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METHOD AND APPARATUS FOR
IMPLEMENTING DECODE OPERATIONS IN
A DATA PROCESSOR

PRIORITY AND RELATED APPLICATIONS

The present application claims priority benefit of U.S. Pro-
visional Application Ser. No. 60/355,448 filed Feb. 5, 2002

and enfitled “Method And Apparatus For Implementing Vit-
erbi Decode In A Configurable Data Processor”, which 1s
incorporated herein by reference 1n 1ts entirety.

COPYRIGHT

A portion of the disclosure of this patent document con-
tains material that 1s subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-

tion by anyone of the patent document or the patent disclo-
sure, as 1t appears 1n the Patent and Trademark Office patent
files or records, but otherwise reserves all copyright rights
whatsoever.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to the field of data
processors, and specifically to an improved data processor
and related methods for processing communications data
such as, for example, Viterb1 decoding.

2. Description of Related Technology

The need for increased efficiency and speed 1n communi-
cations data processing 1s now ubiquitous. Consumer and
other communications applications demand increased perfor-
mance 1n a smaller form factor and with less power consump-
tion. This 1s especially true 1n consumer wireless handsets,
where 1t 15 desired to have the most rapid data encoding and
decoding possible within the smallest and most power eifi-
cient IC, thereby reducing handset s1ze and increasing battery
longevity.

Such encoding and decoding processes can be quite com-
plex. The well known Viterb: algorithm 1s an example of a
decoding algorithm used for convolution codes 1n a memory-
less noisy channel. The Viterb1 algorithm attempts to estimate
the state sequence of the encoder finite state machine (FSM)
from the corrupted recerved data. Since these complex algo-
rithms are run 1n effect continuously during the communica-
tion process, even small gains 1n efficiency and performance
on a per-operation or per-cycle basis can produce large ben-
efits 1n efliciency and power consumption.

An 1dealized Viterb1 channel encoder/decoder system 1s
shown 1n FIG. 1. The encoder (FIG. 2) produces a code
symbol consisting of two binary bits for every input bit. The
code rate (r=k/n) 1s 1/2, where k=1 1s the input rate and n=2 1s
the outputrate. The number of bits that have an effect upon the
output 1s 3. This parameter 1s known as the constraint length.
The encoder 1s assumed to be a Mealy type FSM of the kind
well known 1n the art, and so the outputs produced are a
function of the current state and the current input.

The encoder’s outputs and state transitions can be best
visualised with the aid of a state transition diagram, as shown
in FI1G. 3. The dashed lines 302 represent an input of ‘0°, and
vice versa for the solid lines.

An extension of the state diagram 1s known as a ftrellis
diagram. The trellis displays all the information in a state
diagram, and also includes transition 1n time. The trellis dia-
gram shown 1n FIG. 4 1s for an encoder with code rate=1/2 and
constraint length 3.
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The Viterb1 encoder will produce a umique set of state
transitions for the information bits supplied as shown 1 FIG.
5. The sequence supplied to this example encoder1s 11110,
and the state sequence 1s [ SO, S2, S1, S2, 83, S1]. The decoder
attempts to determine the FSM’s state sequence by finding
the path (though the trellis of FIG. 4) that maximise the
probability of state sequence the FSM has passed though,
given the recerved data.

As each code symbol 1s received, 1t 1s supplied to all states
in a stage (a stage 1s time slot within the trellis). As can be seen
in FIG. §, each state has two branches leading 1nto 1t from two
separate states. Each state expects a known code symbol to be
associated with that branch. Each branch 1s a terminator for a
path though the trellis and each path have an accumulated
error metric associated with it.

The code symbols are received by each state (or ACS
node). The ACS calculates the branch metric error for each of
the branch’s expected code symbols and the received code
symbols. The branch metric 1s added to the accumulated error
metric for that path and the survivor branch 1s selected. The
survivor 1s the branch with the lowest total accumulated error.
The decisions for each state are stored in the traceback
memory. The decision bit stored indicates which branch sur-
vived, ‘0’ for upper and ‘1’ for lower.

Traceback can begin after constraint-lengthx5 code sym-
bols have been processed by the ACS node network. Trace-
back begins by finding the optimum starting state. The opti-
mum state for hard-decision detection 1s the state with the
smallest total accumulated error. Starting 1n the optimum
state (OP) the next state to be traced-back 1nto 1s calculated by
using the decision bit stored in the OP and from a look-up
table of predecessor states for that state. Referring back to
FIGS. 2-5, 1t can be seen that 1if the OP was state 1 then a
decision bit of ‘0’ would lead to state 2. The traceback 1s
continued until the start of the traceback memory. Any code
symbols decoded after K*5 can be outputted. The process of
the ACS nodes providing decision bits and the traceback
memory decoding the output 1s continued until no more code
symbols are available.

A variety of different techniques are known 1n the prior art
for implementing complex algorithms using data processors.
These techniques generally fall into one of three categories:
(1) “fixed” hardware; (11) software; and (111) user-configurable.

So-called ‘fixed’ architecture processors of the prior art
characteristically incorporate special instructions and or
hardware to accelerate particular functions. Because the
architecture of processors in such cases 1s largely fixed
betorehand, and the details of the end application unknown to
the processor designer, the specialized instructions added to
accelerate operations are not optimized 1n terms ol perfor-
mance. Furthermore, hardware implementations such as
those present 1n prior art processors are intlexible, and the
logic 1s typically not used by the device for other “general
purpose’” computing when not being actively used for coding,
thereby making the processor larger 1n terms of die size, gate
count, and power consumption, than 1t needs to be. Further-
more, no ability to subsequently add extensions to the mnstruc-
tion set architectures (ISAs) of such ‘fixed” approaches exists.

Alternatively, solftware-based implementations have the
advantage of tlexibility; specifically, it 1s possible to change
the functional operations by simply altering the software
program. Decoding in soitware also has the advantages
alforded by the sophisticated compiler and debug tools avail-
able to the programmer. Such flexibility and availability of
tools, however, comes at the cost of efliciency (e.g., cycle
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count), since 1t generally takes many more cycles to imple-
ment the software approach than would be needed for a com-
parable hardware solution.

So-called ““user-configurable™ extensible data processors,
such as for example the ARCtangent™ processor produced
by the Assignee hereof, allow the user to customize the pro-
cessor configuration, so as to optimize one or more attributes
of the resulting design. When employing a user-configurable
and extensible data processor, the end application 1s known at
the time of design/synthesis, and the user configuring the
processor can produce the desired level of functionality and
attributes. The user can also configure the processor appro-
priately so that only the hardware resources required to per-
form the function are included, resulting 1n an architecture
that 1s significantly more silicon (and power) efficient than
fixed architecture processors. Such configuration can include,
for example, the addition of specialized extension instruc-
tions (extensions), selection of memory and cache configu-
rations, register sets, ALU configurations, and the like.

The ARCtangent processor 1s a user-customizable 32-bit
RISC core for ASIC, system-on-chip (SoC), and FPGA 1nte-
gration. It 1s synthesizable, configurable, and extendable, thus
allowing developers to modity and extend the architecture to
better suit specific applications. It comprises a 32-bit RISC
architecture with a four-stage execution pipeline. The mstruc-
tion set, register file, condition codes, caches, buses, and other
architectural features are user-configurable and extendable. It
has a 32x32-bit core register file, which can be doubled 1t
required by the application. Additionally, 1t 1s possible to use
large number of auxiliary registers (up to 2E32). The func-
tional elements of the core of this processor include the arith-
metic logic unit (ALU), register file (e.g., 32x32), program
counter (PC), mstruction fetch (i-fetch) interface logic, as
well as various stage latches.

A variety of different approaches to Viterbi decode using
digital processors have been put forth 1n the prior art, the
following being exemplary.

United States Patent Application 20020031193A1 to
Honary published Mar. 14, 2002 and entitled “Method and
apparatus for constellation decoder” discloses a method and
apparatus for performing a slicer and Viterbi decoding opera-
tions which are optimized for single-instruction/multiple-
data (SIMD) type of parallel processor architectures. Some
non-regular operations are eliminated and replaced with very
regular repeatable tasks that can be efficiently parallelized. A
first aspect of the mvention provides a pre-slicer scheme
where once eight input symbols for a Viterb1 decoder are
ascertained and their distances calculated, these distances are
saved 1n an array. A second aspect of the invention provides a
way of performing the path and branch metric calculations in
parallel to minimize processor cycles. A third aspect of the
invention provides a method to implement the Viterbi decoder
without continually performing a trace back. Instead, the
previous states along the maximum likelihood paths for each
trellis state are stored. When the path with the shortest dis-
tance 1s later selected, determining the trace back state only
requires a memory access.

U.K. Publication No. 2371953 entitled “Viterbi equalizer
which compares recerved data with predicted data based on
the channel response estimate to generate path metrics” pub-
lished Aug. 7, 2002 to Sherratt discloses an equalizer for use
in processing recerved serial data signals sent by a transmuitter
and which may have been distorted during their transmission.
The equalizer includes a trellis generator which receives both
the serial data signals and the output of a channel estimator so
as to generate the most probable bit sequence sent by the
transmitter. The trellis generator operating by allocating to
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4

cach branch of the trellis entering a particular state an 1ndi-
vidual branch metric which 1s based on the space distance
between the received signal and the predicted signal received
from the predictor for that state so that each branch metric 1s
different from any other branch metric, and operates by cal-
culating the two survivors of each Viterb1 buttertly in the
trellis at the same time.

Japanese Patent Publication No. 4369124 entitled “Soft
Discrimination Viterb1 Decode Method” published Dec. 21,
1992 discloses techniques to reduce a bit error rate of an
original signal by calculating a margin for taking a bit string
and applying soft discrimination Viterbi decoding thereto 1n
the process of phase detection of a received carrier to obtain
the bit string 1n the case of transmission of a convolution code.
A soft discrimination Viterbi decoder 1s provided with a soft
discrimination data calculation section to which a memory 1s
built to calculate a soft discrimination data from a phase
detected by a demodulation section. A de-interleave memory
1s connected to an output of the calculation section, and stores
the soft discrimination data calculated by the calculation sec-
tion. A Viterbi algorithm execution section 1s connected to the
memory and a path memory storing an object path in the
process ol obtaining an optimum path. The data stored in the
memory 1s read by the execution section while the bit
sequence rearranged at the transmission 1s restored. Thus, the
execution section uses the read soit discrimination data to
obtain an optimum path on a trellis diagram thereby output-
ting a reproduction signal.

U.S. Pat. No. 5,796,756 to Choi, et al. 1ssued Aug. 18, 1998
and entitled “Survivor memory device i Viterbi decoder
using trace deletion method” discloses a memory device 1n a
Viterb1 decoder which determines a final survivor path using
a trellis diagram and decision vectors, and outputs decoded
data corresponding to the determined survivor path. The sur-
vivor memory device includes a path existence information
generator for receiving a plurality of decision vectors, and for
generating first branch path existence information represent-
ing whether a branch path exists between each state and the
corresponding next states 1n the trellis diagram. A plurality of
units are serially connected with respect to the outputs of the
path existence mformation generator. Each unit comprises a
path existence information store for recerving and storing the
first branch path existence information, a path removal signal
generator for generating corresponding path removal signals
when the first branch path existence information correspond-
ing to each current state represents that corresponding branch
paths do not exist between each current state and the corre-
sponding next states, and a path existence information upda-
tor for receiving the first branch path existence information
stored 1n the path existence information store and the path
removal signals generated by the path removal signal genera-
tor, and for updating values of second branch path existence
information corresponding to each current state to represent
that corresponding branch paths do not exist between each

current state and the corresponding previous states.
Japanese Patent No. 10075185 entitled “Viterb1 Decode

Device” and published Mar. 17, 1998 discloses techniques for
the Viterbi1 decoding of multilevel modulated data to which a
redundant bit 1s applied by a convolution code by using a
simple Viterbi1 decoder for binary modulation. Multilevel
demodulated data obtained by receiving and demodulating a
multilevel modulated signal are mputted and transmitted
through circuits for converting the multilevel demodulated
data into plural binary soit judgment data, so that data con-
verted mto binary data can be decoded by using a QPSK
Viterb1 decoder which 1s capable of soft judgment for binary
modulation. Thus, the soft judgment of a multilevel modu-




US 8,201,064 B2

S

lated signal can be easily attained 1n digital ground broadcast-
ing or the like, and at the same time, the sharing of a circuit
with digital satellite broadcasting can be attained.

U.S. Pat. No. 6,448,910 to Lu 1ssued Sep. 10, 2002 and
entitled “Method and apparatus for convolution encoding and
Viterb1 decoding of data that utilize a configurable processor
to configure a plurality of re-configurable processing ele-
ments” discloses a method and apparatus for convolution
encoding and Viterb1 decoding utilizing a flexible, digital
signal processing architecture that comprises a core processor
and a plurality of re-configurable processing eclements
arranged 1n a two-dimensional array. The core processor 1s
operable to configure the re-configurable processing ele-
ments to perform data encoding and data decoding functions.
A received data mput 1s encoded by configuring one of the
re-configurable processing elements to emulate a convolution
encoding algorithm and applying the received data mput to
the convolution encoding algorithm. A received encoded data
iput 1s decoded by configuring the plurality of re-config-
urable processing elements to emulate a Viterb1 decoding
algorithm wherein the plurality of re-configurable processing
clements 1s configured to accommodate every data state of the
convolution encoding algorithm. The core processor 1nitial-
izes the re-configurable processing elements by assigning
register values to registers that define parameters such as
constraint length and code rate for the convolution encoding
algorithm. See also United States Patent Application Publi-
cation No. 20020135502 published Sep. 26, 2002.

U.S. Pat. No. 6,424,685 to Messel, et al. 1ssued Jul. 23,
2002 entitled “Polar computation of branch metrics for
TCM” discloses a method and apparatus for decoding TCM
signals including simplified polar computations and Viterbi
decoding. The method 1ncludes converting the received sig-
nal from Cartesian to polar coordinates in order to provide a
reduction 1 the number and complexity of the associated
calculations. The branch metric computation for the Viterbi
decoding algorithm 1s performed using polar samples of the
demodulated signal.

U.S. Pat. No. 5,946,361 to Araki, et al. 1ssued Aug. 31,
1999 and entitled “Viterbi decoding method and circuit with
accelerated back-tracing and efficient path metric calcula-
tion” discloses a Viterb1 decoding circuit which stores com-
parison result bits 1n a bit-accessible path memory unit. A
back-trace 1s performed by setting a state value 1n a shiit
register, then shifting comparison result bits from the path
memory unit 1nto the shift register. A certain number of bits at
the shift-in end of this register are supplied as read address
bits to the path memory unit. The Viterbi decoding circuit has
selectors that first select old path metric values and branch
metric values, which are added or subtracted to produce can-
didate path metric values, then select the candidate path met-
ric values, which are subtracted to produce a comparison
result bit representing the sign of their difference. These
additions and subtractions are performed by the same arith-
metic unit.

U.S. Pat. No. 5,802,116 to Baker, et al. 1ssued Sep. 1, 1998
and entitled “Soft decision Viterbi decoding with large con-
straint lengths™ discloses a method and apparatus for obtain-
ing a soit symbol decoded output of a recerved signal by atwo
pass Viterb1 operation. The technique 1s applied where the
signal 1s convolutionally encoded with large constraint
lengths. During the first pass, the error-correction co-proces-
sor (ECCP) 1s programmed for hard decoded output alone.
After all the recerved symbol sets are hard-bit decoded, a
second pass Viterb1 operation 1s performed. Using the previ-
ously decoded hard bit to 1identity the most likely next state at
an 1nitial time 1nstant, and 1imitializing the present states at that
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initial time instant with pre-saved accumulated costs from the
first pass Viterbi operation, branch metrics are computed for
those state transitions leading to the most likely next state at
that time 1nstant. The accumulated cost values of the present
states leading to the most likely next state are updated, and the
absolute value of their difference 1s coded as a reliability of
the hard decoded output corresponding to that time instant.
The combination of the hard decoded output and the reliabil-
ity obtained from the second pass Viterbi operation results 1n
a soft symbol decoded output. At this point, the symbol set
received at this time 1nstant during the first pass Viterb1 opera-
tion 1s reloaded into the ECCP which updates the accumu-
lated cost values of all possible next states. These steps are
repeated until all desired soft symbols are obtained.

U.S. Pat. No. 5,742,621 to Amon, et al. 1ssued Apr. 21,
1998 and entitled “Method for implementing an add-com-
pare-select butterfly operation 1n a data processing system
and 1nstruction therefor” discloses a parallel data structure
and a dedicated Viterbi shift left instruction to minimize the
number of clock cycles required for decoding a convolution-
ally encoded signal in a data processing system 1n soltware.
Specifically, the data structure and Viterb: shift left instruc-
tion ostensibly reduce the number of clock cycles required for
performing an add-compare-select buttertly operation. The
add-compare-select buttertly operation 1s included in a DO
loop 1n a plurality of instructions for executing a Viterbi
decoding algorithm, and 1s repeated a predetermined number
of times, for choosing the best path through a trellis diagram.

U.S. Pat. No. 5,440,504 to Ishikawa, et al. 1ssued Aug. 8,
1995 and entitled “Arnthmetic apparatus for digital signal
processor” discloses a digital signal processor arithmetic
apparatus capable of performing Viterbi1 decoding processing
at a high speed with minimum addition of hardware and
overhead of memory. Pathmetric value and branchmetric
value read out from first and second memories on two paths
are simultaneously added by an adder at most significant bits
and least significant bits thereof. A comparator compares
values of the most significant bits and the least significant bits
output from the adder to generate a path select signal indicat-
ing the value which i1s path-metrically smaller. The select
signal 1s stored 1n a shift register on a bit-by-bit basis. Of the
values of the most significant bits and the least significant bits
of a register storing the output of the adder, the smaller one as
decided by the path select signal 1s written 1n the memory at
cight most significant bits or least significant bits thereof via
distributor, a bus and a register.

U.S. Pat. No. 5,432,804 to Diamondstein, et al. 1ssued Jul.
11, 1995 and entitled “Dagital processor and Viterb1 decoder
having shared memory” discloses an integrated circuit with a
digital signal processor (DSP) and an error correction co-
processor (ECCP) that implements a Viterb1 decoding func-
tion. The DSP and ECCP share a block of multi-port memory,
typically by bus multiplexing a dual-port RAM. When the
ECCP possesses the RAM, 1t inhibits the DSP from accessing
that block of the RAM by asserting an EBUSY flag. This
technique conserves and optimizes the RAM usage, allowing
the DSP and ECCP to be formed on the same integrated
circuit chip.

U.S. Pat. No. 5,633,897 to Fettweis, et al. 1ssued May 27,
1997 and entitled “Digital signal processor optimized for
decoding a signal encoded in accordance with a Viterbi algo-
rithm” discloses a DSP having two internal data buses with
two MAC units each receiving data from its respective data
bus. A shifter 1s interposed between the multiply unit and the
ALU and accumulate unit. The improved DSP also has a
multiplexer interposed between one of the MAC units and the
two data buses. The improved DSP 1s optimized to decode a
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received digital signal encoded in accordance with the Viterbi
algorithm, wherein the DSP calculates a first pair of binary
signals C,, and C,, _,, aViterbi buttertly based upon a second
pair of binary C,_ and C, _ ., and a transitional signal a, in
accordance with: C, =minimum (C +a, C, _,_,,-a);
C,, ;=minimum (C -a, C__ _ .+a).

U.S. Pat. No. 5,068,859 to Dolinar, et al 1ssued Nov. 26,
1991 and entitled “Large constraint length high speed Viterbi
decoder based on a modular hierarchial decomposition of the
deBruin graph” discloses a method of formulating and pack-
aging decision-making elements 1nto a long constraint length
Viterb1 decoder which involves formulating the decision-
making processors as individual Viterbi buttertly processors
that are interconnected 1n a deBruiyn graph configuration. A
tully distributed architecture, which achieves high decoding
speeds, 1s made feasible by wiring and partitioning of the state
diagram. This partitioning defines universal modules, which
can be used to build any size decoder, such that a large number
of wires 1s contained 1nside each module, and a small number
of wires 1s needed to connect modules. The total system 1s
modular and hierarchical, and 1t implements a large propor-
tion of the required wiring internally within modules and may
include some external wiring to fully complete the deBruiyn
graph.

U.S. Pat. No. 5,151,904 to Reiner, et al. 1ssued Sep. 29,
1992 and entitled “Reconfigurable, multi-user Viterbi
decoder” discloses a decoding system for decoding a digital
data stream that has been convolutionally encoded in accor-
dance with a selected constraint length and selected polyno-
mial codes. The system includes a processor, such as a Viterbi
decoder, that 1s reconfigurable so that 1t can decode encoded
digital data streams for a number of different user channels
tor which data streams have been convolutionally encoded 1n
accordance with respectively different combinations of
selected constraint length and selected polynomaial codes. The
decoding system includes a Viterbi decoder for processing the
encoded data stream in accordance with said selected con-
straint length and in accordance with said selected polyno-
mial codes to decode the encoded data stream; a RAM for
storing data of said selected constraint length and data of said
selected polynomial codes 1n accordance with which said
data stream was encoded; and a RAM [/O interface circuit
responsive to a user channel 1dentification signal for retriev-
ing said selected constraint length data and said selected
polynomial code data from the RAM and configuring the
Viterbi decoder 1n accordance with said selected constraint
length and said selected polynomial codes. In order to accom-
modate concurrent multiple user channels, the RAM stores
different sets of combinations of constraint length data and
polynomial code data corresponding to different user chan-
nels, with said different sets being retrievable from the RAM
in response to respectively different user channel identifica-
tion signals. The polynomial code data and constraint length
data 1n the RAM may be changed from time to time 1n
response to software instructions, as user channel require-
ments change. The Viterb1 decoder processes said encoded
data stream over a plurality of decoding cycles and produces
intermediate decoding results during different decoding
cycles; and the RAM I/0 interface circuit stores in the RAM
said intermediate decoding results produced for each differ-
ent user channel during the different decoding cycles.

Despite the foregoing variety of solutions, none are able to
perform at least one complete buttertly (two ACS) operations
in a single cycle. Furthermore, none of the foregoing solu-
tions permit the designer of the processor to readily add such
a high-performance Viterb1 decode extension instruction to
the ISA during the design phase, the resulting design being,
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optimized according to one or more criteria such as power
conservation, clock speed, and die size due to reduced

memory overhead and limited hardware requirements to sup-
port the extension.

SUMMARY OF THE INVENTION

The present invention satisiies the aforementioned needs
by providing improved methods and apparatus for processing
communications operations including the exemplary Viterbi
decode algorithm(s).

In a first aspect of the invention, an improved method for
determining path metrics associated with a ‘buttertly” opera-
tion 1s disclosed. The method generally comprises: providing
at least one existing path metric; determining a first branch
metric and a second branch metric; if required, determining
the negatives of at least one of the first and second branch
metrics; selecting one branch metric from the group compris-
ing the first and second branch metrics and the at least one
negative if determined; and determining at least one new path
metric based at least in part on the selected branch metric and
ex1isting path metric. In one exemplary embodiment, the but-
tertly 1s part of a Viterb1 decode operation, and the first and
second branch metrics comprise sum and difference metrics.
Old path metrics are retrieved from a first location within an
XY memory, and the new path metrics are stored at a second
location different from the first location using a custom
addressing mode.

In a second aspect of the invention, an improved method of
addressing path metrics 1n memory 1s disclosed. The method
generally comprises: providing a plurality of path metrics for
cach of a plurality of states; concatenating at least two of the
path metrics for adjacent states to produce a word; and storing
the word at a location 1n memory. In one exemplary embodi-
ment, the path metrics for each state are 16-bits 1n length and
are stored as 32-bit words when concatenated with their adja-
cent state. The path metrics are read from and written to XY
memory. A special addressing mode 1s provided to write data
to the correct address so it can be read linearly on the next
decoding cycle. The states are written back 1n a predeter-
mined order (e.g., 0, 2°7%,1,2%77+1,2,...,2577-2, 2512,
26721, 2%~ 1-1).

In a third aspect of the invention, an improved processor 1s
provided which 1s adapted to perform dual butterfly process-
ing of path metrics 1s disclosed. In one exemplary embodi-
ment, the processor comprises a user-customizable and
extensible reduced instruction set (RISC) processor core that
incorporates extension instructions and an XY memory. The
processors extended instruction set includes one or more
DVBF 1nstructions which are decoded and executed to per-
form the path metric determinations previously described.

In a fourth aspect of the invention, an improved extension
instruction adapted for inclusion within the ISA of a user-
configured digital processor 1s disclosed. In one exemplary
embodiment, the instruction comprises a dual buttertly
instruction adapted to perform, when executed on the proces-
sor, at least two Viterbi buttertly decode operations, each of
the decode operations comprising determining new path met-
rics using a plurality of ACS operations.

In a fifth aspect of the mvention, an improved method of
providing an optimized communications operations proces-
sor 1s disclosed. The method generally comprises: providing
a basecase processor core configuration having a base istruc-
tions set, the basecase core configuration being configurable
by a user; and configuring the basecase core to form an
extended core, the extended core comprising a communica-
tions operation extension instruction and associated hard-
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ware, and a storage device adapted to store data associated
with the communications operations; wherein the extended
core 1s adapted to run a computer program including the
extension instruction, the extended core being optimized for
performing the communications operations. In one exem-
plary embodiment, the atorementioned user configuration 1s
accomplished using a computer-based design program which
provides the user with a menu-driven environment 1n which to
synthesize, simulate, and debug the design. In another
embodiment, the design environment 1s object-oriented.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of a prior art digital communi-
cation system.

FIG. 2 1s a block diagram of an exemplary prior art convo-
lutional encoder.

FIG. 3 1s an exemplary state diagram for the encoder of
FIG. 2.

FIG. 4 1s an exemplary trellis diagram.

FI1G. 5 1s a trellis diagram for an exemplary encoding finite
state machine (FSM).

FIG. 6 1s graphical representation of an exemplary Viterbi
“buttertly” of the type used 1n Viterbi decode operations.

FIG. 7 1s an exemplary register encoding (Aux_D-
VBF_BMO0/1) according to the present invention.

FIG. 8 1s an exemplary DVBF control word-operand 1
according to the present invention.

FIG. 9 1s a graphical representation of exemplary control
data bit mapping in the processor of the present invention.

FI1G. 10 1s a logical flow diagram 1llustrating an exemplary
embodiment of the dual ACS (buttertly) methodology of the
ivention.

FIG. 11 1s an exemplary tabular representation of path
metric storage in XY Memory according to the invention.

FIG. 11a 1s a graphical representation of exemplary read/
write operations for a 16 state decoder.

FIG. 115 1s a graphical representation of exemplary read/
write operations, showing correct locations for a 16 state
decoder.

FIG. 12 1s an exemplary register encoding (Aux_
DVBF_Mode) according to the invention.

FIG. 13 1s an exemplary register encoding (Aux_DVB-
F_OFST) according to the invention.

FIG. 14 1s an exemplary register encoding (Aux_DVB-
F_ACCU) according to the invention.

FIG. 15 1s an exemplary register encoding (Aux_D-
VBF_BMO0/1) according to the invention.

FIG. 16 1s an exemplary register encoding (Aux_D-
VBF_INTSTAT) according to the invention.

DETAILED DESCRIPTION

Reference 1s now made to the drawings wherein like
numerals refer to like parts throughout.

As used herein, the term “processor” 1s meant to include
any integrated circuit or other electronic device (or collection
of devices) capable of performing an operation on at least one
instruction word including, without limitation, reduced
istruction set core (RJISC) processors, such as for example
the ARCtangent™ A4 user-configurable core (described in
Appendix I hereto) and the ARCompact™ A5 manufactured
by the Assignee hereot, central processing units (CPUs), and
digital signal processors (DSPs). The hardware of such
devices may be integrated onto a single substrate (e.g., silicon
“d1e”), or distributed among two or more substrates. Further-
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more, various functional aspects of the processor may be
implemented solely as software or firmware associated with
the processor.

Additionally, 1t will be recognized by those of ordinary
skill 1n the art that the term “‘stage” as used herein refers to
various successive stages within a pipelined processor; 1.¢€.,
stage 1 refers to the first pipelined stage, stage 2 to the second
pipelined stage, and so forth. Such stages may comprise, for
example, mstruction fetch, decode, execution, and writeback
stages.

Furthermore, the term “storage device” 1s used to refer to a
device adapted to store one or more pieces of data. While the
following description 1s cast primarily 1n terms of an XY
memory of the type well known 1n the art, it will be recog-
nized that other types of memory and storage devices may be
used consistent with the invention. Specifically, any type of
storage device having address space that can be functionally
partitioned or divided into two or more “component” spaces,
whether physically mtegrated or otherwise, may be substi-
tuted.

As used herein, the terms “arithmetic” and “arithmetic
unmt” refer to operations and devices for performing arith-
metic operations including, without limitation, addition, sub-
traction, multiplication, accumulation, comparison of two or
more values, division, shifting of one or more bits, and the
like.

As used herein, the term “ACS” relers to one or more
add-compare-select operations. The term “‘buttertly” refers
generally to a plurality (e.g., 2) linked ACS operations.

The term “symbol” refers to the output of an encoder for a
single data bit.

Lastly, any references to hardware description language
(HDL) or VHSIC HDL (VHDL) contained herein are also
meant to include other hardware description languages such
as Verillog®. Furthermore, an exemplary Synopsys® synthe-
s1s engine such as the Design Compiler 2000.05 (DC00) may
be used to synthesize the various embodiments set forth
herein, or alternatively other synthesis engines such as Build-
gates® available from, 1nter alia, Cadence Design Systems,
Inc., may be used. IEEE std. 1076.3-1997, IEEE Standard
VZ{DL Synthesis Packages, describes an industry-accepted
language for specilying a Hardware Definition Language-
based design and the synthesis capabilities that may be
expected to be available to one of ordinary skill 1n the art.

It will be appreciated that while portions of the following
discussion are cast in terms of an exemplary ARCtangent
processor manufactured by the Assignee hereol, the present
invention may be equally applied to other types of digital
processors and architectures as referenced above.

Furthermore, it will be recognized that while the following,
discussion 1s cast in terms of the well known Viterbi decode
algorithm, the methodologies and apparatus disclosed herein
may be readily applied with proper adaptation to other types
of processes and algorithms which are generally recursive 1n
nature, such adaptation being well within the skill of the
ordinary artisan give the present disclosure.

Overview

The exemplary ARCtangent processor 1s a user-customiz-
able 32-bit RISC core for ASIC, system-on-chip (SoC), and
FPGA integration. It i1s synthesizable, configurable, and
extendable, thus allowing developers to modily and extend
the architecture to better suit specific applications. The pro-
cessor comprises a 32-bit RISC architecture with a four-stage
execution pipeline. The instruction set, register file, condition
codes, caches, buses, and other architectural features are user-
configurable and extensible. It has a 32x32-bit core register
file, which can be doubled if required by the application.
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Additionally, it 1s possible to use large number of auxiliary
registers (up to 2E32). The functional elements of the core of
this processor include the arithmetic logic unit (ALU), regis-
ter file (e.g., 32x32), program counter (PC), instruction fetch
(1-fetch) interface logic, as well as various stage latches.

ARCompact™ 1s an innovative istruction set architecture
(ISA) that allows designers to mix 16 and 32-bit instructions
on its 32-bit user-configurable processor. The key benefit of
the ISA 1s the ability to cut memory requirements on a SoC
(system-on-chip) by significant percentages, resulting in
lower power consumption and lower cost devices 1n deeply
embedded applications such as wireless communications and
high volume consumer electronics products.

The main features of the ISA include 32-bit nstructions
aimed at providing better code density, a set of 16-bit instruc-
tions for the most commonly used operations, and freeform
mixing of 16- and 32-bit instructions without a mode
switch—significant because 1t reduces the complexity of
compiler usage compared to mode-switching architectures.
The 1nstruction set expands the number of custom extension
instructions that users can add to the base-case processor
instruction set. Existing processor architectures allows users
to add a limited number of new instructions to speed up
critical routines and algorithms. With the ARCompact ISA,
users can add as many as 256 new instructions. Users can also
add new core registers, auxiliary registers, and condition
codes.

As 32-bit architectures become more widely used in deeply
embedded systems, code density can have a direct impact on
system cost. Typically, a very high percentage of the silicon
area of a system-on-chip (SoC) 1s taken up by memory.

The ARCompact ISA delivers high density code helping to
significantly reduce the memory required for the embedded
application, a vital factor for high-volume consumer applica-
tions, such as tlash memory cards. In addition, by fitting code
into a smaller memory area, the processor potentially has to
make fewer memory accesses. This can cut power consump-
tion and extend battery life for portable devices such as MP3
players, digital cameras and wireless handsets. Additionally,
the shorter instructions can improve system throughput by
executing 1n a single clock cycle some operations previously
requiring two or more instructions. This can boost application
performance without having to run the processor at higher
clock frequencies.

The support for freeform use of 16 and 32-bit instructions
allows compilers and programmers to use the most suitable
instructions for a given task, without any need for specific
code partitioning or system mode management. Direct
replacement of 32-bit instructions with 16-bit 1nstructions
provides an immediate code density benefit, which can be
realized at an individual instruction level throughout the
application. As the compiler 1s not required to restructure the
code, greater scope for optimizations i1s provided, over a
larger range of instructions. Application debugging 1s more
intuitive because the newly generated code follows the struc-
ture of the original source code.

The present invention provides, inter alia, a dual butterfly
instruction useiul for communications applications such as
the aforementioned Viterbi decode algorithms. The exem-
plary Dual Viterbi Butterfly (DVBF) instruction 1s a hardware
accelerating 1nstruction for performing Viterbi1 decoding,
which can be added to the “basecase” core by the user at time
of processor design. As 1ts name suggests, 1t performs, 1n a
single cycle, two “buttertly” operations, each consisting of
two add-compare-select (ACS) operations, and generates/
stores the decision bits defining which branches gave the
largest accumulated path metrics. The 1nstruction allows an
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end-user to speed up the ACS recursion by a factor of approxi-
mately 20 over prior art solutions.

The majority of the computational load 1in a Viterbi decod-
ing operation 1s made up of many such butterfly operations, so
that performing them 1n hardware, two per cycle, results 1n a
very substantial improvement in speed. The details of how the
instruction works, and 1s used 1n the context of an exemplary
digital processor, are set out in the following paragraphs.
Appendix I provides an exemplary decoder program (K=9,
rate 1/2). Appendix 11 provides a second exemplary decoder
program (K=5, rate 1/2). Appendix III provides exemplary
VHDL implementing the DVBF extension of the present
ivention.

Metrics

Viterb1 decoding proceeds by attempting to find the most
likely sequence of encoder states given the signals actually
received. For a rate 1/2 encoder, each input bit causes a state
transition in the encoder which generates 2 code bits (ora 2 bit
symbol). These code bits are converted into physical signals,
such as voltage levels, and sent via a commumnication channel
to a recerver. At the receiver these physical signals have been
degraded by attenuation, noise and other distortions. The
decoding algorithm requires “branch metrics™ that are a mea-
sure of how likely 1t 1s that a given encoder transition gave rise
to the received signals. (a “branch” i1s synonymous with an
encoder transition). For a given encoder transition 1t 1s known
what symbol would be generated and therefore what physical
signals would be transmitted, so the diflerence between these
transmitted signals and the signals actually received can be
used. The greater the difference, the less likely 1s the encoder
transition 1n question.

Suppose a symbol consisting of signals levels Y1 and Y2 1s
received. For a given encoder transition, the symbol gener-
ated will cause transmission of signal levels R1 and R2. A
common measure of the difference between [R1IR2] and
[Y11Y2] 1s the “squared Euclidean distance”, as follows:

metric value=(R1-Y1)*+(R2-Y2)* (Eqgn. 1)

This 1s the basic form of the metric used with the exemplary
embodiment of the DVBF 1nstruction, although some optimi-
zations are made as follows. First, the above expression 1s
expanded:

metric=R1%+Y12-2R1 Y1+R22+Y22-2R2¥? (Eqn. 2)

For a given received symbol (Y11Y?2), the values Y1* and Y2~
are common to all branch metrics. Since only the relative
value of the different branch metrics 1s of interest (in order to
select the most likely path), these common terms can be
removed, and the modified metric used as follows

metric=R1°-2R1Y1+R2°-2R2Y2 (Eqn. 3)

R1 and R2 are the transmitted voltages for the symbol. It 1s
assumed that the baseband encoding scheme 1s antipodal,
meaning that a binary *1”1nthe symbol 1s encoded as a voltage
of —v, while a binary ‘0’ 1s encoded as +v. In this case:

R1°=R2°=y? (Eqn. 4)

and hence are common to all branch metrics, so that these
terms can also be removed, giving:

metric=—2R1Y1-2R2Y2 (Eqn. 5)

Note that so far, the metric 1s a measure of the difference
between the transmitted and received symbols, and therefore
the minimum value of this metric 1s desired. It 1s desired to
locate the transition that gives rise to a transmitted symbol
that ditfers least from the symbol actually recerved.
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The final step 1s to divide by -2v. This affects all possible
metrics equally and so preserves their ordering, except for a
reversal, so that the maximum value 1s now desired. This
gives the following;:

metric=rl Y1+r2Y2 (Eqn. 6)

where, rl and r2 correspond to R1 and R2, but are scaled to
+/—1. Table 1 below shows how branch metrics can be calcu-
lated for a rate 1/2 encoder. The encoder symbol column
shows the binary symbol generated by the encoder (before
being converted 1nto voltage levels for transmission).

TABLE 1
Encoder Symbol Metric Or
00 Y1+Y2 Sum
01 Y1-Y2 Diff
10 -(Y1 -Y2) —-Diff
11 -(Y1 +Y2) —Sum

For a rate 1/2 encoder, the foregoing shows that all the pos-
sible branch metrics can be derived from just two quantities,
the sum and difference of the voltage levels for the received
symbol. This 1s one of the main simplifications used by the
DVBF mstruction of the present mnvention. It will be recog-
nized that the DVBF instruction can also be used for other
code rates (such as, for example, rate 1/3 and 2/3 by using 4
branch metric values), such implementations being readily
accomplished by those of ordinary skill given the present
disclosure.

A turther simplification results from the assumption that
the encoder polynomials all have a *1° 1n the most significant
bit (so that the input data bit 1s involved 1n the exclusive-or
calculation for all symbol bits). This means that the encoder
symbol produced when the input bitis a “1°, 1s the logical (or
bitwise) mverse of that for a *0’. This in turn means that the
metric for the branch corresponding to a 1’ input bitis —ve of
that for the branch corresponding to a ‘0’ mput bit. This
information 1s also used 1n the DVBF hardware of the exem-
plary embodiment described herein. The parameter passed to
the DVBF struction defines which metric to use for the
branch from 2s to s, and the hardware automatically uses the
—ve of this for the branch from 2s to s+N/2.

Dual Butterfly Instruction

The Viterb: algorithm (VA) can be split into two distinct
sections: (1) the add-compare-select (ACS) recursion; and (11)
traceback. The ACS recursion 1s formed of many ACS butter-
fly operations. As can be seen 1n FIG. 6, each butterfly 1s a
collection of two ACS operations. In the context of a typical
prior art processor, to complete a single ACS operation takes
several cycles; five or more 1n the exemplary prior art ARCt-
angent A4 processor described above. For each codeword
decoded, 2*~' ACS operations are required. For constraint
length K=9, 256 ACS operations are completed in 1280
cycles per codeword. This results 1n a large number of cycles
being spent on the ACS recursion, as a data frame can be
several thousand codewords 1n length. The Dual Butterfly
Instruction (DVBF) of the present invention dramatically
reduces the cycle count to, 1n one exemplary embodiment, 72
cycles per codeword for K=9 decoders. The DVBF 1s advan-
tageously able to process two butterflies (or 4 ACS) per cycle,
resulting 1 a cycle count reduced by a factor of approxi-
mately twenty (20).

DVBF Operation

The DVBF mstruction of the illustrated embodiment uses
cumulative path metrics stored in XY memory, and the metric
values placed 1n auxiliary registers; e.g., AUX_DVBF BMO/1
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(described 1n greater detail below) to calculate the possible
new path metrics for 4 encoder states. It selects the largest
path metric for each state and stores this back to XY memory
(in an alternative area). For each of the 4 path metrics
selected, the instruction shifts a decision bit into the most-

significant bit (msb) of auxiliary register AUX_DVB-
F ACCU.
The encoder states involved in these calculations are

defined in the illustrated embodiment by an internal counter
within the DVBF hardware. This counter 1s initialized via the
auxiliary register AUX_DVBF_INTSTAT, and subsequently

increments each time the instruction 1s called, rolling over to
0 when all encoder states have been processed. This rollover
1s controlled by a value written into the auxiliary register
AUX_ DVBF_MODE.

The Dual Viterbi Buttertly instruction of the present inven-
tion has a large amount of internal state, meaning that its
operation 1s defined by more factors than just the operands
passed to 1t. Several registers require configuration before the
instruction 1s used, and the path metric data area must be
initialized.

The DVBF instruction disclosed herein 1s designed prima-
rily for use in Viterb1 decoding algorithms that make several
assumptions about the encoder and transmission scheme. As
previously discussed, these assumptions are: (1) the polyno-
mials that define the encoder all have a ‘1’ 1n the most sig-
nificant bit; and (11) the transmission/reception of bits forming
the encoded symbols 1s antipodal. When a ‘0’ bit 1s transmut-
ted, a positive value, +v, will be recerved (in the absence of
any signal distortion or noise), and when a ‘1’ bit 1s transmiut-
ted, a negative value, —v, will be recerved. The values actually
received are altered by noise and other distortions in the
transmission channel.

The DVBF 1nstruction performs two “buttertlies”, each
consisting of 2 ACS operations. FIG. 6 1llustrates the encoder
states 604 1nvolved 1 one such buttertly and the possible
transitions between them. The encoder states on the left por-
tion 601 of FIG. 6 are at time=t, those on the right portion 602
at time=t+1. The arrows of FIG. 6 are the possible state
transitions. The simple relationship between the state num-
bers are due to the fact that the encoder “state machine” 1s in
fact just a shiit register. Dashed arrows are transitions that
occur when the mput to the encoder 1s a ‘0’, while solid
arrows are those when the mput 1s a ‘1°’. When the DVBF
instruction 1s executed, 1t retrieves the path metrics for states
2s 604a and 2s+1 6045 from (XY) memory. Then, using the
branch metrics 1n auxiliary registers AUX_DVBF_BMO0/1
and information supplied 1n operand 1, the instruction calcu-
lates the possible new path metrics for states s 604¢ and s+N/2
6044. This 1s achieved by adding the appropriate branch
metrics to the path metrics.

There are two possible new path metrics for each of state s
604¢c and s+N/2 604d, corresponding to the two possible
transitions into each of these states. The hardware associated
with the 1instruction (not shown) selects the larger path metric
value, and stores this back into XY memory. IT the selected
path metric 1s that associated with the branch from state 2s
604a (“upper” branch), a ‘0’ decision bit 1s shifted into the
msb of the AUX_DVBF_ACCU register. If the selected path
metric 1s that associated with the branch from state 2s+1 6045
(“lower” branch), a ‘1’ decision bit 1s shifted 1n. Note that
these decision bits are associated with states s and s+N/2, at
time t+1, and not with states 2s and 2s+1 at time t. However,
because the decision bits are stored sequentially (by shifting
into AUX_DVBF_ACCU), the decision bit for state s will be

in bit position 2s (relative to the first decision bit) and that for
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state s+IN/2 will be at bit position 2s+1. This information 1s
needed for the traceback part of the decode algorithm.
In the above discussion, the value of s 1s determined by an

internal counter, which 1s initialized by writing 0 to auxiliary
register AUX_DVBF_INTSTAT, and which increments each
time a DVBF 1nstruction 1s executed.

Branch Metrics

AUX_DVBF_BMO0/1702, 704 (FIG. 7) are 32 bit registers
and can be used to store four (4) 16-bit metric values. The
metrics in BMO are referred to as “sum” metrics, and those in
BMI1 as “diff” metrics. The terms “sum”™ and “difl” dernive
from the analysis of rate 1/2 codes but should be considered
merely convenient labels for the embodiments described
herein, and not determinative of any particular configuration.
The use of these metric values 1s controlled by the contents of
operand 1 802 (FIG. 8).

Operand 1 802 1s a control word that can be split into two
8-bit fields 804, 806, each with 4 sub-fields, as 1llustrated 1n
FIG. 8. The least significant 8 bits 804 control butterfly O,
while the top 8 bits 806 have 1dentical meanings for buttertly
1. Each butterfly uses one of the ‘sum’ metrics and one of the
‘difl” metrics previously described, depending on MO/M1
(bits 4-5 and 12-13, respectively) 1n the exemplary control
word of FIG. 8. Literally any combination 1s possible. Table 2
illustrates an exemplary use of MO/M1.

TABLE 2
MO/M1
Value  Sum Metric Diff Metric
00 AUX__DVBF_ BMO (15:0) AUX__DVBF__BMI1 (15:0)
01 AUX_ DVBF__BMO (15:0) AUX_ DVBF__BMI1 (31:16)
10 AUX_DVBF_BMO (31:16) AUX_DVBF_ BMI1 (15:0)
11 AUX_ DVBF_BMO (31:16) AUX_DVBF__BMI1 (31:16)

Referring now to FIG. 9, one exemplary control data bit
mapping scheme 1s 1llustrated. For Buttertly 0 902 (subscript
‘07):

OSH,:

‘00’ Path metricO+Branch metric O

‘01” Path metricO+Branch metric 1

‘10” Path metricO-Branch metric 1

‘11’ Path metricO-Branch metric O

OSL,:

‘00’ Path metricl
‘01’ Path metricl
*10° Path metricl
‘11’ Path metricl
BMS,:
‘00’Branch metric 0=AUX_ DVBF_BMO[15:00]IBranch
metric1=AUX_DVBF_BMI1[15:00]

‘01 Branch metric 0=AUX_ DVBF_ BMO0[15:00]|Branch
metric1=AUX_DVBF_BMI1[31:16]

‘10°Branch metric 0=AUX_DVBF_ BMO0|31:16]IBranch
metric1=AUX_DVBF_BMI1[15:00]

‘11’Branch metric 0=AUX_DVBF_BMO0|31:16]IBranch
metric1=AUX_DVBF_BMI1[31:16]

RES: [Reserved]

For Buttertly 1 904, the bit mapping scheme of the present
embodiment 1s the same as that of Butterfly 0 902 shown
above. Note that 1n the 1llustrated embodiment, bits 31 to 16
are 1gnored, although 1t will be recognized that additional
functionality may be provided via such bits, such as for
example a 1/3 rate decoder.

For each branch 1n the butterfly, the hardware uses either
the sum or diff metric selected, or the negative of one of these,
and adds 1t to the current path metric to find the new path

+Branch metric O
+Branch metric 1
—Branch metric 1
—Branch metric O
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metric. For branches from state 2s, UB0O/UB1 selects one of
these 4 possible metrics for the branch to state s. This auto-
matically defines which metric will be used for the branch to
state s+IN/2. This 1s based on the assumption that the encoder
polynomials all have a 1’ in the most significant bit, so that
the symbol transmitted for a *1” data bit (branch from 2s to
s+IN/2) 1s the logical inverse of that transmitted for a 0’ data
bit (branch from 2s to s). Thus, the metrics for the two

branches are of the same magnitude but opposite sign. A
similar situation 1s true for the branches from 2s+1 to s and
s+IN/2, the metrics for these being selected by LBO/LBI.
Exemplary actual metrics used are set out in the Table 3
below.

TABL.

L1l
(o

Branch Metric for Branch Metric for

UBO/LBO transition to state s transition to state s + N/2
00 +sum metric —sum metric
01 +dift metric —diff metric
10 —diff metric +dift metric
11 —sum metric +sum metric

The 1llustrated exemplary branch metric scheme 1s based on
certain assumptions about the convolution encoder and the
baseband coding scheme, as previously described herein.
Referring now to FIG. 10, one exemplary embodiment of
the decode method of the present invention 1s described, in the

context of calculating the new path metrics for buttertly O.
As shown 1n FIG. 10, the method 1000 first examines the

MO field (bits 4-5 of FIG. 8 control word), and uses a mecha-
nism embodying Table 2 to select a “sum”™ branch metric and
a “diff”” branch metric (step 1002). It will be recognized that
any number ol well known mechanisms for providing the
logical function of Table 2 may be used, including without
limitation a look up table 1n a designated area of memory.
Next, per step 1004, for transitions from state 2s, field UBO
(bits 0-1 of FIG. 8 control word) 1s examined 1n conjunction
with Table 3 to choose branch metrics to the subsequent
states. Next (or in parallel), for transitions from state 2s+1,
field LBO 1s examined with Table 3 to choose branch metrics
to the subsequent states (step 1006).

For state s (at time t+1), the two possible new path metrics
are: 1) path metric for state 2s+branch metric selected accord-
ing to UBO; and 11) path metric for state 2s+1+branch metric
selected according to LBO. Per step 1008, the hardware of the
exemplary processor calculates both of these path metrics.
Per step 1010, the hardware selects the largest of the metrics
calculated in step 1008. This largest path metric 1s written
back to XY memory 1n the alternate storage area to that from
which path metrics are being read (step 1012).

If the branch from state 2s was selected (upper branch),
AUX_ DVBF_ACCU 1s shifted right one bit (step 1014),
eifectively shifting a O into the msb. It the branch from 2s+1
was selected (lower branch), the shitt 1s done and the msb 1s
set to 1 (step 1016).

Per step 1018, steps 1008-1016 as appropriate are repeated
for state s+N/2 (at time t+1).

Lastly, per step 1020, the same procedure 1s carried out for
the second buttertly, but mstead using M1, UB1 and LBI
(FIG. 8). Obviously, these calculations can be performed 1n
parallel, or senal 11 desired; however, the present invention
advantageously performs two buttertlies (each dual ACS) 1n
one cycle.

Path Metric Storage

Path metric data 1s in the 1llustrated embodiment stored 1n

XY memory. This allows the DVBF hardware to directly
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access this data using for example a direct memory interface
(DMI) facility at high speed. Note that the term “DMI” as
used herein refers generally to an interface which provides
access to a RAM or comparable storage device. It does not
imply a certain protocol or structure. One exemplary memory
interface 1s described in co-owned and co-pending U.S.
patent application Ser. No. 09/801,241 entitled “Memory
Interface and Method of Interfacing Between Functional
Entities” filed Mar. 7, 2001, which 1s incorporated herein by
reference in its entirety. Other configurations of interface may
also be used, such other interfaces being readily implemented
herewith by those of ordinary skall.

The memory bank used 1s, 1n the illustrated embodiment,
specified by bits 2:1 of the AUX DVBF_MODE register

1200 (FIG.12). Each XY memory location (32-bits) 1s used to
store two 16-bit path metrics, and both X and Y memory are
used. This requires, therefore, 2*~'/4 locations in each of X
and Y memory, where K 1s the constraint length (so that
24-D/4 is the number of states in the encoder). However, two
identical areas of this size are required. During the decode of
a single codeword, involving 2%~1/4 dual butterfly instruc-
tions, path metric data is read from one of these XY memory
areas, and the updated metric data are written to the other
area. This “alternate storage” advantageously allows new
path metrics to be calculated out of order and stored without
overwriting the current values, the latter which are still
required.

One exemplary mapping of path metrics to XY locations 1s
shown 1 FIG. 11, and 1s chosen to optimise (simplify) the
hardware, although mapping based on one or more other
criteria can be applied. FIG. 11 shows a single path metric
storage area. In the present embodiment, a second 1dentical
area (not shown) 1s placed immediately above 1n the same
bank of XY memory. The values shown in FIG. 11 are the
encoder state number whose path metric 1s stored at that
location.

The path metric data must be initialized by the programmer
prior to the start of decoding. This initialization 1s illustrated
in the example code provided herein as Appendix I and II. The
first location 1n X memory 1s set 1n the 1llustrated example to
0XC0000000, while all the others are set to 0XC000C000.
This sets all path metrics to a large negative value, except that
for state 0. This approach 1s used because the state machine
will always start 1n state O, so this 1s very much more likely
than any other state (1nitially).

In this embodiment, the path metrics for each state are
16-bits 1n length and are stored as 32-bit words when concat-
enated with their adjacent state. In each cycle (except the first
and last) two 32-bit words (4 path metrics) are read from and
written to memory. Due to the nature of the Viterb1 algorithm
(VA), the reading of the state data 1s linear, and the writing
back of the state data needs a special addressing mode to write
data to the correct address so it can be read linearly on the next
decoding cycle (1.e. the next codeword). The states are written
back in the following order: 0, 2%72,1,2%7%+1,2,...,2%7°=2,
26-1_2 25-2_1,2%7'_1. The reads and writes to memory for
a 16 state decoder can be seen 1in FIG. 114a. On the first cycle,
the path metrics for states 0 and 1 are read from the X region
by buttertly O, and the path metrics for states 2 and 3 are read
from theY region by buttertly 1. On the second write, the data
buttertly O has the new path metrics for states 2 and 3, however
states 2 and 3 are inthe Y region and butterfly O always writes
to the X region. To allow the two buttertlies to read and write
to different regions some multiplexing or comparable mecha-
nism 1s needed. The reads and writes marked with an aster-
1sk (*) 1130-1133 are required to be written to the opposite
region. The correct locations of the state’s path metrics are
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shown 1n FIG. 1156. On the second cycle, butterfly O writes 1ts
data to region Y, and vice versa for butterfly 1. The complete
map of state location 1s summarised in Table 4 below, recog-
nizing that the actual locations of particular states will change
depending on the total number of states. However, there exists
an exception to that rule; states O and 1 will always be 1n
location zero (0) of the X region (and 1n fact, states 2 and 3
will also always be 1n location 0 of the Y region).

TABLE 4
Y X

31 16 150 3116 150

3 2 1 g
ey dely e, e
257243 2572 4+ 2 252 +1 252
K1 VK- _ 1 VK-1 _ 5 VK-1 _ 3

Renormalization

The path metrics are cumulative, so there exists the possi-
bility of overtlow. To overcome this, the DVBF hardware of
the present embodiment uses a modulo arithmetic scheme
when comparing path metrics to decide which 1s larger. This
ensures that the mstruction can be used successtully with
large data sequences.

In one embodiment, the renormalization process com-
prises requiring the path metric storage be mitialized to —oo/2;
for 16-bi1t data words this value 1s OxCO00O (or —16384 ), state
zero 1s set to zero. The first address location 1n the X region 1s
set to O0xCO000000 and all other locations are set to
OxCO000CO000, 1s also noted that address location 0 1n'Y 1s also
set to this value. The total number of address locations that
need to be mnitialized 1s as set forth in Eqn. 7:

Number of address locations=(number of states/4)-1 (Eqn. 7)

For example, for a 32-state decoder, address locations O to
7 need to be mitialised (32/4=8-1=7).

The discussion so far has assumed a rate 1/2 encoder. Other
encoder rates can also be accommodated by the present
invention, due to the provision of 4 metric values in AUX_D-
VBF BMO0/1 (FIG. 14). If the analysis previously provided for
rate 1/2 coders 1s applied to, for example, rate 1/3 encoders,
the following table of metrics (Table 5) 1s generated:

TABLE 5

Encoder Symbol Metric Or
000 Y1 +Y2+Y3 m1
001 Y1 +Y2-Y3 m2
010 Y1 -Y2+Y3 m3
011 Y1-Y2-Y3 m4
100 -Y1+Y2+Y3 -m4
101 -Y1+Y2-Y3 —m3
110 -Y1-Y2+Y3 —m?2
111 -Y1-Y2-Y3 -m1

In the same way as for the rate 1/2 encoder, the metrics for a
symbol and for 1ts bitwise complement 1n the rate 1/3 encoder
are the negative of each other. Thus, the DVBF instruction
architecture of the present invention may be applied to rate
1/3 decoding. The 4 metrics m1 through m4 can be accom-
modated by AUX_DVBF_BMO0/1, and the control words
passed to the DVBF instruction chosen appropriately depend-
ing on the encoder polynomials. As will be recognized by
those of ordinary skill, so-called “punctured” codes based on



US 8,201,064 B2

19

arate 1/2 encoder can also be accommodated (e.g., 2/3 or 3/4)
by suitable use of AUX_DVBF_BMO/1.

In addition, the hardware implementation has reserved bits
in the control word passed to the instruction (operand 1) so
that extra branch metric registers can easily be added to allow
more complicated rates to be supported.

Referring now to FIGS. 12-16 and Tables 6-7, details on an
exemplary configuration and coding of registers used in con-
junction with the present invention are provided.

TABLE 6

Register  Access
Register Name Number  Mode Width
AUX_ DVBF_MODE 0x26 R/W RAMA_ S7Z+6
AUX_DVBF__BMO 0x27 R/W 32
AUX_ DVBF__BMI 0x28 R/W 32
AUX_ DVBF__ACCU 0x29 R/W 32
AUX_ DVBF_OFST 0x2A R/W RAMA_SZ
AUX_ DVBF__INTSTAT  0x2B R/W RAMA_SZ +1

AUX_ DVBF_MODE—This register 1200 controls several

aspects of the Dual Viterb1 Butterfly extension instruction, as
set out 1n the exemplary encoding of FIG. 12 and Table 7.

TABL.

L1

7

AUX_DVBF_MODE

Field Description
AR Access Request: Request direct control (DMI)
over XY memory bank. Setting this bit causes
the hardware to request control of the XY
memory bank.
BS Bank Select: Select the XY bank to use for
path metrics.
R Reserved
AE Access Enabled. The hardware sets this bit to

one when DMI 1s granted for the requested
XY memory bank.

The NUM_OF_DVBEFS field 1202 represents the number of
DVBF 1nstructions required to calculate all the new path
metrics=2%"1"%,

Note also that the XY memory bank selected for use by the
Dual Viterbi Butterfly extension mstruction (bits 1-2 of FIG.
12) must be different from the currently selected bank 1n
XYCONFIG [1:0] bank select.

AUX_DVBF_OFST—This register 1300 (FI1G. 13) 1s used
to oifset path metric storage from the start of the XY memory
bank. The width of this register depends on the size of the XY
memory banks, and 1s therefore configurable. It 1s write only
in the 1llustrated embodiment.

AUX_DVBF_ACCU—This register 1400 (FIG. 14) pro-
vides full read/write access to the accumulator used to store
decision bits. It 1s used for 1nitialization and context saving.

AUX_ DVBF_BMO0/1—These two registers 1500 are used
to supply branch metric data to the butterfly instruction. Each
received codeword 1s used to calculate a set of branch metrics
for various possible transmitted codewords. These metrics are
written to the AUX_DVBF BMUO0/1 registers and used 1n all of
the buttertly operations for this recerved codeword. See FIG.
15 for an exemplary encoding. Each 1s split into two 16-bit
branch metrics, which are written prior to calling the mnstruc-
tion. Which two of the metrics are used for a given buttertly 1s
defined by the control word passed to the instruction, as
previously described herein.

AUX_DVBF_INTSTAT—This register 1600 contains all
the information regarding the internal state of the instruction
hardware, such as which path metrics to operate on next, and
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which areas of XY memory to read/write path metric from/to.
This register to should be written to 0 before beginning the
decode algorithm. Subsequently, 1t should not be altered. In
the case of a context switch, this register 1s saved and restored
if there 1s any possibility that the new thread will use the
DVBF mstruction. See FI1G. 16 for an exemplary encoding.

The DVBF_Count field represents the number of times the
DVBF 1nstruction has been called. This counter wraps round
to O when its value reaches NUM_OF_DVBFS 1202 (1in the
AuxDVBF_MODE register 1200). Note also that the width of
this field depends on the size of the XY memory. This also
means that the location of the next field, PS, 1s not fixed.

The PS field 1s the path metric set, and specifies which area
of the XY memory to read path metrics from, and which to
write to. This toggles each time the DVBF_Count wraps
round.

The present invention assumes the use of memory (e.g.,
XY memory) of the type which 1s commonly used 1n proces-
sors for storing data that needs to be processed efficiently by
a software algorithm, and the use of address generation units
to perform the address arithmetic. In the exemplary processor
embodiment, a four-stage pipeline (1.e., fetch, decode,
execute, and writeback stages) 1s utilized: 1n stage 1, mstruc-
tions are fetched from the nstruction cache; 1n stage 2, one or
more operands are fetched from XY memory or the core
registers; in stage 3, the mstruction 1s performed 1n either the
base ALU or in one or more user-selectable and configurable
extension ALUs. In stage 4 of the pipeline, the results of the
instruction execution are written back to XY memory or the
core registers as applicable. Hence, the DVBF extension
instruction described above 1s added to the ISA during pro-
cessor design. The following hardware considerations relate
to the addition of the DVBF extension to the core.

The DVBF 1s a pipeline structure that runs parallel to the
processor core pipeline. Decoding of the stage 2 mstruction
(p21 and s2a) allows the hardware to access XY memory and
retrieve the correct path metric data ready for use 1n stage 3.
In stage 3 the control data contained 1n the slval signal 1s
passed to the extension, where it 1s used to control which
section of the two branch metric registers to use, and how the
data 1s to added (or subtracted) to the current path metric. The
results of the addition (or subtraction) are latched to allow a
high clock frequency to be used. The latched results are used
by two comparison modules 1n the pipeline to determine the
new path metric and the decision bits. The modified compari-
son function 1s used for modulo renormalization (previously
described). The new path metrics are muxed, and written back

to the correct region of XY memory. The decision bits are
accumulated whether or not the write back 1s enabled. The
results from the accumulator must be written back at least
every several mstructions.

With a latch present 1n the pipeline (such as that in the
exemplary ARCtangent A4 described above), the core may
need to be stalled when the DVBF instruction writes back its
data. Therefore, for example, 8 instructions will actually take
9 cycles. This latch can be removed, but the clock frequency
may be reduced as compared to with the latch 1n place.

The extension hardware necessary to support the DVBF
extension instruction includes a 32-bit accumulator register
for the decision bit data to be stored. The decision bits are
accumulated and shifted into the register from the MSB to
LSB. This will cause the decision bits from lower states to be
disposed 1n the lower part of the word. For decoders with
states of less than 32, the decision bits for states zero can be
found at bit position 32 (number of states). The accumulator
will be mapped 1nto auxiliary space allowing full read/write

access. The auxiliary register named AUX_DVBF_ACCU
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1400 (FIG. 14) 1s allocated register number XX. The proces-
sor pipeline will stall if this register 1s accessed using the
auxiliary interface while the ACS extension 1s busy.

To find the position of a decision bit for a particular state, a
simple algorithm can be used:

Bit Position=(state_ number<<1) OR

[{state_number>>(K-2)} and 0x01] (Eqn. R)

For decoders with state number 1n excess o1 32, more than one
word 1s required to store all the decision bits. To locate the
word 1n which the bit for a the state under inspection, another
simple algorithm can be used:

Word Number=state_number>>5 (Eqn. 9)

To enable the highest throughput of data, 1t 1s optimal to
take the control of the path metric storage away from the
programmer and to perform this function 1n hardware. The
XY memory DMI enables extension hardware to gain access

to the high-speed local XY memory. Writing a one (1) to
AUX_DVBF_MODE(0) causes the hardware to request an

access to the bank represented by AUX_DVBF_MODE
(Bank select, 2 down to 1). Once access 1s confirmed, the
hardware will drnive AUX_DVBF_MODE(5) high; no
instruction should be 1ssued until thus bit 1s high, as results
cannot be guaranteed. Writing a zero (0) to AUX_DVBF-
_MODE(0) will cause the hardware to release access to the
XY memory bank. AUX DVBF_MODE(S5) will be driven

low to indicate that the hardware no longer has access to the

bank.

If an interruptrequest (IRQ) 1s serviced while the extension
hardware has locked an XY bank using the DMI, there are
three techniques available to ensure that the XY memory can
be accessed. The first 1s to not use XY memory in IRQ service
routines. The second requires all service routines to not use
the bank that 1s 1n use. The third 1s that all service routines
write to the AUX_DVBF_MODE register (see previous dis-
cussion relating thereto) 1n order to release the ACS' DMI
lock on a bank before using the bank, and then relock the bank
tor the ACS at the end of the service routine.

Integrated Circuit (IC) Device

As previously described, an extensible and user-config-
urable processor core 1s used as the basis for the IC device of
the exemplary embodiments described herein; however, other
arrangements and configurations may be substituted 1f
desired. The device 1s fabricated using the customized VHDL
design obtained using the method referenced subsequently
herein, which 1s then synthesized into a logic level represen-
tation, and then reduced to a physical device using compila-
tion, layout and fabrication techniques well known 1n the
semiconductor arts. For example, the present invention 1s
compatible with 0.35, 0.18, and 0.1 micron processes, and
ultimately may be applied to processes of even smaller or
other resolution (such as the IBM/AMD 0.065 micron pro-
cess). An exemplary process for fabrication of the device 1s
the 0.1 micron “Blue Logic” Cu-11 process offered by Inter-
national Business Machines Corporation, although others
may be used.

It will be appreciated by one skilled 1n the art that the IC
device of the present mvention may also contain any coms-
monly available peripheral such as serial communications
devices, parallel ports, timers, counters, high current drivers,
analog to digital (A/D) converters, digital to analog convert-
ers (D/A), RF system components, USB ports, interrupt pro-
cessors, L.CD drivers, memories and other similar devices.
Further, the processor may also include other custom or appli-
cation specific circuitry, such as to form a system on a chip
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(SoC) device usetul for providing a number of different func-
tionalities 1 a single package as previously referenced
herein. The present mnvention 1s not limited to the type, num-
ber or complexity of peripherals and other circuitry that may
be combined using the method and apparatus. Rather, any
limitations are primarily imposed by the physical capacity of
the extant semiconductor processes which improve over time.
Therefore 1t 1s anticipated that the complexity and degree of
integration possible employing the present invention will fur-
ther increase as semiconductor processes 1mprove.

It will be further recognized that any number of method-
ologies for designing an IC including synthesizing logic
incorporating the “dual butterfly” functionality previously
discussed may be utilized 1n fabricating the IC device. One
exemplary method of synthesizing integrated circuit logic
having a user-customized (1.e., “soft”) mstruction set 1s dis-
closed in co-pending U.S. patent application Ser. No. 09/418,
663 previously referenced herein. Here, the user 1s presented
with a development (and debug) environment which facili-
tates user customization of the resulting device, including the
number and types of extension instructions (and associated
hardware), cache and memory configurations, memory inter-
faces, register files, and the like. The user may also advanta-
geously select the mixed 32-bit/16-bit ISA with instruction
aligner as described 1n co-owned and co-pending U.S. patent
application Ser. No. 10/356,129 filed Jan. 31, 2003, entitled
“Configurable Data Processor With Multi-Length Instruction
Set Architecture”, which 1s incorporated herein by reference
in its entirety. As another alternative, the methods and appa-
ratus disclosed 1n co-owned and co-pending U.S. provisional
patent application Ser. No. 60/375,997 filed Apr. 25, 2002,
entitled “Apparatus and Method for Managing Integrated Cir-
cuit Designs™ and incorporated herein by reference 1n 1ts
entirety may be utilized consistent with the present invention.
Other methodologies and development environments,
whether “soit” or otherwise, may be used consistent with the
present invention, however.

Numerous modifications and adaptations of the above
described embodiments and aspects of the imnvention will be
readily apparent to a person skilled 1n the art of designing
digital processors (such as digital signal processors and
embedded RISC processors) in view of the disclosure pro-
vided herein. It will also be recognized that while certain
aspects of the mvention have been described 1n terms of a
specific sequence of steps of a method, these descriptions are
only illustrative of the broader methods of the invention, and
may be modified as required by the particular application.
Certain steps may be rendered unnecessary or optional under
certain circumstances. Additionally, certain steps or function-
ality may be added to the disclosed embodiments, or the order
of performance of two or more steps permuted. All such
variations are considered to be encompassed within the inven-
tion disclosed and claimed herein.

While the above detailed description has shown, described,
and pointed out novel features of the invention as applied to
various embodiments, it will be understood that various omis-
s10ms, substitutions, and changes in the form and details of the
device or process illustrated may be made by those skilled 1n
the art without departing from the invention. The foregoing
description 1s of the best mode presently contemplated of

carrying out the invention. This description 1s 1n no way
meant to be limiting, but rather should be taken as illustrative
of the general principles of the invention. The scope of the
invention should be determined with reference to the claims.
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APPENDIX 1

(EXEMPLARY DECODE PROGRAM (K = 9))

© 1997-2003 ARC International. All rights reserved.

; Description:  Code for the Dual Viterbr butterfly instruction
; Implements a K=9 decoder (arte 12) using the following polynomials:

pl = (101110001)
p2 =(111101011)

2

equk,9 ; Constraint Length
.equ nuin_states, 256 ; 2FF(K-1)
.equ num_of codewords, 528 : Number of codewords in frame

: new equate at V1.1
.equ num_dual_butterflies, num_states/4

equ 1mit0, OxCO000000 ; zero state =0

equ 1mtl, OxCO00CO00 ; All others = —infinity/2

.equ PM_BN, 0x00 ; Bank number used for Path metric

equ PM_start, 0x00 ; Path metric storage start addr

equ DD start, 0x00 : was 0xD9  ; Decoded Data start Addr
equ REV , 0

; num_states now replace by num_dual_butterflies, and

: shifted left 6, instead of 7 - V1.1

equ DVBF_MODE_START, (num_dual_butterflies<<6)|[{(PM_BN<<1)|0x01
equ DVBF_MODE_STOP, (num_dual butterflies<<6)|(PM_BN<<1)|0x00

Anclude macros.s
a1nclude code.s
.section text, data
.global _start
text
_ start:
; move the load/store ram base location, keep it out of the way
mov  %or(), 0xX00000
ST Y1), [OX18]
; start the timer, to see how long 1t all takes
ST Ox I, t0_limit]
ST 0x00000000, [tO_control]

ST 0, tO_count]

; First, the path metrics are initialized, which are in XY memory.
; The path metric for state O 1s 1nitialized to O, and all the others are
: 1nitialized to —16384. This 1s because we know that the first state 1s O

start_up_code:
ST DVBF_MODE_STOP, AUX_DVBF_MODE]
ST PM_BN, XYCONFIG] ; set the path metric XY bank as current
ST 0x01, MXO00] ; X pointer post increments by one
ST 0x01, MYO0O0] ; Y pointer post increments by one
ST PM_start, AXO] ; set pointer to start of metric storage
ST PM_start, AYO] ;" " "
mov LP COUNT, num_ states ; for each state
mov  xX0_u0, 1nito ; 1nit first path metric to special value
mov 10, 1nitl ; setup rO with normal metric it value
mov  y0_u0, r0 ; it second metric
Ip pm_init_loop ; 11t the rest of the path metrics

mov  xU_u0, 10
mov  y0_u0, 10
pm_init_loop:

mov 10, 0x090c;
mov rl, 0x0c09;
mov 12, 0x0306;
mov 13, 0x0603;

; Write a 1 to the AR bit in the DVBF mode reg, to mnitiate requesting
; DMI access to the XY memory bank used for path metric storage. Then

; poll for the AE bit becoming set, indicating that DMI 1s granted.

st DVBF_MODE_STARI, |AUX_DVBF_MODE] ; set up AUX_DVBF_Mode register to

st PM_start,

mov  %orZ24, 0x1000
poll_for_dmi_access:

; request DMI to path metric XY bank
[AUX_DVBF_OFST] ; Set path metric offset in XY mem
; max times to poll for DMI access

sub.f %r24, %r24, 0x1
n dmi_access_{failed
Ir I3, [AUX_DVBF_MODE]

and.f 13, S,
poll_for dmi_access

1Z

0x20

24
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; Set up loop to work through the codewords. This 1s ACS part of the decode

; This involves loading the LPCOUNT register with the number of codewords,
; getting the first codeword, and setting up a pointer into the memory area

to be used for decision bit data.

IMov LP_COUNT,
mov 120,

num_of_ codewords ; setup for loop over rcvd codewords
code_word_data-4 ; pointer to start of codeword data

;Initialize pointer to decision bit area in normal memory-instead of XY mem
mov %rl6, Decision Bits-4
; store timer at start of the ACS loop

Ir 124,
st 124,

start acs:

[tO_count]
|ACS_start_count]

Ip acs_recursion_end
; prepare for the ACS operations for all states, for this codeword
; This involves reading the two elements of the codeword, calculating
; their sum and difference and storing these in special registers

Id.a rll, [r20.,4]

Id.a rl2, [r20,4]

ST 0x00, [AUX_ DVBF_ACCU]
add r14, rll, r12

sub  rl5, rll, r12

ST rl4, [AUX_DVBF_BMO]
ST rl5 [AUX_DVBF_BMI1]

2

; Instruction coding for K==9.
; Each DVBF nstruction performs the ACS calculation for 4 states.

; Returned decision bit data 1s stored to RAM rather than XY memory
; This avoids using a large amount of XY memory.

DVBF 0
DVBEF 0
DVBF 0
DVBEF 0
DVBF 0
DVBEF 0
DVBF 0
DVBE 15
st.ard

DVBF 0
DVBF 0
DVBF 0
DVBF 0
DVBF 0
DVBEF 0
DVBF 0
DVBE 15
st.ard

DVBEF 0
DVBF 0
DVBEF 0
DVBF 0
DVBF 0
DVBF 0
DVBF 0
DVBE 15
st.ard

DVBEF 0
DVBF 0
DVBEF 0
DVBF 0
DVBEF 0
DVBF 0
DVBF 0
DVBE 15
st.a rd

DVBEF 0
DVBF 0
DVBEF 0
DVBF 0
DVBEF 0
DVBF 0
DVBEF 0
DVBE 15

st.ard
DVBF 0O

, 10
, 10
, 1l
, 1l
, 12
, 12
, 13
, 13
, [Yorl6, 4]

, [Sorl6, 4]
, 1l
, 1l

, [Yorl6, 4]
, 12

; loop over rcvd codewords

; Get first codeword from memory

; Get second codeword from memory
; clear accumulator

; Create Sum of codewords

; Create diftf of codewords

; Store Sum 1n the BMO register
; Store Diff 1n the BM1 register

26
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DVBF 0 , 12
DVBEF 0 , 13
DVBF 0 , 13
DVBF 0 , 10
DVBF 0 , 10
DVBF 0 , 1l
DVBFr5 ,rl
st.a 15 , [Yorl6, 4]
DVBF 0 , 12
DVBF 0 , 12
DVBEF 0 , 13
DVBF 0 , 13
DVBEF 0 , 10
DVBF 0 , 10
DVBF 0 , 1l
DVBFr5 ,rl
st.a 15 , [Yorl6, 4]
DVBF 0 , 1l
DVBF 0 , 1l
DVBF 0 , 10
DVBF 0 , 10
DVBEF 0 , 13
DVBF 0 , 13
DVBEF 0 , 12
DVBFr> 12
st.a 15 , [Yorl6, 4]

acs_recursion_end:
; save count at end of ACS loop
Ir rll, [tO_count]
st rll, [ACS_end_count]
; Write a 0 to the AR bit in the DVBF mode reg. to initiate release of
; DMI access to the XY memory bank used for path metric storage. Then
; poll for the AE bit becoming clear, indicating that DMI is released.

; Don’t Need DMI access anymore
st  DVBF_MODE_STOP, [AUX_ DVBF_MODE]
mov %124, 0x1000 ; max tumes to poll for DMI release
poll_dvbi for dmi_deassert:
sub.f %124, %r24, 0x1
n dmi_release_{failed
Ir 13, [AUX_DVBF_MODE]
and.f 15, rd,  0x20
Nz poll_dvbf for dmi_ deassert
; TRACEBACK
; HOW THE TRACEBACK WORKS. Traceback relies on the simple
: nature of the encoder transition table. From a state,
: 2s, the next state is etther
;S for an mput bit of O or
. s+ 2A(K_2) for an mput bit of 1
: r6 contains the current state in the traceback.
;1 r6 >= 2H(K—2), then input bit for the transition

: to this state1s a 1, and the previous state was either
;. r6*2 - 2H(K—1) {upper branch taken} or
;o 16%2 -2 (K-1) + 1 {lower branch taken}

;1 r6 < ZH(K—Z), then the mput bit was a O and the

; previous state was either

;. r6*2 {upper branch taken} or
; r6*2 +1 {lower branch taken }

: Decision bits are O = upper branch, 1 = lower branch

; Set up for traceback.
; Init pointer into Y memory for writing decoded data.
traceback_start:

st PM_BN | XYCONFIG]

st DD_start AYO] ; start of decoded data

st 0x01 : MYOO] ; postincrement by 1

mov 16, 0x00 ; Start State - always O

mov 126, ((num_of codewords+31) >> 5) ; no of words of data

mov 113, (((num_of codewords&31)-1) + 28*((num_of codewords&31)==0))
mov 120, 0x00 ; register used to build decoded

output
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: do actual traceback
traceback_loop:
; work out what input bit must have been to get to this state

Ist 19, 16, K-2 - 19 = 1 iff state > 2 (K-2), hence
: 19 = data bit for transition to current state
and 19, 19, 0x01 ; zero extraneous bit - shouldn’t be needed
; store the input bit in r20. If REV==1, Isb = earliest bit
1 REV==1
sub r14, 31, r13
Isl r7, 9, r14
clse
Isl 7, 9, r13
.endif
or 120, 120, r7 ; 120 = decoded sequence
sub.f  rl13, rl13, 1 ; update pointer mto output word

; the next bit is convoluted. It finds the position of the
; decision bit, based on the following. Consider the Viterbi butterfly

; connecting states 2s and 2s+1 (time = t), to states s and S+2A(K—2)
; (time = t+1). The butterfly hardware stores the decision bit for

; state s at bit position 2s 1n the decision bit array, and for

; state s+2n(K—2) at position 2s+1. n
Is] rl0, r6 ; 16%2 = 2s or 2s+2 (K-1)

o,

and r10, rl0, num states—1 ;mask 2 (K-1),=>subtract 2 (K-1) if needed
; 110 now equals 2s

add r1l, rl0, 19 ; 111 = bitpos, = 2s + 19
; now extract the decision bit, so can work out the previous state

; first must get the right word of data

Af num_states < 32

Id.a 8, [Q0r1 6, —4] ; get decision bit data for this timeslot

Isr r®, 18 32-num_states

celse

asr %rl, r11, 5 ; find which word of decision data we need
sub %rl, %rl, (num_states/32)-1 ; find word offset from current pointer

asl %rl, %rl, 2 ; convert to byte offset

Id %18, [%orl 6, %rl] ; get word of decision bits

sub %rl 6, %rl6, num_states/8  ; mov ptr to decision bits for prev timeslot
.endif

: 18 contains the dword of decision bit data that we need

and rl1l, rll1,0x1f ; find bitpos modulo 32

Isr rl5, r8, rll : shift decision bit we want to bit-0

and rl5, rl5, 0Ox01 ; 115 = decision bit

bpl.d  traceback loop

or 1o, rl0, rl5 ; 16 = new state (r10 = 2s, r15 =0 for

upper branch, 1 for lower)
sub.f 126, 126, 1
Mov yO_1u0,r20 ; save decoded sequence
Mov 120, O ; Clear for next sequence
bnz.d  traceback loop
IOV rl3, Ox1F

: determine duration

Ir 10, [tO_count]
st 10, [total_count]
;DECODE COMPLETE
compare_data:
ST Ox3FFF, [MYO0O0]
mov  LP_COUNT, ((num_of codewords+31) >> 3)
1f REV ==
mov 10, known_good_inputs—4
.else
mov 10, rev_known_good_inputs—4
.endif
mov  rl0, yU_u0
Ip end_comp
Id.a rl, [r0,4] ; first 32 bits of decoded data
MoV r3, yO_u0
sub.f 0, rl, 13
bnz failure .
end_comp:
SuCess:
mov 125, 0 | CORE | ASSEMBLER | 0 | PASSED
bal halt
failure:

mov 125, 0| CORE | ASSEMBLER | (3<<12) | 0 | FAILED
bal halt
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dmi access failed:
mov 125, 0| CORE | ASSEMBLER | (1<<12) | 0 [ FAILED

bal halt
dmi_release_ failed:
mov 125, 0| CORE | ASSEMBLER | (2<<12) | 0 [ FAILED
bal halt
halt:
nop
flag 1
nop
nop
nop
:DATA SECTION - reference input data, received codeword data, and
; reserved memory area for storing decision bit data.

align 4

known_good_inputs: ; 528 bits

word OxE51BD135, OxF33A6B9D, Ox3CE35AF3, 0x8388B920
word OxC5631E5B, 0x753CD91C, OxEB982ESD, 0xB1163081
word Ox11EB7086, 0x270E2ADB, 0x27B4A3E2, Ox8BEERERT
word Ox8CC0O0B63, 0x32CR80757, 0x3C2216BE, 0x67AFBABF
word OxB3000000

rev_known_good_inputs: ; 528 bits

word OXACRBDRA7, 0xB9D65CCE, 0xCEF5ACTY3C, 0x049D11C1
word OxDA7R8C6A3, 0x389B3CAE, 0xB97419D7, 0x810C688D
word Ox610ED788, 0xDB53470E4, 0x47C52DE4, 0xE17177D1
word OxC6D00331, OXxXEAE0134C, 0x7D68443C, OxFD3DFSES
word 0x000000C7

code word data: ; received soft decision words

: data omutted from document due to size

; Storage area for decision bit data. Need 528 * 8 words (32 bit words)
Decision_Bits:

block (num_of codewords+2) * ((num_states+31)/32) * 4

align 4

block 16

; various cycle counts for timing mnfo
ACS start count:

word 0

ACS end_ count:

word 0

total count:

word 0

APPENDIX III (EXEMPLARY VHDL)
© 2000-2002 ARC International plc. All rights reserved.

-- To simplify addressing modes for reading and writing of the path metric
--data it was decided to read the data linearly and write data out of order.

--The path metric memory 1s required to have (2**(K-1))/2 locations free.

--This allows two sets of (2**(K-1))/4 memory locations, 1n each decoding

-- cycle the old path metric 1s written to one set while being read from the

-- other set. The data 1s organized into 32-bit longword which 1s formed by

-- two adjacent state’s path metrics. The data 1s written back in the

--order [O] 1], [2%* (K-2) | (2%* (K-2))-1], [314], [2** (K-2)-2 | (2%* (K-2))-3]. .
--however 1if this order was strictly adhered to problems can arise.

] b5

-~ X 01 45 8.9 12,13  <—- READ
- Y 23 67 10,11 14,15

_ k £
- X 0,1 2.3 4,5 6,7 <--- WRITE
- Y 8.9 10,11 12,13 14,15

--  FIG. 1
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-- Looking at fig. 1 it can be seen that the state marked with an "*"
-- are located 1n the wrong region. By flipping the region in which the

state 1s situated. The correct region position for each state 1s shown 1n

fig. 2

-~ X 01 45 10,11 14,15

- Y 23 67 8.9 12,13

- | | | | | | | | | |
- R A R O R B
- X 0,1 10,11 4,5 14,15

- Y 8.9 2.3 12,13 6,7

- FIG. 2

--  Therefore the on the read cycle the metric flip region after half of the
-- total states have been read. On the write cycle the metrics are flipped
-- every other write.

-- The two sets of path metric data are required as some of the state’s

-- values are written back before they are read e.g. states 8,9 are written

-- on the first write, however they are not read until the third read.

-- On the first codeword decoded the path metric data 1s read from set O (or
-- the lower set of path metrics) and written to set 1 (or higher set of

-- path metrics)

--Write addresses
xymem_dmi_waddr x(1_bank num) <=1 _xymem_ dmi_waddr_ x;
xymem_dmi_waddr y(i_bank num) <=1_xymem_dmi_waddr_y;

--Read addresses
xymem_dmi_raddr x(1_bank num) <=1_rdaddr plus_ofst;
xymem_dmi_raddr y(1_bank num) <=1_rdaddr_plus_ofst;

1_lo_path_metrics_a <=1_new_path_metricl_lo & 1_new_path_metricO_lo;
1_hi_path_metrics_a <=1_new_path_metricl_hi & 1_new_path_metricO_hi;

--To allow the pathmetric to be read by a linear addressing mode
--the high and low new path metrics alternate between each region

1_lo_path_metrics_a

when 1_write_addr r(0) ="0' else
1_h1_path_metrics_a;
1_hi_path_metrics_a

when 1_write_addr_r(0) ='0'else
1

I_lo_path_metrics_a;

1_write_data_bus_y <=

1_write_data_bus_x <=

-- 1_wraddr_lt num_stat div_8 a <='l'when (1_delayl_read addr r <
1_numstates_div_8) else
—_ IOI;

--The above and below pieces of code are the same
1i_cmp_res_2_a<=(1_delayl_read_addr r & 'l") + (not(1_numstates div_&) &
1)
1_wraddr It num_stat div_¥ a<=1_cmp_res 2 a(rama_sz);

--Half way though the total states in the decoder the old path metric
--locations flip XY memory regions.
1_old_path_metricO <= i_read_data_bus_x
when 1_wraddr_It_ num_stat div_8_a ="1"else
1_read_data_bus_y;
1_old_path_metricl <= 1_read_data bus_y
when 1_wraddr_It num_stat div_8_a ="1"else
1_read data bus x;
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--There are two sets of pathmetrics old and new, one set 1s above the other
--in XY memory
1_rdaddr_a <= (1_numstates_div_4 OR 1_read_addr_r) --read path metrics in
high
--address range
when 1_delay2_toggle r="1"else
1_read_addr_r; --read path metrics in low
--address range

--Add memory base address offset
i_rdaddr_plus ofst <=1_rdaddr a + dvbi_ofst;

--Write address generation
--Switch between writing to upper or lower set of path metrics
1_offset <=1_numstates_div_4 when 1_delay2_toggle r ="0"else
(others =>"0");

--adding offset does not have any overflow checking as this is left to the
programmer

1i_write_addr _div_2 <= (ZERO1 & i1_write_addr_r(rama_sz-1 downto 1)) +
dvbi ofst;

1_wraddr_no_numstate_a <= (1_write_addr_div_2 OR 1_oflset);
1_wraddr_a <= (1_write_addr_div_2 OR 1_numstates_div 8 OR 1_ofiset);

1_xymem_dmi_waddr x <= 1i_wraddr_no_numstate a
when 1_write_addr _r(0) ='0" else
1 wraddr a;
1_xymem_dmi_waddr y <= 1_wraddr_a

when 1_write_addr_r(0) ='0’ else
1_wraddr no_numstate a;

-- read Address calculator
1_cmp_res_a <= (1_read addr r & 'l') + (not(1_numstates_div_4) & '1");
1_read_addr_eq_numstat_div_4 a <='l'when 1_cmp_res_a(rama_ sz downto 1) =
MINUSI else
0';

-- 1_read_addr eq numstat _div_ 4 a<="'l'when 1_read_addr r=
(1_numstates div_4-1) else
—_ IO I;

read_addr_calc_proc : process (ck, clr)
begin -- process State_counter

if clr ='1" then -- asynchronous reset (active high)
1_read_addr r <= (others =>"'0");
1_toggle r <="0";

elsif ck'event and ck ="'1" then -- r1sing clock edge

--1f dvbf instruction is in ARC stage 2
1f dvbi_exec(0) ='1' then

if 1_read_addr_eq_numstat div_4_a ="1"then
--Reached the end of the decoding cycle

--Reset base read address
1_read_addr_r <= (others =>"0");

--swap the old and new path metrics
1_toggle r <=1_toggle nxt;

else
--Increament base read address
1 read_addr r <=1 read addr r+ 1;

end 1f;
elsif dvbf intrnal state wr ="'1'then

--Aux write to internal state
1 read addr r <= aux_dataw(rama_sz-l downto 0);
1_toggle_r <= aux_dataw(xdvbi mode memlow);

36
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end if;

end 1if;

end process read_addr_calc_proc;

--1nvert the 1_toggle r for next toggle value
1_toggle_nxt <= not 1_toggle_r;

delay proc: process (ck, clr)
begin -- process delay_proc

if clr ='1" then -- asynchronous reset (active high)
1i_delayl_toggle r <="0';
1_delay2_toggle_r <="0";
1_delayl_read_addr r <= (others =>"0");

1 write addr r <= (others =>"'0");

elsif ck'event and ck ="'1" then -- r1sing clock edge

--Delaying signals by 1 or 2 clock cycles

<=1_delayl_toggle r;
<=1_toggle r;

1_delay2_toggle_r
1_delayl_toggle r

<=1_delayl_read_addr r;
<=1 read addr r;

1_write_addr r
1_delayl_read_addr r

end 1f;

end process delay proc;

I claim:

1. A method for determining a path metric associated with
a butterfly operation, comprising:

retrieving at least one existing path metric and at least one

control word associated with a processor nstruction;
determining a first branch metric and a second branch
metric based on said control word;

determining negatives of at least one of said first and sec-

ond branch metrics:

selecting one branch metric from the group comprising

said first and second branch metrics and said at least one
negative; and

determining, through a hardware circuit, at least one new

path metric based at least 1n part on said selected branch
metric and said at least one existing path metric.

2. The method of claim 1, wherein said buttertly operation
comprises two add compare and select (ACS) operations, and
determining first and second branch metrics comprises select-
ing sum and difference metrics.

3. The method of claim 1, wherein retrieving at least one
existing path metric comprises retrieving said at least one
path metric from a first location 1n XY memory.

4. The method of claim 3, further comprising storing said at
least one new path metric at a second location within said XY
memory, said second location being different from said first
location.

5. A hardware processor comprising:

a decode stage adapted to decode a processor instruction;

and
circuitry adapted to perform first and second butterfly
operations responsive to a control word associated with
the processor nstruction, the control word comprising:
at least first, second and third data fields, said first field
contiguous within said word with said second field,
said second field contiguous with said third field,
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wherein the circuitry performs the first butterfly
operation responsive to reading the first, second and

third data fields; and
at least fourth, fifth and sixth data fields, said fourth field

contiguous within said word with said fifth field, said
fitth field contiguous with said sixth field, wherein the
processor performs the second butterfly operation
responsive to reading the fourth, fifth and sixth data

fields.

6. The processor of claim 5, wherein said first and second
buttertly operations each comprising two add compare and
select (ACS) operations.

7. The processor of claim 6, wherein each of said data fields
comprises a plurality of data bats.

8. The processor of claim 7, wherein said plurality of data
bits for said first, second, fourth, and fifth fields comprise first
and second bits, and wherein the circuitry maps said first and
second bits to combinations of path and branch metrics.

9. The processor of claim 8, wherein said mapping of said
first and second bits for said first and fourth fields comprises:

(1) 00—path metric O+branch metric O
(11) 01—path metric O+branch metric 1
(111) 10—path metric O—branch metric 1
(1v) 11—path metric O—branch metric O.

10. The processor of claim 9, wherein said mapping of said
first and second bits for said second and fifth fields comprises:

(1) 00—path metric 1+branch metric O
(11) O1—path metric 1+branch metric 1

(111) 10—path metric 1-branch metric 1
(1v) 11-path metric 1-branch metric O.

11. The processor of claim 9, further comprising at least
one register, wherein said data bits of said third and sixth
fields encode combinations of branch metrics disposed 1n first
and second locations within the at least one register.
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12. A method of processing Viterbi state information
within a processor having a memory, comprising;:

determining a plurality of path metrics for a plurality of

Viterbi states:

concatenating at least two of said path metrics for adjacent

states to produce a word; and

storing said word 1n the memory.

13. The method of claim 12, wherein said path metrics are
16-bits 1n length, and said word 1s 32-baits.

14. The method of claim 12, wherein said act of storing
COmprises:

providing an addressing mode adapted to store data so that

it can be read linearly during a subsequent decoding
cycle; and

storing said path metrics according to said addressing

mode.

15. The method of claim 14, wherein said path metrics are
stored according to said addressing mode 1n the order com-
prising 0, 2572, 1, 257241, 2, - ..., 2%72=-2, 25712, 2%==1,
2%-1_1, wherein k represents a constraint length of a code
associated with the path metrics.

16. A method for determining path metrics associated with
a dual butterfly operation, each of said buttertly operations
comprising first and second add compare and select (ACS)
operations, the method comprising:

retrieving at least one control word having a plurality of

bits, the at least one control word associated with a
processor nstruction;

for a first butterfly operation of the dual butterfly operation:

(1) retrieving at least one existing path metric;
(11) selecting a first branch metric and a second branch
metric based on said at least one control word;
(1) determining the negatives of at least one of said first
and second branch metrics;
(1v) for said first ACS operation:
selecting at least one branch metric from the group
comprising said first and second branch metrics
and said at least one negative; and
determining, through a hardware circuit, at least one
new path metric based at least in part on said
selected branch metric and said at least one existing,
path metric; and
(v) repeating step (1v) for said second ACS operation.

17. The method of claim 16, further comprising:

(v1) performing steps (1)-(v) for a second butterfly opera-

tion of said dual butterfly operation.

18. The method of claim 17, wherein steps (1)-(v1) are
performed 1n one machine cycle.

19. A hardware processor comprising:

a decode stage adapted to decode a dual buttertly extension

instruction of a processor nstruction set;

circuitry adapted to perform, when executing the dual but-

tertly extension mstruction, at least two Viterbi buttertly
decode operations,

wherein the circuitry performs each of said Viterbi butter-

fly decode operations by determining new path metrics
using a plurality of add compare and select (ACS) opera-
tions.

40

20. The processor of claim 19, wherein the circuitry per-
forms each of said Viterb1 buttertly decode operations by
obtaining existing path metrics from a first storage location
associated with said processor, and storing said new path

5 metrics at a second storage location different from the first.
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21. The processor of claim 20, wherein all of said decode
operations are completed within one machine cycle.

22. A hardware processor comprising:

a decode stage adapted to decode a dual buttertly extension

instruction of a processor 1nstruction set;

circuitry adapted to perform, when executing the dual but-

tertly extension mstruction, at least two Viterb1 buttertly
decode operations,

wherein the circuitry performs each of said decode opera-

tions by (1) obtaining existing path metrics from a first
location within XY memory, (1) determining new path
metrics using a plurality of add compare and select
(ACS) operations and branch metrics selected using at
least one control word, and (111) storing the new path
metrics back 1n said XY memory at a second location
different from the first, all of said decode operations
being completed 1n one instruction cycle.

23. A hardware processor supporting an instruction set that
includes an instruction adapted for Viterbi decode, the pro-
CESSOr comprising;:

a multistage pipeline;

a storage device configured to store a plurality of metric

data; and

add compare and select (ACS) hardware operatively

coupled to said pipeline and said storage device, the ACS

hardware adapted to:

perform a plurality of butterfly operations associated
with said Viterb1 decode 1n a single mnstruction cycle
when executing the instruction adapted for Viterbi
decode; and

store metrics generated by said performance of said
buttertly operations within said storage device.

24. The processor of claim 23, wherein said processor 1s
user-configurable at design, said user-configurability includ-
ing the ability to add at least one extension instruction to said
mstruction set, said at least one extension instruction com-
prising said 1nstruction adapted for Viterbi decode.

235. The processor of claim 24, wherein at least a portion of
said ACS hardware 1s added to said design as part of adding
said Viterb1 decode extension instruction to said instruction
set.

26. The processor of claim 235, wherein said storage device
comprises an XY memory, and said ACS hardware 1s adapted
to retrieve existing metrics from a first location within said
XY memory, and to store metrics generated by performance
of said butterfly operations at a second location within said
XY memory different than the first location.

277. The processor of claim 23, wherein said ACS hardware
selects branch metrics for performing the buttertly operations

based on a control word associated with the instruction
adapted for Viterb1 decode.
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