US008171550B2
a2y United States Patent (10) Patent No.: US 8,171,550 B2
Burtscher 45) Date of Patent: *May 1, 2012
(54) SYSTEM AND METHOD FOR DEFINING AND 6,397,264 Bl 5/2002 Stasnick et al.
DETECTING PESTWARE WITH FUNCTION gjgggég g; lggggg §131311;lan et alj -
460, | a 0zzo, Jr. et al.
PARAMETERS 6,480,962 Bl 11/2002 Touboul
_ 6,535,931 Bl 3/2003 Cely, Jr.
(75) Inventor: Michael Burtscher, Longmont, CO 6,611,878 B2 /2003 De Armas et al.
(US) 6,633,835 B1 10/2003 Moran et al.
6,667,751 Bl 12/2003 Wynn et al. |
(73) Assignee: Webroot Inc., Broomfield, CO (US) 6,701,441 Bl 3/2004 Balasubramaniam et al.
6,772,345 Bl 8/2004 Shetty
6,785,732 Bl 8/2004 Bates et al.

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 1486 days.

(Continued)

FOREIGN PATENT DOCUMENTS

Thi.s patent 1s subject to a terminal dis- WO WO2007007326 x 79006
claimer. ,
(Continued)
21) Appl. No.: 11/462,943
(1) Appl. No OTHER PUBLICATIONS
(22) Filed: Aug. 7, 2006 Nick Petroni, “Copilot-Coprocessor-based Kernel Runtime Integrity

_ o Monitor”, Aug. 2004, USENIX Association.*
(65) Prior Publication Data

US 2008/0034430 A1 Feb. 7, 2008 (Continued)

Primary Examiner — Taghi Arani

(51) glgéﬂ(*;lél/OO (2006.01) Assistant Examiner — Gregory Lane

(52) US.CL oo 726/23: 726/22: 726/24: T14/15;, /) Attorney, Agent, or Firm — Cooley LLP
T14/38.14:717/126 (57, ARSTRACT

(58) Field of Classification Search 726/22-24

A system and method for defining and detecting pestware 1s

See application file for complete search history. _ _ ‘ _
described. In one embodiment, a pestware file 1s received and

(56) References Cited at least a portion of the pestware file 1s placed into a processor-
readable memory. A plurality of execution paths within code
U.S. PATENT DOCUMENTS of the pestware file are tollowed and for each of a plurality of
5.623.600 A 4/1997 Ti of al. selected function calls within the execution paths of the pest-
5,920,696 A 7/1999 Brandt et al. ware file, at least one parameter from each of the function
5,951,698 A 9/1999 Chen et al. calls 1s retrieved so as to obtain a plurality of parameters. A
6,069,628 A 5/2000 Farry et al. representation of each of the parameters is then stored in a
g’ggg’%gi i 2?3888 Egsf}g?frg etal processor-readable pestware-definition file, which 1s sent to a
6,154,844 A 11/2000 Touboul plurality of client devices.
6,167,520 A 12/2000 Touboul
6,310,630 Bl 10/2001 Kulkarni et al. 11 Claims, 3 Drawing Sheets

Threat Ressarch 108

Function-Parameter-
definition Engine

Update Service JJq

US 8,171,550 B2
Page 2

0,804,780
0,813,711
0,829,654
6,910,134
0,965,968
6,966,059
7,058,822
7,107,617
7,210,168
2002/0162015
2002/0166063
2003/0065943
2003/0074581
2003/0101381
2003/0159070
2003/0217287
2004/0030914
2004/0034794
2004/0064736
2004/0080529
2004/0143763
2004/0187023
2004/0225877
2004/0255165
2005/0021994
2005/0038697
2005/0091558

2005/0138433
2005/0154885
2005/0177868
2006/0074896
2006/0075494
2006/0075500

U.S. PATENT DOCUMENTS

vellvvivelvelveliveRvelve
e I o B A L e

> 5
-

AN AN AAAAA AN A AN A

10/2004
11/2004
12/2004
6/2005
11/2005
11/2005
6/2006
9/2006
4/2007
10/2002
11/2002
4/2003
4/2003
5/2003
8/2003
11/2003
2/2004
2/2004
4/2004
4/2004
7/2004
9/2004
11/2004
12/2004
1/2005
2/2005
4/2005

6/2005
7/2005
8/2005
4/2006
4/2006
4/2006

Touboul

Dimenstein

Jungek

Mabher et al.

Touboul

Shetty etal. 717/172
Edery et al.

Hursey et al.

Hursey etal. 726/24
Tang

Lachman et al.

Gels et al.

Hursey et al.

Mateev et al.

Mayer et al.

Kruglenko

Kelley et al.

Mayer et al.

Obrecht et al.

Wojcik

Radatti

Alagna et al.

Huang

SZOT veiiiiieeieiiiieee e 713/201
Barton etal. 713/200

Aaron
Chessetal.ovvvinnil. 714/38

Linetsky
Viscomi et al.
Kwan
Thomas et al.
Bertman et al.
Bertman et al.

******************* ;O;‘/ﬁl

................ 726/24

4/2006 Thomas et al.
4/2006 Treit

2006/0075501 Al
2006/0080637 Al
2006/0161988 Al 7/2006 Costea et al.

2007/0006311 Al* 1/2007 Bartonetal. 726/24

FOREIGN PATENT DOCUMENTS
WO PCT/US2006/025378 9/2007

OTHER PUBLICATIONS

Alexander Volynkin, “Evaluation of run-time detection of self-repli-

cation 1n binary executasble malware” Proceedings of the 2006

IEEE.*

U.S. Appl. No. 11/462,956, filed Aug. 7, 2006, Michael Burtscher.
Codeguru, Three Ways to Inject Your Code Into Another Process, by
Robert Kuster, Aug. 4, 2003, 22 pgs.

Codeguru, Managing Low-Level Keyboard Hooks With the Win-
dows API for VB Net, by Paul Kimmel, Apr. 18, 2004, 10 pgs.
Codeguru, Hooking the Keyboard, by Anoop Thomas, Dec. 13, 2001,
O pgs.

[llusive Security, Wolves in Sheep’s Clothing: malicious DLLs
Injected Into trusted Host Applications, Author Unknown, http://
home.arcor.de/scheinsicherheit/dll.htm 13 pgs.

DevX.com, Intercepting Systems API Calls, by Seung-Woo Kim,
May 13, 2004, 6 pgs.

Microsoft.com, How to Subclass a Window 1n Windows 95, Article
ID 125680, Jul. 11, 2005, 2 pgs.

MSDN, Win32 Hooks by Kyle Marsh, Jul. 29, 1993, 15 pgs.

PCT Search Report, PCT/US05/34874, Jul. 5, 2006, 7 Pages.

Yurcik, William et al., A Planning Framework for Implementing
Virtual Private Networks, Jun. 2001, IT Pro, IEEE, pp. 41-44.

* cited by examiner

US 8,171,550 B2

Sheet 1 of 3

May 1, 2012

U.S. Patent

l 4dNOI4d

adIAlag ajepdn

0Ll
auibug uoniuyep

-Jolsuliele4-UoIiloun

001

US 8,171,550 B2

Sheet 2 of 3

May 1, 2012

U.S. Patent

3IOMIBN
WoJd4/0 |

¢ 44Nl

A|npo buipoday

3[NPOIN |BAOWIDY

¢Z¢ 9Inpo uonavlaQg
ZEC anpo uosiiedwon

(o]t

aulbug Jejawieied4-uonoun

12414

0ce alemAds-luy

Zle
UORE3IUNWWOD

HIOMIEN

90¢

—————

L&

suouyaQ

e ——

80<

3|14 10adsng

U.S. Patent May 1, 2012 Sheet 3 of 3 US 8,171,550 B2

Host

302 ,
C Start >" g Protected Computer
¢ 304

/ . o 322
Receiving a pestware file. ; Receiving a file —
_ + _ 306 +
Placing at least a portion of the pestware | ; Placing at least a portion of the file | 324
file into a processor-readable memory E into a processor-readable memory n:n‘fJ
+ ; the computer
Following a pluraliity of execution paths +
within code of the pestware file, wherein 308 g Following a plurality of execution
each of the execution paths is a potential ~ g paths within code of the pestware
path that a processor executing the code i file, wherein each of the execution 326
may follow paths is a potential path that a
1 § processor executing the code may
310 ; follow

Locating function calls within the execution |-/
paths | ¢

Y

Locating function calis within the 328
execution paths

312 |
Storing, in a processor-readable pestware- / *
definition file, parameters of each of the g
function calls E comparing, against a pestware-
definition file, a representation of | 330
§ »| parameters of each of the function [~
l 314 i calls so as to determine whether the
= 320 file is a potential pestware file
Sending the pestware-definition file to a o | /
. i : estware
plurality of client devices. 7/ Definition /

- e e e Al gy

L e ewr T — oy

FIGURE 3

US 8,171,550 B2

1

SYSTEM AND METHOD FOR DEFINING AND
DETECTING PESTWARE WITH FUNCTION
PARAMETERS

RELATED APPLICATIONS

The present application 1s related to commonly owned and
assigned application Ser. No. 11/462,956, entitled SYSTEM AND

METHOD FOR DEFINING AND DETECTING PESTWARE, which 1s incor-
porated herein by reference.

COPYRIGHT

A portion of the disclosure of this patent document con-
tains material that 1s subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent disclosure, as 1t appears 1n the
Patent and Trademark Office patent files or records, but oth-
erwise reserves all copyright rights whatsoever.

FIELD OF THE INVENTION

The present invention relates to computer management. In
particular, but not by way of limitation, the present invention
relates to systems and methods for detecting and removing,
pestware.

BACKGROUND OF THE INVENTION

Personal computers and business computers are continu-
ally attacked by trojans, spyware, and adware, collectively
referred to as “malware” or “pestware.” These types of pro-
grams generally act to gather information about a person or
organization—oiten without the person or organization’s
knowledge. Some pestware 1s highly malicious. Other pest-
ware 1s non-malicious but may cause 1ssues with privacy or
system performance. And yet other pestware 1s actually ben-
eficial or wanted by the user. Wanted pestware 1s sometimes
not characterized as “pestware” or “spyware.” But, unless
specified otherwise, “pestware” as used herein refers to any
program that collects and/or reports information about a per-
son or an organization and any “watcher processes” related to
the pestware.

Soltware 1s available to detect and remove some pestware,
but many types of pestware are difficult to detect with typical
techniques. For example, pestware may be obfuscated with
encryption techmiques so that a pestware file stored on a
system hard drive may not be readily recognizable as a file
that has spawned a pestware process. In yet other instances,
pestware 1s known to be polymorphic in nature so as to change
its code, data, size and/or its starting address in memory. In
yet other instances, variants of known pestware are developed
that alter relatively little of the functional aspects of the pest-
ware, yet render the pestware undetectable.

Although present pestware-detection systems detect some
or even most pestware, they are not sulliciently accurate or
otherwise satistactory. Accordingly, a system and method are
needed to address the shortfalls of present technology and to
provide other new and innovative features.

SUMMARY OF THE INVENTION

Exemplary embodiments of the present invention that are
shown 1n the drawings are summarized below. These and
other embodiments are more fully described 1n the Detailed
Description section. It1s to be understood, however, that there
1s no 1ntention to limit the invention to the forms described 1n

10

15

20

25

30

35

40

45

50

55

60

65

2

this Summary of the Invention or in the Detailed Description.
One skilled 1n the art can recognize that there are numerous
modifications, equivalents and alternative constructions that
tall within the spirit and scope of the invention as expressed 1n
the claims.

The present invention can provide a system and method for
defining and detecting pestware. In one embodiment, a pest-
ware flle 1s recerved and at least a portion of the pestware file
1s placed 1nto a processor-readable memory. A plurality of
execution paths within code of the pestware file are followed
and for each of a plurality of selected function calls within the
execution paths of the pestware file, at least one parameter
from each of the function calls 1s retrieved so as to obtain a
plurality of parameters. A representation of each of the
parameters 1s then stored 1n a processor-readable pestware-
definition file, which 1s sent to a plurality of client devices
where the pestware-definition file 1s compared against sus-
pect files.

As previously stated, the above-described embodiments
and 1mplementations are for illustration purposes only.
Numerous other embodiments, implementations, and details
of the invention are easily recognized by those of skill 1n the
art from the following descriptions and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

Various objects and advantages and a more complete
understanding of the present invention are apparent and more
readily appreciated by reference to the following Detailed
Description and to the appended claims when taken 1n con-
junction with the accompanying Drawings wherein:

FIG. 1 1s a block diagram depicting an environment in
which several embodiments of the mvention may be imple-
mented;

FIG. 2 1s a block diagram depicting one embodiment of a
protected computer; and

FIG. 3 1s a flowchart depicting steps traversed in accor-
dance with an exemplary embodiment of the present mven-
tion.

DETAILED DESCRIPTION

Referring now to the drawings, where like or similar ele-
ments are designated with identical reference numerals
throughout the several views. Referring first to FIG. 1, shown
1s a block diagram depicting an environment 100 in which
several embodiments of the present invention are imple-
mented.

As shown, N protected computers 102, _,,are coupled to a
host 104 via anetwork 106 (e.g., the Internet). The host 104 in
this embodiment includes a threat research portion 108 and a
function-parameter definition engine 110. Also depicted are
data storage devices 112, 114 that include collected threat
data 112 and function-parameter-based definitions 114. The
term “protected computer” 1s used herein to refer to any type
of computer system, including personal computers, handheld
computers, servers, firewalls, efc.

In accordance with several embodiments, the threat
research portion 108 i1dentifies and stores pestware threats in
the threat database 112. The threat research portion 108 may,
for example, actively search for pestware using bots that
scour the Web for potential pestware. In addition, one or more
of the N protected computers 102, _,,may provide data, via the
network 106, about potential pestware to the threat research
portion 108.

US 8,171,550 B2

3

The function-parameter definition engine 110 1n this
embodiment 1s configured to retrieve the collected pestware
threats from the threat database 112 and generate function-
parameter-based definitions that are stored in the definition
database 114. An update service 116 then makes the function-
parameter-based definitions available to the computers
102, . The 1illustrated arrangement of these components 1s
logical and not meant to be an actual hardware diagram or a
detailed architecture of an actual software implementation.
Thus, the components can be combined or further separated
in an actual implementation. Moreover, 1n light of this speci-
fication, the construction of each individual component 1s
well-known to those of skill in the art.

As discussed further herein, using function-parameter-
based pestware definitions provides several advantages over
known pestware detection methodologies. In general, the
function-parameter-based definitions include a collection of
data that 1s dependent upon the overall functionality of the
pestware files so that minor variations to a pestware file donot
render the pestware undetectable. In many embodiments for
example, the function-parameter-based definitions include
data that 1s dependent upon occurrences of function calls and
the parameters of the function calls.

In several embodiments for example, the function-param-
eter-based definitions may include both data that captures the
occurrences of system calls and one or more parameters for
cach system call. As an example, string parameters (e.g., file
names), integer parameters, and/or pointers may be collected
for each function call and stored to create a function-param-
eter-based definition. In addition, 1n some variations an i1den-
tifier of the function call may also be stored in connection
with the parameters. One of ordinary skill 1 the art waill
appreciate, 1n light of this disclosure, that the stored repre-
sentation of the parameters may be actual characters, a digital
signature (e.g., hash function) or any other reproducible rep-
resentation of the parameters.

Although not required, 1n some embodiments the function-
parameter-based definitions may also include data that 1s
dependent upon an order of the function calls within the
pestware code. As discussed further herein, the function
parameters and their respective locations may be represented
in a function-parameter graph that may be used as a pestware
definition.

Notably, the 1dentity of each function call (e.g., system
call) need not be captured in the function-parameter-based
definitions in order for the function-parameter-based defini-
tions to provide a useful definition of the pestware. This 1s in
contrast to known pestware detection techniques, which parse
through files to locate commands which are compared with a
listing of operations that are known to be potentially danger-
ous operations. In other words, instead of analyzing a file to
determine 11 1t includes commands that carry out operations
known to be dangerous, 1n many embodiments of the present
invention, files are analyzed based upon parameters of func-
tion calls 1irrespective of the functions (e.g., kernel functions)
associated with the functions calls.

Referring next to FIG. 2, shown 1s a block diagram 200 of
one embodiment of a protected computer 102, _,, depicted 1n
FIG. 1. This mmplementation includes a processor 202
coupled to memory 204 (e.g., random access memory
(RAM)), a file storage device 206, and network communica-
tion module 212.

As shown, the file storage device 206 provides storage for
a collection files which includes a suspect file 208 (e.g.,
received via the network 106 from a URL) and function-
parameter-based definitions 210 recerved from the update

service 116 of the host 104. The file storage device 206 1s

5

10

15

20

25

30

35

40

45

50

55

60

65

4

described herein in several implementations as hard disk
drive for convenience, but this 1s certainly not required, and
one of ordinary skill in the art will recognize that other storage
media may be utilized without departing from the scope of the
present invention. In addition, one of ordinary skill 1n the art
will recognize that the storage device 206, which 1s depicted
for convenience as a single storage device, may be realized by
multiple (e.g., distributed) storage devices.

As shown, an anti-spyware application 220 includes a
detection module 222, aremoval module 224, and a reporting
module 226 which are implemented 1n software and are
executed from the memory 204 by the processor 202. In
addition, suspect-process code 228, which corresponds to the
suspect file 208, 1s also depicted 1n memory 204.

The anti-spyware application 214 can be configured to
operate on personal computers (e.g., handheld, notebook or
desktop), servers or any device capable of processing imstruc-
tions embodied 1n executable code. Moreover, one of ordi-
nary skill i the art will recognize that alternative embodi-
ments, which i1mplement one or more components in
hardware, are well within the scope of the present invention.
It should be recognized that the illustrated arrangement of
these components 1s logical and not meant to be an actual
hardware diagram or a detailed architecture of an actual soft-
ware 1mplementation. Thus, the components can be com-
bined or further separated 1n an actual implementation. More-
over, 1n light of this specification, the construction of each
individual component 1s well-known to those of skill 1n the
art.

Also shown within the detection module 222 are a func-
tion-parameter engine 230 and a comparison module 232. In
the exemplary embodiment, the function-parameter engine
230 1s configured to collect parameters from function calls
within the suspect code 228 and the comparison module 232
1s configured to compare the parameters from the suspect
code 228 with the function-parameter-based definitions 210
to assess whether the suspect code 228 1s likely pestware
code. Depending upon the results of the comparison carried
out by the comparison module, the suspect file 208 and code
228 may be removed and/or a user of the computer 200 1s
notified about the likelihood the suspect file 208 1s a pestware
file.

The configuration of the function-parameter engine 230
may vary depending upon the content of the function-param-
cter-based definitions. For example, if the function-parameter
definition engine 110 generates function-parameter-based
definitions that include a representation of function param-
eters (e.g., a hash or check sum) and the relative locations of
the function calls for each pestware file, then the function-
parameter engine 230 may be configured to generate the same
type of representation of function calls along with informa-
tion that captures the relative locations of the function calls so
that the parameters collected by the function-parameter
engine 230 1s comparable with the function-parameter-based
definitions 210.

Referring next to FIG. 3, shown 1s a tlow chart depicting a
process for generating function-parameter-based definitions
and a process for using the function-parameter-based defini-
tions to analyze suspect code. While referring to FIG. 3,
simultaneous reference will be made to FIGS. 1 and 2, but 1t
should be recognized that the processes depicted in FIG. 3 are
certainly not limited to being implemented in the exemplary
embodiments depicted in FIGS. 1 and 2.

As shown 1n FIG. 3, imtially a pestware file 1s received at a
host site (Blocks 302, 304), and at least a portion of code from
the file 1s placed 1n a processor-readable memory (Block
306). Referring to FI1G. 1, for example, the pestware file may

US 8,171,550 B2

S

be 1dentified as pestware by the threat research module 108
and stored in the threat database 112 so that it may be
retrieved by the function-parameter-definition engine 110.

Once code of the pestware file has been retrieved, a plural-
ity of potential-execution paths within the code are followed
(Block 308), and function calls (e.g., system calls) within the
execution paths are located (Block 310). For example, start-
ing with an entry point of the code from the pestware file, the
code may be followed until there 1s a conditional jump 1n the
code, which separates the path into two paths. Fach of the
separate paths 1s then followed, and if each of the separate
paths splits into additional paths, then each of the additional
paths 1s also followed.

In some embodiments instructions in the pestware code
that are not jumps or conditional jumps are 1gnored, and in
embodiments where system calls are located, calls to
addresses made within the code of the pestware may be
assumed to be non-system calls and also 1gnored.

As shown 1n FIG. 3, in several embodiments a representa-
tion of the parameters of each located function call within the
code 1s stored 1n a processor-readable pestware-definition file
(Block 312). Although not required, in some embodiments, 1n
addition to storing parameters for each function call, imnfor-
mation about the relative locations of the function calls 1n the
code 1s also stored 1n connection with the stored parameters.

In one embodiment for example, 1n connection with each
parameter, a representation of the address of the associated
function call 1s stored along with information that connects
cach function call with other function calls. As an example,
the representation of the address may be the address itself, a
check sum, or a hash of the address, and the information
connecting the function calls may be information that relates
the function calls to one another by the paths 1n the code
where the function calls occur. It should be recognized that
using an address of each system call 1s merely one way of
attaching an i1dentifier to each call. Moreover, the actual sys-
tem functionality associated with each function calls need not
be known.

Although 1n many embodiments the function associated
with each function call 1s not determined, it beneficial in these
embodiments to attach an identifier to the function calls so
that 1t a call 1s repeated, there 1s a way of recognizing and
tracking the number of times a particular function call 1s
made. It 1s contemplated, for example, that the repetition of
particular function calls as well as the parameters of each
function call may be used to construct a definition for the
pestware.

In embodiments where the relative locations of the func-
tion calls are captured, data representing a tree-shaped graph
may stored 1n the pestware-definition file that is characterized
by branches that include the function calls (and function-call
parameters), and nodes that correspond to conditional jumps
within the code. To simplify the tree, and hence the quantity
of data associated with the tree, branches that do not include
function calls (e.g., system calls) may be ignored. It has been
found that, even when the branches that do not contain func-
tion calls are ignored, comparing a graph-based pestware
definition with a graph generated from a suspect file (e.g., the
suspect file) may be a processor-intensive process. As a con-
sequence, 1n many variations where a graph 1s generated, the
graph 1s simplified by removing cycles in the tree-shaped
graph to create a simplified tree. Although data 1s missing, 1t
has been found that graph-based pestware definitions may be
simplified 1n this manner and yet be effective to identily
pestware.

The extent to which a parameter graph (11 created) 1s sim-
plified may vary depending upon factors including the accu-

10

15

20

25

30

35

40

45

50

55

60

65

6

racy desired, the processing capabilities of the computer and/
or the desired rate at which files are scanned. Although
certainly not required, 1t has been found that a graph may be
simplified so that it 1s linear representation of the order 1n
which occurrences of the function calls (and function-call
parameters) occur. For example, the graph may be a linear
parameter graph that includes data that defines an order in
which system calls are made.

In some 1nstances, pestware 1s designed to mnclude condi-
tional jumps and/or function calls that include dynamic
addresses. For example, pestware may be designed so that an
address 1s loaded 1nto a register and a jump instruction then
jumps to the value 1n the register. As a consequence, 1n some
embodiments when a graph 1s assembled, instructions that
precede the jump or call are emulated to determine the value
ol the register. In this way, more call and jump destinations
may be determined and a more complete graph may be
assembled.

As depicted 1n FIG. 3, once a pestware definition file gen-
erated, 1t 1s sent to one or more client computers (e.g., the N
protected computers 102, _,,). In many embodiments the host
104 performs research to 1dentily new pestware threats and
generates pestware definitions 1 accordance with Blocks
302-312 on an ongoing basis, and the N protected computers
102, ., periodically recerve the updated definitions.

From the perspective of a protected computer, when a file
1s received at the protected computer (e.g., via the network
communication module 212 or portable media), at least a
portion of the file 1s placed 1n processor-readable memory
(e.g., memory 204) of the computer (Blocks 322, 324). Once
in memory, a plurality of execution paths within the code are
followed, and function calls within the execution paths are
located (Blocks 326, 328). As will be appreciated by one of
ordinary skill in the art, the manner in which the steps
depicted by Blocks 326 and 328 1s carried out may vary, but
these steps are dependent upon how the pestware defimition
file 1s generated at Blocks 308-310. For example, 11 system
calls are 1dentified 1n Block 310, then system calls are also
identified 1n Block 328.

As shown 1n FIG. 3, a representation of the parameters of
cach of the function calls located 1n Block 328 1s compared
against the pestware definition file generated at Block 312 to
determine whether the file 1s a potential pestware file (Block
330).

In embodiments where the pestware definition includes
relative locations of function calls, the relative locations of
the function calls within the code of the analyzed file 1s
compared against the relative locations of the function calls in
the pestware-defimition file. In some of these embodiments a
comparison of locations of identifiers of the function calls of
the analyzed file and the pestware-definition file 1s made. As
discussed, the manner 1n which each function call 1s repre-
sented may be arbitrary in that each function call may be
given an identifier that may or may not connote the actual
function associated with the function call.

When comparing locations of each of the function calls and
function-call parameters, in many embodiments the longest
matching sequence of function parameters between the pest-
ware-definition file and the analyzed file 1s found.

One of ordinary skill 1n the art, 1in light of this disclosure,
will appreciate that a match between some types of param-
cters are a stronger indication that the analyzed file 1s a pest-
ware file. As an example, string parameters typically include
a lot of information and a match between string parameters
relative to a match between integer parameters, for example,
provides a stronger indication that the analyzed file 1s a pest-
ware file. As a consequence, in some embodiments param-

US 8,171,550 B2

7

cters are weighted so that if, for example, a match 1s found
between a string parameter of the analyzed file and the pest-
ware definition, that match 1s weighted more heavily than a
match between integer parameters.

Beneficially, comparing function parameters of a suspect
file with function parameters of a pestware defimition makes 1t
more difficult for producers of pestware to eflectively dis-
guise pestware with minor alterations. Specifically, due to
time and cost considerations, pestware producers are more
likely to make alterations that affect how pestware code
appears, but not how the pestware code operates. And func-
tion parameters are generally determined by how the code
operates. As a consequence, unless a pestware file 1s substan-
tially altered, so that the functionality of the pestware 1s
altered, the pestware detection techniques described herein
remain elfective.

It should be recognized that the comparison between the
pestware-definition file and the file being analyzed may gen-
crate substantially less than a 100 percent match, and yet,
provide a strong 1indication that the analyzed file 1s a pestware
file. For example, in many instances pestware producers are
more inclined to add functionality to their pestware offerings.
And when adding new functionality, the existing core func-
tionality 1s often left in place. As a consequence, 11 the addi-
tional functionality corresponds to 30 percent of the function
parameters in an enhanced pestware file, a match between 60
percent of the parameters of the enhanced pestware file and a
pestware-definition based upon the original pestware file
strongly suggests that the enhanced pestware file 1s indeed
pestware.

Similarly, if a portion of an orniginal pestware file 1s
removed or replaced, there may be substantially less than 100
percent match between the pestware-definition file and the
enhanced pestware file. But if the remaining portion of origi-
nal pestware file 1s a substantial portion of the enhanced file
(e.g., the remaining portion includes 60 percent of the func-
tion parameters of the enhanced file) there may still be enough
matches (e.g., S0 percent) between the original pestware-
definition and the enhanced pestware file to at least render the
analyzed file a potential pestware file.

In addition, 1t 1s contemplated that, based upon the extent
the pestware-definition matches the analyzed file, the pest-
ware flle may be quarantined, removed or a user of the com-
puter may be informed about the likelihood that the analyzed
file 1s a pestware file.

In conclusion, the present invention provides, among other
things, a system and method for defining and detecting pest-
ware. Those skilled i the art can readily recogmize that
numerous variations and substitutions may be made 1n the
invention, its use and its configuration to achieve substan-
tially the same results as achieved by the embodiments
described herein. Accordingly, there 1s no intention to limait
the invention to the disclosed exemplary forms. Many varia-
tions, modifications and alternative constructions fall within
the scope and spirit of the disclosed invention as expressed in
the claims.

What 1s claimed 1s:

1. A method for generating pestware definitions compris-
ng:

receiving a pestware file;

placing at least a portion of the pestware file into a proces-
sor-readable memory;

tollowing a plurality of execution paths within code of the
pestware file, wherein each of the execution paths 1s a
potential path that a processor executing the code may
follow:

retrieving, for each of a plurality of selected function calls
within the code of the pestware file, at least one param-
cter from each of the function calls so as to obtain a
plurality of parameters;

5

10

15

20

25

30

35

40

45

50

55

60

65

8

storing, 1n a processor-readable pestware-definition file, a

representation of each of the parameters; and

sending the pestware-definition file to a plurality of client

devices;:

wherein the selected function calls are selected on the basis

that the selected function calls include calls to addresses
of the processor-readable memory that are outside of the
memory occupied by the code of the pestware {ile.

2. The method of claim 1, wherein the storing includes
storing relative locations of where, within the code of the
pestware file, each of the function calls associated with the
parameters occur.

3. The method of claim 1, wherein the selected function
calls are system calls.

4. The method of claim 1 1ncluding;:

simplifying the representation of the relative locations so

as to create a simplified representation of the relative
locations, wherein the storing includes storing the rep-
resentation as the simplified representation.

5. The method of claim 1 wherein the retrieving includes:

retrieving a string that 1s indicative of a file name.

6. The method of claim 1, wherein the representation of
cach of the parameters includes a digital signature of each of
the parameters.

7. The method of claim 1, wherein the representation of
cach of the parameters 1s a textual representation of each of
the parameters.

8. A method for detecting pestware on a computer com-
prising;:

recerving a file;

placing at least a portion of the file into a processor-read-

able memory of the computer;

following a plurality of execution paths within code of the

pestware file, wherein each of the execution paths 1s a
potential path that a processor executing the code may
follow:

retrieving, for each of a plurality of selected function calls

within the code of the pestware file, at least one param-
cter from each of the function calls so as to obtain a
plurality of parameters;

comparing the plurality of parameters with parameters

within a processor-readable pestware-definition file so
as to determine whether the file 1s a potential pestware
file; and

quarantining the file 1n the event the plurality of parameters

match a mimimum percentage of parameters within the
processor-readable pestware-definition file;

wherein the retrieving, for each of a plurality of selected

function calls within the code of the pestware file, at
least one parameter includes i1dentifying calls to
addresses to portions of the processor-readable memory
that are outside of the memory occupied by the code of
the pestware {ile.

9. The method of claim 8, wherein the 1dentifying includes
identifving system call parameters within the execution
paths.

10. The method of claim 8 including;

bypassing, while following the plurality of execution

paths, parameters other than system-call parameters and
jump instructions.

11. The method of claim 8 including;

alerting a user of the computer 1n the event the particular

function-call parameters within the code match a mini-
mum percentage of function-call parameters 1n the pest-
ware-definition file.

	Front Page
	Drawings
	Specification
	Claims

