12 United States Patent

Hoang et al.

US008176007B2

US 8,176,007 B2
May 38, 2012

(10) Patent No.:
45) Date of Patent:

(54)

(75)

(73)

(%)

(21)

(22)

(65)

(63)
(51)
(52)

(58)

(56)

PERFORMING AN ACTION IN RESPONSE TO
A FILE SYSTEM EVENT

Inventors: Thuvan Hoang, Santa Clara, CA (US);
Sam Idicula, San Jose, CA (US); Nipun
Agarwal, Santa Clara, CA (US); Ravi
Murthy, Fremont, CA (US); Asha
Tarachandani, Newark, CA (US);
Namit Jain, San Jose, CA (US); Eric
Sedlar, San Francisco, CA (US)

Assignee: Oracle International Corporation,
Redwood Shores, CA (US)
Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 13/026,131

Filed: Feb. 11, 2011
Prior Publication Data
US 2011/0137963 Al Jun. 9, 2011

Related U.S. Application Data

Continuation of application No. 11/014,502, filed on
Dec. 15, 2004, now Pat. No. 7,921,076.

Int. CI.

GO6F 7/00 (2006.01)

US.CL . 707/609:; 707/760; 707/770
Field of Classification Search ........................ None

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

5,210,686 A 5/1993 Jernigan
5,222,242 A 6/1993 Chor et al.
5,257,366 A 10/1993 Adair et al.

(Continued)

FOREIGN PATENT DOCUMENTS
EP 856803 A2 8/1998
(Continued)

OTHER PUBLICATIONS

“Power Schemas with Styles Studio,” Whitepaper published by Sonic
Software Corporation, Jan. 2004.

(Continued)

Primary Examiner — Tim T Vo
Assistant Examiner — Hasanul Mobin

(74) Attorney, Agent, or Firm — Hickman Palermo
Truong & Becker LLP; Eric L. Sutton

(57) ABSTRACT

A method and apparatus for performing an action 1n response
to a file system event 1s provided. According to one aspect,
sets of “event listeners” are associated with a file hierarchy
and/or the nodes thereof. Each event listener contains a set of
“event handlers.” Each event handler corresponds to a sepa-
rate type of event that may occur relative to the file hierarchy’s
nodes. When an event 1s going to occur relative to the hierar-
chy or a node thereot, all event listeners that are associated
with that hierarchy/node are inspected to determine whether
those event listeners contain any event handlers that corre-
spond to the event’s type. Those event handlers that corre-
spond to the event’s type are placed 1n an ordered list of event
handlers to be invoked. As the event handlers 1n the list are
invoked, programmatic mechanisms that correspond to those
event handlers are executed to perform customized user-
specified actions.

4,558,413 A 12/1985 Schmudt et al.
5,047918 A 9/1991 Schwartz et al.
5,202,982 A 4/1993 Gramdlich et al. 20 Claims, 8 Drawing Sheets

——(

14

A 28

Windows

VMS

T: 20 24

Jd
m Access
122

BJ& rBJ

Example.doc

Appd Appd

Example.doc




US 8,176,007 B2

Page 2
U.S. PATENT DOCUMENTS 6,111,578 A 8/2000 Tesler

6,112,209 A 8/2000 Gusack
2%33%8 i fﬁggj [B)ap'?’fi ; 6115741 A 9/2000 Domenkos et al.
313690 A 571004 Af)“;hsonettal* 6,119,118 A 9/2000 Kain, III et al.
<377 556 A 1004 Mlil mel * 6,122,645 A 9/2000 Bohannon et al.
$360963 A 11/1904 B.‘f an et al. 6,128,610 A 10/2000 Srinivasan et al.
398957 A 211995 B‘ 5 6,182,121 Bl 1/2001 Wlaschin
410601 A 11005 T:;lirr 6,185,524 Bl 2/2001 Howard et al.
5454.101 A 9/1995 Mackay et al. g’ig%;g Ef %88# %_%ieélil'
5,463,772 A 10/1995 Thompson et al. 63208ﬁ993 n1 37001 Shafmon
5,467,471 A 11/1995 Bader 6212512 Bl  4/2001 Bamney et al.
5,493,682 A 2/1996 Tyraetal. .....occoooonnnnen, 717/122 6712557 Bl 4/5001 Oran
5,499,358 A 3/1996 Nevarez 6230310 Bl  5/2001 Arroye et al.
5499371 A 3/1996 Henninger et al. 652333729 B:h 5/2001“ Comoara of al
5,504,892 A 4/1996 Atatt et al. Corc 0% Bl 25001 Al drgd '
5524240 A 6/1996 Barbara et al. 495 ; ;
5530.840 A 6/1096 Hanushevsky et al 6,236,991 Bl 5/2001 Frauehofer et al.
5544360 A 8/1996 Lewak et al. g%g%’;‘ gr ggggr Elﬁca‘d
5,546,571 A 8/1996 Shan et al. 6570007 Bl 22001 U;p‘;zgel’
5561,763 A 10/1996 Eto et al. e300 500 Bl 102001 Aol
5566331 A 10/1996 Irwin, Jr. et al. IV ! 1 Aoyan *
5566337 A 10/1996 Szymanski et al 6,301,605 B1  10/2001 Napolitano et al.
5568.640 A 10/1996 Nishiyama et al. 0,514,408 BL 1172001 Salas et al.
5574015 A 11/1996 Temaon ef al 6,321,219 Bl 11/2001 Gainer et al.
5.643.633 A 7/1997 Telford et al. g%gg%g gr nggr i?éltibgletal*
5.649,200 A 7/1997 Leblang et al. 0336387 B 500> Arh o
5.675.802 A 10/1997 Allen et al 97 . ihger et dl.
5680614 A 10/1997 Bakuyaet:al 6,349,295 Bl 2/2002 Tedesco et al.
5.682.524 A 10/1997 Freund et al. 6,366,902 Bl 4/2002 " Lyle et al.
5694 000 A 11/1997 Boothb 6,366,921 Bl 4/2002 Hansen et al.
S 680706 A 11/1907 REO tyl 6366988 Bl  4/2002 Skiba et al.
S0l 467 A 12/1097 T O clal 6370537 Bl 4/2002 Gilbert et al.
S 706510 A {11908 Bfrzségfl 6,370,548 Bl  4/2002 Bauer et al.
5720680 A 3/1998 Allard et al. 6,381,607 Bl 4/2002° Wu et al.
73796 A 11008 Chane of 4] 6389427 Bl  5/2002 Faulkner
S752 133 A <1008 Atsafetal* 6,389,433 Bl 5/2002 Bolosky et al.
2798170 A 21008 Kanai of al 6393435 Bl  5/2002 Gartner et al.
5778354 A 7/1998 Leslie et al. g%g}‘gg? gr %883 fsﬁril.bllff et ":ﬂ;ﬂ
5.802.518 A 0/1998 Karaev et al 7 . alisbury et al.
L 206078 A 9/1998 Hug ot al * 6.421,692 Bl  7/2002 Milne et al.
5.819.275 A 10/1998 Badger et al. oaslim BL 7ons Sedlar
5,822,511 A 10/1998 Kashyap et al. Pros y
0255353 A 10/100% Wil 6,438,550 B1 82002 Doyle et al.
538323526 A 11/190% Sclhuyler 6,442,548 Bl 8/2002 Balabine et al.
06 A N K ot
5842212 A 11/1998 Ballurio et al. B ; Abreta
5’248 746 A 17/1998 Gish 6,457,007 Bl 0/2002 Kikuchi et al.
964870 A {11006 G“‘k 6,457.065 Bl  9/2002 Rich et al.
970,200 A 51990 K?“: | 6,487,469 Bl  11/2002 Formenti
S 973 0%6 A 511000 F&jieettaél 6,487,552 Bl  11/2002 Lei et al.
5878410 A 3/1999 Zbikowski et al. 6,493,742 Bl 12/2002" Holland et al
9T AlS A 21990 Ol 6,505.212 B2 1/2003 Nakano et al.
S Y 309 Dpra ST 2 e
5,890,147 A 3/1999 Peltonen et al. 65549j916 BT 417003 Sodl 11
5.892.535 A 4/1999 Allen et al. Cien 450 Bl 69003 ci ar PO
5.897.638 A 4/1999 Lasser et al. 2 s . ang <t al.
2015933 A 1000 Croe 6,587.873 Bl  7/2003 Nobakht et al.
$017.49> A £/1000 T “?tansen 6,594,675 Bl  7/2003 Schneider
018995 A 6/1990 W?l 1 | 6,604,100 Bl 82003 Fernandez et al.
2071 58> A 211000 Gus‘;ilf”* 6,604,236 Bl  8/2003 Draper et al.
5024088 A 7/1999 Jakobsson et al. g,gﬁ,ggé Et“ 13%88; IECO"S _
5.937.406 A 8/1999 Balabine et al L - agavamsi et al.
2056 506 A 0/1000 Cobbotal 6,636,845 B2  10/2003 Chau et al.
So74407 A 10/1006 sgckseta' 6,643,633 B2  11/2003 Chau et al.
5078791 A 11/1999 Farber et al. ggg‘i‘gi‘ Er ligggi ?g-‘é:t al.
5983277 A 11/1999 Heile et al. 902, ! |
5001771 A 11/1900 Falls of al 6,697,805 Bl 2/2004 Choquier et al.
6.008.806 A  12/1999 Nakajima et al. 0,711,595 Bl 3/2004 ~ Anantharao
001414 A 2000 Fulle: 6725212 B2 4/2004 Couch et al.
6.023.706 A 2/2000 Schmuck et al. g%gggg gi“ ;‘gggj E‘l -
6,026,402 A 2/2000 Vossen et al. 657823380 Bj“ <5004 Tlel adme al.
6,029,160 A 2/2000 Cabrera et al. ) /84, ! cae
6,029,166 A 2/2000 Mutalik et al. 6,889,223 B2 52005 Hattori
6.029.175 A 27000 Chow et al. 6,959,416 B2  10/2005 Manning et al.
6,052,122 A 4/2000 Sutcliffe et al. 6,965,894 B2  11/2005 Leung et al.
6,055,527 A 4/2000 Badger et al. 6,970,975 B2  11/2005 Frank
6,088,694 A 7/2000 Burns et al. 6,973,455 Bl 12/2005 Vahalia et al.
6,092.086 A 7/2000 Martin et al. 7.031,956 Bl  4/2006 Lee et al.
6,101,500 A 8/2000 Lau 7,043,472 B2 5/2006 Arnidor et al.



US 8,176,007 B2

Page 3

7,047,253 Bl 5/2006 Murthy et al. WO WO 00/14632 Al 3/2000

7,051,039 Bl 5/2006 Murthy et al. WO WO 00/49533 A2 8/2000

7,062,507 B2 6/2006 Wang et al. WO WO 01/42881 A2 6/2001

7,089,239 Bl 8/2006 Baer et al. WO WO 01/59602 Al 8/2001

7,096,224 B2 8/2006 Murthy et al. WO WO 01/61566 Al 8/2001

7,117,216 B2  10/2006 Charkaborty WO WO 03/027908 A2 4/2003

7,139,746 B2  11/2006 Shin et al.

7,162,485 B2 1/2007 Gottlob et al. OTHER PUBLICATIONS

7,171,404 B2 1/2007 Lindblad et al. | | | o o

7.171,407 B2 1/2007 Barton et al. Ali-Khalifa, S. etal., “Structural Joins: A Primitive for Efficient XML

7,216,127 B2 5/2007 Auerbach Query Pattern Matching,” Feb. 26-Mar. 1, 2002, Data Engineering,

7,418,435 Bl 8/2008  Sedlar 2002, Proceedings, 18" International Conference, pp. 141-152.
%88%823333; Al 3//388} %ﬁ?; :tt ;11“ Bouret, R. et al, “A Generic Load Extract Utility for Data Transfer
2002/0056025 Al 5/2002 Qiu et al. Between XML Documents and Relational Databases,” Proc. Second
2002/0073056 Al 6/2002 Broster et al. International Workshop on Advanced Issues of E-Commerce and
2002/0078068 Al 6/2002 Krishnaprasad et al. Web-Based Information Systems, IEEE Computing Society, Jun.
2002/0095421 Al 7/2002 Koskas 8-9, 2000, pp. 134-143.
2002/0103829 Al 8/2002 Manning et al. Brage, D. et al., “A Graphical Environment to Query XML Data with
gggggggj gi i gggg% (Pé(l)lrter et “Tl‘ Query,” Proceedings of the Fourth International Conference on Web
2007/0138617 Al 9/2007 Ch?il;t?fg?t ‘et Al Information Systems Engineering (WISE ’03), 2003, IEEE, 10
2002/0152267 Al 10/2002 Lennon pages.
2002/0184401 Al  12/2002 Kadel, Ir. et al. Chae, M1-Ok, et al., “Design and Implementation of an Object-
2002/0188613 Al* 12/2002 Chakraborty et al. ........ 707/100 Oriented Multimedia DBMS Tightly Coupled with Information
2003/0004937 Al /2003 Salmenkaita et al. Retrieval Functions,” Proc. 17 IASTED International Conference
2003/0033285 Al 2/2003  Jalali et al. on Applied Informatics, Feb. 15-18, 1999, abstract.
2003/0065659 Al 4/2003  Agarwal et al. Chakraborty, K., “The XML Garbage Collector,” The Source for
%88%;8(1)(8)?(1)33 i gggg; E;??tngl ét al. g)(;agglopers, Sun Developer Network Site XP-002297849, Mar.
ggggﬁgigéggé i g%ggg é’:f)gﬁ;ljt Al 7097203 Chen, Ruey-Shun et al., “Developing an XML framework for
2003/0177341 Al 0/2003 Devillers metadata system,” Trinity College Dublin, Proc. of the 1% Interna-
2003/0195865 Al  10/2003 Long et al. tional Sympo on Information and Communication, pp. 267-272.
2003/0200197 A1  10/2003 Long et al. Cheng, J. et al., “IBM DB2 XML Extender,” IEEE, ICDE *00 Con-
2003/0212662 Al 11/2003 Shin et al. ference, San Diego, Feb. 2000, 128 pages.
2003/0212664 Al 11/2003 Brening et al. Current Claims 1n PCT/US03/355551, pp. 20-23.
2003/0233618 Al 12/2003 Wan Jajodia, S. et al., “Toward a Multilevel Secure Relational Data
2004/0010752 A1 12004 Chan et al. Model,” ACM, 1991, 8393 SIGMOD Record (Jan. 20, 1991) No. 2,
%883?8823‘322 i 3//3883 JMuggllitl&ly ot 2 Mano.lesc.:u, D., Review of “Mﬁadata solutions: using metampdels,
2004/0073541 Al 4/2004 Tindblad et al ’ repositories, XML, and enterprise portals to generate information on
2004/0083222 Al 4/2004 Pecherer demand by Adrienne Tannebaum,” Mar. 2003, ACM Press, vol. 28,
2004/0088320 Al 5/2004 Perry Issue 2, p. 38, | o
2004/0103105 Al 5/2004 Lindblad et al. Noser, H. et al., “Dynamic D3 Visualization of Database-Defined
2004/0103282 Al 5/2004 Meier et al. Tree Structures on the WWW by Using Rewriting Systems,” 2000,
2004/0148278 Al 7/2004 Milo et al. IEEE, XP-002262516, pp. 247-254.
2004/0167864 Al 8/2004 Wang et al. Oracle, “Oracle 1FS (Internet File System),” Mar. 1999,
2004/0176958 Al 9/2004 Salmenkaita et al. XP-002204710, 3 pages.
2004/0205551 A 10/2004 S:fmtos ************************** 715/513 Rao, H. et al., “An Overview of the Internet File System,” 1997,
2004/0221226 A__h 11/2004 Lin et al. IEEE, XP'0022047113 pp. 474-477.
%883;83%3228 i iégggj g}ﬂ?;:;aii* chaido, C., “Datal:?as.;e Systel.ns:. Principles, Design & Implementa-
2005/0038688 A 1 217005 Collins ef al. tion,” 1990, MacMillian Publishing Co., pp. 357-361, 379-380.
2005/0050016 Al 32005 Stanoi et al Vorthmann, S. et al., “Beyond Schemas, Schema Adjuncts and the
2005/0001188 A1 4/7005 Pal et al. Outside World,” Markup Languages, Online!, vol. 2, No. 3, Jun.
2005/0097084 A1  5/2005 Balmin et al. 2000, pp. 1-8.
2005/0097108 Al 5/2005 Wang et al. Written Opinion, Application No. PCT/US03/35551 (8 pages).
2005/0102256 Al 5/2005 Bordawekar et al. European Patent Office, “Communication Pursuant to Article 96(2)
2005/0108630 Al 5/2005 Wasson et al. EPC.,” App. No. 00952215.2 dated Oct. 5, 2006, (7 pages).
2005/0114314 A1~ 5/2005 Fan et al. Amended Claims, EP App. 00952215.2 (26 pages).
2005/0120031 Al 6/2005  Ishii International Searching Authority, “Notification of Transmittal of the
2005/0160108 Al 7/2005  Charlet et al. International Search Report and the Written Opinion of the Interna-
%882?83%2;22 i iggggg gdlifnlcll}rfaestela;;ran of al tional Searching Authority, or the Declaration,” PCT/
2005/0228818 Al 10/2005 Murthy et al. | US2005,011763, dated Aug. 6, 2005 (12 pages).
2005/0220158 Al 10/2005 Thusoo et al. Current Claims, PCT/US2005/011763 (4 pages).
2005/0257201 Al 11/2005 Rose et al. Cooper, B. et al., “A Fast Index for Semistructured Data,” Proceeding
2005/0278354 Al  12/2005 Gupta et al. of the International Conference on Very Large Databases, 2001,
2005/0289125 Al  12/2005 Liu et al. XP-002303292 (pp. 341-350). |
2005/0289138 Al  12/2005 Cheng et al. McHugh, J. et al., “Indexing Semistructural Data,” Stanford Science
2006/0195476 Al 8/2006 Nori et al. Department, 1998, XP-002248313 (pp. 1-21).

FOREIGN PATENT DOCUMENTS

GB 2409078 A
JP 07-085102
WO WO 97/46956 Al
WO WO 98/00795

6/2005
3/1995
12/1997
1/1998

European Patent Office, “Communication Pursuant to Article 96(2)
EPC.,” EP Application No. 02799692.5, dated Jan. 18, 2006 (5 pages).

Current Claims, PCT/US02/31168, EP App. No. 02799692.5 (8
pages).

McHugh, J. et al., “Query Optimization for XML,” XP-002333353,
Proceedings of the 25" VLDB Conference (1999) pp. 315-326.



US 8,176,007 B2
Page 4

Yoshikawa, M. et al., “XRel: A Path-Based Approach to Storage and
Retrieval of XML Documents Using Relational Databases,”
XP-001143686, ACM Transactions on Internet Technology (2001),
pp. 110-141.

Notification of Transmittal of the International Search Report and the
Written Opinion of the International Searching Authority, or the
Declaration received from International application No. PCT/
US205/011762.

IBM, “A method for faster searches of external file properties using
negative caching of directory relationships, ” IBM Corporation, IBM
Technical Disclosure Bulletin, dated Jan. 1, 2001 (2 pages).
Claims, Foreign Application No. 200580018627.9 (3 pages).

State Intellectual Property Office of P.R.C., “Notification of the First
Office Action,” Foreign Application No. 200580018627.9, mailed
Oct. 12, 2007 (9 pages).

Jurgens, M. et al., “PISA: Performance Models for Index Structures
with and without Aggregated Data,” German Research Society, 1999
(7 pages).

Pal, S. et al., “Indexing XML Data Stored in a Relational Database,”
Proceedings of the 30” VLDB Conference, 2004 (12 pages).
“Notice of Allowance and Fee Due” recerved in U.S. Appl. No.
10/944,170 dated Apr. 7, 2008 (8 pages).

Giradot et al., “Milau: an encoding format for efficient representation
and exchange of XML over the Web,” IBM Almaden Research Center

(24 pages).

I

Mackenzie et al., “Finding Files” FindUtils, Version 4.1.2, Source
Code, GNU.org. Nov. 1997, source files, code.C,. (22 pages).
Cormen et al., “Introduction to Algorithms,” MIT Press, 2001, 24
edition (4 pages).

European Patent Office, “Communication pursuant to Article 94(3)
EPC,” European patent application 05732473.3-1225, dated Feb. 4,
2008 (7 pages).

Claims, Furopean patent application 2005800186273.9 (3 pages).
Claims, Furopean patent application 05732473.3-1225 (3 pages).
Japanese Patent Office, “Questioning (Office Action)” with “Pending
Claims™ attached, Foreign Application No. 600202/2000.

Douglas et al., “Elephant: The File System That Never Forgets,” 1n
Proceedings of the IEEE Workshop on Hopt Topics in Operating
Systems (HotOS VII), Mar. 1999 (6 pages).

Canadian Office Action received 1n Application No. 2,646,776 dated
Dec. 23, 2009 (4 pages).

Current Claims of Application No. 2,646,776, Dec. 2009 (3 pages).
U.S. Appl. No. 11/014.,442, filed Dec. 15, 2004, Notice of Allowance,
Oct. 27, 2011.

U.S. Appl. No. 12/122,517, filed May 16, 2008, Notice of Allowance,
Jul. 14, 2011.

U.S. Appl. No. 11/014,442, filed Dec. 15, 2004, Decision on Appeal,
Jul. 25, 2011.

* cited by examiner



U.S. Patent May 8, 2012 Sheet 1 of 8 US 8,176,007 B2

24
122

Appd
J

T '
o~
(il |
o
-3
dp) QD
_— s
== =
g
>
L)
YD
<L

App2

110

| v-
o
L

UNIX

N
l l

20

Access
)s

114

16
Example.doc

Word



US 8,176,007 B2

Sheet 2 of 8

May 8, 2012

U.S. Patent

A
2014 Jop*a|dwex3 AN A%
(17NN) pddy X 1Y
(17NN} cddy 01X i
(77NN} SWA 6X 6
(17NN zddy gX 9
(17NN) | ddy LX /Y
(17NN XIun 9X 0
(11NN $S900Y GX Gy
8014 20p*9|dwex hX 7Y
(17NN) pIo M £X £y
(17NN) SMOpUI ZX A
(17NN) \ | X 1Y

'8]eQ UOIRIIPO Apog BUEN [ EIE al moy
378v1 $37i12




U.S. Patent May 8, 2012 Sheet 3 of 8 US 8,176,007 B2
310
DIRECTORY LINKS TABLE
Parent [D Child [D Child_Name

X1 X2 Windows

X2 X3 Word

X3 X4 Example.doc

X2 X9 Access

X X6 Unix

X6 X7 App1

X6 X8 App2

X1 X9 VMS

X9 X10 App3

X9 X11 App4

X11 X12 Example.doc

Fig. 3



U.S. Patent May 8, 2012 Sheet 4 of 8 US 8,176,007 B2

410
USER INTERFACE
412
DATABASE SERVER

DATABASE




U.S. Patent May 8, 2012 Sheet 5 of 8 US 8,176,007 B2

2 %

202
DETECT AN EVENT THAT IS GOING TO OCCUR RELATIVE TO A NODE IN THE FILE

SYSTEM

204
DO ANY MORE EVENT LISTENERS

THAT ARE CONTAINED IN A RESOURCE CONFIGURATION THA NO

1S ASSOCIATED WITH THE ENTIRE FILE SYSTEM CONTAIN AN
VENT HANDLER THAT CORRESPONDS

TO THE EVENT? |

y YES

506
(O /S THE NEXT SUCH EVENT LISTENER'S PRE-CONDITION I

SATISFIED?
[ YES

208
| ADD, TO THE LIST OF EVENT HANDLERS THAT ARE TO BE INVOKED, THE

EVENT LISTENER'S EVENT HANDLER THAT CORRESPONDS TO THEEVENT | |

-




FIG. 5B p— 00
FROM

DO ANY MORE EVENT LISTENERS
THAT ARE CONTAINED IN A RESOURCE CONFIGURATION
THAT IS ASSOCIATED WITH THE NODE CONTAIN AN
EVENT HANDLER THAT CORRESPONDS
TO THE EVENT?

y YES

912
NO 'S THE NEXT SUCH EVENT LISTENER'S PRE-CONDITION

SATISFIED?
y YES
214
ADD, TO THE LIST OF EVENT HANDLERS THAT ARE TO BE INVOKED, THE

EVENT LISTENER'S EVENT HANDLER THAT CORRESPONDS TO THE EVENT
I I

U.S. Patent May 8, 2012 Sheet 6 of 8 US 8,176,007 B2

NO

216
CREATE AN EVENT OBJECT THAT CONTAINS THE LIST OF EVENT HANDLERS

* THAT ARE TO BE INVOKED




U.S. Patent May 8, 2012 Sheet 7 of 8 US 8,176,007 B2

FIG. 5C @ p—500

218
ARE ANY MORE EVENT HANDLERS THA
ARE PREFACED BY "PRE-" CONTAINED IN THE EVENT OBJECT'S LIST
OF EVENT HANDLERS TO BE
INVOKED?

v YES

220
PASS THE EVENT OBJECT AS A PARAMETER IN A CALL TO A PROGRAMMATIC

METHOD OR PROCEDURE THAT CORRESPONDS TO THE NEXT SUCH EVENT | |
HANDLER IN THE LIST

l
RECEIVE THE EVENT ORJECT FROM THE PROGRAMMATIC METHOD OR
PROCEDURE :

OF EVENT HANDLERS TO BE

INVOKED?
¥ VES

228
| | PASS THE EVENT OBJECT AS A PARAMETER IN A CALL TO A PROGRAMMATIC

METHOD OR PROCEDURE THAT CORRESPONDS TO THE NEXT SUCH EVENT
HANDLER IN THE LIST

53_0 |-

RECEIVE THE EVENT OBJECT FROM THE PROGRAMMATIC METHOD OR
PROCEDURE

— — : — — e




US 8,176,007 B2

Sheet 8 of 8

May 8, 2012

U.S. Patent

9¢9

0c9 009
ANIT 00
NAOMLAN YT TE AIVANALNI
WI0T | NOLLYIINNINVAOD

8¢9

NS

SNA

30IA30
FIVHOLS

NOd

¢10554904d

ALOWAN

NIYIN

1041INOJ
JOSHND

125
7 301A30 LNdN!

cL9

AV I1dSId

9 Il



US 8,176,007 B2

1

PERFORMING AN ACTION IN RESPONSE TO
A FILE SYSTEM EVENT

BENEFIT CLAIM; RELATED CASES

This application 1s a continuation of application Ser. No.

11/014,502, filed Dec. 13, 2004, now U.S. Pat. No. 7,921,076
entitled “PERFORMING AN ACTION IN RESPONSE TO
A FILE SYSTEM EVENT,” the entire contents of which 1s

incorporated by reference herein 1n 1ts entirety.

The present application is related to U.S. Pat. No. 6,427,
123, entitled “HIERARCHICAL INDEXING FOR
ACCESSING HIERARCHICALLY ORGANIZED INFOR -
MATION IN A RELATIONAL SYSTEM?™, filed Feb. 18,
1999; U.S. Pat. No. 6,549,916, entitled “EVENT NOTIFI-
CATIONSYSTEM TIED TO FILE SYSTEM?”, filed May 15,
2000; U.S. patent application Ser. No. 09/571,060, entitled
“BASING DIRECTORY CONTENTS ONA QUERY THAT
IS ASSOCIATED WITH A FILE IDENTIFIER”, filed May
15, 2000; U.S. patent application Ser. No. 09/571,696,
entitled “VERSIONING IN INTERNET FILE SYSTEM”,

filed May 15, 2000; U.S. patent application Ser. No. 10/239,
176, entitled “MECHANISM FOR UNIFORM ACCESS
CONTROL IN A DATABASE SYSTEM?”, filed Sep. 27,
2003; U.S. patent application Ser. No. 10/260,381, entitled
“NECHANISM TO FEFFICIENTLY INDEX STRUC-
TURED DATA THAT PROVIDES HIERARCHICAL
ACCESS IN A RELATIONAL DATABASE SYSTEM”,
filed Sep. 27, 2002; U.S. patent application Ser. No. 10/306,
485, entitled “TECHNIQUES FOR MANAGING HIERAR -
CHICAL DATA WITH LINK ATTRIBUTES IN A RELA-
TIONAL DATABASE”, filed Nov. 26, 2002; U.S. patent
application Ser. No. 10/884,311, enfitled “INDEX FOR
ACCESSING XML DATA”, ﬁled Jul. 2, 2004; U.S. patent
application Ser. No. 10/944,177, entltled“INDEX MAINTE-
NANCE FOR OPERATIONS INVOLVING INDEXED
XML DATA”, filed Sep. 16, 2004; U.S. patent application
Ser. No. 10/944,170, entitled “EFFICIENT QUERY PRO-
CESSING OF XML DATA USING XML INDEX”, filed
Sep. 16, 2004; U.S. patent application Ser. No. 10/452,164,
entitled “TRANSACTION-AWARE CACHING FOR
ACCESS CONTROL METADATA”, filed May 30, 2003;
U.S. patent application Ser. No. 10/452,163, entitled
“TRANSACTION-AWARE CACHING FOR FOLDER
PATH DATA”, filed May 30, 2003; U.S. patent application
Ser. No. 09/728,909, entitled “PI HRARCHY-BASED
SECURED DOCUMENT REPOSITORY”, filed Dec. 1,
2000; and U.S. patent application Ser. Ne 11/014,442,
entltled “A COMPREHENSIVE FRAMEWORK TO INTE-
GRATE BUSINESS LOGIC AND RULES INTO A
REPOSITORY™, filed Dec. 15, 2004; the contents of all of
which are hereby mcorporated by reference in their entirety
tor all purposes as 11 fully set forth herein.

FIELD OF THE INVENTION

The present invention relates to computer file systems, and
in particular, to performing an action in response to a file
system event.

BACKGROUND

The approaches described 1n this section are approaches
that could be pursued, but not necessarily approaches that
have been previously concerved or pursued. Therefore, unless
otherwise indicated, 1t should not be assumed that any of the

10

15

20

25

30

35

40

45

50

55

60

65

2

approaches described i this section qualify as prior art
merely by virtue of their inclusion 1n this section.

Emulating a Hierarchical File System 1n a Relational
Database System

Humans tend to organize information in categories. The
categories 1n which information 1s organized are themselves
typically organized relative to each other in some form of
hierarchy. For example, an individual animal belongs to a
species, the species belongs to a genus, the genus belongs to
a family, the family belongs to an order, and the order belongs
to a class.

With the advent of computer systems, techniques for stor-
ing electronic mformation have been developed that largely
reflected this human desire for hierarchical organization.
Conventional computer file systems, for example, are typi-
cally implemented using hierarchy-based orgamzation prin-
ciples. Specifically, a typical file system has directories
arranged 1n a hierarchy, and documents stored 1n the directo-
ries. Ideally, the hierarchical relationships between the direc-
tories retlect some 1ntuitive relationship between the mean-
ings that have been assigned to the directories. Similarly, 1t 1s
ideal for each document to be stored 1n a directory based on
some 1ntuitive relationship between the contents of the docu-
ment and the meaning assigned to the directory 1n which the
document 1s stored.

FIG. 1 shows an example of a typical file system. The
illustrated file system includes numerous directories arranged
in a hierarchy. Two documents 118 and 122 are stored in the
directories. Specifically, documents 118 and 122, both of
which are entitled “Example.doc”, are respectively stored in
directories 116 and 124, which are respectively entitled
“Word” and “App4”.

In the directory hierarchy, directory 116 1s a child of direc-
tory 114 entitled “Windows”, and directory 114 1s a child of
directory 110. Similarly, directory 124 1s a child of directory
126 entitled “VMS™, and directory 126 1s a child of directory
110. Directory 110 1s referred to as the “root” directory
because it 1s the directory from which all other directories
descend. In many systems, the symbol *“/” 1s used to refer to
the root directory. Each of directories 110, 114,116,120, 124,
126, and each of documents 118 and 122, 1s a separate node 1n
the directory hierarchy.

When electronic information 1s organized 1n a hierarchy,
cach item of information may be located by following a
“path” through the hierarchy to the entity that contains the
item. Within a hierarchical file system, the path to an 1tem
begins at the root directory and proceeds down the hierarchy
of directories to eventually arrive at the directory that contains
the 1tem of interest. For example, the path to file 118 consists
of directories 110, 114 and 116, 1n that order.

Hierarchical storage systems often allow different items to
have the same name. For example, 1n the file system shown 1n
FIG. 1, both of the documents 118 and 122 are entitled
“Example.doc”. Consequently, to unambiguously identity a
given document, more than just the name of the document 1s
required.

A convenient way to identily and locate a specific 1item of
information stored in a hierarchical storage system 1s through
the use of a “pathname”. A pathname 1s a concise way of
unmiquely 1identifying an item based on the path through the
hierarchy to the item. A pathname 1s composed of a sequence
of names. In the context of a file system, each name 1n the
sequence of names 1s a “filename”. The term “filename”




US 8,176,007 B2

3

refers to both the names of directories and the names of
documents, since both directories and documents are consid-
ered to be “files™.

Within a file system, the sequence of filenames 1n a given
pathname begins with the name of the root directory, includes
the names of all directories along the path from the root
directory to the 1item of 1nterest, and terminates 1n the name of
the 1item of interest. Typically, the list of directories to traverse
1s concatenated together, with some kind of separator punc-
tuation (e.g., */°, V', or ;”) to make a pathname. Thus, the
pathname for document 118 i1s/Windows/Word/Example-
.doc, while the pathname for document 122 1s /VMS/App4/
Example.doc.

The relationship between directories (files) and their con-
tained content varies significantly between different types of
hierarchically organized systems. One model, employed by
various 1mplementations, such as Windows and DOS file
systems, requires each file to have exactly one parent, form-
ing a tree. In a more complicated model, the hierarchy takes
the form of a directed graph, where files can have multiple
parents, as 1n the UNIX file system in which hard links are
used.

In contrast to hierarchical approaches to organizing elec-
tronic information, a relational database stores information in
tables comprised of rows and columns. Each row 1s 1identified
by a unique row ID. Each column represents an attribute of a
record, and each row represents a particular record. Data 1s
retrieved from the database by submitting queries to a data-
base management system (DBMS) that manages the data-
base.

Each type of storage system has advantages and limita-
tions. A hierarchically organized storage system 1s simple,
intuitive, and easy to implement, and 1s a standard model used
by most application programs. Unfortunately, the simplicity
of the hierarchical organization does not provide the support
required for complex data retrieval operations. For example,
the contents of every directory may have to be mspected to
retrieve all documents created on a particular day that have a
particular filename. Since all directories must be searched,
the hierarchical organization does nothing to facilitate the
retrieval process.

A relational database system 1s well suited for storing large
amounts ol mformation and for accessing data in a very
flexible manner. Relative to huerarchically organized systems,
data that matches even complex search criteria may be easily
and efficiently retrieved from a relational database system.
However, the process of formulating and submitting queries
to a database server 1s less intuitive than merely traversing a
hierarchy of directories, and 1s beyond the technical comfort
level of many computer users.

In the past, hierarchically organized systems and relation-
ally organized systems have been implemented in different
ways that were not compatible. With some additional pro-
cessing, however, a relationally organized system can emu-
late a hierarchically organized system. This type of emulation
1s especially desirable when the storage capability and flex-
ibility of a relational system 1s needed, but the intuitiveness
and ubiquity of the hierarchical system 1s desired.

Such emulation may be implemented through the use of
two relational tables: a “file” table and a “directory links”™
table. The file table stores information relating to each file in
the emulated hierarchical system. For files that are docu-
ments, the file table further stores either the body of the file (in
the form of a large binary object (BLOB)), or a pointer to the
body of the document. The directory links table stores all of
the link mformation that indicates the parent-child relation-
ships between {iles.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

To understand how these two tables may be used to emulate
a hierarchical storage system, one may suppose that a file
system having the hierarchical structure of FIG. 1 1s imple-
mented 1n a database. The file system of FIG. 1 can be 1llus-
trated as follows (a unmique ID, shown in parentheses, 1s
assigned by the system to uniquely 1dentily each file):

/(X1)
Windows (X2)
Word (X3)
Example.doc (X4)
Access (X5)
Unix (X6)
Appl (X7)
App2 (X8)
VMS (X9)
App3 (X10)
App4 (X11)
Example.doc (X12)

FIG. 2 shows a files table 210, and FI1G. 3 shows a directory

links table 310, which may be used by a computer system to
emulate the file system of FIG. 1 1n a relational database
system. Files table 210 contains an entry for each file 1n the
system. Each entry includes a row 1D, afile ID, aname, abody
column, and a modification date column (plus other system-
maintained mformation such as creation date, access permis-
s1on information, etc.).

The file ID, also known as the “object ID” or “OID,” 1s a
unmique ID assigned to each file by the system. The name 1s the
name assigned to the file, which does not need to be unique.
The body 1s the field in which the contents of a file are stored.
The body field may store the actual contents of a file in the
form of a binary large object (BLOB) or a pointer to the
contents of the file. Where the entry 1s for a file having no
content (e.g. a directory), the body field 1s null. In the above
example, only the two documents entitled Example.doc have
content; thus, the body field for all of the other entries 1s null.

In directory links table 310, an entry 1s stored for each link
between files 1n the file system of FIG. 1. Each entry includes
a parent 1D, a child ID, and a child_name field. For each link,
the parent 1D field specifies the file which 1s the parent file for
the link, the child ID field specifies the file which 1s the child
file for the link, and the child_name field speuﬁes the name of
the child file 1n the link. Thus, for example, in the entry for the
link between root directory 110 and Windows directory 114,
directory links table 310 specifies that X1 (the FileID of the
root directory) 1s the parent 1D, X2 (the FileID of the Win-
dows directory) 1s the child ID, and “Windows™ 1s the child_
name.

To 1llustrate how the information 1n these two tables may be
used to implement the file system of FIG. 1, one may suppose
that 1t 1s necessary to access document 118. As explained
above, document 118 has the path: /Windows/Word/Ex-
ample.doc. To access this file, the DBMS makes an 1initial
scan of dlrectory links table 310 to find the entry where root
directory 110 1s the parent file and Windows directory 114 1s
the child file. To do this, the DBMS executes something like
the following SQL statement:

Select ChuldID
from directory_ links
Where ParentI]D="X1"
child name="Window™.




US 8,176,007 B2

S

This query returns the ID of the child file, which 1n this case
1s X2 (for Windows directory 114). After obtaining the ID of

the child file, the DBMS makes a second scan of the directory
links table 310, this time looking for the entry where the
parent file 1s Windows directory 114, and the child file 1s Word
directory 116. This 1s achieved by executing the following
Select statement:

Select ChildID

from directory_ links
Where ParentID="X2"" and
Child _name="“"Word”.

This query returns the ID of Word directory 116, which in
this example 1s X3. With this information, the DBMS makes
a third scan of directory links table 310, this time searching
tor the entry where the parent file 1s Word directory 116 and
the child file 1s Example.doc document 118. This 1s achieved
with the following Select statement:

Select ChildID

from directory_ links
Where ParentID="X3"" and
Child__name="Example.doc”

Atthe end of this process, the ID of document 118 will have
been determined. Using this ID as the primary key, the proper
entry 1n files table 210 1s located, and the contents of docu-
ment 118 are accessed from the body field. Thus, using this
technique, files that are actually stored 1n a relational struc-
ture, such as table 210, may be located and accessed using,
pathnames just as if they were stored 1n a hierarchically
organized structure. The user submitting the pathname to
locate a file need not understand the complexity of a relational
system. Conversely, because the files are stored 1n a relational
system, the files may be elliciently accessed 1n more sophis-
ticated ways by users that are familiar with relational systems.

Triggers

In a database management system, a trigger 1s an object
that specifies a series of actions to be automatically per-
formed when a specific event occurs. According to industry
standards, Data Manipulation (DML) statements—SQL
statements that manipulate data in tables—are the events that
cause user-defined triggers to be activated (or “fired”). For
example, 1n a relational database, user-defined triggers may
be designed to fire when a row of a database table or a table
view 1s updated, inserted, or deleted. Accordingly, each user-
defined trigger 1s typically associated with a single database
table. That 1s, 1n a conventional database management sys-
tem, the scope of the user-defined trigger 1s the table level of
the database.

The series of actions specified by a trigger 1s typically
written as mstructions 1n a high-level database language such
as SQL or PL/SQL (a procedural language extension of SQL
available from Oracle Corporation of Redwood Shores,
Calif.). In conformance with industry standards, these
instructions must be able to access the data values of table
columns corresponding to an affected row before the trigger-
ing DML statement was applied (the “old values™) and after
the modification was applied (the “new values™).

Since triggers are objects, database customers can define,
remove, and store triggers associated with a database table,

10

15

20

25

30

35

40

45

50

55

60

65

6

and the database management system keeps track of which
triggers have been defined for which table by storing that
information as metadata (information about data) associated
with the table 1 a data dictionary for the database. Conse-
quently, triggers enable database customers to 1implement
additional functionality in their databases for such purposes
as enforcement of business rules and security.

As 1s discussed above, triggers may be associated with
database tables, and a hierarchical file system may be repre-
sented through multiple tables. Unfortunately, triggers are
very often unsuitable for specifying actions that are to be
performed 1n response to events that occur relative to nodes in
the file system. Events that occur relative to nodes 1n a file
system do not always have a direct and umique correspon-
dence with events that occur relative to the database tables
that represent the file system. As a result, 1t 15 sometimes
difficult to define a database table event that would corre-
spond to a particular event 1n the file system. Although some
events may occur relative to a database table whenever a
particular event occurs relative to a file system, those events
also might occur relative to the database table even in the
absence of the particular event occurring relative to the file
system.

Additionally, one or more of the database tables that rep-
resent the file system might not be accessible to users. As a
result, users might not be able to associate triggers with the
database tables that implement the file system. For example,
ordinary users might not have suilicient privileges to associ-
ate customized triggers with files table 210 and/or database
links table 310. Indeed, ordinary users might not understand
how events occurring within the file system affect these
tables. Ordinary users might be msulated from these tables to
such an extent that they would not even be aware of the
existence of these tables.

Ordinary users typically do understand hierarchical file
systems, though, as well as the operations that can be per-
formed on nodes within those file systems. Under many cir-
cumstances, users might find i1t useful for specified actions to
be performed automatically 1n response to specified events
occurring within a file system. A way of causing specified
actions to be performed automatically 1n response to specified
file system events 1s needed.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention 1s illustrated by way of example, and
not by way of limitation, in the figures of the accompanying
drawings and 1n which like reference numerals refer to similar
clements and 1 which:

FIG. 1 1s a block diagram 1illustrating a hierarchically orga-

nized file system;
FIG. 2 shows a files table that may be used to emulate a

hierarchically organized system 1n a relationally organized
system;

FIG. 3 shows a directory links table that may be used 1n
conjunction with the files table of FIG. 2 to emulate a hierar-
chically organized system;

FIG. 41s ablock diagram 1llustrating a database system that
may be used to implement one embodiment of the invention;

FIGS. SA-C show a flow diagram that illustrates a tech-
nique, according to an embodiment of the imnvention, for per-
forming an action 1n response to a file system event; and

FIG. 6 1s a block diagram that illustrates a computer system
upon which an embodiment of the invention may be imple-

mented.

DETAILED DESCRIPTION

A method and apparatus are described for performing an
action 1n response to a file system event. In the following



US 8,176,007 B2

7

description, for the purposes of explanation, numerous spe-
cific details are set forth 1n order to provide a thorough under-
standing of the present invention. It will be apparent, how-
ever, that the present mvention may be practiced without
these specific details. In other instances, well-known struc-
tures and devices are shown 1n block diagram form 1n order to
avold unnecessarily obscuring the present invention.

Overview

According to one embodiment of the invention, sets of
“event listeners™ may be associated with individual nodes of
a lile hierarchy, and/or with the entire file hierarchy. Fach
event listener contains a set of “event handlers.” Each event
handler corresponds to a separate type of event that may occur
relative to nodes, such as files and directories, 1in the file
hierarchy.

In one embodiment, when an event 1s going to occur rela-
tive to a node 1n the file hierarchy, all event listeners that are
associated with either the entire file hierarchy or the node
relative to which the event 1s going to occur are ispected to
determine whether those event listeners contain any event
handlers that correspond to the event’s type. Those event
handlers that correspond to the event’s type are placed 1n a list
ol event handlers to be invoked.

Each event handler corresponds to a separate program-
matic mechanmism. As the event handlers i the list are
invoked, the programmatic mechanisms that correspond to
those event handlers are executed. Such programmatic
mechanisms may be custom-created by users, so that custom
user-desired actions are performed 1n response to events
occurring relative to nodes 1n the file system.

File System Events

The term “file system event” 1s defined herein as an event
that occurs in response to a file system command being
received through a file system interface. Examples of file
system commands include commands to copy files, move
files, delete files, create directories, list directory contents,
remove directories, rename files, and rename directories.
Other file system commands are well known. According to
one embodiment, a file system command 1s mapped to one or
more corresponding database commands. When 1ssued to a
database server, database commands cause the database
server to perform operations on database objects such as
database tables. These database commands are not recerved
through a file system 1nterface.

According to one embodiment, when a file system com-
mand 1s recerved through a file system interface, the one or
more corresponding database commands are 1ssued to a data-
base server, which performs operations on database objects to
carry out the file system command. System tables, which are
not directly accessible to users, may be among the database
objects upon which such operations are performed. Although
a file system command may cause a database server to per-
form a specific operation relative to a specific database object,
under some circumstances, the same specific operation may
be performed relative to the same specific database object
even 1n the absence of a file system command. Thus, while
database events may occur 1 conjunction with file system
events according to one embodiment, the same database
events also may occur exclusively of file system events.

Resource Configurations

In one embodiment, event listeners are associated with a
file hierarchy and/or the nodes thereof by associating
“resource configurations” with the hierarchy and/or nodes.

10

15

20

25

30

35

40

45

50

55

60

65

8

Each resource configuration contains a list of one or more
event listeners. According to one embodiment, each resource
confliguration 1s implemented as a separate XML document
that conforms to a resource configuration schema.

Shown below 1s an example resource configuration schema

that contains two separate event listeners. Each event listener
1s bounded by the “<listener>" and “</listener>"" opening and

closing tags.

<ResConfig xmlns="http://xmlins.oracle.com/xdb/XDBResConfig.xsd”
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance”
xs1:schemal.ocation="http://xmlns.oracle.com/xdb/XDBResConfig.xsd
http://xmlns.oracle.com/xdb/XDBResConfig.xsd™>
<event-listeners default-language="Java™ default-schema="IFS">
<listener>
<description>Category application</description>
<schema>CM</schema>
<gsource>oracle.cm.category</source>
<gvents~
<Post-LinkIn/>
<Post-UnlinkIn/>
<Post-Update/>
</events>
<pre-condition>
<ex1stsNode>
<XPath>/Resource[ContentType="“1mage/gif”’|</Xpath>
</existsNode>
</pre-condition>
</listener>
<listener>
<description>Check quota</description>
<gource>oracle.ifs.quota</source>
<gvents~
<Post-LinkIn/>
<Post-UnlinkIn/>
<Post-Update>
</events>
<pre-condition>
<existsNode>
<XPath>r:/Resource/[ns:type="1fs-file”|</XPath>
<namespace-~
xmlns:r="http://xmlns.oracle.com/xdb/XDBResource.xsd”
xmlns:ns="http://foo.xsd”
</namespace=>
</existsNode>
</pre-condition>
</listener>
</event-listener>
</ResConfig>

In the above example, each “listener” element has a
“description” child element that contains a description of the
corresponding event listener. This first event listener’s
description 1s “Category application” and the second event
listener’s description 1s “Check quota™.

Each listener element also has a “source” child element
that contains a reference to a programmatic mechanism that
implements all of the corresponding event listener’s event
handling mechanisms. The event handling mechanisms for
the “Category application” event listener are implemented by
programmatic mechanism “oracle.cm.category”. The event
handling mechanisms for the “Check quota™ event listener are
implemented by programmatic mechanism “oracle.ifs.cat-
egory’’. Such programmatic mechanisms may be instances of
Java classes and/or PL/SQL packages, for example.

Each resource configuration may be associated with the
entire file hierarchy, or with a specified node of the hierarchy.
For example, the resource configuration shown above might
be associated with directory 116. If so, then whenever a file
system event was going to occur relative to directory 116, the
“Category application” and “Check quota” event listeners



US 8,176,007 B2

9

both would be mspected to determine whether any of those
event listeners” event handlers corresponded to the event type
of the file system event that was going to occur relative to
directory 116. For another example, the resource configura-
tion shown above might be associated with the entire file
hierarchy. If so, then whenever a file system event was going,
to occur relative to any node 1n the file hierarchy, the “Cat-
egory application” and “Check quota” event listeners both
would be 1mnspected to determine whether any of those event
listeners’ event handlers corresponded to the event type of the
file system event that was going to occur relative to that node.

FEvent Handlers

Each listener element also has an “events” child element.
Each such “events” element may contain one or more addi-
tional child elements. Each of these child elements corre-

sponds to a separate event handler. For example, in the
resource configuration shown above, each event listener has

event handlers for ‘“Post-LinkIn,” “Post-UnlinkIn,” and

“Post-Update” file system events; these are bounded by the
“<events>" and “</events>" opening and closing tags. Each
of these event handlers corresponds to a file system event

type.

According to one embodiment, whenever a {file system
event of a particular file system event type 1s going to occur
relative to a particular node 1n the file hierarchy, the following
steps are performed. First, each of the event listeners 1n the
resource configuration associated with the entire file hierar-
chy 1s mspected to determine 1f any of those event listeners
contains an event handler that corresponds to the particular
file system event type. Event handlers that correspond to the
particular file system event type are added to a list of event
handlers that are to be invoked. The event handlers are placed
in the list in the same order as the order of their event listeners
in the resource configuration. Thus, event listeners that occur
carlier 1n a resource configuration have precedence over event
listeners that occur later 1n a resource configuration.

Next, each of the event listeners 1n the resource configura-
tion associated with the particular node are 1inspected to deter-
mine 1f any of those event listeners contains an event handler
that corresponds to the particular file system event type. Event
handlers that correspond to the particular file system event
type are added to the list of event handlers that are to be
invoked. The event handlers are placed beneath any other
event handlers that are already 1n the list. Thus, event handlers
that occur 1n a resource configuration that 1s associated with
the entire file hierarchy have precedence over event listeners
that occur 1n a resource configuration that 1s associated with
the particular node.

In one embodiment, the addition of a particular event han-
dler to the list of event handlers that are to be invoked 1is
subject to the satistaction of a specified pre-condition that 1s
contained 1n the particular event handler’s event listener. Pre-
conditions are described further below.

Usually, after the list of event handlers to be mvoked has
been completely generated, the event handlers 1n the list are
invoked, one at a time, according to the order in which those
event handlers occur 1n the list. However, the placement of a
particular event handler within the list does not necessarily
guarantee that the particular event handler actually will be
invoked, or that the particular event handler will be invoked
according to its mitial order 1n the list; event handlers may be
removed from the list and/or reordered within the list. Cir-
cumstances under which this might occur are described fur-
ther below.

10

15

20

25

30

35

40

45

50

55

60

65

10

When an event handler 1s invoked, a corresponding method
or procedure of the event handler’s event listener’s corre-
sponding programmatic mechanism 1s called and executed.
For example, when the “Post-LinkIn™ event handler of the
“Category application” event listener 1s invoked, a “Post-
LinkIn” method or procedure of the “oracle.cm.category”™
programmatic mechanism 1s called and executed. For another
example, when the “Post-LinkIn” event handler of the
“Check quota” event listener 1s mvoked, a “Post-LinkIn™
method or procedure of the “oracle.ifs.category” program-
matic mechanism 1s invoked. For yet another example, when
the “Post-Update” event handler of the “Category applica-
tion” event listener 1s imvoked, a “Post-Update” method or
procedure of the “oracle.cm.category” programmatic mecha-
nism 1s called and executed. Each such method or procedure
may perform customized, user-specified actions when
invoked.

Event Types

As 1s described above, each event handler corresponds to a
file system event type. In one embodiment, the following file
system event types are among those recognized: render, cre-
ate, delete, update, lock, unlock, link in, link to, unlink 1n,
unlink from, check 1n, check out, uncheck out, version con-
trol, inconsistent update, and open.

In the resource configuration shown above, both event
listeners contain event handlers that correspond to the “link
in”, “unlink 1n”, and “update” file system event types. Event
handlers for a particular file system event type may be pret-
aced by “pre-" or “post-" prefixes. The “pre-” and “post-”
prefixes are discussed further below.

A file system event of the “render” file system event type
occurs when the contents of a node are dynamically gener-
ated.

A file system event of the “create” file system event type
occurs when a node 1s created in the file hierarchy. Con-
versely, a file system event of the “delete” file system event
type occurs when a node 1s deleted from the file hierarchy.

A file system event of the “lock™ file system event type
occurs when a node 1s placed 1n a state in which one or more
entities are prevented from reading from and/or writing to a
node. Conversely, a file system event of the “unlock™ file
system event type occurs when a node that had been placed 1n
such a state 1s placed in a state 1n which the entities that were
prevented from reading from and/or writing to the node are
allowed to read from and/or write to the node.

A file system event of the “link 1n™ file system event type
occurs when a symbolic link 1s created 1n the file hierarchy.
Conversely, a file system event of the “unlink 1n” file system
event type occurs when a symbolic link 1s removed from the
file hierarchy. A symbolic link 1s a pointer or reference to a
node. A symbolic link may occur at a different location in the
file hierarchy than the node and may have a different name
than the node. For example, referring to FIG. 1, a symbolic
link created as a child of directory 120 may refer to document
122. For another example, a symbolic link created as a child
of directory 126 may refer to directory 116. Accessing such a
symbolic link 1s equivalent to accessing the target node to
which the symbolic link refers. If a symbolic link to document
122 was created as a child of directory 120, then document
122 would appear to be a child of directory 120 as well as a
child of directory 124. If a symbolic link to directory 116 was
created as a child of directory 126, then directory 116 would
appear to be a child of directory 126 as well as a child of
directory 114.




US 8,176,007 B2

11

The creation and removal of symbolic links 1n and from the

file hierarchy constitute file system events that are distinct

from the association and disassociation of such symbolic link
with and from target nodes 1n the file hierarchy. Thus, a file
system event of the “link to” file system event type occurs
when an existing, already created, symbolic link 1s associated
with a target node in the file hierarchy. Conversely, a file
system event of the “unlink to™ file system event type occurs
when an existing symbolic link 1s disassociated from a node
with which the symbolic link had been associated. Because a
user might want diflerent actions to be performed upon occur-

rences of each of the “link 1n,” “link to,” “unlink 1n,” and

“unlink to” file system event types, these file system event
types are distinguished and separated accordingly, even
though a “link to™ type file system event typically accompa-
nies a “link 1n” type file system event, and an “unlink to” type
file system event typically accompanies an “unlink 1™ type
file system event.

A file system event of the “check out” file system event
type occurs when an entity causes a modifiable copy of an
unchangeable version-controlled node to be created while
preserving the original node 1n 1ts unchangeable state. Con-
versely, a file system event of the “check 1n” file system event
type occurs when an entity causes such a copy (with some
modification) to become a new unchangeable version-con-
trolled node in the file hierarchy—another “version” of the
node that 1s accessible to other entities after being “checked
in.” Alternatively, an “uncheck out” file system event type
occurs when such a copy 1s disposed of without ever being
“checked 1n.”

A file system event of the “version control” file system
event type occurs when a node 1s placed under version control
and given a version-controlled status, so that the node
becomes an unchangeable version-controlled node from
which modifiable copies may be made as described above.
Some nodes may be under version control, while other nodes
might not be.

In some file systems, nodes may be updated transaction-
ally, so that incremental changes made to the node do not
become permanent unless and until all of the incremental
changes that belong to a transaction have been completed and
committed—if any of the incremental changes of a transac-
tion fails, then none of the transaction’s changes are made
permanent. A file system event of the “inconsistent update”™
file system event type occurs when such an incremental
update 1s performed, even 1f the transaction to which the
incremental update belongs has not yet been commutted.

A file system event of the “open” file system event type
occurs when an object handle or buffer for a node 1s estab-
lished so that the node can be read from and/or written to via
the object handle or butfer. Thus, a file system event of the
“open” file system event type may occur prior to the node
actually being read from or written to.

Pre- and Post-Event Handler Prefixes

As 1s described above, each event handler may be prefixed
by “pre-" or “post-"" prefix. In one embodiment, such prefixes
alfect the programmatic method or procedure to which an
event handler corresponds, and also the timing of the calling
and execution of the programmatic method or procedure rela-
tive to a file system event’s occurrence. For example, a par-
ticular programmatic mechanism may contain one program-
matic method or procedure for the “pre-update” event handler
and another programmatic method or procedure for the “post-
update” event handler. However, both the “pre-update” event

10

15

20

25

30

35

40

45

50

55

60

65

12

handler and the “post-update” event handler correspond to the
“update” file system event type.

As 1s described above, when a file system event 1s going to
occur relative to a node 1n a file hierarchy, a list of event
handlers to be 1nvoked 1s been generated. According to one
embodiment, those of the list’s event handlers that are pre-
fixed by “pre-" are invoked before the actual event occurs.
After the file system event occurs, then those of the list’s event
handlers that are prefixed by “post-" are mvoked.

For example, based on the example resource configuration
shown above, 1n response to detecting that a node was going
to be updated, the “post-update” method or procedure of the
“oracle.cm.category” programmatic mechanism would be
called and executed after the node was updated, and then the
“post-update” method or procedure of the “oracle.ifs.cat-
egory”’ programmatic mechanism would be called and
executed. Alternatively, 11 the event handlers had been pre-
fixed by “pre-” instead of “post-”, then the “pre-update™
methods or procedures of both the “oracle.cm.category” and
the “oracle.afs.category” programmatic mechanisms would
have been called and executed before the node was updated.

Pre-Conditions

As 1s discussed above, 1n one embodiment, the addition of
a particular event handler to the list of event handlers that are
to be invoked 1s subject to the satisfaction of a specified
pre-condition that 1s contained 1n the particular event han-
dler’s event listener. In one embodiment, before an event
handler 1s added to the list of event handlers to be invoked, as
described above, 1t 1s determined whether that event handler’s
event listener’s pre-condition 1s satisfied. It the pre-condition
1s not satisfied, then the event handler 1s not added to the list.

In the example resource configuration shown above, the
“Category application” and “Check quota” event listeners
both contain pre-conditions, which are bounded by the “<pre-
condition>" and “</pre-condition>" opening and closing
tags. In the above example, both pre-conditions contain
“existsNode” elements. Each “existsNode” element contains
an expression that indicates a node or node type. In the above
example, the nodes and node types are indicated via an XPath
expression. When a pre-condition contains an “existsNode™
clement, 1t 1s determined whether the node or node type
indicated within the “existsNode” element exists at the speci-
fied location 1n the file hierarchy. The pre-condition 1s satis-
fied only 1f the node or node type exists at the specified
location. This 1s just one example of many different possible
pre-conditions; other pre-conditions may contain expressions
that do not involve the existence of a node or node type.

Event Handlers Altering the Invocation of Event
Handlers

As 1s discussed above, the placement of a particular event
handler within the list does not necessarily guarantee that the
particular event handler actually will be invoked, or that the
particular event handler will be invoked according to 1ts 1nitial
order 1n the l1st. In one embodiment, when a file system event
1s going to occur relative to anode 1n a file hierarchy, an “event
object” 1s created for that file system event. The event object
contains the ordered list of event handlers that are to be
invoked, as described above. The event object also comprises
an interface of invocable methods or procedures that allow the
list contained within the event object to be retrieved and
altered.

In one embodiment, when the next event handler in the list
1s mvoked, the event object 1s passed as a parameter to the




US 8,176,007 B2

13

event handler’s corresponding programmatic method or pro-
cedure. The programmatic method or procedure may use the
event object’s interface to read the list and/or modify the list
in accordance with user-specified logic within the program-
matic method or procedure. For example, the programmatic
method or procedure may re-order the event handlers that
remain 1n the list. For another example, the programmatic
method or procedure may remove one or more remaining,
event handlers from the list. Thus, event handlers may be
removed from and/or reordered within the list by preceding
event handlers regardless of the list’s original ordering and
composition.

When the programmatic method or procedure has finished
executing, 1t returns the event object, which may contain a
modified list of event handlers to be 1nvoked. The next event
handler 1n the list, 1f any, 1s then mnvoked.

Database Architecture

FIG. 4 1s a block diagram showing a database architecture
that may be used to implement an embodiment of the present
invention. The architecture comprises a user interface 410, a
database server 412, and a database 414. Database server 412
interacts with the user via user interface 410, and accesses and
maintains database 414 1n accordance with the user input.
Database server 412 may also interact with other systems (not
shown).

In general, database server 412 creates a database by orga-
nizing information in one or more tables. The organization of
the table 1s referred to as a definition. An 1ndex 1s a structure
that 1s used for accessing particular information in the table
more quickly. Therefore, a table definition supports any
access mechanism to the data (search by name, by ID, by date,
etc.), whereas an index 1s designed for a specific access
method. The index itself 1s generally not the authoritative
source of the data, but rather contains pointers to the disk
addresses of the tables storing the authoritative data.

Example Technique for Performing an Action in
Response to a File System Event

FIGS. SA-C show a flow diagram that illustrates a tech-
nique 500, according to an embodiment of the invention, for
performing an action in response to a file system event. Data-
base server 412 may perform technique 500, for example.
Prior to the performance of technique 500, associations
between resource configurations and nodes 1n a file system
hierarchy may be established. Actions that are performed by
event handlers that are contained 1n a resource configuration
are considered to be associated with the same node with
which the resource configuration 1s associated. Pre-condi-
tions that are contained 1n an event listener are considered to
be associated with the actions that are performed by event
handlers that are contained 1n the event listener.

Referring first to FIG. SA, 1in block 502, a file system event
that 1s going to occur relative to a node within the file system
1s detected. In block 504, 1t 1s determined whether any more
event listeners that are contained in a resource configuration
that 1s associated with the entire file system contain an event
handler that corresponds to the file system event. It so, then
control passes to block 506. Otherwise, control passes to
block 510 of FIG. 5B.

In block 506, it 1s determined whether the next such event
listener’s pre-condition 1s satisfied. It so, then control passes
to block 508. Otherwise, control passes back to block 504.

10

15

20

25

30

35

40

45

50

55

60

65

14

In block 508, the event listener’s event handler that corre-
sponds to the file system event 1s added to the list of event

handlers that are to be invoked. Control passes back to block
504.

Referring now to FIG. 5B, in block 510, 1t 1s determined
whether any more event listeners that are contained in a
resource configuration that 1s associated with the node con-
tain an event handler that corresponds to the file system event.
If so, then control passes to block 512. Otherwise, control
passes to block 516.

In block 512, 1t 1s determined whether the next such event
listener’s pre-condition 1s satisfied. It so, then control passes
to block 514. Otherwise, control passes back to block 510.

In block 514, the event listener’s event handler that corre-
sponds to the file system event 1s added to the list of event
handlers that are to be invoked. Control passes back to block
510.

In block 516, an event object that contains the list of event
handlers that are to be mvoked 1s created.

Referring now to FIG. 5C, in block 318, prior to the occur-
rence of the file system event, 1t 1s determined whether any
more event handlers that are prefaced by “pre-"" are contained
in the event object’s list of event handlers to be invoked. If so,
then control passes to block 520. Otherwise, control passes to
block 524.

In block 520, the event object 1s passed as a parameter in a
call to a programmatic method or procedure that corresponds
to the next such event handler 1n the list. The programmatic
method or procedure called 1s a programmatic method or
procedure of the programmatic mechanism that corresponds
to the event handler’s event listener. The programmatic
method or procedure may perform one or more user-specified
actions. Such actions may include modifying the event
object’s list of event handlers to be mnvoked.

In block 522, the event objectis recerved from the program-
matic method or procedure. Control passes back to block 518.

In block 524, the file system event 1s allowed to occur.

In block 526, after the occurrence of the file system event,
it 1s determined whether any more event handlers that are
prefaced by “post-"" are contained 1n the event object’s list of
event handlers to be mmvoked. I so, then control passes to
block 528. Otherwise, the execution of technique 500 ends.

In block 528, the event object 1s passed as a parameter in a
call to a programmatic method or procedure that corresponds
to the next such event handler 1n the list. The programmatic
method or procedure called 1s a programmatic method or
procedure of the programmatic mechanism that corresponds
to the event handler’s event listener. The programmatic
method or procedure may perform one or more user-specified
actions. Such actions may include moditying the event
object’s list of event handlers to be invoked.

In block 530, the event object 1s received from the program-
matic method or procedure. Control passes back to block 526.

Hardware Overview

FIG. 6 1s a block diagram that illustrates a computer system
600 upon which an embodiment of the invention may be
implemented. Computer system 600 includes a bus 602 or
other communication mechanism for communicating infor-
mation, and a processor 604 coupled with bus 602 for pro-
cessing information. Computer system 600 also includes a
main memory 606, such as a random access memory (RAM)
or other dynamic storage device, coupled to bus 602 for
storing mformation and instructions to be executed by pro-
cessor 604. Main memory 606 also may be used for storing
temporary variables or other intermediate information during,



US 8,176,007 B2

15

execution of instructions to be executed by processor 604.
Computer system 600 further includes a read only memory
(ROM) 608 or other static storage device coupled to bus 602
for storing static information and instructions for processor
604. A storage device 610, such as a magnetic disk or optical
disk, 1s provided and coupled to bus 602 for storing informa-
tion and instructions.

Computer system 600 may be coupled via bus 602 to a
display 612, such as a cathode ray tube (CRT), for displaying
information to a computer user. An iput device 614, includ-
ing alphanumeric and other keys, 1s coupled to bus 602 for
communicating information and command selections to pro-
cessor 604. Another type of user input device 1s cursor control
616, such as a mouse, a trackball, or cursor direction keys for
communicating direction information and command selec-
tions to processor 604 and for controlling cursor movement
on display 612. This input device typically has two degrees of
freedom 1n two axes, a first axis (e.g., X) and a second axis
(e.g.,v), that allows the device to specily positions in a plane.

The mvention is related to the use of computer system 600
for implementing the techniques described herein. According
to one embodiment of the mmvention, those techniques are
performed by computer system 600 in response to processor
604 executing one or more sequences of one or more nstruc-
tions contained in main memory 606. Such instructions may
be read into main memory 606 from another computer-read-
able medium, such as storage device 610. Execution of the
sequences of instructions contained 1n main memory 606
causes processor 604 to perform the process steps described
herein. In alternative embodiments, hard-wired circuitry may
be used 1n place of or 1n combination with software nstruc-
tions to implement the mvention. Thus, embodiments of the
invention are not limited to any specific combination of hard-
ware circultry and software.

The term “computer-readable medium” as used herein
refers to any medium that participates in providing instruc-
tions to processor 604 for execution. Such amedium may take
many forms, including but not limited to, non-volatile media,
volatile media, and transmission media. Non-volatile media
includes, for example, optical or magnetic disks, such as
storage device 610. Volatile media includes dynamic
memory, such as main memory 606. Transmission media
includes coaxial cables, copper wire and fiber optics, includ-
ing the wires that comprise bus 602. Transmission media can
also take the form of acoustic or light waves, such as those
generated during radio-wave and infra-red data communica-
tions.

Common forms of computer-readable media include, for
example, a tloppy disk, a flexible disk, hard disk, magnetic
tape, or any other magnetic medium, a CD-ROM, any other

optical medium, punchcards, papertape, any other physical
medium with patterns of holes, a RAM, a PROM, and

EPROM, a FLASH-EPROM, any other memory chip or car-
tridge, a carrier wave as described hereinafter, or any other
medium from which a computer can read.

Various forms of computer readable media may be
involved 1n carrying one or more sequences of one or more
instructions to processor 604 for execution. For example, the
instructions may initially be carried on a magnetic disk of a
remote computer. The remote computer can load the mnstruc-
tions 1nto 1ts dynamic memory and send the istructions over
a telephone line using a modem. A modem local to computer
system 600 can recerve the data on the telephone line and use
an infra-red transmitter to convert the data to an inira-red
signal. Aninfra-red detector can receive the data carried in the
inira-red signal and appropriate circuitry can place the data
on bus 602. Bus 602 carries the data to main memory 606,

10

15

20

25

30

35

40

45

50

55

60

65

16

from which processor 604 retrieves and executes the mstruc-
tions. The mnstructions recetved by main memory 606 may
optionally be stored on storage device 610 either before or
alter execution by processor 604.

Computer system 600 also includes a communication
interface 618 coupled to bus 602. Communication interface
618 provides a two-way data communication coupling to a
network link 620 that 1s connected to a local network 622. For
example, communication interface 618 may be an integrated
services digital network (ISDN) card or a modem to provide
a data communication connection to a corresponding type of
telephone line. As another example, communication interface
618 may be a local area network (LAN) card to provide a data
communication connection to a compatible LAN. Wireless
links may also be implemented. In any such implementation,
communication interface 618 sends and receives electrical,
clectromagnetic or optical signals that carry digital data
streams representing various types of information.

Network link 620 typically provides data communication
through one or more networks to other data devices. For
example, network link 620 may provide a connection through
local network 622 to a host computer 624 or to data equip-
ment operated by an Internet Service Provider (ISP) 626. ISP
626 1n turn provides data communication services through the
world wide packet data communication network now com-
monly referred to as the “Internet” 628. Local network 622
and Internet 628 both use electrical, electromagnetic or opti-
cal signals that carry digital data streams. The signals through
the various networks and the signals on network link 620 and
through communication interface 618, which carry the digital
data to and from computer system 600, are exemplary forms
of carrier waves transporting the information.

Computer system 600 can send messages and receive data,
including program code, through the network(s), network
link 620 and communication interface 618. In the Internet
example, a server 630 might transmit a requested code for an
application program through Internet 628, ISP 626, local
network 622 and communication interface 618.

The received code may be executed by processor 604 as it
1s received, and/or stored in storage device 610, or other
non-volatile storage for later execution. In this manner, com-
puter system 600 may obtain application code 1n the form of
a carrier wave.

In the foregoing specification, embodiments of the inven-
tion have been described with reference to numerous specific
details that may vary from implementation to implementa-
tion. Thus, the sole and exclusive indicator of what 1s the
invention, and 1s mtended by the applicants to be the mven-
tion, 1s the set of claims that 1ssue from this application, 1n the
specific form in which such claims 1ssue, including any sub-
sequent correction. Any defimitions expressly set forth herein
for terms contained in such claims shall govern the meaning
of such terms as used in the claims. Hence, no limitation,
clement, property, feature, advantage or attribute that 1s not
expressly recited 1n a claim should limit the scope of such
claim in any way. The specification and drawings are, accord-
ingly, to be regarded 1n an illustrative rather than a restrictive
sense.

What 1s claimed 1s:

1. A method comprising;:

storing a {irst event handler that specifies a first method to
be performed prior to an occurrence of a file system
event of a first event type relative to one or more nodes 1n
a file system, wherein execution of the first method
causes a first action to be performed on a first database
object;



US 8,176,007 B2

17

storing a second event handler that specifies a second
method to be performed after an occurrence of a file
system event of the first event type relative to the one or
more nodes 1n the file system, wherein execution of the
second method causes a second action to be performed
on a second database object;

storing one or more event handlers other than the first event
handler and the second event handler, wherein the one or
more other event handlers correspond to one or more
event types other than the first event type;

a server detecting that execution of a recerved file system
command will cause a particular file system event of the
first event type relative to the one or more nodes in the
file system:;

in response to the server detecting that the received file
system command will cause the particular file system
event of the first event type relative to the one or more
nodes 1n the file system: (a) the server adding the par-
ticular file system event to a list of file system events to
occur, and (b) the server invoking the first method prior
to the occurrence of the particular file system event; and

in response to and after the occurrence of the particular file
system event, the server invoking the second method,;

wherein the first and second actions differ from the par-
ticular file system event;

wherein the first event handler, the second event handler,
and the one or more other event handlers are stored 1n a
configuration file, and wherein the configuration file
contains an indication of whether a method correspond-
ing to an event identifier 1s to be performed belore or
aiter the occurrence of a file system event;

wherein the method 1s performed by one or more comput-
ing devices.

2. The method of claim 1, wherein a database server man-

ages the file system.

3. The method of claim 1, wherein the configuration file 1s
an extensible markup language (XML) file, and wherein the
XML file contains a first tag that indicates “pre” before a
particular event identifier to indicate that the first method 1s to
be performed belfore the occurrence of a file system event that
corresponds to the particular event identifier, and wherein the
XML file contains a second tag that indicates “post” before
the particular event identifier to indicate that the second
method 1s to be performed after the occurrence of afile system
event that corresponds to the particular event identifier.

4. One or more non-transitory computer-readable storage
media storing instructions which, when executed by one or
more processors, cause the one of more processors to perform
the steps of:

storing a first event handler that specifies a first method to
be performed prior to an occurrence of a file system
event of a first event type relative to one or more nodes 1n
a file system, wherein execution of the first method
causes a lirst action to be performed on a {irst database
object;

storing a second event handler that specifies a second
method to be performed after an occurrence of a file
system event of the first event type relative to the one or
more nodes 1n the file system, wherein execution of the
second method causes a second action to be performed
on a second database object;

storing one or more event handlers other than the first event
handler and the second event handler, wherein the one or
more other event handlers correspond to one or more
event types other than the first event type;

5

10

15

20

25

30

35

40

45

50

55

60

65

18

a server detecting that execution of a received file system
command will cause a particular file system event of the
first event type relative to the one or more nodes in the

file system;

in response to the server detecting that the recerved file
system command will cause the particular file system
event of the first event type relative to the one or more
nodes 1n the file system: (a) the server adding the par-
ticular file system event to a list of file system events to
occur, and (b) the server imnvoking the first method prior
to the occurrence of the particular file system event; and

in response to and after the occurrence of the particular file
system event, the server invoking the second method;

wherein the first event handler, the second event handler,
and the one or more other event handlers are stored 1n a
configuration file, and wherein the configuration file
contains an indication of whether a method correspond-
ing to an event identifier 1s to be performed before or
after the occurrence of a file system event;

wherein the first and second actions differ from the par-

ticular file system event.

5. The one or more non-transitory computer-readable stor-
age media of claim 4, wherein a database server manages the
file system.

6. The one or more non-transitory computer-readable stor-
age media of claim 4, wherein the configuration file 1s an
extensible markup language (XML) file, and wherein the
XML file contains a first tag that indicates “pre” before a
particular event identifier to indicate that the first method 1s to
be performed before the occurrence of a file system event that
corresponds to the particular event identifier, and wherein the
XML file contains a second tag that indicates “post” before
the particular event identifier to indicate that the second
method 1s to be performed after the occurrence of a file system
event that corresponds to the particular event 1dentifier.

7. The method of claim 1, wherein the first database object
stores information about the one or more nodes.

8. The method of claim 1, wherein the second database
object stores information about the one or more nodes.

9. The method of claim 1, wherein the file system event 1s
an event that occurs when a node of the one or more nodes 1s
locked or unlocked.

10. The method of claim 1, wherein the file system event 1s
an event that occurs when a node of the one or more nodes 1s
dynamically generated.

11. The method of claim 1, wherein the file system event 1s
an event that occurs when a symbolic link to anode of the one
or more nodes 1s established or destroyed.

12. The one or more non-transitory computer-readable
storage media of claim 4, wherein the first database object
stores information about the one or more nodes.

13. The one or more non-transitory computer-readable
storage media of claim 4, wherein the second database object
stores information about the one or more nodes.

14. The one or more non-transitory computer-readable
storage media of claim 4, wherein the file system event 1s an
event that occurs when a node of the one or more nodes 1s
locked or unlocked.

15. The one or more non-transitory computer-readable
storage media of claim 4, wherein the file system event 1s an
event that occurs when a node of the one or more nodes 1s
dynamically generated.

16. The one or more non-transitory computer-readable
storage media of claim 4, wherein the file system event 1s an
event that occurs when a symbolic link to a node of the one or
more nodes 1s established or destroyed.




US 8,176,007 B2

19

17. The method of claim 1, wherein the first event type 1s
one of: render, create, delete, update, lock, unlock, link 1n,
link to, unlink 1n, unlink from, check 1n, check out, uncheck
out, version control, inconsistent update, or open; and
wherein the one or more other event types include one or more
others of: render, create, delete, update, lock, unlock, link 1n,
link to, unlink 1n, unlink from, check 1n, check out, uncheck
out, version control, inconsistent update, or open.

18. The method of claim 1, wherein the received file system
command 1s one of: a command to copy {iles, a command to
move files, a command to delete files, a command to create
directories, a command to list directory contents, a command
to remove directories, a command to rename files, or a com-
mand to rename directories.

19. The one or more non-transitory computer-readable
storage media of claim 4, wherein the first event type 1s one of:

10

15

20

render, create, delete, update, lock, unlock, link 1n, link to,
unlink 1n, unlink from, check 1n, check out, uncheck out,
version control, inconsistent update, or open; and wherein the
one or more other event types include one or more others of:
render, create, delete, update, lock, unlock, link 1n, link to,
unlink 1n, unlink from, check 1n, check out, uncheck out,
version control, inconsistent update, or open.

20. The one or more non-transitory computer-readable
storage media of claim 4, wherein the received file system
command 1s one of: a command to copy files, a command to
move files, a command to delete files, a command to create
directories, a command to list directory contents, a command
to remove directories, a command to rename files, or a com-
mand to rename directories.




UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 8,176,007 B2 Page 1 of 1
APPLICATION NO. : 13/026131

DATED : May 8, 2012

INVENTOR(S) : Hoang et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On Title page 3, Item (56) under “Other Publications™, line 25, delete “PCT/US03/355551,” and 1nsert
-- PCT/USQ03/35551, --, therefor.

On Title page 3, Item (56) under “Other Publications”, line 47, delete “(7 pages).” and insert
-- received on Oct. 13, 20006, (7 pages). --, therefor.

On Title page 3, Item (56) under “Other Publications™, line 52, delete “US2005,011763,” and 1nsert
-- US2005/011763, --, therefor.

On Title page 4, Item (56) under “Other Publications”, line 8, delete “US205/011762.” and 1nsert
-- US2005/011762, --, therefor.

On Title page 4, Item (56) under “Other Publications™, line 23, delete “““Milau:” and insert
-- “Millau: --, therefor.

On Title page 4, Item (56) under “Other Publications”, line 11, delete “600202/2000.” and msert
-- 600202/2000, recerved Apr. 28, 2008 (9 pages). --, therefor.

In column 1, line 26, delete “2003;” and insert -- 2002; --, therefor.

Signed and Sealed this
Tharty-first Day of July, 2012

David J. Kappos
Director of the United States Patent and Trademark Office



	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

