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LIVE LOCK FREE PRIORITY SCHEME FOR
MEMORY TRANSACTIONS IN

TRANSACTIONAL MEMORY

FIELD D

This invention relates to the field of concurrent computing,
and, 1n particular, to execution of transactions.

BACKGROUND 10

Advances 1n semi-conductor processing and logic design
have permitted an increase in the amount of logic that may be
present on integrated circuit devices. As a result, computer
system configurations have evolved from a single or multiple 15
integrated circuits 1n a system to multiple cores and multiple
logical processors present on individual integrated circuits. A
processor or integrated circuit typically comprises a single
processor die, where the processor die may include any num-
ber of processing elements, such as cores, threads, and/or 20
logical processors.

The ever increasing number of cores and logical processors
on integrated circuits enables more soitware threads to be
concurrently executed. However, the increase 1n the number
of software threads that may be executed simultaneously have 25
created problems with synchronizing data shared among the
software threads. One common solution to accessing shared
data 1n multiple core or multiple logical processor systems
comprises the use of locks to guarantee mutual exclusion
across multiple accesses to shared data. However, the ever 30
increasing ability to execute multiple software threads poten-
tially results 1n false contention and a serialization of execu-
tion.

For example, consider a hash table holding shared data.
With a lock system, a programmer may lock the entire hash 35
table, allowing one thread to access the entire hash table.
However, throughput and performance of other threads is
potentially adversely aflected, as they are unable to access
any entries 1n the hash table, until the lock 1s released. Alter-
natively, each entry 1n the hash table may be locked. However, 40
this increases programming complexity, as programmers
have to account for more locks within a hash table.

Another data synchronization technique includes the use of
transactional memory (IM). Often transactional execution
includes speculatively executing a grouping of a plurality of 45
micro-operations, operations, or instructions. In the example
above, both threads execute within the hash table, and their
accesses are monitored/tracked. If both threads access/alter
the same entry, one of the transactions may be aborted to
resolve the contlict. However, a live-lock event may occur in 50
attempt to decide which of the transactions 1s aborted. As a
result, one thread 1s potentially able to continue processing of
transactions, while another thread 1s locked attempting to
re-execute the aborted transactions. This potentially results in

inetficient execution, as one thread 1s continuously spinning 55
on a single transaction.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention 1s illustrated by way of example and 60
not intended to be limited by the figures of the accompanying,
drawings.

FIG. 1 1illustrates an embodiment a multi-core processor
capable of preventing live-lock during concurrent execution
ol transactions. 65

FI1G. 2 1llustrates an embodiment of a diagram for a poten-
tial live-lock event.

2

FIG. 3 illustrates an embodiment of a flow diagram for a
method of providing for live-lock free transactional execu-
tion.

FIG. 4 illustrates another embodiment of a flow diagram
for a method of providing for live-lock free transactional
execution.

DETAILED DESCRIPTION

In the following description, numerous specific details are
set forth such as examples of specific hardware support for
transactional execution, specific tracking/meta-data meth-
ods, specific types of local/memory 1n processors, and spe-
cific types of memory accesses and locations, etc. 1n order to
provide a thorough understanding of the present invention. It
will be apparent, however, to one skilled 1n the art that these
specific details need not be employed to practice the present
invention. In other instances, well known components or
methods, such as coding of transactions 1n soitware, demar-
cation of transactions, specific multi-core and multi-threaded
processor architectures, mterrupt generation/handling, cache
organizations, and specific operational details of micropro-
cessors, have not been described in detail 1n order to avoid
unnecessarily obscuring the present invention.

A value, as used herein, includes any known representation
of a number, a state, a logical state, or a binary logical state.
Often, the use of logic levels, logic values, or logical values 1s
also referred to as 1’s and 0’s, which simply represents binary
logic states. For example, a 1 refers to a high logic level and
0 refers to a low logic level. However, other representations of
values 1n computer systems have been used. For example the
decimal number 10 may also be as a binary value 011010 and
a hexadecimal letter A.

Moreover, states may be represented by values or portions
of values. As an example, a locked state may be represented
by a first value 1n a location, such as an odd number, while a
version number, such as an even value, in the location repre-
sents an unlocked state. Here, a portion of the first and second
value may be used to represent the states, such as two lower
bits of the values, a sign bit associated with the values, or
other portion of the values.

The method and apparatus described herein are for provid-
ing live-lock free transactional execution. Specifically, pro-
viding live-lock free transactional execution 1s primarily dis-
cussed 1n reference to a multi-core microprocessor. However,
the methods and apparatus for providing live-lock free trans-
actional execution are not so limited, as they may be imple-
mented on or 1n association with any integrated circuit device
or system, such as cell phones, personal digital assistants,
embedded controllers, mobile platforms, desktop platiorms,
and server platforms, as well as 1n conjunction with single
processor systems or multi-processor systems; each proces-
sor having any number of processing elements, such as a core,
hardware thread, soitware thread, logical processor, or other
processing element.

Referring to FIG. 1, an embodiment of a multi-core pro-
cessor capable of providing live-lock free transactional
execution 1s 1illustrated. A processing element refers to a
thread, a process, a context, a logical processor, a hardware
thread, a core, and/or any processing element, which shares
access to resources of the processor, such as reservation units,
execution units, pipelines, or higher level caches/memory. A
physical processor typically refers to an integrated circuit,
which potentially includes any number of other processing
elements, such as cores or hardware threads.

A core often refers to logic located on an integrated circuit
capable of maintaining an independent architectural state
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wherein each independently maintained architectural state 1s
associated with at least some dedicated execution resources.
In contrast to cores, a hardware thread typically refers to any
logic located on an integrated circuit capable of maintaining
an independent architectural state wherein the independently
maintained architectural states share access to execution
resources. Physical processor 100, as illustrated 1in FIG. 1,
includes two cores, core 101 and 102, which share access to
higher level cache 110. In addition, core 101 includes two

hardware threads 1014 and 10154, while core 102 includes two
hardware threads 1024 and 1025. Therefore, software enti-
ties, such as an operating system, potentially view processor
100 as four separate processors, while processor 100 1s
capable of executing four software threads.

As can be seen, when certain resources are shared and
others are dedicated to an architectural state, the line between
the nomenclature of a hardware thread and core overlaps. Yet
often, a core and a hardware thread are viewed by an operat-
ing system as individual logical processors, where the oper-
ating system 1s able to individually schedule operations on
cach logical processor. In other words, software views two
cores or threads on a physical processor as two independent
processors. Additionally, each core potentially includes mul-
tiple hardware threads for executing multiple software
threads. Therefore, a processing element includes any of the
alforementioned elements capable of maintaining a context,
such as cores, threads, hardware threads, virtual machines, or
other resources.

In one embodiment, processor 100 1s a multi-core proces-
sor capable of executing multiple threads in parallel. Here, a
first thread 1s associated with architecture state registers 101a,
a second thread 1s associated with architecture state registers
1015, a third thread 1s associated with architecture state reg-
1sters 102a, and a fourth thread 1s associated with architecture
state registers 102b. Relference to processing elements 1n
processor 100, in one embodiment, includes reference to
cores 101 and 102, as well as threads 1014, 10154, 1024, and
1025. In another embodiment, a processing element refers to
clements at the same level 1n a hierarchy of processing
domain. For example, core 101 and 102 are in the same
domain level, and threads 101a, 1015, 102a, and 1025 are 1in
the same domain level, as they are all included within a core’s
domain.

Although processor 100 may include asymmetric cores,
1.€. cores with different configurations, functional units, and/
or logic, symmetric cores are illustrated in FIG. 1. As a result,
core 102, which 1s 1llustrated as identical to core 101, will not
be discussed 1n detail to avoid obscuring the discussion.

As 1llustrated, architecture state registers 101a are repli-
cated 1n architecture state registers 1015, so individual archi-
tecture states/contexts are capable of being stored for logical
processor 101a and logical processor 1015. Other smaller
resources, such as mstruction pointers and renaming logic in
rename allocater logic 130 may also be replicated for threads
101a and 10154. Some resources, such as re-order buffers 1n
reorder/retirement unit 135, ILTB 120, load/store buiters, and
queues may be shared through partitioning. Other resources,
such as general purpose internal registers, page-table base
register, low-level data-cache and data-TLB 110, execution
unit(s) 140, and out-of-order unit 135 are potentially fully
shared.

Bus interface module 105 1s to communicate with devices
external to processor 100, such as system memory 175, a
chupset, a northbridge, or other integrated circuit. Memory
175 may be dedicated to processor 100 or shared with other
devices 1in a system. Examples of memory 175 includes
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dynamic random access memory (DRAM), static RAM
(SRAM), non-volatile memory (NV memory), and long-term
storage.

Typically bus interface unit 103 includes input/output (1/0)
buifers to transmit and receive bus signals on interconnect
170. Examples of interconnect 170 include a Gunning Trans-
ceiver Logic (GTL) bus, a GTL+bus, a double data rate
(DDR) bus, a pumped bus, a differential bus, a cache coherent
bus, a point-to-point bus, a multi-drop bus or other known
interconnect implementing any known bus protocol. Bus
interface unit 105 as shown 1s also to communicate with
higher level cache 110.

Higher-level or further-out cache 110 1s to cache recently
tetched and/or operated on elements. Note that higher-level or
turther-out refers to cache levels increasing or getting further
way from the execution unit(s). In one embodiment, higher-
level cache 110 1s a second-level data cache. However, higher
level cache 110 1s not so limited, as it may be or include an
istruction cache, which may also be referred to as a trace
cache. A trace cache may instead be coupled after decoder
125 to store recently decode traces. Module 120 also poten-
tially includes a branch target butifer to predict branches to be
executed/taken and an instruction-translation butfer (I-TLB)
to store address translation entries for instructions. Here, a
processor capable of speculative execution potentially
prefetches and speculatively executes predicted branches.

Decode module 125 1s coupled to fetch unit 120 to decode
fetched elements. In one embodiment, processor 100 1s asso-
clated with an Instruction Set Architecture (ISA), which
defines/specifies 1nstructions executable on processor 100.
Here, often machine code 1nstructions recognized by the ISA
include a portion of the 1mstruction referred to as an opcode,
which references/specifies an instruction or operation to be
performed.

In one example, allocator and renamer block 130 includes
an allocator to reserve resources, such as register files to store
instruction processing results. However, threads 101aq and
1015 are potentially capable of out-of-order execution, where
allocator and renamer block 130 also reserves other
resources, such as reorder butfers to track instruction results.
Unit 130 may also include a register renamer to rename
program/instruction reference registers to other registers
internal to processor 100. Reorder/retirement unit 135
includes components, such as the reorder builers mentioned
above, load butlers, and store butfers, to support out-of-order
execution and later in-order retirement of 1instructions
executed out-of-order.

Scheduler and execution unit(s) block 140, 1n one embodi-
ment, icludes a scheduler unit to schedule 1nstructions/op-
eration on execution units. In fact, instructions/operations are
potentially scheduled on execution units according to their
type availability. For example, a floating point instruction 1s
scheduled on a port of an execution unit that has an available
floating point execution unit. Register files associated with
the execution units are also included to store information
instruction processing results. Exemplary execution units
include a floating point execution unit, an integer execution
umt, a jump execution unit, a load execution unit, a store
execution unit, and other known execution units.

Lower level data cache and data translation butfer (D-TLB)
150 are coupled to execution umt(s) 140. The data cache 1s to
store recently used/operated on elements, such as data oper-
ands, which are potentially held 1n memory coherency states,
such as modified, exclusive, shared, and invalid (MESI)
states. The D-TLB 1s to store recent virtual/linear to physical
address translations. Previously, a D-TLB entry includes a
virtual address, a physical address, and other information,
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such as an offset, to provide inexpensive translations for
recently used virtual memory addresses.

In FIG. 1, processor 100 1s 1illustrated as one physical
microprocessor with two cores and four hardware threads,
which 1s capable of concurrently executing multiple transac-
tions. A transaction oiten refers to a grouping of instructions,
operations, or micro-operations, which may be grouped by
hardware, software, firmware, or a combination thereof. For
example, instructions may be used to demarcate a transaction.
Typically, during execution of a transaction, updates to
memory are not made globally visible until the transaction 1s
committed. While the transaction 1s still pending, locations
loaded from and written to within a memory are tracked.
Upon successiul validation of those memory locations, the
transaction 1s committed and updates made during the trans-
action are made globally visible.

However, 11 the transaction 1s mvalidated during 1ts pen-
dancy, the transaction 1s restarted without making the updates
globally visible. As a result, pendancy of a transaction, as
used herein, refers to a transaction that has begun execution
and has not been committed or aborted, 1.e. pending. Two
example systems for transactional execution include a Hard-
ware Transactional Memory (HTM) system and a Software
Transactional Memory (STM) system.

A Hardware Transactional Memory (HITM) system often
refers to tracking access during execution of a transaction
with processor 100 in hardware of processor 100. For
example, an annotation/attribute field, which 1s associated
with a cache line 1n lower level cache 150, 1s utilized to track
accesses to and from the cache line during execution of a
transaction. Examples of utilizing an attribute field for trans-
actional execution are included in co-pending application
with Ser. No. 11/027,623, 1ssued as U.S. Pat. No. 7,984,248
on Jul. 19, 2011, entitled, ““Transaction based shared data
operations 1n a Multiprocessor Environment™.

A Software Transactional Memory (STM) system often
refers to performing access tracking, conflict resolution, or
other transactional memory tasks in software. As a general
example, a compiler 1n system memory, when executed by
processor 100, compiles program code to insert read and
write barriers ito load and store operations, accordingly,
which are part of transactions within the program code. The
compiler may also 1nsert other transaction related operations,
such as commit or abort operations. These inserted 1nstruc-
tions/calls provide for logging of load and/or store operations
in memory during execution. Furthermore, mserted calls for
validation and commit utilize the previously logged values to
detect contlicts and validate transaction operations.

Yet, any style of transactional memory may be imple-
mented 1n processor 100, including an HITM, an STM, a
hardware accelerated STM (HASTM), unbounded transac-
tional memory (UTM), a virtualized transactional memory
(VIM), or other combination/hybrid of transactional
memory techniques. Despite the transactional memory sys-
tem, processor 100, 1n one embodiment, 1s capable of provid-
ing live-lock free transactional execution, as discussed below.

Even though discussion of physical processor 100 has
focused on microprocessors, processor 100 may include any
physical processing device, such as an embedded processor,
cell-processor, microprocessor, or other known processor,
which includes any number of multiple cores/threads. More-
over, an oversimplified illustrative microarchitecture of an
out-of-order of processor 1s illustrated for processor 100.
However, any of the modules/units illustrated 1n processor
100 may be configured 1n a different order/manner, may be
excluded, as well as may overlap one another including por-
tions of components that reside in multiple modules. For
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example, a reservation unit may be distributed 1n processor
100 including multiple smaller reservation tables 1n different
modules of processor 100.

Turning to FIG. 2, an embodiment of a resolving data
contention between transactions based on priority 1s 1llus-
trated. As stated above, data contention/collision may be
detected through use of hardware, software, or a combination
thereof. The diagram in FIG. 2 illustrates resolution of trans-
actional data collision between two cores as time progresses
according to timeline 201. In one embodiment, each core or
processing element 1s associated with a prionty. In other
words, a transaction being executed on a processing element
1s associated with a priority, which may be stored by the
processing element for the transaction.

As an example, core 210 and core 220 each include a
counter, whose value 1s incremented upon successiul comple-
tion of a transaction or upon committing a transaction. Incre-
menting a counter may include updating the counter by a
single integer interval, or other amount. For example, a
counter 1s mcremented to a higher value then the highest
counter value referenced 1n a snoop request during execution
of the transaction. In other words, a local counter 1s set to at
least the highest counter value observed during contlict reso-
lution. To i1llustrate, 1f a local counter for core 0 1s set to a value
of 10 and a snoop request from core 1 references a counter
value 01771, then upon commiutting the transaction on core 0,
core (’s counter value, 1n one embodiment, 1s incremented to
7’72. In response to reaching a maximum value of the counter,
the counter 1s reset when the current transaction 1s commuitted.
When a data collision 1s detected, such as multiple transac-
tions reading, writing, updating, or otherwise accessing the
same data location, 1n one embodiment, the transaction with
the higher priority 1s allowed to continue while the other
transactions are aborted and retried.

To 1llustrate a potential live lock event, FIG. 2 illustrates a
first counter associated with core 210 1s at a maximum value
at time 212 and a second counter associated with core 220 1s
also at a maximum value at time 222. Core 220, which 1s
executing a transaction, sends snoop request 221. In one
embodiment, snoop request 221 includes reference to a data
location and/or address, as well as a reference to the counter
value 222 associated with the transaction causing snoop
request 221. Note that snoop request 221 may be sent to a
shared memory, such as a cache, which 1s shared by cores 210
and 220, or to a private cache of core 210, which 1s used to
track accesses during execution of a transaction.

Here, a data collision 1s detected, when snoop request 221
indicates an access to a location previously accessed by core
210 during execution of a pending transaction. In one
embodiment, the transaction with the higher priority is
allowed to continue execution, while the lower priority trans-
action 1s aborted. Here, priority 1s based on the values of
counters. For example, the counter with the lower value 1s
considered the higher priority counter. In one embodiment,
snoop request 221 includes a reference to counter value 222
on core 220. Therefore, core 210 compares 1ts counter value
with the counter value referenced by snoop request 221 to
determine which one receives priority to continue execution.
However, as illustrated, both counter values are at a maximum
value.

In one embodiment, when counter values are equal, the
core with the lower core 1dentification (ID) value 1s allowed to
continue execution, while the higher core ID value 1s aborted.
Here, core 210 has a lower 1D of zero, so 1t 1s determined that
the transaction executing on core 210 1s allowed to continue.
As aresult, a fail message 211 1s sent back to core 220, which
causes the transaction on core 220 to abort 223. The transac-
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tion executing on core 210 1s able to commat 213, and start
execution of new transaction 214. In addition, the transaction
that just failed on core 220 may retry 224, which initiates
subsequent snoop 225.

Yet, in response to the transaction on core 210 successiully
completing or that the counter 1s at a max value, the counter 1s
reset 215. Therefore, if snoop 225 results 1n another data
collision, the new ftransaction executing on core 210 1is
allowed to continue, as 1ts counter value of zero 1s less than the
maximum value of core 220’°s counter. As can be seen, this
process potentially repeats, which results in a live-lock event.
Here, the live-lock entails core 210 being allowed to continue
execution of transactions, while core 220 spins on retrying a
single transaction. Theoretically, core 220 may never make
any progress 1f data collisions with lower counter value and/or
lower core 1D transactions.

Turning to FIG. 3, an embodiment of a flow diagram for a
method of avoiding live lock events 1s illustrated. In flow 310,
a processing element, such as a core, executes a transaction.
In response to committing the transaction, 1t 1s determined 1f
a counter 1s at a maximum value 1n flow 320. If the counter 1s
not at a maximum value, then the processing element will
continue normal execution, such as execution of other trans-
actions 1n return to flow 310. In contrast, if the counter value
1s at a maximum value, then 1n flow 330 a reset message will
be sent to other processing elements.

Furthermore, in flow 340 all counters associated with
counting committed transactions will be reset, 1n response to
the reset message, including a counter associated with the
processing element initiating the reset message. Next, in flow
350 other transactions are executed normally after the reset.

Returming to the discussion of FI1G. 2 in relation to the flow
diagram of FIG. 3, when transaction commit 213 occurs, 1n
this embodiment, instead of resetting only core 210°s counter,
a reset message 1s sent to core 220 to reset 1ts counter. As a
result, on the next data collision, core 210 may be given
priority due to both cores being reset to zero; however, the
subsequent data collision will result 1n core 220 receiving
priority, as it has the lowest counter value of zero. Therefore,
core 220 spinning on the same transaction for more than two
consecutive collisions within a transaction due to a maximum
counter value may be avoided.

In one embodiment, priority may be provided to a core or
multiple cores 1n response to a reset. For example, 1n FIG. 2,
if core 210 and 220 are reset to zero, then during the next data
collision core 210 still retains priority due to core 1D, as
discussed above. However, 1n one embodiment, all process-
ing elements receiving the reset signal are reset to a higher
value than the processing element generating the reset signal.

As an example, after commit 213, core 210 sends a reset
signal. Core 220, having received the reset signal, resets to a
value of one, while core 210, having generated the reset
signal, resets to a value of zero. Upon a next data collision, 1t
1s ensured that core 210 retains priority, as it 1s set to a lower
value. In the alternative, all processing elements receiving the
reset signal are reset to a lower value than the processing
clement generating the reset signal. Here, other processing
elements, such as core 220, which were aborted due to a
priority conflict are given higher priority on a reset to ensure
execution of 1ts pending transaction.

Referring next to FIG. 4, another embodiment of a flow
diagram for a method of avoiding live-lock event 1s 1llus-
trated. Stmilarly to FIG. 3, in flow 410 and 420 transactions
are executed and a local max value 1s checked. Here, if the
counter 1s at a maximum value, then 1n flow 430 a failure at
maximum value (FMV) counter 1s checked. If the FMV

counter 1s at a maximum value, then as 1n FIG. 3, a reset
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message 1s sent 1n tlow 440, local/FMV counters are reset in
flows 450/460, and other transactions are executed in flow
470. In contrast, 1fthe FMV counter 1s not at a max value, then
the transaction 1s retried in tlow 480 and incremented 1n tlow
490.

Essentially, the double counters allow for a transaction to
fail and retry a predetermined number of times, when the
local counter 1s at a maximum value. Therefore, instead of
resetting all counters every time any local counter reaches a
maximum and resets, a transaction 1s allowed to fail a prede-
termined number of times, when its associated local counter
1s at a maximum value, before resetting. To illustrate, 1n FIG.
2, the counter for core 220 1s at a maximum value at 222.
Theretfore, upon failure 223 an FMV counter 1s incremented.
Therefore, counter for core 210 may be reset, due to commiut
213: however, the counter for core 220 does not reset until the
FMYV counter reaches a maximum or predetermined value.

As 1llustrated above, live-lock events may be avoided. In
one embodiment, live-lock events are avoided through reset-
ting all counters upon commitment of a transaction causing a
reset of a single counter at a maximum value. In another
embodiment, 1t 1s determined first 1 a live-lock event 1s occur-
ring through utilization of an FMV counter, which counts a
number of failures while at a maximum value. Therefore,
torward progress 1s allowed for multiple processing elements
concurrently executing multiple transactions with potential
data contlicts.

The embodiments of methods, software, firmware or code
set forth above may be implemented via instructions or code
stored on a machine-accessible or machine readable medium
which are executable by a processing element. A machine-
accessible/readable medium includes any mechanism that
provides (1.¢., stores and/or transmits) information in a form
readable by a machine, such as a computer or electronic
system. For example, a machine-accessible medium includes
random-access memory (RAM), such as static RAM
(SRAM) or dynamic RAM (DRAM); read-only memory
(ROM); magnetic or optical storage medium; and tlash
memory devices. As another example, a machine-accessible/
readable medium includes any mechanism that recerves, cop-

1es, stores, transmits, or otherwise manipulates electrical,
optical, acoustical or other form of propagated signals (e.g.,
carrier waves, inirared signals, digital signals); etc including
the embodiments of methods, software, firmware or code set
forth above.

Reference throughout this specification to “one embodi-
ment” or “an embodiment” means that a particular feature,
structure, or characteristic described in connection with the
embodiment 1s imncluded 1n one embodiment of the present
invention and 1s not required to be present in all discussed
embodiments. Thus, the appearances of the phrases “in one
embodiment” or “in an embodiment” 1n various places
throughout this specification are not necessarily all referring
to the same embodiment. Furthermore, the particular fea-
tures, structures, or characteristics may be combined 1n any
suitable manner in one or more embodiments.

In the foregoing specification, a detailed description has
been given with reference to specific exemplary embodi-
ments. It will, however, be evident that various modifications
and changes may be made thereto without departing from the
broader spirit and scope of the invention as set forth 1n the
appended claims. The specification and drawings are, accord-
ingly, to be regarded in an 1illustrative sense rather than a
restrictive sense. Furthermore, the foregoing use of embodi-
ment and other exemplarily language does not necessarily
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refer to the same embodiment or the same example, but may
refer to different and distinct embodiments, as well as poten-
tially the same embodiment.

What 1s claimed 1s:

1. An apparatus comprising:

a first hardware processing element configured to execute a
first transaction;

a second hardware processing element configured to con-
currently execute a second transaction;

a {irst counter associated with the first processing element,
the first counter configured to be updated in response to
successiul commitment of the first transaction;

a second counter associated with the second processing
clement, the second counter configured to be updated 1n
response to successiul commitment of the second trans-
action; and

reset logic to mitiate a first reset signal to reset the second
counter 1n response to a successiul commitment of the
first transaction when the first counter holds a predeter-
mined value:

priority logic configured to determine the first transaction
1s to recerve priority to continue execution and the sec-
ond transaction 1s to be aborted 1n response to a data
contlict between the first and the second transaction
based on a first counter value from the first counter and
a second counter value from the second counter.

2. The apparatus of claim 1, wherein the reset logic 1s also
to mitiate a second reset signal to reset the first counter in
response to a successiul commitment of the second transac-
tion when the second counter holds the predetermined value.

3. The apparatus of claim 2, wherein updating the first and
the second counter includes incrementing the first and the
second counter, and wherein the predetermined value 1s a
maximum value of the first and the second counters.

4. The apparatus of claim 2, wherein the priority logic
configured to determine the first transaction 1s to receive
priority to continue execution and the second transaction 1s to
be aborted 1n response to a data conflict between the first and
the second transaction based on a first counter value from the
first counter and a second counter value from the second
counter comprises the priority logic being configured to

determine the first transaction 1s to receive priority to con-
tinue execution and the second transaction 1s to be
aborted 1n response to the data conflict between the first
and the second transaction if the first counter value 1s
lower than the second counter value;

determine the second transaction 1s to receive priority to
continue execution and the first transaction 1s to be
aborted 1n response to a data contlict between the first
and the second transaction if the second counter value 1s
lower than the first counter value; and

determine the first transaction 1s to recetve priority to con-
tinue execution and the second transaction 1s to be
aborted 1n response to a data contlict between the first
and the second transaction 1f the first counter value 1s the
same as the second counter value and the first processing,
clement 1s associated with a lower i1dentification (ID)
value.

5. The apparatus of claim 4, further comprising snoop logic
to 1ssue a snoop request for a data location referenced 1n the
second transaction, wherein the snoop logic 1s to mclude a
reference to a value held by the second counter 1n the snoop
request.

6. The apparatus of claim 3, wherein the priority logic 1s
also to compare the reference to the value held by the second
counter 1n the snoop request with a value held by the first
counter.
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7. An apparatus comprising;:

a first hardware processing element to execute a first trans-
action;

a first counter associated with the first processing element
to be updated 1n response to successiul commitment of
the first transaction, the first counter to represent a num-
ber of transactions committed for the first processing
element:;

a second counter associated with the first processing ele-
ment to be updated 1n response to an abort of the first
transaction, the second counter to represent a number of
transactions aborted by the first processing element; and

reset logic to initiate a reset of at least the first counter 1n
response to the second counter holding a first predeter-
mined value.

8. The apparatus of claim 7, wherein the second counter 1s
to be updated 1n response to an abort of the first transaction
when the first counter holds a second predetermined value.

9. The apparatus of claim 8, wherein the first counter to be
updated 1n response to successiul commitment of the first
transaction includes incrementing the first counter in
response to successiul commitment of the first transaction,
and wherein the second counter to be updated 1n response to
an abort of the first transaction when the first counter holds a
second predetermined value includes incrementing the sec-
ond counter in response to an abort of the first transaction
when the first counter holds a maximum value.

10. The apparatus of claim 9, wherein the first counter 1s a
successful transaction counter, and wherein the second
counter 1s a failure at maximum value counter.

11. The apparatus of claim 7, wherein the reset logic 1s also
to 1mtiate a reset of the second counter 1n response to suc-
cessiul commitment of the first transaction.

12. The apparatus of claim 7, wherein the reset logic 1s also
to 1mtiate a reset of another counter associated with a pro-
cessing element other than the first processing element 1n
response to the second counter holding the first predeter-
mined value.

13. A method comprising:

tracking a first number of transactions successtully com-
mitted by a first processing element with first tracking
logic;

tracking a second number of transactions successiully
committed by a second processing element with second
tracking logic;

resetting the first tracking logic and the second tracking
logic in response to the first processing element success-
fully commuitting a transaction when the first number 1s
at a maximum value of the first tracking logic; and

providing priority to a first transaction executing on the
first processing element when a data conflict occurs
between the first transaction executing on the first pro-
cessing element and a second transaction executing on
the second processing element based on the first number
of transactions successiully committed in comparison to
the second number of transactions successiully commiut-
ted.

14. The method of claim 13, wherein the first tracking logic
includes a first counter to be incremented 1n response to the
first processing element successfully committing a transac-
tion, and the second tracking logic includes a second counter
to be incremented 1n response to the second processing ele-
ment successiully committing a transaction, and wherein the
maximum value of the first tracking logic includes a maxi-
mum value of the first counter.

15. The method of claim 13, wherein providing priority to
a first transaction executing on the first processing element
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when a data conflict occurs between the first transaction
executing on the first processing element and a second trans-
action executing on the second processing element based on
the first number of transactions successiully committed in
comparison to the second number of transactions success-
tully committed comprises:
providing priority to a {irst transaction executing on the
first processing element when a data contlict occurs
between the first transaction and a second transaction
executing on the second processing element in response
to the first number being less than the second number,
and providing priority to the first transaction in response
to the first number being equal to the second number and
a first ID value associated with the first processing ele-
ment being lower than a second ID value associated with
the second processing element.
16. A method comprising:
incrementing a first commait counter associated with a first
processing element 1n response to successiully commuit-
ting a first transaction associated with the first process-
ing element, the first commit counter to track a first
number of transactions committed for the first process-
ing clement from a previous reset;

5
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incrementing an abort counter associated with a first pro-

cessing element 1n response to aborting a second trans-
action associated with the first processing element and
the first commit counter being at a maximum value;

resetting the first commit counter to a default value 1n

response to the abort counter being incremented to an
abort threshold value:; and

providing priority to the first transaction upon a data con-

tlict with another transaction executing on another pro-
cessing element 1n response to the first commit counter
being closer to the default value than a second commut
counter associated with the another processing element
upon the data contlict.

17. The method of claim 16, wherein the first processing

15 elementi1s one of a plurality of processing elements present on

20

a single physical integrated circuit.

18. The method of claim 16, wherein the first processing
clement 1s selected from a group consisting of a processor, a
core, and a thread.



	Front Page
	Drawings
	Specification
	Claims

