately answerable by a different response from a data
source, and where at least two query components are
related to events from data sources at different enterprise
nodes;

a query router to send each component part to be routed to
an enterprise node local to, and associated with, a data
source advertised as generating the 1item of information,
and receive responses to component parts Irom the sepa-
rate enterprise nodes, at least one response including
real-time information about the event from the data
source associated with each enterprise node and not
from a data warchouse that aggregates event informa-
tion; and

a query responder to combine the responses to generate an
event query response indicating a change of data at a
data source.

21. The server node of claim 20, wherein the parser
receives a request to monitor a real-time stream of event data
for a pattern of events, where the event data includes infor-
mation about changes to one or more objects.

22. The server node of claim 20, wherein the parser
receives a query component as previously parsed by another
network node, where the query component 1s part of a larger
query of a user; and wherein parsing the query further com-
prises parsing the received query component into multiple
sub-component parts, each requesting different items of
information.

23. The server node of claim 20, wherein the query router
sends a component part to a node that 1s a next hop 1n an event
network path to a node directly coupled to a data source,
through which the data source 1s accessible to the event net-
work.

	Front Page
	Drawings
	Specification
	Claims

