US008176018B1

a2y United States Patent (10) Patent No.: US 8,176,018 B1
Bisson et al. 45) Date of Patent: May 38, 2012
(54) INCREMENTAL FILE SYSTEM 2008/0091945 Al1* 4/2008 Princenetal. 713/170
2008/0195583 Al1* 82008 Hsuetalc.ecoevniinnn, 707/3
DIFFERENCING 2008/0222420 Al1* 9/2008 Serret-Avila 713/176

(75) Inventors: Timothy Bisson, Sunnyvale, CA (US); OTHER PUBLICATIONS
Shankar Pasupathy, Sunnyvale, CA DeCandia et al., Dynamo: Amazon’s Highly Available Key-value
(US) Store, Oct. 2007, http://www.allthingsdistributed.com/files/amazon-

_ dynamo-sosp2007.pdf.*
(73) Assignee: NetApp, Inc., Sunnyvale, CA (US) U.S. Appl. No. 11/093,074, T. Bisson.

U.S. Appl. No. 10/954,381, S. Manley.

(*) Notice: Subject to any disclaimer, the term of this U.S. Appl. No. 10/776,057, D. Ting.

patent is extended or adjusted under 35 Co-pending U.S. Appl. No. 13/160,474, filed Jun. 14, 2011.
USC 154(b) by 718 days Co-pending U.S. Appl. No. 13/160,481, filed Jun. 14, 2011.

* cited by examiner
(21) Appl. No.: 12/112,651

Primary Examiner — Syed H Hasan

(22) Filed. Apr. 30, 2008 (74) Attorney, Agent, or Firm — Perkins Coie LLP
Gt (57) ABSTRACT

GO6F 17/30 (2006.01)
(52) U.S.CLe oo 707/690: 707/697 A facility for comparing two datasets and identifying meta-
(58) Field of Classification Search None data ditferences between the two datasets 1rrespective of the

manner 1n which the data 1s stored. In some embodiments, the
facility includes a comparison unit and a catalog unit. The

See application file for complete search history.

(56) References Cited comparison unit compares a hierarchical hash of a first
dataset with a hierarchical hash of a second dataset, the hier-
U.S PATENT DOCUMENTS archical hashes each including a plurality of hierarchical hash
6.993.530 B2 12006 Foderwisch values, to i1dentily dlfferenc?es n metadzflta of thg {irst {-;md
7.562.077 B2 7/2009 Bisson et al. second datasets by progressively comparing the hierarchical
7,624,106 B1 11/2009 Manley et al. hash values of the first and second hierarchical hashes without
7,831,789 Bl 1l 2010 Per et al. e, 711/162 comparing the metadata of the first and second datasets. The
7,865,608 BL* /2011 Schubaetal. 7097231 catalog unit generates a catalog of differences between the
7,921,110 Bl 4/2011 Ting et al. f q dd h loo indicatine diff -
2005/0097313 Al* 5/2005 Bolosky etal. w............ 713/150 rst and second datasets, the catalog idicating differences in
2006/0068755 Al* 3/2006 Shraim etal. 455/410 ~ metadata of the first and second datasets.
2006/0075294 Al* 4/2006 Maetal.veeennnninn, 714/13
2006/0218135 Al1* 9/2006 Bissonetal. 707/4 17 Claims, 10 Drawing Sheets
50
Level 4 Hashing Level 3 Hashing Level 2 Hashing Level 1 Hashing /— 250 /— 510 /— 540
" inode Bointer Access
yas 815 Number | Time / Date
H1E H1AQ| ... |H1AN 505
H1S1 < H2E H2a0| ... [H2aN .. |-505
- / H3E H3A0| ... |H3AN 505
\ H4E H4A0[... |H4AN S — 505
H2S1 < H5E H5A0| .. [H5AN 505
HEE H6A0| .. |HEAN .. 90
S T R T T A T A B ' ' : L1505
[(—-—"————=—= R, b L — 1 _ b e e — [— e |

US 8,176,018 B1

Sheet 1 of 10

May 8, 2012

U.S. Patent

001

dINAIS
FOVHO1S

4

[OId

0Cl

0ti

0Cl

US 8,176,018 B1

Sheet 2 of 10

May 8, 2012

U.S. Patent

¢ OIA

04c¢ |/ 09¢ |/

lo)depy YJOM)oN

0¢C H

Wwa)sAg buneiad

OFc oW

0cc

o8|\«

loldepy obei0)s

T4

(s)40ss800.14

ejeqg ‘suoljonijsuj

abelio)g ssein

U.S. Patent

240 —

320

330

Media Access

May 8,

2012

Sheet 3 of 10

Comparison

Storage Manager

!
v

s __{_l_—_— -
| E
‘ |
' b Storage Access

Multi-Protocol Layer |

US 8,176,018 B1

360

To/From To/From
Clients Disks

FIG. 5

US 8,176,018 B1

Sheet 4 of 10

May 8, 2012

U.S. Patent

bojejen

0G¥

y OIA

JOlElalol)

Jodayy

Ocy

uosuedwon

OLY

auljesegd

suljaseg

Ovv

015

¢ DIA

US 8,176,018 B1

Sheet S of 10

aleq / swi} aleq] / awi | ‘syoolg Jo JaquIinN GOS
eS80V % HONEaIN SUOISSILLSY | JUNOY MUl JoqUINN 592I1Q JaJUI0d E

1) 4 Gve |\ Ges 0EG TA® 026G GG |\ OLS 0SS

May 8, 2012

00G |\\

U.S. Patent

U.S. Patent May 8, 2012 Sheet 6 of 10 US 8,176,018 B1
/—— 600
605 610
Acquire a first Acquire a second no
baseline baseline
630
615
Select an entry from the yes At least one
first baseline remaining entry?
no
640 620 625

Corresponding
entry exists in the
econd baseline:

yes

yes

no

645

Record an indication of a

deleted item of data associated
with the entry.

650
—

Select an attribute

yes

FIG. 6

Corresponding
entry exists in the
acond baseling-

Selected entry
exists in the first
baseline?

Nno

635

yes

Record an indication of a new
litermn of data associated with the
| entry.

655 : 665 |
Record an indication
of a metadata
change associated
with the selected
attribute of the entry. |

Is the metadata for
the selected attribute the
same for the first and
second entries?

no

yes

660

At least
one remaining
attribute?

no

U.S. Patent May 8, 2012 Sheet 7 of 10 US 8,176,018 B1

700 -——\ no
705 710
A

Select Select Generate hash
dect | [select 1| | CEEES
entry o awrbute || celected attribute

e

20
715 !

Hash value
generated for every
attribute?

yes 725

Generate hash value for
the selected entry

730

Hash value

generated for every
baseline entry?

no

yes 735

740
£

Generate hash value for
the selected set

|
«-— e —1 Select a set of X hashes

il

745

Hash value
generated for every
set of X hashes?

no

yes

Determine the number of
L » hashes (X) in the next

level of hashing.

sets of X hashes > 1?7

FIG. 7

US 8,176,018 B1

Sheet 8 of 10

May 8, 2012

U.S. Patent

GOS
G0G
G0S

¢G0S

GOG
GOS

0) 4

EZYENT
SS90y

Jajuiod

JaquinN
apoul

_/

0LS |\omm
005 _/

§ DIA

NVZH

NYIH

008 I\\

BUIGSEH | [0AD]

GO8 |\\

BUIUSEH ¢ [9AT]

o..m'\\

BUIYSEH € [9AS]

qaH

Gi8

BUIGSEH ¥ [oAS]

SOA

23 10 (Zv) enquye

LONBA USEY 2V

\
as
L
v
<. affueyn _ Buipuodsaniod
/-m Pi009Y | ou SNjeA ysey LY ay) pue |30 (Lv)
— anguyje ue 10919
- / ou

w =P 096 A

SO |

GG6 abueyn

- p1023Y 0G6

sal
G¥6 |\

(LS Ul lsiXe ¢

sanguie Ajus
AlOAS 10} patedwod
san|eA yseH

ou

0.6
= soA
Coje
S 2195 3y} ui Aijus
N Aions 10} patedwod
,_w SoA sanjeA yseH
7
N
ou
e~ ; SNJBA US Zs ul (z3) Agus _ f anjen yse
= =N >u eU €S - Bujpuodsaiio9 ¢S >u He
X A anjea yse ou e pue | S ui(L3) anjea yse
o o9 IBA USEL 1S Ajus ue Ys|eg WEA USEY 12
- GL6
o
> s26—"
0€6
QUI|9SEQ PUOJAS ianjeA ysey
;seysey N Jo 19S ay} woy (¢S) seusey auljaseq puooas
A1ana 10} pasedwod N jJo jas buipuodsauoo = 4 wbog)
sanjeAa yseH ou e pue adljaseq anjeA ysey N

}s11 @Y} wols (1L.S)
saysey N jO 19s e jo39)9S

0¢6 B
sok 016 |\
. S pUS U

auljeseq isiy

6 DIA

U.S. Patent

01 DIJ

1V+1=} 1=l

234 41 »-a0L 8 gevl -EQLS
91-0508 avoe JI"E508 8YSE ;
U4d%

US 8,176,018 B1

GL-0508 acab 44 G1L-eG08 .
1-a508 | ocot ¥1-€G08 H

—
m €1-9508 co/8 €1-e508 G9/8
— Z1-9508 —_ 18508 Sob7
T 1-0508 11-8508 e
2 L LL 27 _
s 9, -
01-4508 S1ib 01-E508 SL1y \— ¢-2018
99 :
6-0508 20/ 6-B508 -0 ,20L8 88
- 8-Q508 — /Gt a1 8-eG08 2/cH / \ .
— Gi8
Q /-q508 ool /-€508 eap 00}
L
nVaJ 9-4s08 169G 9-es0s8 196/
> G-9508 S¥)Q 5°E508 Gy/8
-a508 9c7Z 7-eG08 cLcy
e-asog —/ | ..o 862 c-egng —/ e 681
SR vew 1-q0L PEOBT) vesr 2018
1-q508 | -€508

VY000l |\ gd0001 ‘\«

U.S. Patent

US 8,176,018 Bl

1

INCREMENTAL FILE SYSTEM
DIFFERENCING

FIELD OF THE INVENTION

At least one embodiment of the present invention pertains
to storage systems, and more particularly, to a method and
apparatus to generate information describing the differences
between two structured or unstructured datasets.

BACKGROUND

Businesses generate and maintain enormous stores of data.
Typically, such data stores are located on one or more network

storage devices. For example, data may be stored on a Net-
work Attached Storage (NAS) appliance, a Storage Area Net-
work (SAN), or some combination of these systems. Any one
or more multiple types of disk storage (Fibre Channel, SCSI,
ATA, and CAS), tape, and optical storage can make up a
storage inirastructure. Each storage type offers a different
combination of cost, performance, reliability, and content
preservation.

For many businesses, data represents a valuable asset that
must be managed 1n a way that enables the business to realize
its value. However, the complexity of data storage manage-
ment has increased significantly due to the rate of growth,
value to the business, and the wide varniety of data types.
Consequently, extracting value from data stores has become
more and more dependent on the business’s ability to manage
metadata (1.e., “data about data”)—such as who created a file,
when 1t was last accessed, and so forth. To manage stores of
data, businesses necessarily require the ability to describe the
differences or changes in metadata describing the stores of
data. For example, data backup, Storage Resource Manage-
ment (SRM), mirroring, and search & indexing are just some
of the applications that may need to efliciently discover and
describe metadata changes associated with a data store.

Classic backup technologies can describe the changes 1n a
dataset, including renames, deletes, creates, and modification
ol particular elements. However, their methods for finding the
changes between the systems are extremely slow. They
“walk™ (traverse) the entire file system 1n a breadth-first or
depth-first manner, taking advantage ol none of the optimized
dataset differencing tools that internal replication tools can
utilize. To reduce backup media consumption and system
load, backup applications sometimes run differential or incre-
mental backups, in which they attempt to capture only the
data that has changed from the previous backup. However,
these differential or incremental backups tend not to run
significantly faster than the full-system backup, because dis-
covering and describing the changes takes so long.

SRM tools attempt to capture information about the locus
of activity on a system. As with backup applications, finding
out what parts of the system are active (usually done by
determining what 1s modified) 1s extremely slow.

Mirrors have ditficulty in resolving changes to both sides of
a mirror. In mirroring, the data residing between mirrored
systems can diverge when both sides of the mirror can be
written. Asynchronous mirrors never have a completely cur-
rent version of the source data. If the source becomes inac-
cessible and the mirror 1s brought online for user modifica-
tion, each half of the mirror will contain unique data. The
same can happen to a synchronous mirror, 1 both sides are
erroneously made modifiable. In either case, to resolve the
differences between the divergent mirrors will require discov-
ering and describing those differences to the user.

10

15

20

25

30

35

40

45

50

55

60

65

2

To date, technologists have separated the problems of dis-
covering and describing the changes between two datasets.
For example, mirroring applications tend to be extremely
eificient at discovering and replicating the changes between
versions of a dataset. However, they are incapable of describ-
ing those changes at a level that 1s useful to a human user or
another independent application. For example, they can tell a
user which blocks of which disks have been changed, but they
cannot correlate that information to the actual path and file
names (e.g., “My Documents\2003\taxes\Schwab
Statements\July”), 1.e., “user-level” information.

Another technique, which 1s described 1n commonly-
owned, co-pending U.S. patent application Ser. No. 10/776,
057 of D. Ting et al., filed on Feb. 11, 2004 and entitled,
“System and Method for Comparing Data Sets” (“the Ting
technique™), can print out the names of files that are different
between two datasets. However, the Ting technique does not
attempt to describe a potential relationship between those
differences. For example, a file may have been renamed from
patent.doc to patent_V1.doc. The Ting technmique would
claim that one dataset had a file named patent.doc and the
other has a file named patent_V1.doc; however, 1t would not
look more deeply into the problem and declare that patent.doc
had been renamed to patent_V1.doc. Understanding the rela-
tionships between the differences 1s a critical aspect of the
overall problem. Moreover, the method of describing the
changes 1n the Ting technique i1s relatively expensive and
slow. The Ting technique was designed with the assumption
that the differences will be very few, and that processing effort
should therefore be expended 1n quickly veritying the simi-
larities between the two datasets. This assumption does not
often hold true 1n certain applications.

Another technique, which 1s described 1n commonly-
owned, co-pending U.S. patent application Ser. No. 11/093,
074 of T. Bisson et al., filed on Mar. 28, 2005 and entitled,
“Method and Apparatus for Generating and Describing
Block-Level Difference Information About Two Snapshots™
(“the Bisson Snapshot technique™), can compare two datasets
and 1dentify block-level differences between the two datasets,
by comparing block-level metadata between the first and
second datasets, without comparing the contents of the data
blocks of the datasets. The Bisson Snapshot technique, how-
ever, was designed with the assumption that the file system
implemented by the storage server 1s known (1.e., file system
specific information). This assumption does not necessarily
hold true 1n certain applications.

A file system typically 1s a structuring of data and metadata
on one or more storage devices that permits reading/writing
of data on the storage devices (the term “file system™ as used
herein does not imply that the data must be 1n the form of
“files” per se). Metadata, such as information about a file or
other logical data container, 1s generally stored in a data
structure referred to as an “inode,” whereas the actual data 1s
stored 1n data structures referred to as data blocks. The infor-
mation contained 1n an 1node may include, e.g., ownership of
the file, access permissions for the file, size of the file, file
type, and references to the locations on disk of the data blocks
for the file. The references to the location of the file data
blocks are provided as pointers in the mode, which may
further reference indirect blocks that, in turn, reference the
data blocks, depending upon the quantity of data in the file.

In a write in-place file system, the locations of the data
structures, such as inodes and data blocks, on disk are typi-
cally fixed and changes to such data structures are made
“in-place.” In a write-anywhere file system, when a block of
data 1s modified, the data block 1s stored (written) to a new
location on disk to optimize write performance (sometimes

US 8,176,018 Bl

3

referred to as “copy-on-write”). A particular example of a
write-anywhere file system 1s the Write Anywhere File Lay-

out (WAFL®) file system available from NetApp, Inc. of
Sunnyvale, Calif. The WAFL® file system 1s implemented
within a microkernel as part of the overall protocol stack of a
storage server and associated storage devices, such as disks.
This microkernel 1s supplied as part of Network Appliance’s
Data ONTAP® software.

The Bisson Snapshot technique uses on-disk information
about the file system layout to 1dentify changes between two
file system versions. For example, in a write-anywhere file
system, anytime the contents of an 1node or a direct data block
change, all of the pointers which point to that inode or block
will also necessarily change. Thus, 1f two corresponding,
pointers are found to be 1dentical, then all of the 1nodes which
descend from those pointers must also be 1dentical, such that
there 1s no need to compare any of those mmodes. If two
corresponding pointers are found not to be identical, the
process considers the next level of inodes 1n the 1node tress,
skipping any branches of the tree that are identical. However,
in a write in-place file system, because changes to data struc-
tures are made “in-place,” the same process cannot be used to
identily changes.

BRIEF DESCRIPTION OF THE DRAWINGS

One or more embodiments of the facility are 1llustrated by
way of example and not limitation 1n the figures of the accom-
panying drawings, in which like references indicate similar
clements and 1n which:

FIG. 1 1s a data flow diagram of various components or
services that are part of a storage network.

FI1G. 2 1s a high-level block diagram of a storage server.

FI1G. 3 1s ahigh-level block diagram showing an example of
an operating system of a storage server.

FIG. 4 illustrates the relevant functional elements of a
comparison layer, according to some embodiments.

FIG. 5 illustrates an example of a baseline of a volume of
structured or unstructured data.

FI1G. 6 1s a flow chart of a comparison process performed by
the facility, in some embodiments.

FI1G. 7 1s a flow chart of a process performed by the facility
to generate a hierarchical hash of a baseline, 1n some embodi-
ments.

FIG. 8 1llustrates an example of a hierarchical hash of a
baseline.

FI1G. 9 1s aflow chart of a comparison process performed by
the facility, in some embodiments.

FIG. 10 1s an example of two hierarchical hashes of a
baseline representing a volume of data at a first and a second
point in time.

DETAILED DESCRIPTION

The technology introduced herein includes an efficient way
of i1dentitying and characterizing metadata differences or
changes between two datasets 1rrespective of the manner 1n
which the data 1s stored (including the particular type of file
system 1implemented by a storage server, e.g., write anywhere
or write-in-place). It will be appreciated by those skilled 1n
the art that the number of datasets compared to identify
changes therebetween may be greater than two.

As used herein, a dataset 1s a logical container of struc-
tured, semi-structured, or unstructured data. For example, a
file system 1s a dataset of abstract data types that are imple-
mented for the storage, organization, manipulation, naviga-
tion, access, and retrieval of data. File systems typically

10

15

20

25

30

35

40

45

50

55

60

65

4

define a hierarchical namespace that can be used to generate
a list of files maintained by the file system (herein referred to
as “a baseline”). In some embodiments, a “baseline” 1s a
point-in-time representation (e.g., image) of a dataset stored
on one or more storage devices (e.g., on disk) or in other
persistent memory and having a name or other unique iden-
tifier that distinguishes 1t from other baselines generated at
other points 1n time. A baseline may also include other infor-
mation (metadata) about the dataset at the particular point in
time that the baseline was generated, such as file metadata.
File metadata may include, for example, a pointer to the tree
structure of the file, the s1ze (1n kBytes) of the file, the number
of blocks 1n the file, the link count (number of references to
that file 1 the volume), file ownership, permissions associ-
ated with the file, access time/date, creation time/date, and so
forth.

Baselines may be generated on a sporadic basis, on a peri-
odic basis, when a threshold number of transaction requests
(e.g., read, write, etc.) 1s reached, during periods of low activ-
ity, and so forth. To facilitate description, 1t 1s assumed that the
two datasets are baselines of a file system (or a subset thereot)
acquired at diflerent points 1n time. In addition, the number of
baselines retained by the facility 1s configurable by a user or
administrator of the facility. For example, 1n some embodi-
ments, a number of recent baselines are stored 1n succession
(e.g., a few days worth of baselines each taken at four-hour
intervals), and a number of older baselines are retained at
increasing time spacings (e.g., anumber of daily baselines for
the previous week(s) and weekly baselines for the previous
few months). However, 1t 1s contemplated that a variety of
baseline creation techniques and timing schemes can be
implemented.

In some embodiments, baselines are compared by progres-
stvely comparing corresponding hierarchical hashes of the
baselines, to identily differences in individual entries of the
baseline, each entry corresponding to an item of data stored in
a volume of data (or dataset) represented by the baselines. The
comparison does not require moving or copying of either
baseline 1n the process. A human-readable report or catalog of
the differences between the datasets 1s then generated, where
the report indicates the metadata differences i1n individual
baseline entries. Note that in this description, the terms
“changes” and “differences’” and variations of these terms are
used interchangeably, to facilitate description.

The technology introduced herein 1s described as a hard-
ware and/or software facility that includes a comparison unit
and a catalog unit. The comparison unit compares hashes of a
first dataset with corresponding hashes of a second dataset. In
some embodiments, multiple levels of hashing are present.
That 1s, the compared hashes may be generated from a num-
ber of hierarchical hash values. The facility 1dentifies difier-
ences 1n metadata of the first and second datasets by progres-
stvely comparing the hierarchical hash values of the first and
second datasets without comparing the metadata of the first
and second datasets. The catalog unit generates a catalog of
differences between the first and second datasets, the catalog
indicates the differences 1n metadata of the first and second
datasets.

Betore considering the facility introduced herein 1n greater
detail, 1t 1s useful to consider an environment in which the
facility can be implemented. FIG. 1 1s a data flow diagram that
illustrates various components or services that are part of or
interact with the facility. A storage server 100 1s connected to
a storage subsystem 110 which includes multiple mass stor-
age devices 120, and to a number of clients 130 through a
network 140, such as the Internet or a local area network
(LAN). The storage server 100 may be a file server used 1n a

US 8,176,018 Bl

S

NAS mode, a block-based server (such as used in a storage
area network (SAN)), or a server that can do both. Each of the
clients 130 may be, for example, a personal computer (PC),
workstation, server, etc. The storage subsystem 110 1s man-
aged by the storage server 100. The storage server 100
receives and responds to various transaction requests (e.g.,
read, write, etc.) from the clients 130 directed to data stored or
to be stored in the storage subsystem 110. The mass storage
devices 120 1in the storage subsystem 110 may be, for
example, magnetic disks, optical disks such as CD-ROM or
DVD based storage, magneto-optical (MO) storage, or any
other type of non-volatile storage devices suitable for storing
large quantities of data. The storage devices 120 1n storage
subsystem 110 can be organized as a Redundant Array of
Inexpensive Disks (RAID), in which case the storage server
100 accesses the storage subsystem 110 using one or more
well-known RAID protocols.

In some embodiments, the facility introduced herein 1s
implemented in the storage server 100, or in other devices.
For example, the facility can be adapted for use in other types
of storage systems that provide clients with access to stored
data or processing systems other than storage servers. While
various embodiments are described in terms of the environ-
ment described above, those skilled 1n the art will appreciate
that the facility may be implemented 1n a variety of other
environments mcluding a single, monolithic computer sys-
tem, as well as various other combinations of computer sys-
tems or similar devices connected in various ways. For
example, 1n some embodiments, the storage server 100 has a
distributed architecture, even though 1t 1s not 1llustrated as
such 1n FIG. 1.

FI1G. 2 1s ahigh-level block diagram showing an example of
the architecture of the storage server 100. Certain well-known
structures and functions have not been shown or described 1n
detail to avoid obscuring the description. The storage server
100 includes one or more processors 210 and memory 220
coupled to an mterconnect system 230. The interconnect sys-
tem 230 shown 1n FIG. 2 1s an abstraction that represents any
one or more separate physical buses and/or point-to-point
connections, connected by appropriate bridges, adapters and/
or controllers. The 1nterconnect system 230, therefore, may
include, for example, a system bus, a form of Peripheral
Component Interconnect (PCI) bus, a HyperTransport or
industry standard architecture (ISA) bus, a small computer
system 1nterface (SCSI) bus, a universal serial bus (USB), or
an Institute of Flectrical and Flectronics Engineers (IEEE)
standard 1394 bus (sometimes referred to as “Firewire”™).

The processors 210 are the central processing units (CPUs)
of the storage server 100 and, thus, control 1ts overall opera-
tion. In some embodiments, the processors 210 accomplish
this by executing software stored in memory 220. A processor
210 may be, or may include, one or more programmable
general-purpose or special-purpose microprocessors, digital
signal processors (DSPs), programmable controllers, appli-
cation specific integrated circuits (ASICs), programmable
logic devices (PLDs), or the like, or a combination of such
devices.

Memory 220 includes the main memory of the storage
server 100. Memory 220 represents any form of random
access memory (RAM), read-only memory (ROM), flash
memory, or the like, or a combination of such devices.
Memory 220 stores (among other things) the storage server’s
operating system 240.

Also connected to the processors 210 through the intercon-
nect system 230 are one or more internal mass storage devices
250, a storage adapter 260 and a network adapter 270. Internal
mass storage devices 250 may be or include any conventional

10

15

20

25

30

35

40

45

50

55

60

65

6

medium for storing large volumes of data in a non-volatile
manner, such as one or more magnetic or optical based disks.
The storage adapter 260 allows the storage server 100 to
access the storage subsystem 110 and may be, for example, a
Fibre Channel adapter or a SCSI adapter. The network
adapter 270 provides the storage server 100 with the ability to
communicate with remote devices, such as the clients 130,
over a network and may be, for example, an Ethernet adapter,
a Fibre Channel adapter, or the like.

FIG. 3 shows an example of the architecture of the operat-
ing system 240 of the storage server 100. As shown, the
operating system 240 includes several software modules, or
“layers.” These layers include a storage manager 310. The
storage manager 310 1s application-layer software that
imposes a structure (hierarchy) on the data stored in the
storage subsystem 110 and services transaction requests from
clients 130. In some embodiments, storage manager 310
implements a write in-place file system algorithm, while 1n
other embodiments the storage manager 310 implements a
write-anywhere file system. Importantly, the facility intro-
duced herein does not depend on the file system algorithm
implemented by the storage manager 310. Logically “under”
the storage manager 310, the operating system 240 also
includes a multi-protocol layer 320 and an associated media
access layer 330, to allow the storage server 100 to commu-
nicate over the network 140 (e.g., with clients 130). The
multi-protocol layer 320 implements various higher-level
network protocols, such as Network File System (NES),
Common Internet File System (CIFS), Hypertext Transier
Protocol (HT'TP) and/or Transmission Control Protocol/In-
ternet Protocol (TCP/IP). The media access layer 330
includes one or more drivers which implement one or more
lower-level protocols to communicate over the network, such
as Ethernet, Fibre Channel or Internet small computer system
intertace (1SCSI).

Also logically under the storage manager 310, the operat-
ing system 240 includes a storage access layer 340 and an
associated storage driver layer 350, to allow the storage server
100 to communicate with the storage subsystem 110. The
storage access layer 340 implements a higher-level disk stor-
age protocol, such as RAID, while the storage driver layer
350 implements a lower-level storage device access protocol,
such as Fibre Channel Protocol (FCP) or small computer
system interface (SCSI). Also shown 1n FIG. 3 1s the path 360
of data flow, through the operating system 240, associated
with a transaction request.

In one embodiment, the operating system 240 also includes
a comparison layer 370 logically on top of the storage man-
ager 310. The comparison layer 370 1s an application layer
that generates difference mformation describing the difier-
ences between two or more baselines. In yet another embodi-
ment, the comparison layer 370 1s included 1n the storage
manager 310. Note, however, that the comparison layer 370
does not have to be implemented by the storage server 100.
For example, in some embodiments, the comparison layer
370 1s implemented in a separate system to which baselines
are provided as input.

To facilitate description, 1t 1s assumed that the storage
server 100 1s capable of generating or acquiring baselines, at
different points in time, of all of the data which it stores (e.g.,
files and directories), or specified subsets of such data. How-
ever, the facility may be used to compare and characterize the
differences between datasets other than baselines or different
versions of a given dataset.

FIG. 4 illustrates the relevant functional elements of the
comparison layer 370 of the operating system 240, according
to one embodiment. The comparison layer 370 (shown in

US 8,176,018 Bl

7

FIG. 4) includes a comparison unit 410 and a report generator
420. The comparison unit 410 receives as mput two or more
baselines 430 and 440 of a volume of data maintained by the
storage server 100, acquired at two different points in time.
The comparison unit 410 processes the baselines 430 and 440
to identily the differences therebetween. The report generator
420 processes generates a catalog of the differences identified
by the comparison unit, including the locations associated
with any changed items of data and the specific metadata
changes. The catalog generated by the report generator 420 1s
in a human-readable form.

In some embodiments, the comparison unit 410 and report
generator 420 are embodied as software modules within the
comparison layer 370 of the operating system 240. In other
embodiments, however, the functionality provided by these
units can be implemented, at least in part, by one or more
dedicated hardware circuits. The comparison unit 410 and
report generator 420 may be stored or distributed on, for
example, computer-readable media, including magnetically
or optically readable computer discs, hard-wired or prepro-
grammed chips (e.g., EEPROM semiconductor chips), nano-
technology memory, or other data storage media. Indeed,
computer implemented instructions, data structures, screen
displays, and other data under aspects of the invention may be
distributed over the Internet or over other networks (including
wireless networks), on a propagated signal on a propagation
medium (e.g., an electromagnetic wave(s), etc.) over a period
of time, or they may be provided on any analog or digital
network (packet switched, circuit switched, or other scheme).

FI1G. 5 illustrates an example of the structure of a baseline
500, according to certain embodiments. A baseline may cor-
respond to a specified set or subset of the data (e.g., a “vol-
ume” of data) maintained by the storage server 100. A volume
may include 1tems of data stored on one or more physical
storage devices (e.g., storage devices 120). Note that an actual
baseline of a volume of data 1s likely to be considerably more
complex than baseline 500. Also, for simplicity, the underly-
ing items of data and associated metadata are not shown.

Baseline 500 includes one or more entries 503, each rep-
resenting an item of data, such as a file or directory. Each
baseline entry 505 1s divided 1into a number of metadata fields

(sometimes referred to as “attributes’™) describing the 1item of

data. For example, the metadata fields may include a pointer
field 510, a s1ze field 515, anumber of blocks field 520, a link
count field 525 (i.e., number of references to that item of data
in the volume), a permissions field 530, a creation time/date
field 535, and an access time/date field 540. Baseline entries
505 may include other metadata fields 5435 not mentioned
here.

10

15

20

25

30

35

40

45

As described here, the metadata associated with an item of 50

data, such as information about a file, 1s typically stored in a
unit of storage called an “inode,” and the data structures used
to contain the actual data are called data blocks. The infor-

mation contained in an inode may include, e.g., ownership of

the file, access permissions for the file, size of the file, file
type, and references to the locations on disk of the data blocks
for the file. The references to the location of the actual data are
provided as pointers 1n the inode, which may turther refer-
ence indirect blocks that, 1n turn, reference the data blocks,

55

depending upon the quantity of data 1n the file. Each 1item of 60

data 1n a volume has a separate imnode which contains the
item’s metadata. Each baseline entry 505 1s uniquely identi-
fied by the 1item’s inode number (contained 1n 1node number
field 550) or other type of unique 1dentifier field.

In some embodiments, the baseline includes an entry for
every possible mnode number. For example, 1f each 1node
number 1s 32 bits 1n length, a baseline will include approxi-

65

8

mately 4 billion entries (2°%), some of which will be empty.
The number of empty entries 1s equal to approximately 4
billion minus the number of used entries. In some embodi-
ments, the facility implements a baseline as a sparse file. A
feature of a sparse file 1s that space 1s only allocated for
meaningiul (nonzero) data. That 1s, when space has been
allocated to a sparse file, but not actually filled with data, 1t 1s
not written to the file system. Instead, brief information about
these empty regions 1s stored, which takes up much less disk
space. These regions are only written to disk at their actual
s1ze when data 1s written to them.

As described herein, the facility introduced herein 1s 1nde-
pendent of the file systems (write in-place or write-anywhere)
that produced the data being compared and provides quick
and efficient approach to identify changes between two
datasets, such as two baselines representing a volume of data.
For example, 1n some embodiments, the facility evaluates two
baselines generated from the same volume of data at different
points in time—an earlier-in-time baseline and a later-in-time
baseline—and determines when an item of data has been
added, deleted, or modified.

Typically, when an 1tem of data 1s modified, added, or
deleted, at least some of the metadata in that item’s 1node will
change. By comparing corresponding entries of a first base-
line 430 and a second baseline 440, the facility generates an
incremental change list indicating the changes between the
items of data represented by the first and second baselines.
FIG. 6 1s a flow chart of a process 600 performed by the
facility 1n some embodiments to identify such changes. To
facilitate descnptlon the baseline which forms the basis of
the comparison in the following process shall be referred to as
the “first baseline” (430) and the other baseline shall be
referred to as the “second baseline” (440). Note, however, that
the “first baseline”™ 1s not necessarily the earlier baseline; the
later baseline can be the “first baseline” and the earlier base-
line can be the “second baseline.”

Initially, at 605 the facility acquires a first baseline 430 of
a volume of data. Next, at 610, the facility acquires a second
baseline 440 of the volume of data. To facilitate description,
it 1s assumed that the first and second baselines represent the
same volume of data at different points in time. Further, those
skilled 1n the art will understand that the facility may or may
not generate one or both of the baselines. For example, in
some embodiments, the first and second baselines are pro-
vided to the facility as input from another system.

After the first and second baselines are acquired, the facil-
ity proceeds to 6135 where an entry 505 1s selected from the
first baseline 430. Next, at 620, the facility determines
whether the selected entry exists 1n the first baseline (this may
be accomplished, for example, by the comparison unit 410).
That 1s, whether the selected entry 1s associated with an 1tem
of data. If the selected entry does exist in the first baseline, the
tacility proceeds to 640. It the selected entry does not exist in
the first baseline, the facility proceeds to 625.

At 625, the facility determines whether a corresponding
entry 505 exits in the second baseline 440 (this may be
accomplished, for example, by the comparison unit 410). If a
corresponding entry does not exist in the second baseline, this
means that there was not (at the time the first baseline 430 was
generated) and 1s not (at the time the second baseline 440 was
generated) an 1tem of data associated with the entry 505. In
that case, the facility proceeds to 630 to determine whether
there 1s at least one remaining entry 305 of the first baseline
430 to process. Otherwise, 1I at 625 the facility determines
that a corresponding entry does exist 1in the second baseline,
this means that the 1item of data associated with the entry 503
was created aifter the first baseline 430 was generated. In that

US 8,176,018 Bl

9

case, the facility proceeds to 635 where an indication of a new
item of data associated with the entry 305 1s recorded (this
may be accomplished, for example, by the report generator
420). After 635, the facility continues processing at 630, as
described below.

At 640, the facility determines whether a corresponding
entry 5035 exists 1n the second baseline 440 (this may be
accomplished, for example, by the comparison unit 410). If a
corresponding entry does not exist in the second baseline, this
means that item of data associated with the entry 505 was
deleted after the first baseline 430 was generated. In that case,
the facility proceeds to 645 where an indication of a deleted
item of data associated with the entry 505 i1s recorded (this
may be accomplished, for example, by the report generator
420). After 645, the facility continues processing at 630, as
described below. Otherwise, 11 at 640 the facility determines
that a corresponding entry does exist, this means that there
was (atthe time the first baseline 430 was generated) and 1s (at
the time the second baseline 440 was generated) an 1tem of
data associated with the entry 505. In that case, the facility
proceeds to 650.

At 650, the facility selects an attribute (e.g., 510) for com-
parison. Next, at 655, the facility determines whether the
metadata for the selected attribute 1s the same for the selected
first entry and corresponding second entry (this may be
accomplished, for example, by the comparison umt 410). If
the metadata for the selected attribute 1s the same, this means
that the 1item of data has not changed with respect to the
selected attribute, and the facility continues processing at
660, as described below. Otherwise, 1f the metadata for the
selected attribute 1s not the same, this means that the item of
data has changed. In that case, the facility proceeds to 6635
where an indication of a metadata change associated with the
entry 305 1s recorded (this may be accomplished, for
example, by the report generator 420). After 665, the facility
continues processing at 660.

At 660, the facility determines whether there 1s at least one
remaining attribute (e.g., 515) to process for the entry 5035, I
there 1s at least one remaining attribute, the facility continues
processing at 6350, as described above. Otherwise, the facility
continues processing at 630. At 630, the facility determines
whether there 1s at least one remaining entry 505 of the first
baseline 430 to process. If there 1s at least one remaining
entry, the facility continues processing at 615, as described
above. Otherwise the facility ends processing.

Those skilled 1n the art will appreciate that the blocks
shown 1n FIG. 6 and 1n each of the following tlow diagrams
may be altered 1n a variety of ways. For example, the order of
certain blocks may be rearranged; certain substeps may be
performed 1n parallel; certain shown blocks may be omitted;
or other blocks may be included; etc.

In some embodiments, to reduce the amount of time and/or
space necessary to compare two or more baselines, the facil-
ity generates a hierarchical hash of each baseline. FIG. 8
illustrates an example of a hierarchical hash of a baseline.
FIG. 7 1s a flow chart of a process 700 performed by the
facility to generate a hierarchical hash of a baseline. Process
700 may be performed while a baseline 1s generated or after
the baseline 1s generated. Process 700 may be triggered by a
user command or 1t may be triggered automatically, such as at
predetermined times or 1intervals or 1 response to a specified
event.

At 705, the facility selects an entry 503 of a baseline. Next,
at 710, the facility selects an attribute (e.g., 5310) of the
selected entry. At 715, the facility generates a hash value 800
associated with the selected attribute. Those skilled in the art
will understand that a hash value can be generated using a

10

15

20

25

30

35

40

45

50

55

60

65

10

variety of hash {functions—such as SHAI, SHA256,
SHA384, SHAS12, Tiger, eliod4, HAVAL, MD2, MD4, MD3,
RIPEMD-64, RIPEMD-160, RIPEMD-320, WHIRLPOOL.
A hash function 1s any well-defined procedure or algorithm
for transforming some kind of data into a unique, relatively
small value (sometimes referred to as a hash value, hash code,
hash sum, or simply a hash). After 715, the facility proceeds
to 720.

At 720, the facility determines whether a hash value 800
has been generated for every attribute (e.g., 310-3545) of the
selected entry. If a hash value 800 has not been generated for
every attribute of the selected entry, the facility continues
processing at 710, as described above. Otherwise, the facility
proceeds to 725. At 725, the facility generates a hash value
803 for the selected entry. The hash value 805 for the selected
entry may be generated, for example, by hashing the hash
values 800 of the attributes of the selected entry. After 725, the
facility proceeds to 730.

At 730 the facility determines whether a hash value 805 has
been generated for every entry 505 of the baseline. If a hash
value 805 has not been generated for every entry 505, the
facility continues processing at 705, as described above,
where the next entry of the baseline 1s selected. Otherwise, 1
a hash value 803 has been generated for every entry 505, the
facility proceeds to 735.

At 735, the facility selects a set of X hashes 805. To facili-
tate description, 1t 1s assumed that the set of hashes 805 are
cach associated with an entry 505 of a set of X entries.
However, those skilled 1n the art will appreciated that the set
of X hashes 805 may correspond to hash values that are each
associated with a set of entries. Therelfore, the level of hashing
performed by the facility 1s reflected by the number of sets of
sets ol hashes. Next, at 740, the facility generates a hash value
810 for the selected set by hashing the hash values 8035 of the
set. Then the facility proceeds to 745 to determine whether a
hash value 810 has been generated for every set of X hashes
803. IT a hash value 810 has not been generated for every set,
the facility continues processing at 735, as described above.
Otherwise, the facility proceeds to 750.

At 750, the facility determines whether there 1s more than
one set of X hashes; that 1s, whether a single hash value 815
has been generated for the baseline. It a single hash value 815
has been generated, the facility ends processing. Otherwise,
the facility proceeds to 755 to determine the number of hashes
(X) 1n the next level of hashing. Then the facility continues
processing at 735, as described above. In other words, the
tacility recursively loops through 735-735 until a single hash
value 815 1s generated for the baseline.

FIG. 8 1s an example of a hierarchical hash of a baseline
generated by process 700. Again, note that an actual baseline
of a volume of data 1s likely to be considerably more complex
than the baseline shown in FIG. 8, although the general
approach described herein would still apply. For simplicity,
the underlying items of data and associated metadata are not
shown.

As described herein, the facility generates hash values 800
for each attribute 510-545 of each entry 505. Then, the facility
generates a hash value 805 for each entry 503, by hashing the
hash values 800 of the attributes of each entry. After generat-
ing a hash value 805 for each entry, the facility generates a
hash value 810 for every set of X hashes 803, by hashing a set
of hash values 805. As described herein, in some embodi-
ments, the facility performs multiple levels ot hashing. FIG. 8
illustrates four levels of hashing. The first level includes
hashes 800 associated with attributes of a corresponding
entry. The second level includes hashes 805 associated with
entries. The third level includes hashes 810 of sets of hashes

US 8,176,018 Bl

11

805 associated with entries 505 of a baseline. The fourth level
includes a hash 815 of sets of hashes 810 associated with sets
of sets of entries 505 of the baseline. In some embodiments, a
user or administrator establishes the level or hashing per-
formed by the facility, while 1n other embodiments the facility
automatically determines an eflicient level of hashing. This
may be determined, for example, by monitoring the transac-
tion requests received, by taking into account prior levels of
hashing for a particular interval of time (historical trends), the
number of entries associated with items of data (meaningiul
data), etc. Those skilled 1n the art will appreciated that, under
certain conditions, the facility may determine that a different
level of hashing than that shown in FIG. 8 1s appropriate.

The facility recursively hashes the generated hash values
805, 810, etc. until a single hash value 815 1s generated for the
baseline. By comparing a hash 815 of a baseline 430 repre-
senting a volume of data at a first point 1n time with a hash 815
of another baseline 440 representing the same volume of data
at a second point in time, 1t 15 possible to determine whether
the volume of data has changed between the first and second
points in time. If the hash values 813 are identical, the volume
of data has not changed. If the hash values 815 are different,
the volume of data has changed (1.e., at least one item of data
has been added, deleted, or modified).

FIG. 9 1s a flow chart of a process 900 performed by the
facility to identily changes in one or more items of data
represented by a baseline, 1n some embodiments. As 1llus-
trated, the facility progressively compares corresponding
hashes for each level of hashing until 1t determines whether
one or more 1items of data have changed. Note that the facility
does not necessarily compare every corresponding hash for
cach level; instead, the facility compares corresponding
hashes within a set of hashes only when the hashes compared
at the preceding level (i.e., hashes generated from the set of
hashes) are not 1dentical. The facility generates an incremen-
tal change list describing the changes associated with items of
data at the first and second points 1n time.

Initially, at 903 the facility compares a hash value 815 of a
first baseline 430 with a hash value 815 of a second baseline
440. If the hash values are the same, this means that there 1s no
difference between the volume of data at the first and second
points 1n time, and the process ends. Otherwise, 11 the hash
values are different, this means that there 1s at least one
change 1n the volume of data between the first and second
points 1n time, and the facility proceeds to 910.

At910, the facility selects a set of N hashes associated with
the first baseline 430 and a corresponding set of N hashes
assoclated with the second baseline 440. Next, at 915, the
facility compares the hash values (e.g., 810) of the sets of
hashes to determine whether the dataset represented by the
selected set of N hashes associated with the first baseline 430
1s different from the dataset represented by the corresponding
set of N hashes associated with the second baseline 440. I, at
915, the hash values are not the same, this means that there 1s
at least change in the volume of data corresponding to the
datasets represented by the sets of N hashes, and the facility
proceeds to 925, as described below. Those skilled 1n the art
will appreciate that, in some embodiments, the facility con-
tinues processing a subset of the selected set of N hashes (at
915) until the subset of N hashes correspond to hashes 805 of
entries. To facilitate description, however, 1t 1s assumed that
baselines 430 and 440 have four levels of hashing (as shown
in FI1G. 8). If at 915 the hash values are the same, the facility
proceeds to 920 to determine whether the process has com-
pared a hash value (e.g., 810) for every set of N hashes of the
first baseline with a hash value (e.g., 810) of the correspond-
ing set of N hashes of the second baseline. When the facility

10

15

20

25

30

35

40

45

50

55

60

65

12

has compared a hash value for every corresponding set of N
hashes, the process ends. Otherwise, the facility continues,
processing at 910, as described above.

At 925, the facility selects an entry 505 from the selected
set and a corresponding entry 505 from the corresponding set.
Next, at 930, the facility compares a hash value 805 of the
selected entry 5035 with a hash value 803 of the corresponding,
entry 505. I1 the hash values 805 are not the same, this means
that the item of data represented by the selected and corre-
sponding entries 505 are different, and the facility proceeds to
940, as described below. Otherwise, 1f the hash values are the
same, this means that the items of data represented by the
selected and corresponding entries 505 are the same (i.e., no
change), and the facility proceeds to 935 to determine
whether a hash value 805 of every entry 503 of the selected set
has been compared with a hash value 803 of a corresponding
entry 505 of the corresponding set. If every entry 503 has not
been compared, the facility continues processing at 925, as
described above. Otherwise, the facility continues processing
at 920, as described above.

At 940, the facility determines whether the corresponding
entry 505 exists in the first baseline 430. If the corresponding
entry 305 does not exist, this means that the 1tem of data
represented by the corresponding entry 505 was added after
the first baseline 430 was generated, and the facility proceeds
to 945 to record an indication of this change. Otherwise, 1 the
corresponding entry 305 does exist in the first baseline 430,
the facility proceeds to 950.

At 950, the facility determines whether the selected entry
5035 exists 1in the second baseline 440. If the selected entry 505
does not exist, this means that the 1tem of data represented by
the selected entry 505 was deleted before the second baseline
440 was generated, and the facility continues processing at
945 to record an indication of this change. After 945, the
facility continues processing at 935, as described above.
However, 11 at 950 the facility determines that the selected
entry 305 does exist in the second baseline 440, the facility
proceeds to 955.

At 9355, the facility selects an attribute from the selected
entry 505 and a corresponding attribute from the correspond-
ing entry 505. Next, at 960, the facility compares a hash value
800 of the selected attribute with a hash value 800 of the
corresponding attribute. I the hash values 800 are the same,
the facility proceeds to 970, as described below. Otherwise, 1T
the hash values are not the same, the facility proceeds to 9635
to record an indication of the change. After 965, the facility
proceeds to 970 to determine whether a hash Value 800 for
every attribute of the selected entry 5035 has been compared
with a hash value 800 of a corresponding attribute of the
corresponding entry 5035. At 970, if every hash 800 of the
selected entry 503 has not been compared, the facility con-
tinues processing at 955, as described above. Otherwise, the
tacility continues processing at 9335, as described above.

By progressively comparing hashes 815, . .., 810, 805 and
800 of every fixed set of hashes, 1t 1s possible to quickly
identily and eliminate datasets of the volume of data which
have not changed, and therefore, to quickly 1dentity the items
of data that have changed. More specifically, 1f any two cor-
responding hashes 815, 810, 805 are found to be 1dentical
between two baselines, then all of the hashes from which the
hash was generated (and any hashes from which those hashes
were generated) must also be 1dentical, such that there 1s no
need to compare any of those intervening hashes. If two
corresponding hashes 815, 810, 805 are found not to be 1den-
tical, the facility processes the next hashing level, skipping
any hashes that are 1dentical, until the changed entries 305 are
identified. This approach allows modified (or added or

US 8,176,018 Bl

13

deleted) items of data to be 1dentified without having to exam-
ine the actual metadata of those 1tems.

Refer now to FIG. 10, which shows an example of a hier-
archical hash 1000A of an earlier-in-time baseline 430 and a
hierarchical hash 1000B of a later-in-time baseline 440. To
facilitate description, it 1s assumed that hierarchical hash
1000A was generated at a time t=1, while hierarchical hash
1000B was generated at a time t=T+DELTA_T. For simplic-
ity, the underlying baseline entries are not shown; only the
hashes 805 associated with the entries are shown.

Hierarchical hashes 1000A and 1000B each include four
levels of hashing: (1) a hash 800 per attribute per entry (not
shown); (2) a hash 805 per entry; (3) a hash 810 per set of X
hashes 8035; and (4) a hash 8135 per set of X hashes 810.
Because the value of hash 81354 1s 88 and the value of hash
8155H 1s 66, there 1s at least one difference 1n the volume of
data, and the next hashing level 1s therefore evaluated. In
some embodiments, the facility evaluates the hashes of a
hashing level in parallel, while 1n other embodiments the

hashes are evaluated sequentially. As illustrated in FIG. 10,
hashes 810a-2, 8104-3, and 810a-4 are identical to corre-

sponding hashes 8105-2, 8105-3, and 8105-4. As described
above, because the corresponding hashes are identical there
are no differences 1n the underlying items of data, and the
tacility does not review the next (or any subsequent) hashing
level associated with these hashes. However, because the
value of hash 810a-1 1s 189 and the value of hash 81056-1 1s
298, there 1s at least one difference 1n an 1tem of data repre-
sented by hash 810a-1 and hash 8105-1, and the facility waill
therefore evaluate the next hashing level. That 1s, the facility
compares hashes 805a-1, 805a-2, 8054-3, and 805a-4 with
corresponding hashes 8055-1, 8055-2, 8055-3, and 8055H-4.
Because hashes 8054-3 and 8055-3 are not i1dentical, the
tacility evaluates the next hashing level (not shown) to deter-
mine the metadata differences of the 1tem of data represented
by the entry from which 805a-3 and 8055-3 were generated.

To 1dentily the metadata differences associated with an
item of data (e.g., an inode), the facility compares corre-
sponding hashes 800 of each attribute of the entry associated
with the 1dentified item of data. That 1s, once the entries are
identified, the same approach 1s applied to the changed entries
to 1dentity the imndividual attributes that have changed. The
hash comparison introduced herein produces a quick deter-
mination of whether the metadata of the corresponding
entries (e.g., inodes) are different and allows a more time-
consuming attribute-by-attribute comparison to be avoided if
they are the same. That 1s, 1n some embodiments, 1t 1s sudfi-

cient to 1dentily the attributes differences without comparing
the metadata for the attributes.

After 1dentifying the specific attribute differences, the
facility stores certain information from the two mmodes and
information about the differences. For example, this informa-
tion may be provided 1n a table, and include a separate entry
for each pair of corresponding 1nodes that are found to be
different between the two baselines. Each entry (e.g., for each
changed item of data) may include, for example:

inode number of the 1item of data;

timestamp to indicate the date/time of the relative create/

modity;

size of the item of data for both baselines:

link count of the 1item of data for both baselines;:

number of data blocks 1n the item of data for both baselines:

permissions of the 1item of data for both baselines;

user 1D to indicate the owner of the item of data for both

baselines;

group ID to indicate the group owner of the 1tem of data for

both baselines (A user belongs to at least one group.

10

15

20

25

30

35

40

45

50

55

60

65

14

When a user creates an item, their initial group 1s used as
the group ID for that item as well as their user ID);
root mode number to 1dentily the root inode attached to an
item of data, for both baselines (This parameter 1s spe-
cific to Windows based file systems. A stream can hold
information such as security information or “data.” On a

Unix based system, the root inode number for most files
will be 0, because streams are not associated with Unix-

based files);

xinode number to identily the inode that contains the
access control list (ACL) for a item of data, for both
baselines (1tem of data may share xinodes 1f their content
1s the same. On a Unix based system, the xinode number
for most files will be 0 for the same reasons as the root
inode number);

a set of bit flags, which can be used for any of various
purposes (For example, one or more of the bit flags can
be used to indicate the types of changes detected 1n the
inode (e.g., a “ink count changed” bit flag, a “block
count changed” bit flag, etc.). The manner in which the
specific types of changes are 1dentified 1s unimportant;
any conventional technique for doing so can be used);
and

the number of common entries of the baselines or, con-
versely, the number of entries which changed between
the baselines (Note that the number of common entries
are applicable only for modified items, not for deleted or
added 1items of data).

In certain embodiments of the invention, the facility stores
difference imnformation describing two or more baselines 1n
two or more distinct files. For example, there may be file to
record all deletions and another file to record all other types of
differences (1.e., additions, modifies, renames). This
approach 1s desirable if, for example, mnodes can be reused.
For example, assume a file “foo1” with inode number 100 1s
deleted between time T1 and time T2, and another file “t002”
1s subsequently created between time 11 and T2 and assigned
inode number 100. Without the use of two separate files, as
justnoted, 1t would be difficult if not impossible to distinguish
this deletion and creation from a modily.

As described herein, the facility generates a report or cata-
log 450, 1.e., a log file 1n human readable form. The catalog
450 1ncludes the locations of the items of data for which
differences were 1dentified. The “location” of an item of data
1s the item’s complete pathname, 1.e., including the item name
and the names of any directories and subdirectories 1n which
the 1tem 1s located, from the root of the volume to the item
itself, in human-readable form.

The locations can be determined simply by “walking” the
file system trees starting from the root nodes, and recording
the various directories and subdirectories along the path to
cach changed item. A technique for quickly and efficiently
walking a hierarchical dataset to identify locations of
changed files and directories, which 1s suitable for this pur-
pose, 1s described 1n co-pending U.S. patent application Ser.
No. 10/954,381 of S. Manley et al., filed on the Sep. 29, 2004
and entitled, “Method and Apparatus for Generating User-
Level Difference Information About Two Data Sets,” (“the
Manley techmique”), which 1s incorporated herein by refer-
ence.

For each item of data for which a difference was 1dentified
between the baselines, the location of the item 1s determined
and recorded 1n the catalog 450, along with information 1den-
tifying (1n human-readable form) the type(s) of difference(s)
identified. The catalog 450 may have any desired format, such
as a table of 1tem names with their associated location and

US 8,176,018 Bl

15

change information, a list, etc. For example, a typical entry 1n
the catalog 450 might appears as follows:

Item “English_bulldogs” modified at blocks 4 and 16;
location=/vol6/pushed_nose_dogs/bulldogs/English_bull-
dogs

Thus, a facility for generating human-readable difference
information about two datasets irrespective of the file system
implemented by the storage server has been described. Note
that references throughout this specification to “one embodi-
ment” or “an embodiment” means that a particular feature,
structure or characteristic described in connection with the
embodiment 1s included 1n at least one embodiment of the
present invention. Therefore, 1t 1s emphasized and should be
appreciated that two or more references to “an embodiment™
or “one embodiment” or “an alternative embodiment” 1n vari-
ous portions of this specification are not necessarily all refer-
ring to the same embodiment. Furthermore, the particular
features, structures or characteristics being referred to may be
combined as suitable 1n one or more embodiments of the
invention, as will be recognized by those of ordinary skill 1n
the art.

Although the present mnvention has been described with
reference to specific exemplary embodiments, it will be rec-
ognized that the invention 1s not limited to the embodiments
described, but can be practiced with modification and alter-
ation within the spirit and scope of the appended claims.
Accordingly, the specification and drawings are to be
regarded 1n an illustrative sense rather than a restrictive sense.

.

We claim:
1. A method of i1dentifying differences between a first
dataset and a second dataset, the method comprising;:
comparing, by a data storage system, a first hierarchical
tree ol metadata hashes representing the first dataset and
a second hierarchical tree of metadata hashes represent-
ing a second dataset, the first and second datasets each
including a plurality of data blocks of the data storage
system, the first and second hierarchical trees each
including a plurality of hierarchical hash values corre-
sponding to metadata describing the plurality of data
blocks included i1n the first and second datasets, the
metadata including an 1node indicator associated with
the plurality of data blocks, to identity changes between
the first and second datasets by progressively comparing
the hierarchical hash values of the first and second hier-
archical trees without comparing the metadata associ-
ated with the data blocks included in the first and second
datasets, wherein:
the first and second hierarchical trees each include a base
layer of hashes and one or more upper levels of
hashes, each upper level hash being a hash value of a
corresponding subset of hashes from an immediately
lower layer of hashes,
cach base layer of hashes includes a plurality of data-
block level hashes, each data-block level hash corre-
sponding to metadata associated with a given data
block of the plurality of data blocks,
cach data-block level hash 1s a hash value of a plurality
of attribute hashes, each of the plurality of attribute
hashes corresponding to a hash value of a different
attribute associated with a corresponding 1node 1ndi-
cator, the different attributes including access
attributes associated with a data block corresponding
to the inode indicator; and
generating, by the data storage system, a catalog indicating,
changes 1n metadata between the first and second
datasets.

10

15

20

25

30

35

40

45

50

55

60

65

16

2. The method of claim 1 further comprising determining a
location of at least one 1tem of data in the first and second
datasets for which a metadata change has been indicated; and

including the location of the at least one item of data in the
catalog.

3. The method of claim 1 wherein the first and second
datasets each comprise a plurality of structured 1tems of data.

4. The method of claim 1 wherein the first and second
datasets are baselines of a file system at different points 1n
time.

5. An apparatus comprising;:

a storage adapter through which to access a nonvolatile

mass storage subsystem; and
a processor coupled to the storage adapter;
a comparison unit to compare a first hierarchical tree of
metadata hashes representing a first logical data con-
tainer and a second hierarchical tree of metadata hashes
representing a second logical data container, the first and
second logical data containers each referencing a plural-
ity of data blocks in the nonvolatile mass storage sub-
system, the first and second hierarchical trees each
including a plurality of hierarchical hash values corre-
sponding to metadata describing the plurality of data
blocks referenced by the first and second logical data
containers, the metadata including an inode indicator
associated with the plurality of data blocks, to identify
changes 1n metadata of the first and second logical data
containers by progressively comparing the hierarchical
hash values of the first and second hierarchical trees
without comparing the metadata associated with the data
blocks referenced by the first and second logical data
containers, wherein:
the first and second hierarchical trees each include a base
layer of hashes and one or more upper levels of
hashes, each upper level hash being a hash value of a
corresponding subset of hashes from an immediately
lower layer of hashes,

cach base layer of hashes includes a plurality of data-
block level hashes, each data-block level hash corre-
sponding to metadata associated with a given data
block of the plurality of data blocks,

cach data-block level hash 1s a hash value of a plurality
ol attribute hashes, each of the plurality of attribute
hashes corresponding to a hash value of a different
attribute associated with a corresponding inode 1ndi-
cator, the different attributes 1including access
attributes associated with a data block corresponding
to the 1node indicator; and

a catalog unit to generate a catalog of changes between the
first and second logical data containers, the catalog indi-
cating changes 1n metadata between the first and second
metadata containers.

6. The apparatus of claim 3 further comprising a monitor-
ing unit to monitor transaction requests corresponding to
items of data included 1n the first and second logical data
containers and, based on a number of transaction requests,
determine a level of hashing.

7. The apparatus of claim 6 wherein the monitored trans-
action requests are requests to store items of data.

8. The apparatus of claim 6 further comprising a hash-
generating umt to generate the first and second hierarchical
hashes based on the hashing level determined.

9. A processing system comprising:

a processor; and

a storage medium encoded with instructions that, when
executed by the processor, cause the processing system
to:

US 8,176,018 Bl

17

compare a first hierarchical tree of metadata hashes repre-

senting a first dataset and a second hierarchical tree of

metadata hashes representing a second dataset, the first
and second datasets each including a plurality of data
blocks of the data storage system, the first and second
hierarchical trees each including a plurality of hierarchi-
cal hash values corresponding to metadata describing
the plurality of data blocks included in the first and
second datasets, the metadata including an mode 1ndi-

cator associated with the plurality of data blocks,
wherein:
the first and second hierarchical trees each include a base
layer of hashes and one or more upper levels of
hashes, each upper level hash being a hash value of a
corresponding subset of hashes from an immediately
lower layer of hashes,
cach base layer of hashes includes a plurality of data-
block level hashes, each data-block level hash corre-
sponding to metadata associated with a given data
block of the plurality of data blocks,
cach data-block level hash 1s a hash value of a plurality
ol attribute hashes, each of the plurality of attribute
hashes corresponding to a hash value of a different
attribute associated with a corresponding inode 1ndi-
cator;
identily changes between the first and second datasets
by progressively comparing the hierarchical hash val-
ues of the first and second hierarchical trees without
comparing the metadata associated with the data
blocks of the first and second datasets; and
generate a catalog indicating changes in metadata
between the first and second datasets.
10. The processing system of claim 9 wherein the process-
Ing system comprises a storage server.
11. The processing system of claim 10 wherein the storage
server generates the first and second hierarchical hashes.
12. The processing system of claim 9 wherein the first and
second hierarchical hashes are acquired on a periodic basis.

10

15

20

25

30

18

13. The processing system of claim 9 wherein progres-
stvely comparing the hierarchical hash values turther com-
Prises:

determiming that the metadata of the first dataset from

which the hash value was generated 1s the same as the
metadata from the second dataset from which the corre-
sponding hash value was generated when a hash value of
the first hierarchical hash 1s the same as a corresponding
hash value of the second hierarchical hash.

14. The processing system of claim 13 wherein progres-
stvely comparing the hierarchical hash values further com-
Prises:

comparing a next hash value of the first hierarchical hash

with a corresponding next hash value of the second
hierarchical hash when the hash value of the first hier-
archical hash 1s different from the corresponding hash
value of the second hierarchical hash; and

determining that the metadata of the first dataset from

which the hash value was generated 1s different from the
metadata from the second dataset from which the corre-
sponding hash value was generated when the hash value
of the first hierarchical hash 1s different from the corre-
sponding hash value of the second hierarchical hash and
there are no next hash values.

15. The processing system of claim 9 further comprising:

a storage interface to communicate with an array of storage

devices to retrieve data from or store data to the array of
storage devices; and

a network interface to communicate with at least one client

over a network; the processing system being configured
process transaction requests from the clients related to
data stored 1n the array of storage devices.

16. The processing system of claim 9 wherein the first and
second datasets are baselines of volume of data at difference

35 points in time.

17. The processing system of claim 16 wherein the volume
of data comprises unstructured data.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

