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DYNAMICALLY CONFIGURED
COPROCESSOR FOR DIFFERENT
EXTENDED INSTRUCTION SET
PERSONALITY SPECIFIC TO APPLICATION
PROGRAM WITH SHARED MEMORY
STORING INSTRUCTIONS INVISIBLY
DISPATCHED FROM HOST PROCESSOR

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application relates generally to the following
co-pending and commonly-assigned U.S. Patent Applica-
tions: 1) U.S. patent application Ser. No. 11/841,406 filed
Aug. 20, 2007 titled “MULTI-PROCESSOR SYSTEM HAV-
ING AT LEAST ONE PROCESSOR THAT COMPRISES A
DYNAMICALLY RECONFIGURABLE INSTRUCTION
SE'T”, 2) U.S. patent application Ser. No. 11/854,432 filed
Sep. 12, 2007 titled “DISPATCH MECHANISM FOR DIS-
PATCHING INSTRUCTIONS FROM A HOST PROCES-
SOR TO A CO-PROCESSOR”, 3) U.S. patent application
Ser. No. 11/847,169 filed Aug. 29, 2007 titled “COMPILER
FOR GENERATING AN EXECUTABLE COMPRISING
INSTRUCTIONS FOR A PLURALITY OF DIFFERENT
INSTRUCTION SETS”, 4) U.S. patent application Ser. No.
11/969,792 filed Jan. 4, 2008 titled “MICROPROCESSOR
ARCHITECTURE HAVING ALTERNATIVE MEMORY
ACCESS PATHS”, 5) U.S. patent application Ser. No.
12/186,344 filed Aug. 5, 2008 titled “MEMORY INTER-
LEAVE FOR HETEROGENEOUS COMPUTING™, 6) U.S.
patent application Ser. No. 12/186,372 filed Aug. 5, 2008
titled “MULTIPLE DATA CHANNEL MEMORY MOD-
ULE ARCHITECTURE”, and 7) concurrently-filed U.S.
patent application Ser. No. 12/263,232 titled “DYNAMI-
CALLY-SELECTABLE VECTOR REGISTER PARTI-
TIONING™, the disclosures of which are hereby incorporated
herein by reference.

TECHNICAL FIELD

The following description relates generally to dynami-
cally-reconfigurable processors, and more specifically to a
co-processor infrastructure that supports dynamically-modi-
fiable personalities, particularly dynamically-modifiable vec-
tor processing personalities.

BACKGROUND AND RELATED ART

1. Background

The popularity of computing systems continues to grow
and the demand for improved processing architectures thus
likewise continues to grow. Ever-increasing desires for
improved computing performance and efficiency has led to
various 1mproved processor architectures. For example,
multi-core processors are becoming more prevalent in the
computing industry and are being used 1n various computing
devices, such as servers, personal computers (PCs), laptop
computers, personal digital assistants (PDAs), wireless tele-
phones, and so on.

In the past, processors such as CPUs (central processing
units) featured a single execution unit to process mnstructions
of a program. More recently, computer systems are being
developed with multiple processors 1n an attempt to improve
the computing performance of the system. In some instances,
multiple mndependent processors may be implemented in a
system. In other instances, a multi-core architecture may be
employed, in which multiple processor cores are amassed on
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2

a single integrated silicon die. Each of the multiple processors
(e.g., processor cores) can simultaneously execute program
instructions. This parallel operation of the multiple proces-
sors can improve performance of a variety of applications.

A multi-core CPU combines two or more independent
cores 1nto a single package comprised of a single piece silicon
integrated circuit (IC), called a die. In some instances, a
multi-core CPU may comprise two or more dies packaged
together. A dual-core device contains two independent micro-
processors and a quad-core device contains four micropro-
cessors. Cores 1n a multi-core device may share a single
coherent cache at the highest on-device cache level (e.g., L2
for the Intel® Core 2) or may have separate caches (e.g.
current AMD® dual-core processors). The processors also
share the same interconnect to the rest of the system. Each
“core’” may independently implement optimizations such as
superscalar execution, pipelimng, and multithreading. A sys-
tem with A cores 1s typically most effective when 1t 1s pre-
sented with N or more threads concurrently.

One processor architecture that has been developed utilizes
multiple processors (e.g., multiple cores), which are homo-
geneous. The processors are homogeneous 1n that they are all
implemented with the same fixed 1nstruction sets (e.g., Intel’s
x86 1struction set, AMD’s Opteron instruction set, etc.).
Further, the homogeneous processors access memory 1n a
common way, such as all of the processors being cache-line
oriented such that they access a cache block (or “cache line”)
of memory at a time.

In general, a processor’s mstruction set refers to a list of all
instructions, and all their variations, that the processor can
execute. Such instructions may include, as examples, arith-
metic 1nstructions, such as ADD and SUBTRACT; logic
mstructions, such as AND, OR, and NOT; data instructions,
such as MOVE, INPUT, OUTPUT, LOAD, and STOREFE; and
control flow instructions, such as GOTO, i1if X then GOTO,
CALL, and RETURN. Examples of well-known instruction
sets mclude x86 (also known as IA-32), x86-64 (also known
as AMD64 and Intel® 64), AMD’s Opteron, VAX (Digital
Equipment Corporation), IA-64 (Itanium ), and PA-RISC (HP
Precision Architecture).

Generally, the mstruction set architecture 1s distinguished
from the microarchitecture, which 1s the set of processor
design techniques used to implement the instruction set.
Computers with different microarchitectures can share a
common nstruction set. For example, the Intel® Pentium and
the AMD® Athlon implement nearly identical versions of the
x86 1nstruction set, but have radically different internal
microarchitecture designs. In all these cases the instruction
set (e.g., x86) 1s fixed by the manufacturer and directly hard-
ware 1implemented, in a semiconductor technology, by the
microarchitecture. Consequently, the instruction set 1s tradi-
tionally fixed for the lifetime of this implementation.

FIG. 1 shows a block-diagram representation of an exem-
plary prior art system 100 1n which multiple homogeneous
processors (or cores) are implemented. System 100 com-
prises two subsystems: 1) a main memory (physical memory)
subsystem 101 and 2) a processing subsystem 102 (e.g., a
multi-core die). System 100 includes a {irst microprocessor
core 104 A and a second microprocessor core 104B. In this
example, microprocessor cores 104A and 104B are homoge-
neous 1n that they are each implemented to have the same,
fixed instruction set, such as x86. In addition, each of the
homogeneous microprocessor cores 104 A and 104B access
main memory 101 in a common way, such as via cache block
accesses, as discussed hereafter. Further, in this example,
cores 104A and 104B are implemented on a common die 102.
Main memory 101 1s communicatively connected to process-
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ing subsystem 102. Main memory 101 comprises a common
physical address space that microprocessor cores 104A and
104B can each reference.

As shown further 1n FIG. 1, a cache 103 1s also imple-
mented on die 102. Cores 104A and 104B are each commu-
nicatively coupled to cache 103. As 1s well known, a cache
generally 1s memory for storing a collection of data duplicat-
ing original values stored elsewhere (e.g., to main memory
101) or computed earlier, where the original data 1s expensive
to fetch (due to longer access time) or to compute, compared
to the cost of reading the cache. In other words, a cache 103
generally provides a temporary storage area where frequently
accessed data can be stored for rapid access. Once the data 1s
stored 1n cache 103, future use can be made by accessing the
cached copy rather than re-fetching the original data from
main memory 101, so that the average access time 1s shorter.
In many systems, cache access times are approximately 50
times faster than similar accesses to main memory 101. Cache
103, therefore, helps expedite data access that the micro-
cores 104A and 104B would otherwise have to fetch from
main memory 101.

In many system architectures, each core 104A and 104B
will have 1ts own cache also, commonly called the “L1”
cache, and cache 103 1s commonly referred to as the “L2”
cache. Unless expressly stated herein, cache 103 generally
refers to any level of cache that may be implemented, and thus
may encompass L1, L2, etc. Accordingly, while shown for
case of illustration as a single block that1s accessed by both of
cores 104A and 104B, cache 103 may include L1 cache that
1s implemented for each core.

In many system architectures, virtual addresses are uti-
lized. In general, a virtual address 1s an address 1dentiiying a
virtual (non-physical) entity. As 1s well-known 1n the art,
virtual addresses may be utilized for accessing memory. Vir-
tual memory 1s a mechanism that permits data that 1s located
on a persistent storage medium (e.g., disk) to be referenced as
if the data was located 1n physical memory. Translation tables,
maintained by the operating system, are used to determine the
location of the reference data (e.g., disk or main memory).
Program instructions being executed by a processor may refer
to a virtual memory address, which 1s translated into a physi-
cal address. To minimize the performance penalty of address
translation, most modern CPUs include an on-chip Memory
Management Unit (MMU), and maintain a table of recently
used virtual-to-physical translations, called a Translation
Look-aside Buffer (TLB). Addresses with entries in the TLB
require no additional memory references (and therefore time)
to translate. However, the TLB can only maintain a fixed
number of mappings between virtual and physical addresses;
when the needed translation is not resident in the TLB, action
will have to be taken to load 1t 1n.

In some architectures, special-purpose processors that are
often referred to as “accelerators™ are also implemented to
perform certain types of operations. For example, a processor
executing a program may oifload certain types of operations
to an accelerator that 1s configured to perform those types of
operations efficiently. Such hardware acceleration employs
hardware to perform some function faster than 1s possible in
solftware runming on the normal (general-purpose) CPU.
Hardware accelerators are generally designed for computa-
tionally mtensive software code. Depending upon granular-
ity, hardware acceleration can vary from a small function unit
to a large functional block like motion estimation in MPEG2.
Examples of such hardware acceleration include blitting
acceleration functionality 1n graphics processing units
(GPUs) and instructions for complex operations in CPUSs.
Such accelerator processors generally have a fixed instruction

10

15

20

25

30

35

40

45

50

55

60

65

4

set that differs from the instruction set of the general-purpose
processor, and the accelerator processor’s local memory does
not maintain cache coherency with the general-purpose pro-
CESSOT.

A graphics processing umt (GPU) 1s a well-known
example of an accelerator. A GPU 1s a dedicated graphics
rendering device commonly implemented for a personal
computer, workstation, or game console. Modern GPUs are
very ellicient at mampulating and displaying computer
graphics, and their highly parallel structure makes them more
clfective than typical CPUs for a range of complex algo-
rithms. A GPU implements a number of graphics primitive
operations 1n a way that makes running them much faster than
drawing directly to the screen with the host CPU. The most
common operations for early two-dimensional (2D) com-
puter graphics include the BitBLT operation (combines sev-
eral bitmap patterns using a RasterOp), usually in special
hardware called a “blitter”, and operations for drawing rect-
angles, triangles, circles, and arcs. Modern GPUs also have
support for three-dimensional (3D) computer graphics, and
typically include digital video-related functions.

Thus, for instance, graphics operations of a program being,
executed by host processors 104A and 104B may be passed to
a GPU. While the homogeneous host processors 104A and
104B maintain cache coherency with each other, as discussed
above with FIG. 1, they do not maintain cache coherency with
accelerator hardware of the GPU. In addition, the GPU accel-
crator does not share the same physical or virtual address
space ol processors 104A and 104B.

In multi-processor systems, such as exemplary system 100
of FI1G. 1, one or more of the processors may be implemented
as a vector processor. In general, vector processors are pro-
cessors which provide high level operations on vectors—that
1s, linear arrays of data. As one example, a typical vector
operation might add two 64-entry, floating point vectors to
obtain a single 64-entry vector. In efiect, one vector mstruc-
tion 1s generally equivalent to a loop with each iteration
computing one of the 64 elements of the result, updating all
the indices and branching back to the beginning. Vector
operations are particularly usetul for certain types of process-
ing, such as image processing or processing of certain scien-
tific or engineering applications where large amounts of data
1s desired to be processed 1n generally a repetitive manner. In
a vector processor, the computation of each result 1s generally
independent of the computation of previous results, thereby
allowing a deep pipeline without generating data dependen-
cies or contlicts. In essence, the absence of data dependencies
1s determined by the particular application to which the vector
processor 1s applied, or by the compiler when a particular
vector operation 1s specified. Traditional vector processors
typically include a pipeline scalar unit together with a vector
unit. In vector-register processors, the vector operations,
except loads and stores, use the vector registers.

In most systems, memory 101 may hold both programs and
data. Each has unique characteristics pertinent to memory
performance. For example, when a program 1s being
executed, memory traffic 1s typically characterized as a series
of sequential reads. On the other hand, when a data structure
1s being accessed, memory traific 1s usually characterized by
a stride, 1.¢., the difference 1n address from a previous access.
A stride may be random or fixed. For example, repeatedly
accessing a data element 1n an array may result 1n a fixed
stride of two. As 1s well-known 1n the art, a lot of algorithms
have a power of 2 stride. Accordingly, without some memory
interleave management scheme being employed, hot spots
may be encountered within the memory 1n which a common
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portion of memory (e.g., a given bank of memory) 1s accessed
much more often than other portions of memory.

As 1s well-known 1n the art, memory 1s oiten arranged 1nto
independently controllable arrays, often referred to as
“memory banks.” Under the control of a memory controller, a
bank can generally operate on one transaction at a time. The
memory may be implemented by dynamic storage technol-
ogy (such as “DRAMS”), or of static RAM technology. In a
typical DRAM chip, some number (e.g., 4, 8, and possibly 16)
of banks of memory may be present. A memory interleaving
scheme may be desired to minimize one of the banks of
memory from being a “hot spot” of the memory.

As discussed above, many compute devices, such as the
Intel x86 or AMD x86 microprocessors, are cache-block ori-
ented. Today, a cache block of 64 bytes 1n size 1s typical, but
compute devices may be implemented with other cache block
s1zes. A cache block 1s typically contained all on a single
hardware memory storage element, such as a single dual
in-line memory module (DIMM). As discussed above, when
the cache-block oriented compute device accesses that
DIMM, 1t presents one address and 1s returned the entire
cache-block (e.g., 64 bytes).

Some compute devices, such as certain accelerator coms-
pute devices, may not be cache-block oriented. That 1s, those
non-cache-block oriented compute devices may access por-
tions of memory (e.g., words) on a much smaller, finer granu-
larity than 1s accessed by the cache-block oriented compute
devices. For instance, while a typical cache-block oriented
compute device may access a cache block of 64 bytes for a
single memory access request, a non-cache-block oriented
compute device may access a Word that 1s 8 bytes in size 1n a
single memory access request. That 1s, the non-cache-block
oriented compute device 1n this example may access a par-
ticular memory DIMM and only obtain 8 bytes from a par-
ticular address present in that DIMM.

As discussed above, traditional multi-processor systems
have employed homogeneous compute devices (e.g., proces-
sor cores 104 A and 104B of FIG. 1) that each access memory
101 1n a common manner, such as via cache-block oriented
accesses. While some systems may further include certain
heterogeneous compute elements, such as accelerators (e.g., a
GPU), the heterogeneous compute element does not share the
same physical or virtual address space of the homogeneous
compute elements.

2. Related Art

More recently, some systems have been developed that
include heterogeneous compute elements. For mstance, the
above-identified related U.S. patent applications (the disclo-
sures of which are incorporated herein by reference) disclose
various 1implementations of exemplary heterogeneous com-
puting architectures. In certain implementations, the archi-
tecture comprises a multi-processor system having at least
one host processor and one or more heterogeneous co-pro-
cessors. Further, 1n certain implementations, at least one of
the heterogeneous co-processors may be dynamically recon-
figurable to possess any of various different instruction sets.
The host processor(s) may comprise a fixed instruction set,
such as the well-known x86 instruction set, while the co-
processor(s) may comprise dynamically reconfigurable logic
that enables the co-processor’s mstruction set to be dynami-
cally reconfigured. In this maimer, the host processor(s) and
the dynamically reconfigurable co-processor(s) are heteroge-
neous processors because the dynamically reconfigurable co-
processor(s) may be configured to have a different instruction
set than that of the host processor(s).

According to certain embodiments, the co-processor(s)
may be dynamically reconfigured with an instruction set for
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use in optimizing performance of a given executable. For
instance, i certain embodiments, one of a plurality of pre-
defined instruction set 1images may be loaded onto the co-
processor(s) for use by the co-processor(s) in processing a
portion of a given executable’s istruction stream. Thus, cer-
tain 1instructions being processed for a given application may
be off-loaded (or “dispatched”) from the host processor(s) to
the heterogeneous co-processor(s) which may be configured
to process the off-loaded istructions 1n a more etficient man-
ner.

Thus, 1n certain implementations, the heterogeneous co-
processor(s) comprise a different instruction set than the
native istruction set of the host processor(s). Further, in
certain embodiments, the instruction set of the heterogeneous
co-processor(s) may be dynamically reconfigurable. As an
example, 1n one implementation at least three (3) mutually-
exclusive instruction sets may be pre-defined, any of which
may be dynamically loaded to a dynamically-reconfigurable
heterogeneous co-processor. As an illustrative example, a first
pre-defined instruction set might be a vector nstruction set
designed particularly for processing 64-bit floating point
operations as are commonly encountered 1n computer-aided
simulations; a second pre-defined instruction set might be
designed particularly for processing 32-bit floating point
operations as are commonly encountered in signal and image
processing applications; and a third pre-defined instruction
set might be designed particularly for processing cryptogra-
phy-related operations. While three illustrative pre-defined
instruction sets are mention above, i1t should be recognized
that embodiments of the present invention are not limited to
the exemplary 1nstruction sets mentioned above. Rather, any
number of mnstruction sets of any type may be pre-defined in
a similar manner and may be employed on a given system 1n
addition to or instead of one or more of the above-mentioned
pre-defined mstruction sets.

In certain implementations, the heterogeneous compute
clements (e.g., host processor(s) and co-processor(s)) share a
common physical and/or virtual address space of memory. As
an example, a system may comprise one or more host proces-
sor(s) that are cache-block oriented, and the system may
further comprise one or more compute elements co-pro-
cessor(s) that are non-cache-block oriented. For instance, the
cache-block oriented compute element(s) may access main
memory in cache blocks of, say, 64 bytes per request, whereas
the non-cache-block oriented compute element(s) may access
main memory via smaller-sized requests (which may be
referred to as “sub-cache-block™ requests), such as 8 bytes per
request.

One exemplary heterogeneous computing system that may
include one or more cache-block oriented compute elements
and one or more non-cache-block oriented compute elements
1s that disclosed 1n co-pending U.S. patent application Ser.
No. 11/841,406 filed Aug. 20, 2007 titled “MULTI-PROCES-
SOR SYSTEM HAVING AT LEAST ONE PROCESSOR
THAT COMPRISES A DYNAMICALLY RECONFIG-
URABLE INSTRUCTION SET”, the disclosure of which 1s
incorporated herein by reference. For instance, in such a
heterogeneous computing system, one or more host proces-
sors may be cache-block oriented, while one or more of the
dynamically-reconfigurable co-processor(s) may be non-
cache-block oriented, and the heterogencous host
processor(s) and co-processor(s) share access to the common
main memory (and share a common physical and virtual
address space of the memory).

Another exemplary heterogeneous computing system 1s
that disclosed 1n co-pending U.S. patent application Ser. No.

11/969,792 filed Jan. 4, 2008 titled “MICROPROCESSOR
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ARCHITECTURE HAVING ALTERNATIVE MEMORY
ACCESS PATHS” (hereinatfter “the *792 application”), the

disclosure of which is imncorporated herein by reference. In
particular, the *792 application discloses an exemplary het-
erogeneous compute system in which one or more compute
clements (e.g., host processors) are cache-block oriented and
one or more heterogeneous compute elements (e.g., co-pro-
cessors) are sub-cache-block oriented to access data at a finer
granularity than the cache block.

While the above-referenced related applications describe
exemplary heterogeneous computing systems in which
embodiments of the present invention may be implemented,
the concepts presented herein are not limited 1n application to
those exemplary heterogeneous computing systems but may
likewise be employed 1n other systems/architectures.

SUMMARY

Thus, exemplary systems such as those disclosed in the
above-referenced U.S. patent applications have been devel-
oped that mclude one or more dynamically-reconfigurable
co-processors, and any of various different personalities can
be loaded onto the configurable part of the co-processor(s). In
this context, a “personality” generally refers to a set of
instructions recognized by the co-processor.

The present invention 1s directed generally to a co-proces-
sor infrastructure that supports dynamically-modifiable per-
sonalities. In particular, certain embodiments provide a co-
processor 1nirastructure that supports dynamically-
modifiable vector processing personalities.

According to embodiments of the present invention, a co-
processor 1s provided that includes one or more application
engines that are dynamically configurable to any of a plurality
of different personalities. For instance, the application
engine(s) may comprise one or more reconfigurable function
units (e.g., the reconfigurable function units may be 1mple-
mented with FPGAs, etc.) that can be dynamically configured
to implement a desired extended 1nstruction set.

The co-processor also comprises an inirastructure that 1s
common to all the different personalities (e.g., diflerent vec-
tor processing personalities) to which application engines
may be configured. In certain embodiments, the infrastruc-
ture comprises an instruction decode inirastructure that 1s
common across all of the personalities. In certain embodi-
ments, the infrastructure comprises a memory management
infrastructure that 1s common across all of the personalities.
Such memory management infrastructure may comprise a
virtual memory and/or physical memory inirastructure that 1s
common across all of the personalities. For instance, 1in cer-
tain embodiments the physical memory inirastructure, such
as DDR2 SDRAM (double-data-rate two synchronous
dynamic random access memory), number of read and write
points, etc., remains common across all of the personalities.
Further, the methods of accessing physical memory (after
virtual memory translation) remain common across all of the
personalities. In certain embodiments, the infrastructure
comprises a system interface infrastructure (e.g., for interfac-
ing with a host processor) that 1s common across all of the
personalities. In certain embodiments, the infrastructure
comprises a scalar processing unit having a base set of
instructions that are common across all of the personalities.
All or any combination of (e.g., any one or more of) an
instruction decode infrastructure, memory management
inirastructure, system interface inirastructure, and scalar pro-
cessing unit may be implemented to be common across all of
the personalities 1n a given co-processor 1in accordance with
embodiments of the present invention.
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Accordingly, embodiments of the present invention pro-
vide a co-processor that comprises one or more application
engines that can be dynamically configured to a desired per-
sonality. The co-processor turther comprises a common inira-
structure that 1s common across all of the personalities, such
as an 1nstruction decode infrastructure, memory management
inirastructure, system interface inirastructure, and/or scalar
processing unit (that has a base set of instructions). Thus, the
personality of the co-processor can be dynamically modified
(by reconfiguring one or more application engines of the
co-processor), while the common infrastructure of the co-
processor remains consistent across the various personalities.

In certain implementations, the personality of a dynami-
cally-reconfigurable co-processor can be modified by loading
different extensions (or “extended instructions™) to a base set
of 1nstructions. For instance, in one implementation, a
canonical set of instructions 1s implemented 1n the co-proces-
sor (€.g., 1n a scalar processing unit of the co-processor), and
those canonical instructions provide a base set of mnstructions
that remain present on the co-processor no matter what fur-
ther personality or extended instructions are loaded onto the
co-processor. Such canonical 1nstructions may include scalar
loads, scalar stores, branch, shift, loop, and/or other types of
instructions that are desired to be available in all personalities.

According to certain embodiments, the co-processor sup-
ports at least two dynamically-configurable general-purpose
vector processing personalities. In general, a vector process-
ing personality refers to a personality (1.e., a set of instruc-
tions recognized by the co-processor) that includes specific
instructions for vector operations. The first general-purpose
vector processing personality to which the co-processor may
be configured 1s referred to as single precision vector (SPV),
and the second general-purpose vector processing personality
to which the co-processor may be configured 1s referred to as
double precision vector (DPV).

For different markets or different types of applications,
specific extensions of the canomical instructions may be
developed to be ellicient at solving a particular problem for
the corresponding market. Thus, a corresponding “personal-
1ity”” may be developed for a given type of application. As an
example, many seismic data processing applications (e.g.,
“o11 and gas™ applications) require single-precision type vec-
tor processing operations, while many financial applications
require double-precision type vector processing operations
(e.g., financial applications commonly need special instruc-
tions to be able to do intrinsics, log, exponential, cumulative
distribution function, etc.). Thus, a SPV personality may be
provided for use by the co-processor in processing applica-
tions that desire single-precision type vector processing
operations (e.g., seismic data processing applications), and a
DPYV personality may be provided for use by the co-processor
in processing applications that desire double-precision type
vector processing operations (e.g., financial applications).

Depending on the type of application being executed at a
given time, the co-processor may be dynamically configured
to possess the desired vector processing personality. As one
example, upon starting execution of an application that
desires a SPV personality, the co-processor may be checked
to determine whether 1t possesses the desired SPV personal-
ity, and 11 1t does not, 1t may be dynamically configured with
the SPV personality for use in executing at least a portion of
the operations desired in executing the application. Thereat-
ter, upon starting execution of an application that desires a
DPV personality, the co-processor may be dynamically
reconfigured to possess the DPV personality for use in
executing at least a portion of the operations desired 1n
executing that application. In certain embodiments, the per-
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sonality of the co-processor may even be dynamically modi-
fied during execution of a grven application. For instance 1n
certain embodiments, the co-processor’s personality may be
configured to a first personality (e.g., SPV personality) for
execution of a portion of the operations desired by an execut-
ing application, and then the co-processor’s personality may
be dynamically reconfigured to another personality (e.g.,
DPV personality) for execution of a different portion of the
operations desired by an executing application. The co-pro-
cessor can be dynamically configured to possess a desired
personality for optimally supporting operations (e.g., accu-
rately, efficiently, etc.) of an executing application. For
example, the co-processor may be dynamically configured to
possess a SPV personality, and then may later be dynamically
reconfigured to possess a DPV personality or other desired
personality, such as an optimized integer *2 (16 bit) person-
ality.

In one embodiment, the various vector processing person-
alities to which the co-processor can be configured provide
extensions to the canonical ISA (instruction set architecture)
that support vector oriented operations. The SPV and DPV
personalities are approprate for single and double precision
workloads, respectively, with data organized as single or
multi-dimensional arrays. Thus, according to one embodi-
ment of the present invention, a co-processor 1s provided that
has an infrastructure that can be leveraged across various
different vector processing personalities, which may be
achieved by dynamically modifying function umts of the
co-processor, as discussed turther herein.

While SPV and DPV are two exemplary vector processing
personalities to which the co-processor may be dynamically
configured to possess in certain embodiments, the scope of
the present invention 1s not limited to those exemplary vector
processing personalities; but rather the co-processor may be
similarly dynamically reconfigured to any number of other
vector processing personalities (and/or non-vector process-
ing personalities that do not comprise 1nstructions for vector
oriented operations) in addition to or instead of SPV and DPV
in accordance with embodiments of the present invention.

According to one embodiment, a co-processor comprises
at least one application engine having at least one config-
urable function unit that 1s configurable to any of a plurality of
different application-specific personalities. The co-processor
also comprises an infrastructure that 1s common to all the
plurality of different application-specific personalities. For
instance, the co-processor may comprise a memory manage-
ment infrastructure that 1s common to all the plurality of
different application-specific personalities. Such memory
management infrastructure may comprise a virtual memory
and/or physical memory infrastructure that 1s common across
all of the personalities. As another example, the co-processor
may comprise a system interface inirastructure for interfac-
ing with a host processor, wherein the system interface infra-
structure 1s common to all the plurality of different applica-
tion-specific personalities. In certain embodiments, the
application-specific personalities are vector processing per-
sonalities, such as SPV or DPV.

According to another embodiment, a system for processing
data comprises at least one application engine having at least
one configurable function unit that 1s configurable to any of a
plurality of different application-specific personalities. The
system further comprises a virtual memory and 1nstruction
decode mnirastructure that 1s common to all of the plurality of
different application-specific personalities. Again, the appli-
cation-specific personalities to which the function unit may
be configured may comprise vector processing personalities,

such as SPV or DPV.
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According to one embodiment, a method for processing
data comprises configuring an existing virtual memory and
instruction decode infrastructure that 1s common to a plurality
ol personalities with application-specific function units. The
method may further comprise receiving reconfiguration
information pertaining to a desired application-specific per-
sonality. The reconfiguration information may be received
dynamically during execution of an application for which the
application-specific personality 1s desired. In certain embodi-
ments, the function units are compatible with the framework
of the infrastructure including virtual memory, instruction
structure and a register structure. And, the application-spe-
cific personalities to which the function units may be config-
ured may comprise vector processing personalities, such as
SPV or DPV.

The foregoing has outlined rather broadly the features and
technical advantages of the present invention in order that the
detailed description of the mvention that follows may be
better understood. Additional features and advantages of the
invention will be described hereinafter which form the sub-
ject of the claims of the invention. It should be appreciated by
those skilled in the art that the conception and specific
embodiment disclosed may be readily utilized as a basis for
moditying or designing other structures for carrying out the
same purposes ol the present mmvention. It should also be
realized by those skilled 1n the art that such equivalent con-
structions do not depart from the spirit and scope of the
invention as set forth in the appended claims. The novel
features which are believed to be characteristic of the mven-
tion, both as to its organization and method of operation,
together with further objects and advantages will be better
understood from the following description when considered
in connection with the accompanying figures. It 1s to be
expressly understood, however, that each of the figures 1s
provided for the purpose of illustration and description only
and 1s not intended as a definition of the limits of the present
invention.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present inven-
tion, reference 1s now made to the following descriptions
taken 1n conjunction with the accompanying drawings in
which:

FIG. 1 shows an exemplary prior art multi-processor sys-
tem employing a plurality of homogeneous processors;

FIG. 2 shows an exemplary multi-processor system
according to one embodiment of the present invention,
wherein a co-processor comprises one or more application
engines that are dynamically configurable to any of a plurality
of different personalities (e.g., vector processing personali-
ties); and

FIG. 3 shows an exemplary implementation of application
engines of the co-processor of FIG. 2 being configured to
possess a single precision vector (SPY) personality.

DETAILED DESCRIPTION

FIG. 2 shows an exemplary multi-processor system 200
according to one embodiment of the present invention. Exem-
plary system 200 comprises a plurality of processors, such as
one or more host processors 21 and one or more co-processors
22. As disclosed 1n the related U.S. patent applications refer-
enced herein above, the host processor(s) 21 may comprise a
fixed 1nstruction set, such as the well-known x86 1nstruction
set, while the co-processor(s) 22 may comprise dynamically
reconfigurable logic that enables the co-processor’s mstruc-
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tion set to be dynamically reconfigured. Of course, embodi-
ments of the present invention are not limited to any specific
instruction set that may be implemented on host processor(s)
21. FIG. 2 further shows, 1 block-diagram form, an exem-
plary architecture of co-processor 22 that may be mmple-
mented 1n accordance with one embodiment of the present
invention.

It should be recognized that embodiments of the present
invention may be adapted to any appropriate scale or granu-
larity within a given system. For instance, a host processor(s)
21 and co-processor(s) 22 may be implemented as separate
processors (e.g., which may be implemented on separate inte-
grated circuits). In other architectures, such host processor(s)
21 and co-processor(s) 22 may be implemented within a
single integrated circuit (1.e., the same physical die).

While one co-processor 22 1s shown for ease of 1llustration
in FI1G. 2, 1t should be recognized that any number of such
co-processors may be implemented in accordance with
embodiments of the present invention, each of which may be
dynamically reconfigurable to possess any of a plurality of
different personalities (wherein the different co-processors
may be configured with the same or with different personali-
ties). For instance, two or more co-processors 22 may be
configured with different personalities (1nstruction sets) and
may each be used for processing instructions from a common
executable (application). For example, an executable may
designate a {irst instruction set to be configured onto a first of
the co-processors and a second instruction set to be config-
ured onto a second of the co-processors, wherein a portion of
the executable’s instruction stream may be processed by the
host processor 21 while other portions of the executable’s
istruction stream may be processed by the first and second
CO-Processors.

In the exemplary architecture shown 1n FIG. 2, co-proces-
sor 22 comprises one or more application engines 202 that
have dynamically-reconfigurable personalities, and co-pro-
cessor 22 further comprises an infrastructure 211 that 1s com-
mon to all of the different personalities to which application
engines 202 may be configured. Exemplary embodiments of
application engines 202 and inifrastructure 211 are described
turther herein.

In the illustrative example of FIG. 2, co-processor 22
includes four application engines 202A-202D. While four
application engines are shown 1n this illustrative example, the
scope of the present invention 1s not limited to any specific
number of application engines; but rather any number (one or
more) of application engines may be implemented 1n a given
co-processor 1n accordance with embodiments of the present
invention. Each application engine 202A-202D i1s dynami-
cally reconfigurable with any of various different personali-
ties, such as by loading the application engine with an
extended instruction set. Each application engine 202A-
202D 1s operable to process instructions of an application
(e.g., instructions of an application that have been dispatched
from the host processor 21 to the co-processor 22) 1n accor-
dance with the specific personality (e.g., extended 1nstruction
set) with which the application engine has been configured.
The application engines 202 may comprise dynamically
reconiigurable logic, such as field-programmable gate arrays
(FPGAs), that enable a different personality to be dynami-
cally loaded onto the application engine. Exemplary tech-
niques that may be employed in certain embodiments for
dynamically reconfiguring a co-processor (e.g., application
engine) with a desired personality (instruction set) are
described further in the above-referenced U.S. patent appli-
cations, the disclosures of which are incorporated herein by
reference.

10

15

20

25

30

35

40

45

50

55

60

65

12

As discussed 1n U.S. patent application Ser. No. 11/854,
432 filed Sep. 12, 2007 titled “DISPATCH MECHANISM

FOR DISPATCHING INSTRUCTIONS FROM A HOST
PROCESSOR TO A CO-PROCESSOR?”, the disclosure of
which has been incorporated herein by reference, in certain
embodiments the co-processor may be dynamically recontig-
ured with a desired personality (e.g., having an extended
instruction set) by loading such personality/extended instruc-
tion set to the co-processor from persistent data storage. In
certain embodiments, a plurality of mutually exclusive
istruction sets (or “personalities”) may be stored to persis-
tent data storage, and any of those personalities may be
loaded (in 1ts entirety) to the co-processor (e.g., to the recon-
figurable application engine) during system run-time. Such
personalities may be stored as separate data files from the

executable file, such as shown 1n FIG. 5 of U.S. patent appli-
cation Ser. No. 11/854.,432.

As discussed above, 1n this context a “personality” gener-
ally refers to a set of 1nstructions recognized by the applica-
tion engine 202. In certain implementations, the personality
of a dynamically-reconfigurable application engine 202 can
be modified by loading different extensions (or “extended
instructions™) thereto 1n order to supplement or extend a base
set of instructions. For instance, in one implementation, a
canonical (or “base”) set of instructions 1s implemented 1n the
co-processor (€.g., 1n scalar processing umt 206), and those
canonical 1nstructions provide a base set of 1nstructions that
remain present on the co-processor 22 no matter what further
personality or extended instructions are loaded onto the appli-
cation engines 202. As noted above, for different markets or
types of applications, specific extensions of the canonical
instructions may be desired 1n order to improve elliciency
and/or other characteristics of processing the application
being executed. Thus, for instance, different extended
instruction sets may be developed to be elfficient at solving
particular problems for various types of applications. As an
example, many seismic data processing applications require
single-precision type vector processing operations, while
many financial applications require double-precision type
vector processing operations. Scalar processing unit 206 may
provide a base set of instructions (a base ISA) that are avail-
able across all personalities, while any of various different
personalities (or extended nstruction sets) may be dynami-
cally loaded onto the application engines 202 in order to
configure the co-processor 22 optimally for a given type of
application being executed.

In the example of FIG. 2, infrastructure 211 of co-proces-
sor 22 includes host interface 204, instruction fetch/decode
unmit 205, scalar processing unit 206, crossbar 207, commu-
nication paths (bus) 209, memory controllers 208, and
memory 210. Host interface 204 1s used to communicate with
the host processor(s) 21. In certain embodiments, host inter-
face 204 may deal with dispatch requests for receiving
instructions dispatched from the host processor(s) for pro-
cessing by co-processor 22. Further, 1n certain embodiments,
host mterface 204 may receive memory interface requests
between the host processor(s) 21 and the co-processor
memory 210 and/or between the co-processor 22 and the host
processor memory. Host interface 204 1s connected to cross-
bar 2077, which acts to communicatively interconnect various
functional blocks, as shown.

When co-processor 22 1s executing instructions, instruc-
tion fetch decode unit 205 fetches those mstructions from
memory and decodes them. Instruction fetch/decode unit 2035
may then send the decoded instructions to the application
engines 202 or to the scalar processing unit 206.




US 8,205,066 B2

13

Scalar processing unit 206, 1n this exemplary embodiment,
1s where the canonical, base set of instructions are executed.
While one scalar processing unit 1s shown 1n this i1llustrative
example, the scope of the present invention 1s not limited to
one scalar processing unit; but rather any number (one or
more) ol scalar processing units may be implemented 1n a
given co-processor i accordance with embodiments of the
present invention. Scalar processing unit 206 1s also con-
nected to the crossbar 207 so that the canonical loads and
stores can go either through the host interface 204 to the host
processor(s) memory or through the crossbar 207 to the co-
processor memory 210.

In this exemplary embodiment, co-processor 22 further
includes one or more memory controllers 208. While eight
memory controllers 208 are shown in this illustrative
example, the scope of the present invention 1s not limited to
any specific number of memory controllers; but rather any
number (one or more) of memory controllers may be imple-
mented 1n a given co-processor in accordance with embodi-
ments of the present invention. In this example, memory
controllers 208 perform the function of receving a memory
request from either the application engines 202 or the cross-
bar 207, and the memory controller then performs a transla-
tion from virtual address to physical address and presents the
request to the memory 210 themselves.

Memory 210, 1n this example, comprises a suitable data
storage mechanism examples of which include, but are not
limited to, either a standard dual in-line memory module
(DIMM) or a multi-data channel DIMM such as that
described further in co-pending and commonly-assigned
U.S. patent application Ser. No. 12/186,3772 filed Aug. 3, 2008
titled “MULTIPLE DATA CHANNEL MEMORY MOD-
ULE ARCHITECTURE.” the disclosure of which 1s hereby
incorporated herein by reference. While a pair of memory
modules are shown as associated with each of the eight
memory controllers 208 for a total of sixteen memory mod-
ules forming memory 210 in this illustrative example, the
scope of the present invention 1s not limited to any specific
number of memory modules; but rather any number (one or
more) of memory modules may be associated with each
memory controller for a total of any number (one or more)
memory modules that may be implemented 1n a given co-
processor 1n accordance with embodiments of the present
invention. Communication links (or paths) 209 interconnect
between the crossbar 207 and memory controllers 208 and
between the application engines 202 and the memory con-
trollers 208.

In this example, co-processor 22 also includes a direct
input/output (I/O) interface 203. Direct I/ O interface 203 may
be used to allow external I/O to be sent directly into the
application engines 22, and then from there, 11 desired, writ-
ten 1nto memory system 210. Direct I/O interface 203 of this
exemplary embodiment allows a customer to have mput or
output from co-processor 22 directly to their interface, with-
out going through the host processor’s 1/O sub-system. In a
number of applications, all I/O may be done by the host
processor(s) 21, and then potentially written into the co-
processor memory 210. An alternative way of bringing input
or output from the host system as a whole 1s through the direct
I/O mterface 203 of co-processor 22. Direct I/O interface 203
can be much higher bandwidth than the host interface itself.
In alternative embodiments, such direct I/O interface 203 may
be omitted from co-processor 22.

In operation of the exemplary co-processor 22 of FIG. 2,
the application engines 202 are configured to implement the
extended 1nstructions for a desired personality. In one
embodiment, an 1mage of the extended istructions 1s loaded
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into FPGAs of the application engines, thereby configuring
the application engines with a corresponding personality. In
one embodiment, the personality implements a desired vector
processing personality, such as SPV or DPV.

In one embodiment, the host processor(s) 21 executing an
application dispatches certain 1nstructions of the application
to co-processor 22 for processing. To perform such dispatch,
the host processor(s) 21 may issue a write to a memory
location being monitored by the host interface 204. In
response, the host interface 204 recognizes that the co-pro-
cessor 1s to take action for processing the dispatched nstruc-
tion(s). In one embodiment, host interface 204 reads ina set of
cache lines that provide a description of what 1s suppose to be
done by co-processor 22. The host interface 204 gathers the
dispatch information, which may 1dentify the specific person-
ality that 1s desired, the starting address for the routine to be
executed, as well as potential input parameters for this par-
ticular dispatch routine. Once it has read 1n the information
from the cache, the host interface 204 will initialize the start-
ing parameters in the host interface cache. It will then give the
instruction fetch/decode unit 205 the starting address of
where 1t 1s to start executing instructions, and the fetch/de-
code unit 205 starts fetching istructions at that location. If
the instructions fetched are canonical instructions (e.g., scalar
loads, scalar stores, branch, shift, loop, and/or other types of
instructions that are desired to be available 1n all personali-
ties), the fetch/decode unit 205 sends those instructions to the
scalar processor 206 for processing; and if the fetched
instructions are instead extended instructions of an applica-
tion engine’s personality, the fetch decode unit 205 sends
those nstructions to the application engines 202 for process-
ng.

Exemplary techniques that may be employed for dispatch-
ing instructions of an executable from a host processor 21 to
the co-processor 22 for processing in accordance with certain
embodiments are described further in co-pending and com-

monly-assigned U.S. patent application Ser. No. 11/854,432
filed Sep. 12, 2007 titled “DISPATCH MECHANISM FOR

DISPATCHING INSTRUCTIONS FROM A HOST PRO-
CESSOR TO A CO-PROCESSOR?”, the disclosure of which
1s 1corporated herein by reference. For example, as dis-
cussed further in U.S. patent application Ser. No. 11/854,432,
according to certain embodiments of the present invention, a
technique 1s employed to effectively trick the host processor’s
instruction set (e.g., the x86 1nstruction set) to support ofl-
loading to the co-processor an executable’s istructions that
may not benatively supported by the host processor’s mstruc-
tion set. According to certain embodiments, the instruction
set of the host processor (e.g., x86) 1s fixed and 1s 1mple-
mented by the hardware micro-architecture. The host instruc-
tion set cannot be modified once a design of the host proces-
sor’s micro-architecture 1s completed and manufactured.
According to one embodiment of the present invention, the
host processor 1s effectively “tricked” by causing the host
processor to store the executable’s instructions that are to be
olf-loaded to the co-processor to a pre-designated portion of
memory, which may be referred to herein as a user command
block (UCB). The co-processor monitors the UCB to detect
when 1nstructions have been stored thereto, and upon detec-
tion of istructions in the UCB, the co-processor processes
those instructions with the instruction set with which 1t has
been configured. In this manner, when generating a given
executable, a compiler can include 1n the executable mstruc-
tions that may not be supported by the host processor’s
instruction set but which are instead intended for processing
under a different instruction set (that the co-processor 1s to be
configured to have). The compiler can also include 1n the
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executable’s 1nstruction stream an instruction to cause the
host processor to load certain instructions of the executable
(such as those instructions that are intended for processing by
the co-processor’s instruction set) to the UCB. Such a loading
operation 1s supported by the host processor’s native mstruc-
tion set, although processing of those istructions that 1t loads
to the UCB may not be supported by the host processor’s
native instruction set.

As mentioned further herein, 1n certain embodiments, the
executable may specily which of a plurality of different per-
sonalities the co-processor 1s to be configured to possess for
processing operations of the executable. Exemplary tech-
niques that may be employed for generating and executing,
such an executable in accordance with certain embodiments
ol the present invention are described further 1in co-pending
and commonly-assigned U.S. patent application Ser. No.

11/847,169 filed Aug. 29, 2007 titled “COMPILER FOR
GENERATING AN EXECUTABLE COMPRISING
INSTRUCTIONS FOR A PLURALITY OF DIFFERENT
INSTRUCTION SETS”, the disclosure of which 1s incorpo-
rated herein by reference. Thus, similar techniques may be
employed 1n accordance with certain embodiments of the
present invention for generating an executable that specifies
one or more vector processing personalities desired for the
co-processor to possess when executing such executable, and
for dispatching certain instructions of the executable to the
co-processor for processing by 1ts configured vector process-
ing personality.

As the example of FIG. 2 illustrates, embodiments of the
present invention provide a co-processor that includes one or
more application engines having dynamically-reconfigurable
personalities (e.g., vector processing personalities), and the
co-processor further includes an infrastructure (e.g., infra-
structure 211) that 1s common across all of the personalities.
In certain embodiments, the infrastructure 211 comprises an
instruction decode infrastructure that 1s common across all of
the personalities, such as 1s provided by instruction fetch/
decode unit 205 of exemplary co-processor 22 of FIG. 2. In
certain embodiments, the infrastructure 211 comprises a
memory management infrastructure that 1s common across
all of the personalities, such as 1s provided by memory con-
trollers 208 and memory 210 of exemplary co-processor 22 of
FIG. 2. In certain embodiments, the infrastructure 211 com-
prises a system interface infrastructure that 1s common across
all of the personalities, such as 1s provided by host interface
204 of exemplary co-processor 22 of FIG. 2. In addition, 1n
certain embodiments, the infrastructure 211 comprises a sca-
lar processing unit having a base set of instructions that are
common across all of the personalities, such as 1s provided by
scalar processing unit 206 of exemplary co-processor 22 of
FIG. 2. While the exemplary implementation of FI1G. 2 shows
infrastructure 211 as including an instruction decode 1nfra-
structure (e.g., instruction fetch/decode umt 205), memory
management infrastructure (e.g., memory controllers 208 and
memory 210), system interface infrastructure (e.g., host inter-
face 204), and scalar processing unit 206 that are common
across all of the personalities, the scope of the present mnven-
tion 1s not limited to implementations that have all of these
infrastructures common across all of the personalities; but
rather any combination (one or more) of such infrastructures
may be implemented to be common across all of the person-
alities 1n a given co-processor 1n accordance with embodi-
ments ol the present mvention.

According to one embodiment of the present invention, the
co-processor 22 supports at least two general-purpose vector
processing personalities. The first general-purpose vector
processing personality 1s referred to as single-precision vec-
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tor (SPV), and the second general-purpose vector processing
personality 1s referred to as double-precision vector (DPV).
These personalities provide extensions to the canonical ISA
that support vector oriented operations. The personalities are
appropriate for single and double precision workloads,
respectively, with data organized as single or multi-dimen-
sional arrays.

An exemplary implementation of application engines

202A-202D of co-processor 22 of FIG. 2 are shown 1n FI1G. 3.

In particular, FIG. 3 shows an example in which the applica-
tion engines 202 are configured to have a single precision
vector (SPV) personality. Thus, the exemplary personality of
application engines 202 1s optimized for a seismic processing
application (e.g., o1l and gas application) or other type of
application that desires single-precision vector processing.

In each application engine, there are function pipes 302. In
this example, each application engine has eight function pipes
(labeled 1p0-1p7). While eight function pipes are shown for
cach application engine 1n this 1llustrative examples the scope
ol the present invention 1s not limited to any specific number
of function pipes; but rather any number (one or more) of
function pipes may be implemented 1n a given application
engine 1n accordance with embodiments of the present inven-
tion. Thus, while thirty-two total function pipes are shown as
being implemented across the four application engines 1n this
illustrative example, the scope of the present invention 1s not
limited to any specific number of function pipes; but rather
any total number of function pipes may be implemented 1n a
given co-processor 1 accordance with embodiments of the
present invention.

Further, in each application engine, there 1s crossbar, such
as crossbar 301, which 1s used to communicate or pass
memory requests and responses to/from the function pipes
302. Requests from the function pipes 302 go through the
crossbar 301 and then to the memory system (e.g., memory
controllers 208 of FI1G. 2).

The function pipes 302 are where the computation 1s done
within the application engine. Each function pipe receives
istructions to be executed from the corresponding applica-
tion engine’s dispatch block 303. For instance, function pipes
tp0-1p7 of application engine 202 A each receives instructions
to be executed from dispatch block 303 of application engine
202A. As discussed further hereafter, each function pipe 1s
configured to include one or more function units for process-
ing mstructions. Function pipe 1p3 of FIG. 3 i1s expanded to
show more detail of its exemplary configuration 1 block-
diagram form. Other function pipes Ip0-1p2 and tp4-1p7 may
be similarly configured as discussed below for function pipe
ip3.

The mstruction queue 308 of function pipe 1p3 recerves
istructions from dispatch block 303. In one embodiment,
there 1s one nstruction queue per application engine that
resides 1n the dispatch logic 303 of FIG. 3. The instructions
are pulled out of instruction queue 308 one at a time, and
executed by the function units within the function pipe 1p3.
All function units within an application engine perform their
functions synchronously. This allows all function units of an
application engine to be fed by the application engine’s single
istruction queue 308. In the example of FIG. 3, there are
three Tunction units within the function pipe 1p3, labeled 305,
306 and 307. Each function unit 1n this vector infrastructure
performs an operation on one or more vector registers from
the vector register file 304, and may then write the result back
to the vector register file 304 1n yet another vector register.
Thus, the function units 305-307 are operable to receive vec-
tor registers of vector register file 304 as operands, process
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those vector registers to produce a result, and store the result
into a vector register of a vector register file 304.

In the illustrated example, function unit 305 1s a load store
function unit, which 1s operable to perform loading and stor-
ing of vector registers to and from memory (e.g., memory 210
of FI1G. 2) to the vector register file 304. So, function unit 3035
1s operable to transier from the memory 210 (ol FIG. 2) to the
vector register file 304 or from the vector register file 304 to
memory 210. Function unit 306, 1n this example, provides a
miscellaneous function unit that 1s operable to perform vari-
ous miscellaneous vector operations, such as shiits, certain
logical operations (e.g., XOR), population count, leading
zero count, single-precision add, divide, square root opera-
tions, etc. In the 1llustrated example, function unit 307 pro-
vides functionality of single-precision vector “floating point
multiply and accumulate” (FMA) operations. In this
example, four of such FMA operations can be performed
simultaneously 1n the FMA function block 307.

While each function pipe 1s configured to have one load/
store function unit 305, one miscellaneous function unit 306,
and one FMA function unit 307 (that includes four FMA
blocks), 1n other embodiments the function pipes may be
configured to have other types of function units 1n addition to
or instead of those exemplary function blocks 305-307 shown
in FI1G. 3. Also, while each function pipe 1s configured to have
three tfunction units 305, 306, and 307 1n the example of FIG.
3, 1n other embodiments the function pipes may be configured
to have any number (one or more) of function units.

According to one embodiments the SPV instruction set
extensions include the following classes of 1nstructions:

vector single precision compares;

vector quad word integer compares;

vector, single precision ad complex, single loads and

stores,

vector double word and quad word, integer loads and

stores;

vector, single precision and complex single arithmetic

operators;

vector integer negate, add, subtract, and multiply arithmet-

1CS;

vector  data

float—1nteger);
vector partitioning;

vector under mask operation;

vector mndex generation; and

vector reductions (min, max, sum).

While 1llustrative classes of instructions are mentioned above
as being included 1n the SPV personality, it should be recog-
nized that embodiments of the present invention are not lim-
ited to the exemplary instruction classes mentioned above.
Rather, any number of instruction classes may be imple-
mented for a given vector processing personality in addition
to or instead of one or more of the above-mentioned 1nstruc-
tion classes.

As discussed further herein, each function unit can be
dynamically configurable to possess its corresponding func-
tionality. For instance, a desired extended instruction set
image (e.g., single precision vector personality in the
example of FIG. 3) 1s loaded onto the application engines
202A-202D to configure the function units as described 1n
this example. For other personalities, the application engine’s
function units may be configured differently. For example,
the application engine’s function units may be reconfigured
to implement a double-precision vector processing personal-
ity. So, 1n the exemplary embodiment of FIG. 3, the function
units 306 and 307, 1n particular, may be dynamically recon-
figured to implement operations for the desired DPY person-

conversions  (integer—tloat,
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ality instead of the SPA personality. The application engines
may comprise FPGAs or other dynamically configurable
logic, such that they can be dynamaically configured with any
of various different personalities. Thus, 1n certain embodi-
ments, the dynamic function units are reconfigurable by load-
Ing a new personality.

Further, 1n certain embodiments, any of a plurality of dif-
ferent vector register partitioning modes may be dynamically
selected for use by co-processor 22, which may enable co-
processor 22 to better support a given vector processing per-
sonality. In certain embodiments, the dynamic vector parti-
tioning 1s selectable by setting a field within a register
(without necessarily changing personalities). For instance, a
first type of vector register partitioning may be desired for the
SPV personality, while a different type of vector register
partitioning may be desired for the DPV personality. Or,
different types of vector register partitioning may be desired
for different operations being performed by a given vector
processing personality. And, the vector register partitioning
mode may be dynamically selected 1n certain embodiments,
such as disclosed further in concurrently-filed U.S. patent
application Ser. No. 12/263,232 titled “DYNAMICALLY-
SELECTABLE VECTOR REGISTER PARTITIONING”,
the disclosure of which 1s incorporated herein by reference.

According to one embodiment, the DPV 1nstruction set
extensions include the following classes of mnstructions:

Vector double precision compares

Vector quad word integer compares

Vector double precision loads and stores

Vector double word and quad word, integer load and stores

Vector double precision arithmetic operators

Vector imteger negate, add, subtract, and multiply arith-

metic

Vector  data

float—=1nteger)

Vector partitioning

Vector under mask operation

Vector index generation

Vector reductions (min, max, sum).

While illustrative classes of instructions are mentioned above
as being included 1n the DPV personality, 1t should be recog-
nized that embodiments of the present invention are not lim-
ited to the exemplary instruction classes mentioned above.
Rather, any number of instruction classes may be imple-
mented for a given vector processing personality i addition
to or mstead of one or more of the above-mentioned instruc-
tion classes.

One example of operation of a function unit configured
according to a given personality may be a boolean AND
operation 1n which the function unit may pull out two vector
registers ifrom the vector register file 304 to be ANDed
together. Each vector register may have multiple data ele-
ments. In the exemplary architecture of FI1G. 3, there are up to
1024 data elements. Each function pipe has 32 elements per
vector register. Since there are 32 function pipes that each
have 32 elements per vector register, that provides a total of
1024 elements per vector register across all four application
engines 202A-202D. Within an individual function pipe, each
vector register has 32 elements 1n this exemplary architecture,
and so when an instruction 1s executed from the mstruction
queue 308, those 32 clements, 11 they are all needed, are
pulled out and sent to a function umt (e.g., function unit 305,
306, or 307).

As another exemplary operation, 1n the illustrated example
of FIG. 3, FMA function unit 307 may receive as operands
two sets ol vector registers from vector register file 304.
Function unit 307 would perform the requested operation (as

conversion  (integer—tloat,

type
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specified by mstruction queue 308), e.g., either tloating point
multiply, floating point add, or a combination of multiply and
add; and send the result back to a third vector register in the
vector register file 304.

While each vector register includes 32 data elements 1n this
illustrative example, the scope of the present invention 1s not
limited to any specific size of vector registers; but rather any
s1ze vector registers (possessing two or more data elements)
may be used 1n a given function unit or application engine in
accordance with embodiments of the present invention. Fur-
ther, each vector register may be a one-dimensional, two-
dimensional, three-dimensional, or even other “N”’-dimen-
sional array of data 1n accordance with embodiments of the
present invention. In addition, 1n certain embodiments,
dynamically selectable vector register partitioning may be
employed, such as disclosed in concurrently-filed and com-
monly-assigned U.S. patent application Ser. No. 12/263,232
titled “DYNAMICALLY-SELECTABLE VECTOR REGIS-
TER PARTITIONING™, the disclosure of which 1s imncorpo-
rated herein by reference.

In the exemplary architecture of FI1G. 3, all of the function
pipes Ip0-1p7 of each application engine are exact replica-
tions. Thus, in the illustrated example, there are thirty-two
copies of the function pipe (as shown in detail for 1p3 of
application engine 202A) across the four application engines
202A-202D, and they are all executing the same instructions
because this 1s a SIMD 1nstruction set. So, one instruction
may go 1nto each of the mstruction queue(s) of the application
engines, and the function pipes all execute the 1nstruction(s)
on their respective data. Again, 1n certain embodiments, there
1s one 1nstruction queue per application engine.

As mentioned above, the application engines 202 have
dynamically configurable personalities, wherein a desired
extended 1nstruction set image (e.g., single precision vector
personality in the example of FIG. 3) 1s loaded onto the
application engines 202A-202D to configure the function
units to provide the functionality as described in this example.
For other personalities, such as other vector processing per-
sonalities, the application engines’ function units may be
configured differently. In certain embodiments of the present
invention, the co-processor infrastructure 1s leveraged across
multiple vector processing personalities, and the difference
between the multiple vector processing personalities that
leverage the co-processor infrastructure 1s the specific opera-
tions that are performed 1n the function units (e.g., function
units 305-307) of the application engines 202. In general the
load and store function unit 305 may be maintained across
various different vector processing personalities, but the
operations performed by function units 306 and 307 will vary
depending on the specific vector processing personality
selected (e.g., SPV, DPV, etc.). For istance, in the SPV
personality, function unit 307 1s configured to perform single-
precision tloating multiply accumulate operations, whereas
in the DPV personality function unit 307 1s configured to
perform double-precision type floating multiply accumulate
operations.

For a SPV personality, the FMA blocks 309A-309D in
function unit 307 all have the same single-precision FMA
block in the illustrative example of FIG. 3. So, the FMA
blocks 309A-309D are homogeneous 1n this example. How-
ever, 1t could be that for certain markets or application-types,
the customer does not need four FMA blocks (1.e., thatmay be
considered a waste of resources), and so they may choose to
implement different operations than four FMAs 1n the func-
tion unit 307. Thus, another vector processing personality
may be available for selection for configuring the function
units, which would implement those different operations
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desired. Accordingly, 1n certain embodiments, the personality
of each application engine (or the functionality of each appli-
cation engine’s function units) 1s dynamically configurable to
any of various predefined vector processing personalities that
1s best suited for whatever the application that 1s being
executed.

Thus, the co-processor infrastructure 211 can be leveraged
across multiple different vector processing personalities, with
the only change being to reconfigure the operations of the
function units within the application engines 202 according to
the desired personality. In certain implementations, the co-
processor inirastructure 211 may remain constant, possibly
implemented 1n silicon where 1t 1s not reprogrammable, but
the function units are programmable. And, this provides a
very etficient way of having a vector personality with recon-
figurable function units.

While certain embodiments of the present invention have
been described as employing field-programmable gate arrays
within a co-processor to enable the co-processor to be
dynamically reconfigured to possess any of a plurality of
different personalities (e.g., different vector processing per-
sonalities), other configurable logic may be employed 1n
accordance with embodiments of the present invention. For
instance, in certain embodiments an application-specific inte-
grated circuit (ASIC) may be employed on the co-processor
which may be configurable to possess any of a plurality of
different personalities. In certain implementations, the con-
figurable logic (e.g., ASIC) may not be readily field-program-
mable, but may instead be configured/programmed during
manufacturing of the processor system. For instance, a manu-
facturer may select one or more of various different available
vector processing personalities to load onto the configurable
logic of the co-processor based, for example, on the targeted
market and/or applications to be executed on the processor
system. As discussed above, the co-processor infrastructure
(e.g., host interface 1nfrastructure, mstruction decode inira-
structure, and/or memory management infrastructure) can
remain common across all of the different personalities. Thus,
embodiments of the present invention enable the one config-
uring the co-processor (whether a manufacturer or other con-
figurer that configures the co-processor personality prior to
implementation within a customer system, or dynamic con-
figuration of the co-processor after implemented in a cus-
tomer system, such as through dynamic configuration to a
specific personality i1dentified by a given executable being
executed by the customer system) to leverage the common
co-processor inirastructure and selectively configure the co-
processor to any of a plurality of different personalities (e.g.,
different vector processing personalities).

Although the present invention and 1ts advantages have
been described 1n detail, 1t should be understood that various
changes, substitutions and alterations can be made herein
without departing from the spirit and scope of the invention as
defined by the appended claims. Moreover, the scope of the
present application 1s not intended to be limited to the par-
ticular embodiments of the process, machine, manufacture,
composition of matter, means, methods and steps described in
the specification. As one of ordinary skill in the art wall
readily appreciate from the disclosure of the present mnven-
tion, processes, machines, manufacture, compositions of
matter, means, methods, or steps, presently existing or later to
be developed that perform substantially the same function or
achieve substantially the same result as the corresponding
embodiments described herein may be utilized according to
the present invention. Accordingly, the appended claims are
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intended to include within their scope such processes,
machines, manufacture, compositions of matter, means,
methods, or steps.

What 1s claimed 1s:

1. A method for processing data comprising:

initiating an executable file on a manufactured host proces-

sor of a system, said manufactured host processor hav-
ing a predefined instruction set that 1s fixed such that 1t 1s
not modifiable by a consumer, wherein the executable
file contains native instructions that are natively sup-
ported by the host processor’s predefined instruction set
and extended instructions that are notnatively supported
by the host processor’s predefined instruction set,
wherein said extended instructions are present in the
executable file as data to be stored to amemory by one or
more of said native instructions;

conflguring an application engine of a co-processor of the

system, at system run-time, to fully possess a selected
one of a plurality of different application-specific per-
sonalities, wherein the co-processor has an existing vir-
tual memory and mstruction decode infrastructure that 1s
common across all of the plurality of different applica-
tion-specific personalities, and wherein each of the plu-
rality of different application-specific personalities
comprises an extended instruction set having extended
instructions that are not natively supported by the host
processor’s instruction set, thereby extending the fixed
instruction set of the host processor; and

processing the instructions of the executable file, wherein

said native mnstructions of the executable file are pro-
cessed by the host processor and said extended 1nstruc-
tions of the executable file are processed by the co-
processor, and wherein said host processor unknowingly
dispatches said extended instructions of the executable
file to the co-processor as a result of executing one or
more native mstructions of the executable file for writing
the extended 1nstructions to a designated portion of said
memory that 1s accessible by said co-processor.

2. The method of claim 1 wherein said configuring com-
prises configuring at least one field-programmable gate array
(FPGA) of said application engine.

3. The method of claim 1 further comprising;:

receiving, by the co-processor, reconfiguration informa-

tion pertaining to the selected personality.

4. The method of claim 3 wherein the receiving is per-
tformed dynamically during execution of an application for
which the selected application-specific personality 1s desired.

5. The method of claim 1 wherein the application engine
comprises function units that are configurable at system run-
time to any of the plurality of different application-specific
personalities, wherein the function units are compatible with
the framework of the infrastructure, said infrastructure
including virtual memory, physical memory, 1nstruction
structure and a register structure.

6. The method of claim 1 wherein said plurality of person-
alities comprise a plurality of vector processing personalities.

7. The method of claim 6 wherein said plurality of vector
processing personalities comprise at least one of: a single-
precision vector processing personality and a double-preci-
s10n vector processing personality.

8. The method of claim 1 further comprising:

identifying, from information contained in the executable

file, the selected one of the plurality of different appli-
cation-specific personalities for configuring the applica-
tion engine of the co-processor.
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9. The method of claim 1 wherein the host processor 1s
implemented on a first integrated circuit, and wherein the
co-processor 1s implemented external to said first integrated
circuit.

10. The method of claim 1 wherein the plurality of different
application-specific personalities are mutually-exclusive.

11. The method of claim 10 wherein the plurality of differ-
ent application-specific personalities are stored to persistent
data storage separate from the executable file, and wherein the
configuring comprises loading the selected one of the plural-
ity of different application-specific personalities from the
persistent data storage to the application engine.
12. A system for processing data comprising:
at least one manufactured host processor having a pre-
defined instruction set that 1s fixed such that it 1s not
modifiable by a consumer;
a CO-Processor comprising:
at least one application engine having at least one con-
figurable function unit that 1s configurable at system
run-time to fully possess any of a plurality of different
application-specific personalities, wherein each of the
plurality of different application-specific personali-
ties comprises an extended instruction set having
extended istructions that are not natively supported
by the host processor’s instruction set, thereby
extending the instruction set of the host processor, and

a virtual memory and instruction decode 1nfrastructure
common to all the plurality of different application-
specific personalities; and

wherein said manufactured host processor and said co-
processor are operable to execute an executable file that
contains both native instructions that are natively sup-
ported by the host processor’s instruction set and
extended 1nstructions that are not natively supported by
the host processor’s instruction set, wherein said
extended instructions are present in the executable file as
data to be written to a memory by one or more of said
native 1structions, whereby said native mnstructions of
the executable file are processed by the host processor
and said host processor unknowingly dispatches
extended instructions of the executable file to the co-
processor for processing as a result of said host proces-
sor executing one or more native instructions of the
executable file for writing the extended instructions to a
designated portion of said memory that 1s accessible by
said co-processor.

13. The system of claim 12 wherein the plurality of differ-
ent application-specific personalities comprise a plurality of
different vector processing personalities.

14. The system of claim 13 wherein said plurality of dif-
ferent vector processing personalities comprise at least one
of: a single-precision vector processing personality and a
double-precision vector processing personality.

15. A co-processor comprising:

a system interface infrastructure for interfacing with a
manufactured host processor that has a predefined
instruction set that 1s fixed such that the predefined
istruction set 1s not modifiable by a consumer,

at least one application engine having at least one config-
urable function unit that 1s configurable at system run-
time to fully possess any of a plurality of different,
mutually-exclusive application-specific vector process-
ing personalities, wherein each of the plurality of appli-
cation-specific vector processing personalities com-
prises an extended instruction set having extended
instructions that are not natively supported by the host
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processor’s instruction set, thereby extending the fixed
istruction set of the host processor;

a co-processor inirastructure common to all the plurality of
different application-specific vector processing person-
alities; and

wherein said co-processor 1s operable with said manufac-
tured host processor to execute an executable file that
contains both native instructions that are natively sup-
ported by the host processor’s instruction set and
extended nstructions that are not natively supported by
the host processor’s instruction set, wherein said
extended instructions are present 1n the executable file as
data to be written to a memory by one or more of said
native instructions, whereby said native instructions of
the executable file are processed by the host processor
and said extended 1nstructions of the executable file are
processed by the co-processor.

16. The co-processor of claim 15 wherein the co-processor

infrastructure comprises:

a memory management infrastructure, where said memory
management infrastructure 1s common to all the plural-
ity ol different application-specific vector processing
personalities.

17. The co-processor of claim 15 wheremn said system
interface infrastructure 1s common to all the plurality of dit-
terent application-specific vector processing personalities.

18. The co-processor of claim 15 wherein the co-processor
infrastructure comprises:

an 1nstruction decode infrastructure, where said 1instruction
decode infrastructure 1s common to all the plurality of
different application-specific vector processing person-
alities.

19. The co-processor of claim 15 wherein the co-processor

infrastructure comprises:

a scalar processing unit that comprises a fixed set of
istructions, where said scalar processing unit 1s com-
mon to all the plurality of different application-specific
vector processing personalities.

20. The co-processor of claim 135 wherein the co-processor

infrastructure comprises:

a memory management inirastructure, said system inter-
face infrastructure for intertacing with said host proces-
sor, and an 1nstruction decode infrastructure that are
common to all the plurality of different application-
specific vector processing personalities.

21. The co-processor of claim 20 wherein the co-processor

inirastructure further comprises:

a scalar processing unit that comprises a fixed set of
instructions, where said scalar processing unit 1s com-
mon to all the plurality of different application-specific
vector processing personalities.

22. The co-processor of claim 15 wherein said plurality of
different application-specific vector processing personalities
comprise at least one of: a single-precision vector processing
personality and a double-precision vector processing person-
ality.

23. The co-processor of claim 15 wherein the manufac-
tured host processor 1s implemented on a first integrated
circuit, and the co-processor 1s implemented external to the
first integrated circuait.

24. The co-processor of claim 15 wherein a selected one of
the plurality of different application-specific vector process-
ing personalities 1s 1dentified, from 1information contained 1n
the executable file, for configuring the at least one config-
urable function umt of the co-processor.
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25. A system comprising:
a host processor having a predefined fixed istruction set;
and
a co-processor, said co-processor including
at least one configurable function unit that 1s config-
urable at system run-time to fully possess any of a
plurality of different, mutually-exclusive vector pro-
cessing personalities, wherein each of the plurality of
different vector processing personalities comprises an
extended 1nstruction set having extended 1nstructions
that are not natively supported by the host processor’s
instruction set, thereby extending the predefined fixed
instruction set of the host processor, and

a virtual memory and instruction decode infrastructure
that 1s common to all the plurality of different vector
processing personalities;

wherein an executable file executing on said host processor
contains both native instructions that are natively sup-
ported by the host processor’s instruction set and
extended instructions that are not natively supported by
the host processor’s instruction set, and wherein said
extended instructions are present in the executable file as
data to be written by one or more of said native mstruc-
tions to amemory that 1s accessible by said co-processor.

26. The system of claim 25 wherein said plurality of dif-
ferent vector processing personalities comprise at least one
of: a single-precision vector processing personality and a
double-precision vector processing personality.

277. The system of claim 25 wherein said co-processor 1s
operable with said manufactured host processor to execute
said executable file.

28. The system of claim 27 wherein writing the extended
instructions by the one or more native instructions to said
memory causes the host processor to unknowingly dispatch
said extended 1nstructions to said co-processor.

29. The system of claim 28 wherein said native instructions
cause the host processor to load said extended 1nstructions to
a pre-designated portion of said memory that 1s accessible by
said co-processor.

30. A system comprising:

a manufactured host processor having a predefined fixed

instruction set that 1s not modifiable by a consumer;

a dynamically reconfigurable co-processor comprising
reconiigurable function units that can be dynamically
configured, at system run-time, to fully possess any
selected one of a plurality of different, mutually-exclu-
stve vector processing personalities for performing cor-
responding operations of the selected vector processing
personality, wherein each of the plurality of different
vector processing personalities comprises an extended
instruction set having extended instructions that are not
natively supported by the host processor’s mstruction
set, thereby extending the fixed instruction set of the host
Processor;

said dynamically reconfigurable co-processor turther com-
prising an inirastructure that 1s common to all the plu-
rality of different vector processing personalities;

wherein said dynamically reconfigurable co-processor 1s

operable with said manufactured host processor to
execute an executable file that contains both native
istructions that are natively supported by the host pro-
cessor’s 1nstruction set and extended instructions that
are not natively supported by the host processor’s
instruction set, wherein said extended instructions are
present 1n the executable file as data to be loaded to a
memory by one or more of said native instructions; and
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wherein the executable file contains native istructions that
when executed by the host processor causes the host
processor to unknowingly dispatch said extended
instructions to said co-processor by loading the
extended instructions to a pre-designated portion of said
memory that 1s accessible by said co-processor.

31. The system of claim 30 wherein the infrastructure

COmMprises:

a memory management infrastructure, a system interface
inirastructure for interfacing with said host processor,
and an instruction decode infrastructure that are com-
mon to all the plurality of different vector processing
personalities.

32. The system of claim 31 wherein the infrastructure

turther comprises:

a scalar processing unit that comprises a fixed set of
istructions, where said scalar processing unit 1s com-
mon to all the plurality of different vector processing
personalities.

33. The system of claim 30 wherein said plurality of dif-
ferent vector processing personalities comprise at least: a
single-precision vector processing personality and a double-
precision vector processing personality.

34. A method comprising:

initiating an executable file on a manufactured host proces-
sor that has a predefined mstruction set that 1s fixed such
that 1t 1s not modifiable by a consumer, wherein the
executable file contains native instructions that are
natively supported by the host processor’s predefined
instruction set and extended instructions that are not
natively supported by the host processor’s predefined
instruction set, wherein said extended instructions are
present 1n the executable file as data to be written by one
or more of said native instructions to a designated por-
tion of a memory that 1s accessible by a reconfigurable
CO-Processor;

configuring said reconfigurable co-processor to fully pos-
sess a selected one of a plurality of different, mutually-
exclusive vector processing personalities for processing
a portion of the instructions of the executable file,
wherein each of the plurality of different predefined
vector processing personalities comprises an extended
instruction set having extended instructions that are not
natively supported by the host processor’s 1nstruction
set, thereby extending the fixed instruction set of the host
Processor;

processing the instructions of the executable file, wherein
said native mnstructions of the executable file are pro-
cessed by the host processor and said extended instruc-
tions of the executable file are processed by the recon-
figurable co-processor.

35. The method of claim 34 wherein said plurality of dif-
ferent vector processing personalities comprise at least: a
single-precision vector processing personality and a double-
precision vector processing personality.

36. The method of claim 34 wherein the manufactured host
processor 1s 1mplemented on a first itegrated circuit, and
wherein the co-processor 1s implemented external to said first
integrated circuit.

37. A method comprising:

initiating an executable file on a manufactured host proces-
sor that has a predefined mstruction set that 1s fixed such
that 1t 1s not modifiable by a consumer, wherein the
executable file contains native instructions that are
natively supported by the host processor’s predefined
istruction set and extended instructions that are not
natively supported by the host processor’s predefined
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instruction set, wherein said extended instructions are
present 1n the executable file as data to be written by one
or more of said native instructions to a memory;

determining one of a plurality of different, mutually-exclu-
s1ve vector processing personalities to load to a dynami-
cally reconfigurable co-processor for processing a por-
tion ofthe instructions of the executable file, wherein the
determined vector processing personality defines an
extended instruction set that comprises instructions for
performing vector oriented operations that are not
natively supported by the host processor’s predefined
istruction set, thereby extending the host processor’s
instruction set;

when determined that the determined vector processing
personality 1s not present on the dynamically reconfig-
urable co-processor, fully loading, at system run-time,
the determined vector processing personality to the
dynamically reconfigurable co-processor; and

processing the instructions of the executable file, wherein
the native nstructions of the executable file are pro-
cessed by the host processor and the extended instruc-
tions of the executable file are processed by the dynami-
cally reconfigurable co-processor, wherein said host
processor unknowingly dispatches said extended
instructions of the executable file to the co-processor as
a result of executing one or more native instructions of
the executable file for writing the extended 1nstructions
to a designated portion of said memory that 1s accessible
by said co-processor.

38. The method of claim 37 wherein said plurality of dif-
ferent vector processing personalities comprise at least: a
single-precision vector processing personality and a double-
precision vector processing personality.

39. The method of claim 37 wherein the manufactured host
processor 1s 1implemented on a first integrated circuit, and
wherein the co-processor 1s implemented external to said first
integrated circuit.

40. A system comprising;

a manufactured host processor implemented on a first inte-
grated circuit and comprising a predefined fixed mstruc-
tion set that 1s not modifiable by a consumer; and

a co-processor implemented external to said first integrated
circuit and comprising reconfigurable logic for dynami-
cally reconfiguring the co-processor to possess any of a
plurality of different vector processing personalities,
wherein each of said plurality of different vector pro-

cessing personalities comprises an extended instruction
set providing extended instructions not natively sup-
ported by the host processor’s instruction set, thereby
extending the host processor’s instruction set; and

wherein said manufactured host processor and said co-
processor are operable to execute an executable file that
contains both native instructions that are natively sup-
ported by the host processor’s instruction set and
extended nstructions that are not natively supported by
the host processor’s instruction set, wherein said
extended instructions are present in the executable file as
data to be written by one or more of said native mstruc-
tions to a memory, whereby said host processor unknow-
ingly dispatches said extended instructions of the
executable file to the co-processor as a result of execut-
1ng one or more native istructions of the executable file
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for writing the extended instructions to a designated
portion of said memory that 1s accessible by said co-
Processor.

41. The system of claim 40 wherein said host processor and

said co-processor share a common virtual address space.

42. The system of claim 41 further comprising:

cach of said host processor and said co-processor compris-
ing a respective local cache, wherein cache coherency 1s
maintained between the host processor and co-proces-

SOT.
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43. The system of claim 40 further comprising:
said executable file, wherein said native instructions are for
processing by said host processor and said extended

instructions are for processing by said co-processor.
44. The system of claim 43 wherein all memory addresses
for all of said native and extended instructions 1n the execut-

able are virtual addresses.
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