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(57) ABSTRACT

A method 1s provided for calculating a class-specific iterated
subspace for a classification system utilized 1n a computing
system. Training data in the specific class for the class-spe-
cific iterated subspace 1s collected. A linear orthogonal trans-
form 1s applied transforming the data into at least one bin.
Magnitude squared bins are calculated and used as columns
of a matrix. Orthonormal vectors of this matrix are selected
and a ] function 1s calculated. The J function and orthonormal
starting vectors are used to obtain the class-specific iterated
subspace for each class. The method further applies these
class-specific iterated subspaces 1n a classification system for
determining the most likely class of a data signal of interest.
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CLASS-SPECIFIC ITERATED SUBSPACE
CLASSIFIER

STATEMENT OF GOVERNMENT INTEREST

The 1nvention described herein may be manufactured and
used by or for the Government of the United States of
America for governmental purposes without the payment of
any royalties thereon or therefor.

CROSS-REFERENCE TO RELATED PATEN'T
APPLICATIONS

None.

BACKGROUND OF THE

INVENTION

(1) Field of the Invention

The present invention generally relates to a class-specific
signal analysis method using a subspace that maximizes
class-specific J-functions.

(2) Description of the Prior Art

Characterizing an input signal using automated data pro-
cessing systems 1S a common problem 1n many fields. In
sonar, 1t 1s often desirable to separate natural sources from
manmade sources. This 1s also true in radar. In speech recog-
nition, 1t 1s desirable to recognize phonemes so that speech
can be turned 1nto text. In virtually all state-of-the-art meth-
ods, the process of characterizing the data 1s divided into two
separate stages. In the first stage, 1t 1s necessary to extract
teatures (useful information 1n the form of a compact set of
parameters) from the mput data that is useable by automatic
recognition algorithms. In the second stage, an algorithm,
usually a probabilistic model, decides which type of signal 1s
present based on the features.

An example of such a system 1s automatic speech recog-
nition (ASR) system as implemented on a computer. In the
first stage of a state-oi-the-art ASR system, the speech signal
1s divided 1nto equal-sized segments, from which features are
extracted. These features are usually extracted in mel-scale
cepstral format because this format focuses on the frequency
response of human hearing.

The mel-scale cepstrum 1s calculated by taking the Fourier
transform ol a time domain signal to produce a spectrum.
Powers of the spectrum are mapped onto the mel scale. Loga-
rithms are taken of the powers at each of the mel frequencies.
A discrete cosine transiorm is calculated for the logarithms of
the mel powers. The mel-scale cepstral coellicients are the
calculated discrete cosine transform coellicients. In ASR sys-
tems, the mel-scale cepstral coellicients are used as the fea-
ture set for recognizing phonemes.

In mathematical terms, one may write the MEL cepstrum
features as

z=DCT(log(4)) (1)

where vector vy 1s the length—-N/2+1 spectral vector, the mag-
nitude-squared DFT output and the columns of A are the MEL
band functions, and the “prime” notation indicates the trans-
pose of the matrix A. The logarithm and the discrete cosine
transform (DCT) are invertible functions. There 1s no dimen-
s1on reduction or information loss so they may be considered
a feature conditioning step, which results in more Gaussian-
like and independent features.

Other approaches of feature set development are taught in
the prior art. The use of signal-dependent or class-dependent
teatures for classification, known as the class-specific method

or CSM, 1s covered 1n U.S. Pat. No. 6,535,641, “Class-Spe-
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2

cific Classifier”. The probability density function (PDF) pro-
jection theorem (PPT) 1s disclosed in Baggenstoss, “The PDF
Projection Theorem and the Class-Specific Method”, IEEE
Transactions on Signal Processing, Vol. 51, No. 3 (March
2003) which 1s mcorporated by reference. The probability
density function projection theorem eliminates the need for
suificient statistics and allows the use of class-dependent
reference hypotheses, improving the performance ol any
classification system using class-dependent features. U.S.

Pat. No. 6,466,908, entitled “System and Method for Training
a Class-specific Hidden Markov Model Using a Modified
Baum-Welch Algorithm” alleviates the need for a common
feature set n a HMM.

The key operation here 1s dimension reduction by linear
projection onto a lower-dimensional space. Now, with the
introduction of the class-specific method (CSM) and the PDF
projection theorem (PPT), one 1s free to explore class depen-
dent features within the rigid framework of Bayesian classi-
fication. Some work has been done 1n class-dependent fea-
tures; however, existing approaches are only able to use
different features by using compensation factors to make
likelihood comparisons fair. Such approaches work 1f the
class-dependent feature transformations are restricted to cer-
tain limited sets. Both methods fall short of the potential of the
PPT, which makes no restriction on the type of feature trans-
formations available to each phoneme. Under CSM, the
“common feature space” 1s the time-series (raw data) itself.
Feature PDFs, evaluated on different feature spaces are pro-
jected back to the raw data space where the likelihood com-
parison 1s done. Besides its generality, the CSM paradigm has
many additional advantages as well. For example, there 1s a
quantitative class-dependent measure to optimize that allows
the design of the class-dependent features 1n 1solation, with-
out regard to the other classes.

A prior art classifier 1s shown 1n FIG. 1. The classifier 2
receives data from a data source 4. Data source 4 1s joined to
a feature transiformation module 6 for developing a feature
set. The feature set 1s provided to pattern match processors 8,
which correspond to each data class. Pattern match proces-
sors 8 provide an output measuring the developed feature set
against trained data. The pattern match processor 8 outputs
are compared 1 a comparison 9 and the highest output is
selected.

FIG. 2 shows a class specific classifier as disclosed 1n U.S.
Pat. No. 6,535,641 which 1s incorporated by reference herein.
In this classifier, a data source 10 supplies a raw data sample
X to the processor 12 at a processor mput 14. It 1s assumed
that the data source can be type A, B, or C, but the 1dentity 1s
not known. Processor output 16 1s a decision concerning the
identity of the data source, 1.e. A, B, or C. The processor 12
contains one feature transformation section 18 for each pos-
sible data class. These sections 18 are joined to receive the
raw data X at processor input 14. Each feature transformation
section 18 produces a feature set for its respective class. The
processor 12 further contains pattern match processors 20
with each pattern match processor joined to a transformation
section 18 for recerving a feature set associated with one
class. The pattern match processors 20 approximate the prob-
ability density functions (PDFs) of the feature sets for data
sampled from the corresponding data class. The output of the
pattern match processors 20 are highest when the mput fea-
ture set 1s similar to or “matches™ the typical values of the
training set. Because the pattern match processors 20 are
operating on different feature sets, the outputs cannot be
directly compared to arrive at a decision without compensa-
tion. Compensation processors 22 process the raw data X

together with the teature set, Z,, and provide a correction term
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in accordance with the PPT, which, when multiplied by the
output of pattern match processors 20, convert the PDFs of
teature sets Z,, into PDF of the raw data X. The outputs of the

compensation processors 22, called the “J function™ in the

(2)

argng'ﬂaxpp(x | Hm)a

terminology of the class-specific classifier, are passed to a > where p,(xIH, ) 1s the projected PDF (projected from the

multiplier 24 which multiplies this output with the output of
the pattern match processors 20. The result of the multiplica-
tion 24, which 1s an estimate of the PDF of the raw data X for
the given class, 1s processed by a comparison 26 joined to the

processor 12 output 16. The output 16 1s the 1dentity of the
data class that has the highest output from the multiplier 24.

SUMMARY OF THE INVENTION

Accordingly, there 1s provided a method for calculating a
class-specific iterated subspace for a classification system
utilized 1n a computing system. Training data in the specific
class for the class-specific iterated subspace 1s collected. A
linear orthogonal transform 1s applied transforming the data
into at least one bin. Magnitude squared bins are calculated
and used as columns of a matrix. Orthonormal vectors of this
matrix are selected and a J function 1s calculated. The J
function and orthonormal starting vectors are used to obtain
the class-specific 1terated subspace for each class. The
method further applies these class-specific iterated subspaces
in a classification system for determining the most likely class
of a data signal of interest.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing features ol the present invention will
become more readily apparent and may be understood by
referring to the following detailed description of an illustra-
tive embodiment of the present invention, taken in conjunc-
tion with the accompanying drawings, in which:

FIG. 1 1s a diagram of a prior art classifier using conven-
tional technology;

FIG. 2 1s a diagram of a prior art class specific classifier;
and

FI1G. 3 1s a diagram of a class specific classifier implement-
ing aspects of the current invention.

DETAILED DESCRIPTION OF THE INVENTION

When applying the class specific method, one must find
class-dependent signal processing to produce features that
characterize each class. This invention applies specifically to
class-specific classifiers 1n which the features are produced
by these three steps (1) applying a Fourier transform or dis-
crete Fourier transform to the mput data to obtain a power
spectral vector y, (2) then the multiplication of a spectral
vector v by a dimension-reducing matrix A, then (3) option-
ally applying a feature conditioming transformation. While
the Fourier transform and discrete Fourier transform are
explicitly mentioned here, 1t 1s understood by those skilled 1n
the art that other transforms could be used for this. These
transforms include the discrete cosine transform, wavelet
transform and the like. We seek an automatic means of opti-
mizing the matrix A for a given class. We first review the class
specific method.

Let there be M classes among which we would like to
classily. The class-specific classifier, based on the PPT, is
given by
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feature space to the raw data space). The projected PDF 1s
given by

p,(xH, )=, (x,4,,H, )bz, H,) (3)

where p(z_ |H ) is the feature PDF estimate (estimated from
training data) and the J-function 1s given by

px | Hom) (4)

Jm(-xa Ama Hﬂ,m) —
P(Zm | Hﬂ,m)

and H, ,, are class-dependent reference hypotheses. In the
remainder of the discussion, we drop the subscript m 1n the
interest of simplicity, leaving a common reference hypothesis
denoted by H,,. In accordance with the above described 3-step
method, the class-dependent features z_ are computed from
the spectral vector y through the class-dependent subspace
matrices A, , as

z, =C(A’ y) (5)

where C 1s the feature conditioning transformation where the
“prime” notation indicates the transpose of matrix A . Note
that the J function 1s a fixed function of x precisely defined by
the feature transformation from X to z and the reference
hypotheses H .

It 1s the “compensation term” that allows feature PDFs
from various feature spaces to be compared fairly because the
resulting log-likelihood function 1s a PDF on the raw data
space X. The I function 1s a generalization of the determinant
of the Jacobian matrix in the case of a 1:1 transformation. The
PPT guarantees that p (xIH, ) given by (3) 1s a PDF, so 1t
integrates to 1 over x regardless of the reference hypothesis
H, ,, or the teature transtormation producing z,, from x. It 1s
up to the designer to choose H,, ,, and A to make p (xIH, ) as
good an estimate of p(xIH, ) as possible. The designer is
guided by the principle that 1t z_ 1s a suificient statistic for H_
then p,(xIH,,) will equal p(xIH,,) (provided p(z,IH,,) 1s a
good estimate). We can also think of it as a way of imbedding
a low-dimensional PDF within a high-dimensional PDF. We
have good reason, as we shall see, to use a common reference
hypothesis, H, which simplifies the classifier to

(6)

where the J function, J (x), now depends only on A . Note
that 1n contrast to other class-dependent schemes using pair-
wise or tree tests, the class specific method 1s a Bayesian
classifier and has the promise of providing a “drop-in”
replacement to the MEL cepstrum based feature processors in
existing ASR systems. The J function for this specific feature
set 1s covered 1n Steven M. Kay and Albert H. Nuttall and Paul
M. Baggenstoss, Multidimensional Probability Density
Function Approximation for Detection, Classification and
Model Order Selection, IEEE Trans. Signal Processing, Octo-
ber, 2001, which 1s incorporated by reference herein.

We are interested in adapting the matrix A to an individual
class. We propose the strategy of selecting A = to maximize

the total log-likelihood of the training data using the projected
PDF. Let

drg Imax Jm(X:Am:HD)p(Zm |Hm)
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(7)

K
Lix', x* ... XA, )= Zlmgpp(xi | H,,)
i=1

where K 1s the number of training vectors. It we expand
p,(xIH,,), we obtain:

px| Hy) (8)

P&m | Ho)

pp(x| Hn) = | [Pt | Hi.

where H,, 1s the independent Gaussian noise hypothesis, we
se¢ that the term p(xIH,) 1s independent of A_. Thus, to
maximize L, we need to maximize the average value of

log p(z,,|H,,)-log p(z,,|Ho) 9)

It 1s difficult to determine how the first term p(z, |H, ) is
affected by changing A . To determine the effect of changing
A_, new feature vectors z_ need to be calculated for each
training sample, then the PDF needs to be re-estimated and
p(z, |H ) needs to be evaluated for each training sample. On
the other hand, given the simplicity of the reference hypoth-
esis H,, the second term p(z |H,) can be known, either 1n
analytic form or 1n an accurate analytic approximation. This
1s taught by Kay et al., “Multidimensional Probability Den-
sity Function Approximations for Detection Classification,
and Model Order Selection,” IEEE Transactions on Signal
Processing, Vol. 49, No. 10, pp. 2240-2252, (October 2001),
which 1s icorporated by reference herein. Furthermore, the
first term can be made nearly independent of A, by requiring
A _ . to be orthonormal. We proceed, then by 1ignoring the term

p(z, |H ) and maximizing the function

(10)

K
O, x* ... xr A = —Zlﬂgp(ziﬂ | Hyp).

The change in p(z |H ) can be minimized as A_ 1is
changed by 1nsisting on an orthonormal form for A . Thus, by
maximizing L. (7) under the restriction that A _ 1s orthonor-
mal, we approximately maximize L. Constraining A such
that the columns of A__ are an orthonormal set of vectors. We
use a orthonormality under the inner product:

(11)

where €, has the value of the number of degrees of freedom 1n
spectral bin 1. For a discrete Fourner transform, €, has the value
2 except for the end bins (0 and N/2) where it has value 1.
Ortho-normality under this inner product means that the spec-
tral vectors will be orthonormal 1f extended to the full N bins.

Use of orthonormality helps to stabilize the term as A 1s
varied.

A_ 1s further constrained with respect to energy sufli-

ciency. The energy suliliciency constraint means that the total
energy 1n X,
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(12)

can be dertved from the features. Energy sufficiency is impor-
tant 1n the context of floating reference hypotheses. In order
that the classifier result 1s scale invariant, we need energy
suificiency. With energy suiliciency, the term

p(x| Hy)
P(Zm | HD)

(13)

will be independent of the variance used on the H, reference
hypothesis. Note that E=¢', y/N, where ¢,=[1,2,2,2...,2, 1],
which 1s composed of the number of degrees of freedom in
cach frequency bin. Thus, energy suiliciency means that the
column space of A needs to contain the vector e, .

Since we would like the feature set created by projecting
onto the columns of A to characterize the statistical variations
within the class, a natural first step 1s to use principal com-
ponent analysis (PCA). To do this, we arrange the spectral
vectors from the training set into a matrix

Y=[y'y*...¥*] (14)

where K 1s the number of training vectors. To meet the energy
suificiency constraint, we fix the first column of A to be the
normalized e, 1dentified as € :

_ €1 (15)

1 = 5

lex]]

To find the best linear subspace orthogonal to e,, we first
orthogonalize the columns of Y to e, Y, =Y—-(€,"Y). Let U be
the largest P singular vectors olY, , or equwalently the largest
P eigenvectorsolY,Y' . P 1s chosen to maximize the resulting
performance. P 1s usually between 3 and 10 as determined
experimentally. We then set A=[&,U]. We then proceed to
maximize (10) using steepest ascent, or any of a number of
standard optimization techniques. That 1s to say, the value of
equation (10) 1s determined, and then matrix A 1s modified 1n
some manner according to the optimization technique, then
equation (10) 1s re-calculated to determine the effect of the
modification. Convergence 1s determined when no further
significant increase 1n (10) 1s possible. We use the term class-
specific iterated subspace (CSIS) to refer to the columns of
A_ obtained 1n this way.

This method has been used with known experimental data
(the TIMIT data set) as a source of phonemes. The data
consists of sampled time-series (in 16 kHz .wav files) of
scripted sentences read by a wide variety of speakers and
includes 1index tables that point to start and stop samples of
cach spoken phoneme 1n the text. In TIMIT, each speaker 1s
identified by the dialect region speaker, and phoneme. Dialect
region takes values from 1-8. The speaker 1s 1dentified by a 5
character code such as FDAWO or MGRLO. The initial letter
F or M indicates the sex of the speaker. There are 61 pho-
nemes 1n the database, having a 1 to 4 character code. We use
the term dataclass to represent the collection of all the pho-
nemes of a given type from a given speaker. The average
number of utterances of a given speaker/phoneme combina-
tion 1s about 10 and ranges from 1 up to about 30 for some of
the most common phonemes. Speaker/phoneme combina-
tions with no fewer than 10 samples were used.
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In all of our classification experiments, the utterances of a
given speaker/phoneme were divided into two sets, even
(samples 2,4, 6 . . . ) and odd (samples 1, 3, 5 ... ). We
conducted two sub-experiments, training on even, testing on
odd, then training on odd, testing on even. We reported the
sum of the classification counts from the two experiments.

We now describe the processing for the features of the
MEL cepstrum classifier (MCC) and CSIS. In order to con-
centrate on the basic dimension reduction step (equation 2),
the stmplest possible processing and PDF modeling was used.
Each step 1n the processing 1s described below, 1n the order 1n
which it 1s processed.

The phoneme data was pre processed by resampling from
16 kHz down to 12 kHz. Phoneme endpoints were corre-
spondingly converted and used to select data from the 12 kHz
time-series. The phoneme data was also truncated to a mul-
tiple of 384 samples by truncating the end. Those phoneme
cvents that were below 384 samples at 12 kHz were not used.

Doing this allowed us to use fast Fourier transform (FFT)
s1zes o 48, 64, 96, 128, or 192 samples, which are all factors
ol 384.

We computed non-overlapped unshaded (rectangular win-
dow function) FFT's resulting in a sequence of magnitude-
squared FFT spectral vectors of length N/2+1, where N 1s the
FFT size. The number of FFT's 1n the sequence depended on
how many non-overlapped FF'T's fit within the truncated pho-
neme utterance.

Spectral vectors were normalized after FFT processing.

For non-speaker-dependent (MEL cepstrum) features, the
spectral vectors were normalized by the average spectrum of
all available data. For class specific iterated subspace (CSIS)
(speaker-dependent) features, the spectral values for each
speaker/phoneme combination were normalized by the aver-
age spectrum for that speaker/phoneme. In classification
experiments, the average spectrum was computed from the
training data to avoid 1ssues of data separation.

Next, the spectral vectors, denoted by y, were projected
onto a lower dimensional subspace by a matrix as i (2)
resulting 1n feature vectors, denoted by w. For the mel cep-
strum classifier, the columns of A were mel frequency band
tunctions. The number of columns in matrix A was N _+2
including the zero and Nyquist half-bands. (see FIG. 1). For
CSIS, A was an orthonormal matrix determined from the
optimization algorithm. For CSIS, the number of columns of
A was P+1 where P 1s the number of basis functions in
addition to the first column €, .

From a statistical point of view, feature conditioning has
effect on the information content of the features. It does,
however, make probability density function (PDF) estimation
casier 1 the resulting features are approximately independent
and Gaussian. For MCC, the features were conditioned by
taking the logarithm and discrete cosine transform as in (1).
For CSIS, features were conditioned first by dividing features
2 through P+1 by the first feature. This effectively normalizes
the features since the first feature, being a projection onto e,
1s a power estimate for the segment. Lastly, the logarithm of
the first feature 1s taken. Mathematically, we have for CSIS

w=A'y (16)

z=log{w) (17)

z=ws/wy, i=2,3, ... P+] (1%)
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8

J-function contributions must be mcluded for FFT magni-
tude-squared, spectral normalization, matrix multiplication,
and feature conditioning.

We used a simple multivaniate Gaussian PDF model, or
equivalently a Gaussian mixture model (GMM) with a single
mixture component. We assume mndependence between the
members of the sequence within a given utterance, thus dis-
regarding the time ordering. The log-likelihood value of a
sample was obtained by evaluating the total log-likelihood of
the feature sequence from the phoneme utterance. The reason
we used such simplified processing and PDF models was to
concentrate our discussion on the features themselves.

Classification was accomplished by maximization of log-
likelihood across class models. For CSS and CSIS, we added
the log J-function value to the log-likelihood value of the
(Gaussian mixture model, implementing (6) 1n the logarithm
domain.

FIG. 3 shows the class specific iterative subspace classifier
30 used 1n operation. A spectral vector 32 provides classifier
30 with mput y. Input 1s provided to class specific processing
sections 34 which are each associated with and specific to a
certain class of mput. Each processing section 34 includes a
class specific (CS) feature transform section 36, a CS J func-
tion section 38, a CS probability function section 40, and a
multiplier 42. CS band functions, J functions and probability
functions are computed for each class using iterative optimi-
zation before implementation of the classifier 30 according to
the method taught above. Iterative optimization adjusts the
CS band function 46 for each class to maximize output from
multiplier 42 for that class. Since 1t 1s impractical to predict
the output of probability function 40, the method assumes that
function 40 does not change when the CS band function 1s
adjusted. The method, thus, concentrates on maximizing only
output from J-function 38. By keeping band functions 46
normalized (orthonormal), the method minimizes the
changes in function 40 during the optimization.

The CS feature transform section 36 includes a multiplier
44 receiving output (y) from spectral vector 32 and multiply-
ing it by the CS band functions 46 for the associated class
(A, ) producing a CS modified spectral vector. The CS band
functions are class specific versions of the MEL band func-
tions A used 1n conventional MEL cepstrum analysis. The CS
band functions 46 are computed as disclosed above. The CS
modified spectral vector 1s provided to normalization and
conditioning section 48. Normalization and conditioning can
be by conventionally known methods such as discrete cosine
transforms, discrete Fourier transforms and the like. It 1s
preferred that this section provide valid results for negative
iputs, so logarithmic processing 1s not desired. Normaliza-
tion and conditioning section 48 produces CS transformed
data (z ). The CS transformed data 1s provided as input to the
CS probability function section 40. CS probability function
section 40 provides an output indicating how well the CS
transiformed data matches the associated class. CS J function
section 38 receives mput from spectral vector 32 and calcu-
lates a CS correction vector. Multiplier 42 recerves the CS
probability function section 40 output and the CS correction
vector from the CS J function section 38. As an output, mul-
tiplier 42 provides a measure of how well the CS transformed
data matches the associated class that 1s comparable among

all of the classes. Comparator 52 receives the comparable
matching data and provides an output signal indicating the
class that 1s most likely to match that of the incoming spectral
data.
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What 1s claimed 1s:

1. A method for calculating a class-specific iterated sub-
space for a classification system utilized in a computing sys-
tem comprising:

collecting training data related to a signal of interest, said

training data being 1n the specific class for the class-
specific iterated subspace;

applying a linear orthogonal transform to the collected

training data resulting in transformed traiming data 1n at
least one bin;

calculating the magnitude-square of each bin of the trans-

formed training data producing magnitude-squared
bins;

arranging the magnitude-squared bins as columns y 1n a

matrix Y;

selecting orthonormal starting vectors from said matrix Y;

creating a J function using said selected orthonormal start-

ing vectors; and

iteratively maximizing a sum of the logarithm of said cre-

ated J function by adjusting said orthonormal starting
vectors to obtain the class-specific iterated subspace.

2. The method of claim 1 wherein said linear orthogonal
transform 1s one transiform selected from the group of trans-
forms including Fourier transforms, discrete Fourier trans-
forms, wavelet transforms, and discrete cosine transforms.

3. The method of claim 1 wherein the step of selecting
orthonormal starting vectors utilizes principle component

analysis of said matrix Y.

4. The method of claim 3 wherein from three to ten
orthonormal starting vectors are selected as the largest singu-
lar columns of said matrix Y.

5. The method of claim 3 wherein from three to ten
orthonormal starting vectors are selected as the largest e1gen-
vectors of a column of said matrix Y multiplied by a transpose
of the column.

6. The method of claim 1 wherein the step of iteratively
maximizing a sum of the logarithm of said created J function
COmMprises:

moditying the orthonormal starting vectors; and

recalculating said created J function until said sum of the

logarithm substantially stops changing.

7. A method for classifying a signal of interest 1n a com-
puting system as being 1n a most likely class comprising the
steps of:

calculating a class-specific iterated subspace for each class

of a classification system before classitying the signal of
interest comprising the steps of:

collecting training data related to the signal of interest, said

training data being 1n the specific class for the class-
specific iterated subspace;

applying a linear orthogonal transform to the collected

training data resulting in transformed traiming data 1n at
least one bin;
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calculating the magnitude-square of each bin of the trans-
formed tramning data producing magnitude-squared
bins;

arranging the magnitude-squared bins as columns y 1n a

matrix Y;
selecting orthonormal starting vectors from said matrix Y;
creating a J function using said selected orthonormal start-
Ing vectors;
iteratively maximizing a sum of the logarithm of said cre-
ated J function by adjusting said orthonormal starting,
vectors to obtain the class-specific iterated subspace;
receving a data signal of interest with an unknown data
class as a spectral vector;
multiplying the spectral vector by the obtained class spe-
cific 1iterated subspace to obtain a class specific vector
for each class;

normalizing and conditioning each class specific vector for

each class;

calculating a class specific likelihood function for each

class 1indicating a probability that the normalized and
conditioned class specific vector 1s 1n the associated
class;

calculating a specific J function for each class utilizing the

maximized J function for the specific class and the spec-
tral vector;
compensating each said calculated class specific likelithood
function using said specific J-function for each class;

comparing each compensated likelithood function for each
class against the other compensated likelithood func-
tions; and

providing a result indicating the most likely class for the

compensated likelihood function having the greatest
value.

8. The method of claim 7 wherein said linear orthogonal
transform 1s one transform selected from the group of trans-
forms including Fourier transforms, discrete Fourier trans-
forms, wavelet transforms, and discrete cosine transforms.

9. The method of claim 7 wherein the step of selecting
orthonormal starting vectors utilizes principle component
analysis of said matrix Y.

10. The method of claim 9 wherein from three to ten
orthonormal starting vectors are selected as the largest singu-
lar columns of said matrix Y.

11. The method of claim 9 wherein from three to ten
orthonormal starting vectors are selected as the largest e1gen-
vectors of a column of said matrix Y multiplied by a transpose
of the column.

12. The method of claim 7 wherein the step of iteratively
maximizing a sum of the logarithm of said created J function
COmMprises:

modifying the orthonormal starting vectors; and

recalculating said created J function until said sum of the

logarithm substantially stops changing.
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