12 United States Patent

Driesen et al.

US008200634B2

(10) Patent No.: US 8.200,634 B2

(54)

(75)

(73)

(%)

(21)
(22)

(65)

(1)

(52)
(58)

(56)

0,691,245
7,155,462
7,933,866
2002/0049925 Al

1 =

ZERO DOWNTIME MAINTENANCE USING A
MIRROR APPROACH

Inventors: Volker Driesen, Friedenstrasse (DE);
Thomas Brodkorb, Paradeisstr (DE);
Roy Abitbol, Kiar-Netter (IL); Miki
Ben-Zeev, Redmond, WA (US);
Franklin Herbas, Palo Alto, CA (US)

Assignee:

Notice:

Appl. No.:

Filed:

SAP AG, Walldorf (DE)

Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 1534(b) by 599 days.

12/247,978

Oct. 8, 2008

US 2010/0088281 Al

Int. CI.

GO6F 7/00

GO6F 17/00
US.CL 707/641;707/610; 711/113; 714/11

Field of Classification Search None
See application file for complete search history.

Prior Publication Data

Apr. 8, 2010

(2006.01)
(2006.01)

References Cited

U.S. PATENT DOCUMENTS

2002/0120791
2003/0130985

A

Al
2003/0131278 Al

A

1 =

2005/0114291

B1*
Bl
B2 *

%

%

2/2004

12/2006

4/2011
4/2002
8/2002
7/2003
7/2003
5/2005

DeKoning 714/6.31
Singh et al.

Blairetal. 707/610
Galipeau etal. 714/6
Somalwar etal. 709/330
Driesen et al.

Fujibayashi 714/6
Becker-Szendy et al. 707/1

200

45) Date of Patent: Jun. 12, 2012
2006/0047718 Al1* 3/2006 Ketthetal. 707/204
2007/0271414 Al1* 11/2007 Nakatanietal. 711/113
2008/0195750 Al1* 8/2008 Sadovskyetal. 709/234
2009/0182600 Al* 7/2009 Lungucccooeevviiniininnnne. 705/7

FOREIGN PATENT DOCUMENTS
EP 1091305 4/2001
OTHER PUBLICATIONS

European Search Report dated Oct. 19, 2009, 1ssued in connection
with counterpart European Application No. 09007840.3-2211.

* cited by examiner

Primary Examiner — Khanh Pham

Assistant Examiner — Azam Cheema

(74) Attorney, Agent, or Firm — Mintz, Levin, Cohn, Ferris,
Glovsky & Popeo, P.C.

(57) ABSTRACT

The subject matter disclosed herein provides methods and
apparatus, including computer program products, for provid-
ing soltware updates. In one aspect there 1s provided a
method. The method may include copying an application to a
shadow system, the application used to upgrade the shadow
system rather than a production system; copying data from
the production system to the shadow system; selecting
whether to lock changes to data 1n the production system or
record changes to the data in the production system; record-
ing one or more changes to data 1n the production system, the
changes recorded 1n a container, when record changes has
been selected; migrating recorded data 1n the container to the
shadow system, so that the shadow system and production
system are 1n a similar data state; and using the shadow
system, upgraded with the application and at least one of data
copied from the production system and recorded data from
the container, for production rather than the production sys-
tem. Related systems, apparatus, methods, and/or articles are

also described.

18 Claims, 3 Drawing Sheets

COPY APPLICATIONS) TQ \\
SHADOW SYSTEM

210

238

\

SYSTEM

COPY DATA TC SHADOW ADJUST

DATA ON THE
e SHADOW
236 SYSTEM

LOCKING OFTION NO
232

YES

234
{_| LOCK DATA AT PRODUCTION
SYSTEM

ADJUST USER INTERFACE TC

- READ-ONLY FOR |LOCKELD
DATA

230

RECORDIN
CONTAINER
CPTION

242

GENERATE PERSISTENCY
CONTAINER -
243
I
MIGRATE USERS TO SHADOW
SYSTEM e 544
I
PROCESS ANY NEW
ENTRIES INTO PERSISTENCY
CONTAINER e 245
I
PROCESS UPDATED ENTRIES |__
246
I
PROCESS DELETED ENTRIES [~— 247

PUT SHADOW SYSTEM INTO
PRODUCTION N o4

U.S. Patent Jun. 12, 2012 Sheet 1 of 3 US 8,200,634 B2

USER USER

= LINTERFACE 105A, l INTERFACE 105B
I — ;——Ejj
- . |
APPLICATION(S) I APPLICATION(S)
1108

110A

| _ .]

| DB 115A I I DB 115B
PRODUCTION | SHADOW SYSTEM
125

SYSTEM 120

ZERO DOWNTIME
CONTROLLER 150

-

FIG. 1

U.S. Patent Jun. 12, 2012 Sheet 2 of 3 US 8,200,634 B2

200

COPY APPLICATIONS) TO N__
SHADOW SYSTEM

. 210
238
COPY DATA TO SHADOW ADJUST
SYSTEM C‘“""’" DATA ON THE
SHADOW
- _ 236 SYSTEM
NO RECORDIN
LOCKING OPTION CONTAINER
OPTION
242
VES 232
234 — —
(_| LOCK DATA AT PRODUCTION GENERATE PERSISTENCY
| SYSTEM CONTAINER
243
239 —
ADJUST USER INTERFACE TO
\ " READ-ONLY FOR LOCKED MERATE e oo
DATA 244
PROCESS ANY NEW
ENTRIES INTO PERSISTENCY
CONTAINER -
245
I

PROCESS UPDATED ENTRIES | "

PROCESS DELETED ENTRIES k 247

PUT SHADOW SYSTEM INTO L

FIG. 2 S — —

U.S. Patent

Jun. 12, 2012

USER
INTERFACE 105A

— 1
l-APPLICATION(S)

110A

PRODUCTION
SYSTEM 120

Container |
118C

Sheet 3 of 3

I -

ZERO DOWNTIME
CONTROLLER 150

US 8,200,634 B2

USER
INTERFACE 105B

S— ___I_I
APPLICATION(S)

FIG. 3

US 8,200,634 B2

1

ZERO DOWNTIME MAINTENANCE USING A
MIRROR APPROACH

FIELD

This disclosure relates generally to data processing and,
more particularly, to reducing downtime associated with
maintaining software.

BACKGROUND

Databases are often used to facilitate the running of soft-
ware applications running on a processor, such as a computer,
blade, and the like. Examples of software applications
include operating system software, and programs that run on
an operating system. Databases 1n computing environments
also store data. Moreover, the stored data may be used to
configure programs and application data generated during
production (1.e., a productive or operational use) of the appli-
cation.

Various arrangements may be provided to facilitate access
to a database. For example, networked and other database
sharing environments permit multiple users to share a data-
base. Such arrangements facilitate client-server solutions for
business and other types of database user environments. By
way ol example, R/3 1s a client-server solution provided by
SAP AG. An R/3 system typically includes a number of
soltware applications or modules that are installed 1n an envi-
ronment comprising a database and an application server
connected to the database. The application server of an R/3
system can perform numerous functions, including executing
programs stored in the database.

Databases often need to be upgraded 1 view of various
factors. For example, modifications or enhancements to
applications and/or data by a soiftware vendor may require
that prior releases running on a database be upgraded to a new
release. Additionally, revisions to correct programming,
errors or bugs may require that a database be upgraded with a
new release.

When upgrading a database, there are a number of techni-
cal problems to be addressed. For example, most database
users depend on the availability of a database, including the
applications and data stored therein. In some cases, the
required availability of a database may dictate that interrup-
tions to productive operation be mimmized when performing,
an upgrade. By way of example, a database user may require
approximately, continuous availability of a database (e.g.,
availability 12-24 hours a day, 5-7 days a week). Therelore,
extended database interruptions may be unacceptable and
mimmizing the downtime for a database upgrade can become
problematic, especially when attempting to upgrade a large
database using conventional techniques.

Other 1ssues may exist when upgrading a database. For
instance, many database environments require that certain
modifications, add-ons, support packages, application data,
customizing data, and/or other items be maintained when
installing a new release. Making adjustments to import or
maintain such items can dramatically extend the downtime
required for performing an upgrade and, 1n some cases, create
tailure or disaster risks for the database. Conventional meth-
ods for upgrading a database also suffer other drawbacks,
such as being technology dependent or restrictive as to the
upgrade release (1.e., dependent on the prior release(s)

installed 1n the database).

SUMMARY

The subject matter disclosed herein provides methods and
apparatus, including computer program products, for provid-

5

10

15

20

25

30

35

40

45

50

55

60

65

2

ing software updates and, in particular, reducing downtime
associated with those updates.

In one aspect there 1s provided a method. The method may
include copying an application to a shadow system, the appli-
cation used to upgrade the shadow system rather than a pro-
duction system; copying data from the production system to
the shadow system; selecting whether to lock changes to data
in the production system or record changes to the data in the
production system; recording one or more changes to data in
the production system, the changes recorded 1n a container,
when record changes has been selected; migrating recorded
data in the container to the shadow system, so that the shadow
system and production system are in a substantially similar
data state; and using the shadow system, upgraded with the
application and at least one of data copied from the produc-
tion system and recorded data from the container, for produc-
tion rather than the production system.

Articles are also described that comprise a tangibly embod-
ied machine-readable medium embodying mstructions that,
when performed, cause one or more machines (e.g., comput-
ers, etc.) to result 1n operations described herein. Similarly,
computer systems are also described that may include a pro-
cessor and a memory coupled to the processor. The memory
may include one or more programs that cause the processor to
perform one or more of the operations described herein.

The details of one or more variations of the subject matter
described herein are set forth 1n the accompanying drawings
and the description below. Other features and advantages of
the subject matter described herein will be apparent from the
description and drawings, and from the claims.

BRIEF DESCRIPTION OF THE DRAWING

These and other aspects will now be described 1n detail
with reference to the following drawings.

FIG. 1 1llustrates a system 100 including a zero downtime
controller 150;

FIG. 2 illustrates a process 200 for implementing an
upgrade, such as a new soltware release, using a zero down-
time maintenance; and

FIG. 3 illustrates the system 100 of FIG. 1 including a
container.

Like reference symbols 1n the various drawings indicate
like elements.

DETAILED DESCRIPTION

The subject matter described herein relates to reducing
downtime due to maintenance activities. The phrase “zero
downtime” refers to reducing the downtime associated with a
maintenance activity, such as an upgrade of an application
and/or an upgrade of data. Zero downtime refers to having a
downtime that 1s perceived almost as zero by a user. For
example, zero downtime maintenance be implemented, so
that the user’s production 1s not affected and, 1n some cases,
the zero downtime maintenance takes less than about 10
minutes.

When an upgrade 1s applied to a complex enterprise soft-
ware system, such as those commercially available from SAP,
the maintenance procedure may require downtime, during
which time the system 1s not available for its intended use
(e.g., Tor production). The term upgrade refers to changes,
replacements, modifications, and/or additions to production
system 120 (which 1s described below with respect to FIG. 1).
The upgrade may include providing another so-called
“release” including one or more software program updates
for production system 120 (which may be updates to a pro-

US 8,200,634 B2

3

gram, a component ol a program, data associated with the
program, and/or any other 1item, which may be included 1n a
release). This time, during which the system 1s not available,
represents a downtime, as well as a business downtime when
the business 1s not productive. Although the system operates
to implement the upgrade associated with the maintenance
activity, the system 1s down from a business perspective since
the system 1s 1n an inconsistent state and the required services
cannot be provided by the system.

For example, 11 the system 1s an enterprise resource plan-
ning (ERP) system supporting manufacturing, the ERP sys-
tem may incur downtime during a maintenance activity since
the ERP system cannot support manufacturing operations. In
this example, the downtime may represent a loss of manufac-
turing capacity and corresponding revenue. Similarly, a soft-
ware-based system supporting Web commerce requires very
high levels of availability since an outage may impact rev-
enue.

As noted above, during a deployment of an upgrade, a
system may be 1n an inconsistent state due to several reasons.
One of those reasons 1s that the runtime environment of the
system 1s updated during the upgrade associated with the
maintenance activity. This runtime environment update
induces downtime to services running in the runtime environ-
ment of the system. For example, 1f an operating system 1s
updated, operating system processes cannot run. In the case
ol a database system, the runtime environment associated
with a J2EE (Java 2 Platform Enterprise Edition) engine,
application servers, and the like, cannot run during the
update. Another reason that the system may be 1n an incon-
sistent state 1s that the application within a runtime environ-
ment may be updated. For example, the application software
1s replaced by an upgraded application (and 1n some cases
data)—requiring that the previously running version of the
application software be placed in an offline state during the
upgrade. Another reason that the system may be 1n an incon-
sistent state 1s that the configuration of the application 1s
updated to be consistent with the upgrade. Yet another reason
that the system may be 1n an inconsistent state 1s that data may
be adjusted to match the format required by the upgraded
soltware application (e.g., migrating data into a new format,
adjusting tables of a database, adjusting formats, and the
like).

The downtime induced by maintenance activity can thus
range from a few hours to days or even weeks. For customers
using a system in a production environment, downtime
clearly disrupts business. As such, systems used 1n production
settings are oiten required to meet availability specifications.
For example, a software-based system may be rated to pro-
vide customers with a required system availability of, for
example, 99.9% or higher. In this example, the total down-
time of a 99.9% available system 1s a maximum of 8 hours
downtime per year. As such, any maintenance activities must
be implemented to have the lowest possible downtime; oth-
erwise, the required available of 99.9% may not be achieved.
The subject matter described herein may thus be used to attain
higher availability by providing zero downtime maintenance
in connection with an upgrade.

FIG. 1 depicts a system 100 including a production system
120, a shadow system 1235, and a zero downtime controller
150, all of which are coupled by a communication mecha-
nism, such as the Internet, an intranet, and the like. When an
upgrade (which includes applications and/or data) 1s 1mple-
mented, the upgrade 1s first implemented 1n the shadow sys-
tem 125, which 1s a copy of the production system 120. When
the upgraded system 1s ready to be used, the shadow system
125 becomes a production system, and the production system

10

15

20

25

30

35

40

45

50

55

60

65

4

120 1s no longer used to support production. The subject
matter described herein relates to implementing the upgrade
with zero (or substantially close to zero, e.g., about 10 min-
utes) downtime.

The production system 120 further includes a user inter-
face 105A, one or more applications 110A, and a database
115A, all of which are coupled by a communication mecha-
nism, such as an intranet or the Internet. User interface 105A
may be implemented as any type of interface mechanism for
a user, such as a Web browser, a client, a smart client, and any
other presentation mechanism. In some implementations, the
processes described herein with respect to zero downtime
maintenance are applicable to those aspects of the user inter-
face implemented and/or stored at the backend (e.g., the back-
end server). The one or more applications 110A may be
implemented as any type of program, such as an application
server. The application server refers to a program that handles
operations between users (e.g., at a user mterface) and back-
end business databases, such as database 115A. Database
115A (labeled “DB”) may be implemented as any type of
database.

The shadow system 125 (also referred to as a mirror sys-
tem) further includes a user interface 105B, one or more
applications 110B, and a database 115B, all of which are
coupled by a communication mechanism, such as an intranet
or the Internet. User interface 103B may be implemented as
any type of interface mechanism for a user, such as a Web
browser, a client, a smart client, and any other presentation
mechanism. The one or more applications 110B may be
implemented as any type of program, such as an application
server. Database 115B (labeled “DB”) may be implemented
as any type of database. In some embodiments, shadow sys-
tem 125 represents a copy ol production system 120 (e.g.,
user interface 105B, one or more applications 110B, and
database 115B are copied from production system 120).
Thus, the maintenance activity, such as the upgrade, may be
implemented on shadow system 123 rather than production
system 120. Moreover, when the upgrade 1s complete, the
shadow system 123 1s placed online for production, and the
production system 120 1s no longer used for production.

The maintenance activity described herein relates to an
upgrade of an aspect of the production system. As noted
above, the upgrade may include changing, replacing, and/or
adding an aspect of production system 120. For example, an
upgrade may provide a new version (also referred to as a
release) ol one or more applications (or components thereof
and/or provide data. The upgrade may provide data, such as
configuration data, for use at production system 120 (e.g., at
one or more of applications 110A, database 1135A, and user
interface 105A). Moreover, the upgrade may include a plu-
rality of applications (or components of applications) and
data, all of which may be implemented 1n a sequence to ensure
proper installation of the upgrade.

To minimize the risk of a protracted downtime and to
approach a zero downtime maintenance activity, the upgrade
1s 1mplemented first at shadow system 125 by copying the
production system 120 (including the database 115A) to the
shadow system; migrating the programs and data to shadow
system 125; and, when the migration 1s complete, switching
production to the shadow system 120 (which has been
upgraded). Moreover, during the migration, a locking mecha-
nism may be used to lock any changes to data being migrated
from the production system to the shadow system. Alterna-
tively, changes to the data on the production system 120 may
be recorded 1n a container, such that any changes, occurring
during the data migration from the production system 120 to
the shadow system, can be applied to the data at the shadow

US 8,200,634 B2

S

system 125. Regardless of whether a locking mechanism or a
recording container mechanism 1s used, the shadow system
12515 upgraded and the data of the shadow system 125 has the
same state as the data of the production system. The shadow
system 125 1s then placed online—used for production; while
the production system 120 i1s placed oflline (e.g., discon-
nected, disabled, and the like). More importantly, the upgrade
1s thus be performed with zero downtime.

Zero downtime controllers 150 may be implemented as one
or more data processors, such as a server, computer, blade,
and the like, and may 1nclude an 1nterface, such as an appli-
cation program interface, to enable control of the upgrade. In
some embodiments, the zero downtime controller 150 may
perform one or more of the following functions: copying an
application to a shadow system (e.g., the application used to
upgrade the shadow system); locking changes to data in the
production system; recording changes to the data in the pro-
duction system; copying data from the production system to
the shadow system, when locking has been selected; record-
ing one or more changes to data 1n the production system;
recording changes to a container; generating a container;
migrating recorded data in the container to the shadow sys-
tem, so that the shadow system and production system are in
a similar data state; controlling the use of the shadow system
when upgraded with the application and at least one of data
copied from the production system and recorded data from
the container (e.g., switching production from the production
system to the shadow system); and other functions described
herein related to controlling and/or implementing a software
upgrade to minimize downtime.

FIG. 2 depicts a process 200 for zero downtime mainte-
nance. The description of process 200 will also refer to FIGS.
1 and 3.

At 210, applications, which are part of the upgrade, are
copied to the shadow system 125. For example, 11 the upgrade
consists of a new release of the operating system associated
with application 110A, zero downtime controllers 150 may
copy the new release of the operating system to shadow
system 125. In some implementations, the release 1s config-
ured as a maintenance package with one or more programs for
the upgrade. Moreover, the maintenance package may be
implemented as a database table, wherein entries of the table
correspond to the new programs being used 1n the upgrade.

When 210 1s performed, shadow system 110A includes a
copy of the programs being upgraded (11 not the entire sys-
tem) from production system 120. For example, 1f the
upgrade consists of a new release of the operating system
associated with application 11A, zero downtime controller
150 may first copy application 110A (including 1ts old oper-
ating system) to shadow system 1235. Next, zero downtime
controller 150 may copy the new operating system of the
upgrade to shadow system 125 and then perform the upgrade
to the old operating system at shadow system 123 (e.g., using,
the new operating system of the upgrade). Moreover, during,
copy at 210, any copied components may need to be adjusted
(described below at 238) by zero downtime controller 150 to
account for differences between systems 120 and 125 (e.g.,
hardware, network connections, bandwidth, storage, and the
like).

At 236, data is copied to the shadow system 125. If the data
1s provided by the provider of the upgrade (e.g., the software
vendor) rather than the production system 120, the data 1s
copied to shadow system 125. If the data 1s located at the
production system 120, zero downtime controller 150 copies
the data from the production system 120 to the shadow system
125. When the zero downtime controller 150 performs a copy,
the zero downtime controller 150 may perform the copy or

10

15

20

25

30

35

40

45

50

55

60

65

6

initiate copying by another device, such as production system
120. Data may include configuration data related to the con-
figuration of production system 120, production data (e.g.,
data associated with the users attached to the database 115A),
data included in database 115 A, and any other data associated
with production system 120. In some embodiments, zero
downtime controller 150 prompts a user at user interface
105 A to select between the locking option 232 or the record-
ing container option 242.

Examples of data categories being copied include primary
business data, such as sales order, master data, account infor-
mation, customer invoices, and the like. Other examples of
data categories include business operation data (e.g., batch
1j0ob runtime information, update task information, input
queues, print queues, and the like), compliance relevant data
(e.g., change log, user access to certain objects, monitoring,
and statistical data, and the like), and user data (e.g., user
attributes, such as name, address, telephone, user account
information, such as last login and password, user personal-
ization data, and notes and/or comments attached to objects).

At 238, the data copied at 236 to shadow system 125 may
be adjusted. For example, the configuration data copied to the
production system 128 may have to be adjusted (or config-
ured) to account for the environment of the shadow system
125. For example, the data may be reformatted, and table
structures 1n the database may be configured for the release,
and so forth. Moreover, the persistency may be adjusted com-
pletely (e.g., from storing complex data as an XML file to
storing data 1n a relational database table on a single value
basis, data entries of a database may be converted from inch
to centimeters, objects of the database may be extended, a
new status variable may be added, and the like). In some
embodiments, additional configuration data 1s provided by a
user (e.g., of production system 120) rather than a vendor of
the upgrade.

When the data 1s copied from the production system 120 to
the shadow system 125, a locking option may be imple-
mented at 232. When this 1s the case, the data 1s locked at 234,
so that any data persisted at the production system 120 cannot
be changed. Examples of such changes include inserts,
updates, deletes, and the like.

At 239, once the data 1s locked, the user interface (e.g., user
interface 1035A) 1s also configured to reflect the locked state of
the data persisted at production system 120 (e.g., data per-
sisted at database 115A). For example, the user interface may
indicate that the data 1s locked and 1n a “read only” mode by
presenting an indication (e.g., a message, pop-up, etc.) at the
user 1interface that the data 1s “read-only™ or, alternatively, an
icon, field, or button at the user interface may be disabled
(e.g., so that a user cannot change data at the user interface
105A and persist that change to the database 115A).

In some implementations, the locking at production system
120 prevents productive use, which causes a maintenance
downtime. When this 1s the case, rather than locking at 234,
data from production system 120 1s still copied at 236 to
shadow system 125 and then adjusted at 238. However, any
changes to the data at the production system 120 are recorded,
so that these changes can be applied to the data copied to the
shadow system 125.

When the data 1s copied from the production system 120 to
the shadow system 125, a recording container approach may
be implemented rather than the locking option of 232 (no at
232 and 242). The recording container approach generally
includes copying the data of the production system 120 to the
shadow system 125; generating a container; and then record-
ing in the container any changes to data persisted at the
production system 120. These changes recorded (e.g., stored,

US 8,200,634 B2

7

included, etc.) 1n the container thus retlect changes to the data
of the production system 120, which need to be applied to the
data of the shadow system 123 to make the data at both the
production and shadow systems consistent (e.g., have the
same state). For example, the changes 1n the container can be
replayed (e.g., applied to) the data persisted at shadow system
125 (which was previously copied at 236), so that the shadow
system 1235 has the same data as the original, production
system. In short, the data persisted at production system 120
1s copied at 236 to shadow system 125, changes to the data at
production system 120 are recorded in the container, and
those changes are subsequently replayed at the shadow sys-
tem 125, so that the data at the shadow system 125 1s 1n the
same state as the data in the production system 120.

At 243, a container 1s generated. When the application(s)
and data are copied to the shadow system 125 at 210 and 236,
the persistency container i1s generated by, for example, zero
downtime controller 150, and that persistency container may
be generated at the production system 125. FIG. 3 depicts an
example ol a persistency container 118C. The persistency
container (also referred to as a container) may be imple-
mented as a container for holding data that 1s persisted (e.g.,
in storage). Initially, the persistency container 1s empty (e.g.,
does not include any data). However, as changes are made to
any data at production system 120, those changes are
recorded, so that the changes can be migrated and thus
replayed at (e.g., applied to) the data at shadow system 125.
This migration and replay of changes places the shadow
system 125 1n the same state as the production system 120.

In some implementations, the container entries (which
indicate changes to data at production system 120) are written
within the same transaction as the primary data being
migrated to the shadow system. As such, in the event of a
rollback, the container is still consistent. The container may
be implemented to store a sequence number to allow sorting,
the entries of the container according to when the change 1s
inserted 1into the container. The sequence number may also be
used to provide an “in order” transfer to or, replay at, shadow
system 125. Moreover, the sequence number may also be
used to implement an “exactly-once-in-order” mechanism
during the transfer to or, replay at, shadow system 125. The
contents of the container thus represent a recording, which
can be replayed at shadow system 1235 to make the data at
shadow system 125 consistent (e.g., the same or similar to)
the data at production system 120.

In one implementation, the container 118C 1s implemented
as follows. For each database table at the production system
120, a second database table 1s created 1n the container 118C
with the same key, an additional key field (which defines the
sequence number), and a key field specitying the kind of
change (e.g., whether the change 1s an insert, update, delete).
The recordings (i.e., the changes included 1n the container
118C) may also be implemented as one table specitying the
table name and the sequence number in the key field, a data
field (which includes the data originally copied from the
production system 120), and a key field specitying the kind of
change (e.g., how that original data was changed). For some
types of data, a sequence of “create” plus “delete” can be
skipped from transfer (e.g., if 1t 1s ensured that no follow-up
actions are triggered).

At 244, after the container 1s generated, users attached to
production system 120 (e.g., clients accessing database 115A
via user mntertace 105A and application 110A) are migrated to
shadow system 1235. For example, a user at user interface
105 A 1s given a user 1dentifier, password, and the like to allow
that user to access database 115A and the like.

10

15

20

25

30

35

40

45

50

55

60

65

8

At 245, during the migration process, any new entries to
data associated with production system 120 are written to the
generated persistency container 118C at shadow system 125
and to the production system 120. The new entries in persis-
tency container 118C serve as a recording of changes and thus
may be subsequently migrated to (and replayed at) the per-
sistency of shadow system 125 (e.g., to database 115C). The
changes (also referred to as entries) 1n the persistency con-
tamner may be used to fall back to the production system it
there 1s a problem with the migration and/or maintenance
activity.

At 246, during the migration process, any updates to entries
to data associated with production system 120 are handled
based on whether the data has been copied or migrated to
shadow system 125. When data has not been migrated (e.g.,
copied) to shadow system 123, the data 1s read from the old
persistency at, for example, database 115 A, but then migrated
to the newly, generated persistency container 118C. In some
embodiments, the newly, generated persistency container
118C may have a new format, in which the data 1s read from
the old persistency (e.g., database 115A), but then migrated to
the newly, generated persistency container 118C 1n a new
format. When the data 1s written to the newly, generated
persistency container 118C, any required changes (which are
due to the upgrade) are applied and the changed data set 1s
stored 1n the newly, generated persistency container 118C.
However, when data being updated has been migrated to the
generated persistency container 118C, any updates are simply
read from, and/or changed to, the newly generated persis-
tency container 118C. The data 1n newly generated persis-
tency container 118C serves as a recording of changes and
thus may be subsequently migrated into the persistency of
shadow system 125 (e.g., to database 115C).

At 247, during the migration process, any deletions to
entries to data associated with production system 120 are
handled based on whether the data has been migrated to
shadow system 1235. For example, when the deleted data 1s not
yet migrated to shadow system 1235, the entry (e.g., at data-
base 115A) 1s marked as not to be migrated. On the other
hand, when the data has been migrated to the generated per-
sistency container 118C, the data entry 1s removed from the
generated persistency container 118C. If the recording 1s not
done on a low database level but on a semantic level 1n the
application, a “create” plus “delete” transier might be
required to ensure the follow-up actions are triggered as well
in the shadow system.

At 248, zero downtime controller 150 makes the shadow
system 125 the production system, and disables (e.g., discon-
nects, deletes, and the like) production system 120. However,
in some embodiments, the data in persistency container
118C, which serves as a recording of changes, 1s migrated
into, and replayed at, the persistency of shadow system 125
(e.g., to database 115C) before placing the shadow system
125 1n production with the upgraded application and/or data.
The process 200 may repeat when another upgrade 1s avail-
able. When that 1s the case, shadow system 125, which 1s now
in productive use, becomes the production system 120, and
another shadow system 1s created for the upgrade process.
The user requests to the system can be channeled through a
dispatcher. This allows switching the logon request to the new
system (e.g., the shadow system 125), which might reside on
a different host or use different port numbers centrally.

The switch over can also be done on a “group-by-group”
basis (e.g., first all users from a certain region can be
switched, then the next region) or on an application type basis
(e.g., first all users of application one, then all users of appli-
cation two, and so forth). A friendly switch over can be

US 8,200,634 B2

9

realized, 11 a user 1s only logged oif when the current trans-
action 1s finalized. In some cases, a grace period may be 1n
place, after which open transactions are terminated. A session
switch over might be used, where a user context in the appli-
cation server 1s copied to the new system including the
entered data. A “rolling switch over” might be used as well

(e.g., during a rolling switch over users are logged off from
the old system and allowed to logon to the new system 1nde-
pendently of each other). For example, given two application
servers connected to a database, one application server 1s shut
down, and the other application server 1s connected to the new
persistency (e.g., another database). The users can then logon
to the second application server and work with the new per-
sistency. Next, the application server connected to the old
persistency 1s shut down and 1s connected to the new persis-
tency.

While the above applications and data are being copied (or
migrated) from the production system 120 to the shadow
system 125, a so-called background (or parallel) process can
run to migrate any remaining data from the production system
120 to the shadow system 125 (which ensures no data sets are
migrated that have been marked as deleted and, as such,
not-to-be-migrated).

Although the zero downtime maintenance process 200
may be used to migrate any application and data, in some
implementations, the process 200 may be used to migrate
database systems. Moreover, 1n some implementations, the
process 200 may be used to provide zero downtime mainte-
nance to complex soltware systems, such as database sys-
tems, ERP systems, CRM (customer relationship manage-
ment) systems, and the like. These systems are commercially
available from SAP AG. The following describes embodi-
ments related to complex soltware systems, such as those
commercially available from SAP AG.

The following describes an example implementation of
process 200. In particular, the following describes process
200 implemented 1n an SAP-based system, although the fol-
lowing may be applicable to systems from other vendors as
well.

A so-called “live” production system 1s placed into a main-
tenance mode. The maintenance mode may be characterized
by one or more of the following attributes: all changes that an
application stores 1n a database or a file server are recorded 1n
a manner that they can be 1dentified at a later stage; applica-
tions, which are not required 1mn a read-write mode, are
switched to a read-only mode; and applications that do not
support read-only mode or change recording are stopped.

Moreover, 1n maintenance mode, the behavior of applica-
tions 1s changed 1n one of the following three different man-
ners: change recording, read-only, and stopped. With change
recording, all changes associated with applications stored in
the database or file server are recorded 1n a container (e.g.,
container 118C) 1n a way that the changes can be replayed at
a later point in time, and applications switching to the change
recording mode can be used normally 1n maintenance mode.
With read-only mode, applications, which are not required
during the maintenance period, are changed to read-only
mode. With regard to stopped, applications (which can nei-
ther enable change recording nor read-only mode) are
stopped. In some 1mplementations, the change recording
mode 1s used as a default or preferred mode.

Next, a shadow system (also referred to a mirror system) 1s
created. The shadow system 1s created during production, and
represents a copy of the production system. The created (e.g.,
copied) shadow system includes all data stored in the file
system and/or the database at the production system. More-

10

15

20

25

30

35

40

45

50

55

60

65

10

over, the system parameters of the shadow system (e.g., host-
name and the like) may have to be adjusted.

The shadow system 1s started 1n a manner, where 1t 1s
1solated from remote systems and 1s not available for user
access. In some 1implementations, for the shadow system, 1t
must be ensured that there are no business operations taking
place. The business operations are imtiated by end users,
batch jobs, and, possibly, by other systems commumnicating
with this system directly (e.g., B2B, Web services, remote
function calls, and the like). Generally, enterprise systems are
integrated into a landscape of systems. For example, a cus-
tomer may have an ERP system and a Business Warchouse
(BW) system, which extracts data from the ERP system to
provide data analysis. In this example, 1t must be ensured that
the remote system (e.g., the BW system) does not communi-
cate with the shadow ERP system; otherwise the original and
the shadow systems may both send data, which could cause
conflicting commumnications. To avoid conflicting changes,
the 1solation may also configure the systems to avoid parallel
business operation on the original, production system and on
the shadow system; otherwise, contlicting changes cannot be
readily resolved. The 1solation may limit calls (e.g., no calls)
to the remote systems. When such calls are required 1n the
context of the maintenance procedure, the shadow system
may have to be extended to the required remote system,
although another option 1s to queue such calls until the system
1s switched to productive use.

The upgrade (e.g., amaintenance package, release, and the
like) 1s then applied to the shadow system. As a part of this
step, the upgrade 1s deployed to the shadow system updating
any, old data (which might have been migrated from the
production system). The configuration data may also be
adjusted to accommodate the new software upgraded at the
shadow system (e.g., shipped configurations, templates, and
user provided data are used to adjust and/or configure the new
structure of the upgraded shadow system). In addition, appli-
cation data may also be adjusted to accommodate the new
software upgraded at the shadow system. These adjustments
may 1nclude extending new fields, using application specific
programs, and/or transforming data.

Data 1n the live, production system (data that has been
recorded in container 118C since the creation of the shadow
system) 1s applied to the shadow system. In some cases,
recording to container 118C (which are later transferred to
and replay at shadow system 125) may continue (e.g., repeat-
edly) since even when the recording changes are being
migrated to and replayed at the shadow system 125 other
changes may be occurring, and thus being recorded at con-
tainer 118C. Moreover, these other changes are referred to as
data deltas. The data deltas can also be 1dentified and read by,
for example, the zero downtime maintenance controller 150,
which transports data deltas to the shadow system 125, where
those data deltas can be applied to the shadow system 125.
Belore applying data deltas from the live, production system
120 to shadow system 125, the data deltas are converted (by
the zero downtime controller 150) to the format required by
the upgrade of the shadow system 125. The process of record-
ing data deltas at the production system 120 and applying the
data deltas (which represent changes) to the shadow system
125 may be repeated until a suificiently small amount of data
deltas are recorded 1n container 118C but pending application
at shadow system 123.

The transier of data deltas may be implemented in so-
called “chunks.”” As soon as the transfer 1s started, the
recorded data deltas are gathered and a new chunk of data 1s
recorded at container 118C. Then, the first chunk 1s trans-
ferred to shadow system 125. As soon as the first chunk has

US 8,200,634 B2

11

been transierred completely to shadow system 125, the sec-
ond chunk 1s closed at container 117C and a third chunk 1s
opened at container 118C, while the second chuck 1s being
transterred to shadow system 123. This 1s repeated, until the
chunks are sufficiently small. The chuck represents a portion
of data. Alternatively, the transfer may be performed incre-
mentally in the sequence in which 1t was recorded. For
example, the data deltas which are recorded first are trans-
terred first. Then, the transier 1s continued until the remaining
data deltas 1n the container 118C are below a threshold (which
may be defined by the user or the vendor of the upgrade).
Next, the production system 120 1s locked for users, and the
remaining data is transferred during the downtime.

After the recorded data changes applied to the shadow
system 125, the live, production system 1s then taken then
off-line from productive use (e.g., no active users, no batch
processing, and no services that are called). Lastly, any data
remaining in the production system 120 1s applied (e.g., cop-
1ied, replicated, and the like) to the shadow system 125. For
example, when the volume contained 1n a table at container
118C i1s not large and/or 1s not growing, a record and replay
process may be skipped 1n favor of a direct transfer of data
from the production system to the shadow system as the small
amount of data can be readily transferred.

Moreover, any remote connections to the system are
changed to the shadow system. Remote connections include,
for example, connections to other remote systems, such as an
ERP system, a BW system, and the like. Communications
with these remote systems are switched over to the shadow
system as 1s the case with the switch of the users from the
production system 120 to the shadow system. Moreover, the
switch of the remote systems connections may be changed to
have the shadow system 2135 used the address (e.g., IP
address) of the original production system 120, so that the
remote systems can access the shadow system 125 with the
same address as the live, production system 120 before the
operation at 248. At this point, the shadow system 125 1s thus
ready for so-called “live” use (e.g., open for business use).

Although the subject matter described herein relates to
providing zero downtime maintenance, which increases the
availability of services or systems, the above-described pro-
cesses may be used for other functions as well.

Zero downtime maintenance 1s considered a primary use
for the subject matter described herein. The processes
described herein may, however, be used for any kind of soft-
ware maintenance package upgrade, although more useful for
large and/or complex upgrades. With regard to zero downtime
maintenance, the processes described herein can be used for
upgrades, such as the deployment of support packages and
support package stacks. Specifically, a support package (SP)
updates one complete software component; while a SP stack,
updates all (used) components 1n a system. Moreover, 1n the
case of a deployment of a new software product version, the
new product version can contain new features and incompat-
ible changes that can have global impact on a system and a
system landscape. The subject matter described herein may
also be used for online data migration.

The subject matter described herein may also be used for
configuration changes. For example, during a change of con-
figuration, an inconsistent intermediate state can occur.
Depending on the duration and impact of the configuration
inconsistency, business downtime may occur. Using the
shadow system process 200 described herein, downtime may
be minimized, 11 not avoided. For example, the original, pro-
duction system 1s made available during the configuration
changes. On the shadow system, the configuration changes

10

15

20

25

30

35

40

45

50

55

60

65

12

can be changed, and once the system 1s in a consistent state,
the users can be switched to the shadowy system.

The subject matter described herein may also be used for
system migration to different hardware platiorm, operating
system (OS), or database (DB) type. For example, in SAP
terminology, this 1s called “heterogencous system copy.”
Usually files have to be copied and a database export/import
are required. This procedure usually induces business down-
time. The shadow system process (e.g., process 200)
described herein allows using the original, production system
while the migration 1s done using the shadow system. The
changes can afterwards be applied to the shadow system even
if the system 1s running on a different operating system (OS)
or database type (e.g., a procedure 1s required to transform the
data set, 1n case there 1s anything operating system or data-
base specific).

The subject matter described herein may also be used for
system relocation. This 1s similar (or even the same) as the
system migration to different hardware, operating system, or
database type. Again, the relocation activities can be applied
to the shadow system while the original, production system 1s
used in production. Changes can be replayed, 1.e., applied to
the shadow system.

The subject matter described herein may also be used for
service relocation. Service relocation procedure may be
improved by some elements of the shadow system process
described herein. If a configuration can be set to read only or
recorded and the application data changes can be recorded,
the changed data can be transported to the new service and
replayed (e.g., applied) there, after which all requests can be
re-directed to the new service.

The subject matter described herein can be implemented 1n
a computing system that includes a backend component (e.g.,
a data server), a middleware component (e.g., an application
server), or a front end component (e.g., a client computer
having a graphical user interface or a web browser through
which a user can interact with an implementation of the
subject matter described herein), or any combination of such
back end, middleware, and front end components. The com-
ponents of the system can be iterconnected by any form or
medium of digital data communication, €.g., a communica-
tion network. Examples of communication networks include
a local area network (“LAN”) and a wide area network
(“WAN™), e.g., the Internet. The computing system can
include clients and servers. A client and server are generally
remote from each other 1n a logical sense and typically inter-
act through a communication network. The relationship of
client and server arises by virtue of computer programs run-
ning on the respective computers and having a client-server
relationship to each other.

The systems and methods disclosed herein may be embod-
ied 1n various forms including, for example, a data processor,
such as a computer that also includes a database, digital
clectronic circuitry, firmware, software, or in combinations of
them. Moreover, the above-noted features and other aspects
and principles of the present disclosed embodiments may be
implemented 1n various environments. Such environments
and related applications may be specially constructed for
performing the various processes and operations according to
the disclosed embodiments or they may include a general-
purpose computer or computing platform selectively acti-
vated or reconfigured by code to provide the necessary func-
tionality. The processes disclosed herein are not inherently
related to any particular computer, network, architecture,
environment, or other apparatus, and may be implemented by
a suitable combination of hardware, software, and/or firm-
ware. For example, various general-purpose machines may

US 8,200,634 B2

13

be used with programs written 1n accordance with teachings
of the disclosed embodiments, or 1t may be more convenient
to construct a specialized apparatus or system to perform the
required methods and techniques.

The systems and methods disclosed herein may be imple-
mented as a computer program product; 1.e., a computer
program tangibly embodied 1n an information carrier, e.g., in
a machine readable storage device or 1n a propagated signal,
for execution by, or to control the operation of, data process-
Ing apparatus, e.g., a programmable processor, a computer, or
multiple computers. A computer program can be written in
any form of programming language, including compiled or
interpreted languages, and 1t can be deployed in any form,
including as a stand-alone program or as a module, compo-
nent, subroutine, or other unit suitable for use 1n a computing
environment. A computer program can be deployed to be
executed on one computer or on multiple computers at one

site or distributed across multiple sites and interconnected by
a communication network.

As used herein, the term “user” may refer to any entity
including a person or a computer.

The foregoing description 1s intended to illustrate but not to
limit the scope of the invention, which 1s defined by the scope
of the appended claims. Other embodiments are within the
scope of the following claims.

What 1s claimed 1s:

1. A computer-readable storage medium containing
instructions to configure a processor to perform operations
comprising;

creating a shadow system, the shadow system comprising

an upgraded version of a production system comprising
an application and data 1n a database;

copying the at least one of the application and the database

from the production system to the shadow system, the
copying comprising migrating data of the at least one of
the application and the database from the production
system to the shadow system;

providing, during the migrating, production system for

continued productive use of the at least one of the appli-
cation and the database, the continued productive use
comprising recerving one or more changes to the data
being migrated;

recording, during the migrating, the one or more received

changes to the data 1n a persistency container, at the
production system;
taking the production system out of productive use after
completion of the migrating, the taking of the production
system out of productive use comprising at least one of
locking the production system to prevent further
changes and taking the production system oftline;

replaying, after the production system has been taken out
ol productive use, the recorded one or more received
changes from the persistency container to the shadow
system, the replaying comprising executing the recorded
one or more recerved changes in a sequential order of
how the one or more received changes were recerved
such that the data migrated to the shadow system from
the production system are updated to reflect the one or
more recerved changes; and

initiating productive use at the shadow system to replace

the production system after the production system 1s
taken out of productive use.

2. The computer-readable storage medium of claim 1,
wherein the operations further comprise: recerving an indica-
tion from a user to record the one or more recerved changes to

10

15

20

25

30

35

40

45

50

55

60

65

14

the data 1n the production system in the persistency container
instead of locking the production system during the migrat-
ng.

3. The computer-readable storage medium of claim 1,
wherein recording further comprises: storing, in the persis-
tency container, the one or more changes recetved to data at
the production system, the recorded one or more received
changes being configured to enable the one or more recerved
changes to be applied to the data migrated to the shadow
system.

4. The computer-readable storage medium of claim 1,
wherein the migrating of the data from the production system
to the shadow system further comprises: copying one or more
of the following types of data: a sales order, a master data,
account information, a customer 1nvoice, a batch job runtime
information, an update task mmformation, an mmput queue, a
print queue, a change log, and user data.

5. The computer-readable storage medium of claim 1,
wherein the operations further comprise: deleting the
recorded one or more received changes from the persistency
container, when the recorded one or more recerved changes
have been migrated from the persistency container to the
shadow system.

6. A computer-readable storage medium as in claim 1,
wherein the operations further comprise: creating, in the per-
sistency container for each of one or more database tables
comprising the data at the production system, a correspond-
ing second database table, the second database table compris-
ing a same key as its corresponding database table at the
production system, a first key field defining a sequence num-
ber of one of the one or more recerved changes, and a second
key field specilying a change kind of the one of the one or
more recerved changes.

7. A computer-readable storage medium as 1n claim 1,
wherein the operations further comprise: creating, 1n the per-
sistency container, a single second database table, the single
second database comprising, a table name of each of a plu-
rality of database tables at the production system, a first key
field defining a sequence number of one of the one or more
received changes, and a second key field specitying a change
kind of the one of the one or more received changes.

8. A computer-readable storage medium as 1n claim 1,
wherein the operations further comprise: migrating one or
more users attached to the production system to the shadow
system.

9. A computer-readable storage medium as 1n claim 1,
wherein the operations further comprise: also writing the
received one or more changes to the production system as
they are received.

10. A computer-readable storage medium as in claim 1,
wherein the operations further comprise: recreating a previ-
ous state of the production system by using the one or more
received changes recorded 1n the persistency container to roll
back the one or more changes written to the production sys-
tem during the migrating, the recreating being performed if a
problem occurs during the migrating.

11. A computer-readable storage medium as 1n claim 1,
wherein the upgraded version of a production system com-
prises a new format not used in a previous version of the
production system, and wherein the operations further com-
prise recording the one or more recerved changes 1n the per-
sistency container using the new format.

12. A computer-implemented method comprising:

creating a shadow system, the shadow system comprising,

an upgraded version of a production system comprising
an application and data 1n a database;

US 8,200,634 B2

15

copying the at least one of the application and the database
from the production system to the shadow system, the
copying comprising migrating data of the at least one of
the application and the database from the production
system to the shadow system;

providing, during the migrating, the production system for

continued productive use of the at least one of the appli-
cation and the database, the continued productive use
comprising receiving one or more changes to the data
being migrated;

recording, during the migrating, the one or more received

changes to the data 1n a persistency container at the
production system;
taking the production system out of productive use after
completion of the migrating, the taking of the production
system out of productive use comprising at least one of
locking the production system to prevent further
changes and taking the production system ofiline;

replaying, after the production system has been taken out
ol productive use, the recorded one or more received
changes from the persistency container to the shadow
system, the replaying comprising executing the recorded
one or more recerved changes in a sequential order of
how the one or more received changes were received
such that the data migrated to the shadow system from
the production system are updated to reflect the one or
more recerved changes; and

initiating productive use at the shadow system to replace

the production system after the production system 1s
taken out of productive use.

13. The computer-implemented method of claim 12, fur-
ther comprising: recerving an indication from a user to record
the one or more recerved changes to the data 1n the production
system 1n the persistency container instead of locking the
production system during the migrating.

14. The computer-implemented method of claim 12,
wherein recording further comprises: storing, 1n the persis-
tency container, the one or more changes received to data at
the production system, the recorded one or more received
changes being configured to enable the one or more recerved
changes to be applied to the data migrated to the shadow
system.

15. The computer-implemented method of claim 12,
wherein the migrating of the data from the production system
to the shadow system further comprises: copying one or more
of the following types of data: a sales order, a master data,
account information, a customer voice, a batch job runtime
information, an update task imnformation, an input queue, a
print queue, a change log, and user data.

10

15

20

25

30

35

40

45

16

16. The computer-implemented method of claim 12,
wherein the operations further comprise: deleting the
recorded one or more received changes from the persistency
container, when the recorded one or more received changes
have been migrated from the persistency container to the
shadow system.

17. A system comprising:

a processor; and

a memory, wherein the processor and the memory are

configured to perform a method comprising:

creating a shadow system, the shadow system comprising

an upgraded version of a production system comprising
an application and data in a database;

copying the at least one of the application and the database

from the production system to the shadow system, the
copying comprising migrating data of the at least one of
the application and the database from the production
system to the shadow system;

providing, during the migrating, the production system for

continued productive use of the at least one of the appli-
cation and the database, the continued productive use
comprising receiving one or more changes to the data
being migrated;

recording, during the migrating, the one or more recerved

changes to the data 1n a persistency container at the
production system:;
taking the production system out of productive use after
completion of the migrating, the taking of the production
system out of productive use comprising at least one of
locking the production system to prevent further
changes and taking the production system offline;

replaying, after the production system has been taken out
of productive use, the recorded one or more recerved
changes from the persistency container to the shadow
system, the replaying comprising executing the recorded
one or more recerved changes in a sequential order of
how the one or more received changes were received
such that the data migrated to the shadow system from
the production system are updated to retlect the one or
more received changes; and

imtiating productive use at the shadow system to replace

the production system after the production system 1is
taken out of productive use.

18. The system of claim 17, wherein the operations further
comprise: receiving an indication from a user to record the
one or more recerved changes to the data 1in the production
system 1n the persistency container instead of locking the
production system during the migrating.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

