US008171475B2
12 United States Patent (10) Patent No.: US 8.171.475 B2
’ ’
Kajita 45) Date of Patent: May 1, 2012
(54) INTELLIGENT RETRY METHOD USING 7,584,474 B2* 9/2009 Gondietal. ... 718/101
REMOTE SHELL 7,774,780 B2* &2010 Chowetal. 718/101
7,796,589 B2* 9/2010 Cohenetal. 370/389
. ‘o 7,800,818 B2* 10/2010 Plamondon 709/223
(75) Inventor: Tsunehiro Kajita, Tokyo (IP) 2003/0212738 Al* 11/2003 Wookey et al. 709/203
_ 2005/0050540 Al1* 3/2005 Shaughnessyetal. 718/1
(73) Assignee: International Business Machines 2007/0192503 Al* /2007 McCollumetal. 709/230
Corporation. Armonk. NY (US 2007/0214457 Al1* 9/2007 Goyaletal. 718/101
p , , NY (US)
2009/0031293 Al* 1/2009 Marsalaetal. 717/165
(*) Notice: Subject. to any disclaimer,,. the term of this FOREIGN PATENT DOCUMENTS
patent 1s extended or adjusted under 35 P 10298450 ¢/1008
U.S.C. 154(b) by 1280 days. P 10-301875 11/1998
(21) Appl. No.: 11/847,060 * cited by examiner
(22) Filed: Aug. 29, 2007 Primary Examiner — Qing Wu
(74) Attorney, Agent, or Firm —Enn C. Ming; Edell,
(65) Prior Publication Data Shapiro & Finnan, LLC
US 2009/0064142 Al Mar. 5, 2009 (57) ABSTRACT
(51) Int.Cl. Method for issuing and monitoring a remote batch job,
GO6F 9/44 (2006.01) method for processing a batch job, and system for processing
GO6F 11/00 (2006.01) a remote batch job. The method for 1ssuing and monitoring a
GO6F 15716 (2006.01) remote batch job includes tormatting a command to be sent to
(52) US.CL oo 718/101; 714/2; 709/201 @ remote server to include a sequence 1dentification com-
(58) Field of Classification Search i j None posed of an issuing server identification and a time stamp,

forwarding the command from the 1ssuing server to the

See application file for complete search history. . =,
remote server for processing, and determining success or

(56) References Cited failure of the processing of the command at the remote server.
When the failure of the processing of the command at the
U.S. PATENT DOCUMENTS remote server 1s determined, the method further includes
5046463 A * 81990 Carr et al 209/201 instructing the remote server to retry the command process-
6,356,951 B1* 3/2002 Gentry, Jr. ..ccoovovvvnrnnnen, 709/250 1.
7,058,912 B2* 6/2006 Katlaetal. 716/131
7,213,049 B2* 5/2007 Feltetal.cccoooveeren... 709/203 20 Claims, 7 Drawing Sheets
Server 1
101 Server 2

Network Communication

3 RSH execution

NoO .
Does ID exist?

102

- ek sk sl sk ol - - AL B B BN B B B B B BB W A R W WY

Success/Failure v 111
Failure 105
Create ID file Check 1D file
suceess
103
Complete i During execution

i 1 110

E Already executed Wait until

E completed
1D file name: Failure i
000+YYYYMMDD+hhmmss+zzzz Success/Fail
{xxxx is the |ID for recognizing server 1, 109

4

zzzz are random numbers)
Execute processing

Network Communication i

US 8,171,475 B2

801

POINOaXe Apeally

™~
S
&
— pa)sjdwod
~
> Bun JEM
= ﬁ
7. 0Ll
uonnaaxa bulng
&
y—
—
&
1-.;
>
>

U.S. Patent

GOl

LOI}EDIUNWILLIOY) YIOMION

P

$8200Ng

L0}

;snjejs si jey

901

Buissaoo.id ajnoax3
-

aln|ie4

o} di 994D

SOA

gIsixe Q| seoQ

POl

s o = o o o Ty ey =g sk skl Gl BA AEE DN A SEL SEE BEn S aam e el Gkl WEL BEE DL DN DD BB BB W A T N W T W sy owhek wple SRR B s

Z Jlonog

S|y d| ejeal)
L A

ON

LOIIE2IUNWIWIOY) YIOMISN

(siaquinu Wwopuel ale zzzz

‘1, JoA19s BuiziuBooal 10} | By} SI XXXX)

2227 +SSWWYY+QAININAAAAFXXXX
aweu sl g

ajo|dwon

€0l

$5900NQ

ainjie

aln[ie4/ssa00Ng

¢0l

UoN98Xe HSY

L.._‘ JONIDS

¢ 9Ol

[MB1p yoaya] [(** ‘e “Z) ‘| 4e19weled]
[aweu a1} q|] [oweu ajy a|qeIndsaxa] HHSHI [al 19sn uonnoaxa] |— [ssaippe d| 1aAids ajowal] HSYH

US 8,171,475 B2

' L0Z da}s ul pajnosaxs ajdwexs puewiwo)

4 mmm_n_Eoo _

v0cC a|qissod

™~
Coje
© | e
|
w dIqissodu) mON
7 €S999N§
=aIN|e)/SSadIr
UoINOaXs
|
— sjoWway
= €0
MJ _ $S929N¢g
> | 7 2INjle} /SS990NS
¢ 1OAI9S Ul _ pueliwio)) 5injie4
puissaooid _
—
| | UOIINOSXS
Tuonesunwiwos yiompN HSY

U.S. Patent

US 8,171,475 B2

_ocmEE_S T co.cmoE:EEoo_
| Nr.m.v ue ui }nsal ay} Indino HOMION _
| 80€ | a1y | 8Y} Ul }NSaI Y} BPIAN .|,_, "

A
 13W BJE SUOIIPUOD _
> ssaoons ay) Ji Moayo
L0E " —
- | (shonupuod
- | . (mau) Buissaooud
- OLE buisseoo.d §5899NG J0¢ O UOIINDSX |
« JO UOIIN0aX ! 20 UOH E _
Qo - -
= | a)9|dwod $§320NS EE% ainjie] _
7 p, 60¢
IHUn HEM palnoaxa Apeal|y _
K> _ |
Lonnoaxa bulngg A/ _
u POC
S |
- coe | ol adl Yl Xo=YDd al} 4l sy} sjealid _
- SO A G0€ |
= $Isixa 9|l
1] 9y} S90C
¢0¢C
A0 | J8Al9S Ul
Zpauuyuod JIbIE buissaoold

309y2 3y} S|

ON

- - - T T T T T T Tyonediuntudios
YIOM]BN

0L

U.S. Patent

US 8,171,475 B2

Sheet 4 of 7

May 1, 2012

U.S. Patent

v Old

[(" ‘e ‘Z) ‘| Jojoweled] [sweu 3 ajqeinosaxa] [l 49sh uonndaxa] |— [ssoalppe d| 19A10s 9jowal] HSHI

:wesboud yajeq |9A9] Jaddn Aq pasn jewlo} puewiwon)

m;ymthoo 4

a|qissod

_
_
”
a|gissodul é

$S329Ng

¢ 2In|iey/sseoons
uonnoaxa
aJoway

\
alnjieg \
\

o] buipes

SSOJIIINS

¢aInjie;

_

|

| “

Z I19AI8S _ /SSa@23NS
ul buissaoold | _ pPUBLILIOD odnjted

. . — |
_

_

— | “ LUONNOaXe
UOIBOIUNLILLIOD YI0OMJBN
1Jed HIOMJBN HSd 19[|OJ}U0I BPIS |

Bupjiwisuel] HSYI;

UoNEIUNWIWOD
MIOM]BN

pUBWILWOD OY29d
ue ui jjnsai ay3 indinp

US 8,171,475 B2

8| I Y} Ul Jjnsal ay} SJUAA

JoW 8B SUCHIPUOD

“ |
_ |
_ |
m _
> ss3990NS 2y} JI 3o8YD | |
o - |
- | 2 | _
= m mmﬂﬂ%ﬁmv (mau) Buisseoold " _
s |
- “ o UonmooXS sse00ng | JO UO[INO9X3] | _
= |
m _ a)e|dwo? SS9IINS EE%@E:E “ _
|
| L WA EEM | poajnoaxa Apeal|y | _
| |
~ | LOI}NIIXA .:t:év | |
— | |
— _ |
2 " . _ |
- “ Sll4 A1 SYB 399U _ ol QI oy ajeeu) | | _
>,
S | SOA _
= ! i |
_ A _
| 1 84} $80C |
|
m
- _ _ A0 13]|0JUOD IPIS | 1oNlSs U
= “ GPRLILIOD JOT Buialooay buissadoid
L _ ON ¥O8UD aUj S}
M A e vy HSdI, _
D-... lllllllllll TO1BIITITULLIO)
4 MIOMJON

US 8,171,475 B2

Sheet 6 of 7

May 1, 2012

U.S. Patent

9 Old
4sysI ys-dojs sjows.
0} paoejdal si Ys4 puewiwios 10}eSIUIUPE |—= S
\SIYSIl,=ys] seyje S LIS BI0Ws!
puewwod buinssi lojesisiuiwpe |— ysi

P ————— | (Jeuiblio) ay1} yojeq |9A9] Joddn
Aq paiinbai s1 aBueys oN oS XIN/

1eq'do)js ajowal
lojelisiujwpe |—1eq-ysii

‘SpUBWWOD
paulpdapun aaoqe abueys Ajuo
1Shul Jojelisiuiwipe wajsAg

el

1eq-dojs ajoulal
Jojeqsiuiwipe |- ysi

leq'lels ajowal
JojeJisiuiwipe |- ysi

Jeq-luels ajowal
lojelisiuiwipe |- 1eq-iys.i

(Mau) 91} yojeq [9A3] Jaddn (jreu1BbLio) 9j1} ysyeq |oAa] Jaddn

asen) SMOPUIM

US 8,171,475 B2

Sheet 7 of 7

May 1, 2012

U.S. Patent

/. Ol

'9p02 uInjal se giaAiag uo (Yee ‘Y.< ‘uov ‘yov) .£744, 0yoe puewwod anss|
(L1001 1 10)UE. € (A00L10001L)UDS jo Jusws|dwod
Uyog = Yoy + Yor & (Yov).d, ‘(Uov).d.

U44=0p0o uIn}oy -Zose

‘9p09 ulinjal sk ZI1aAlag uo (Yo ‘Uss ‘Uoeg ‘uone) 4600, OYd9 puellwod anss|
(ALLLLLOOL)Y46 € (4000001 LO)UO9 Jo Jusws|dwod
Uo9 = yog + yoe € (4og).o, (Uog).o.

Y00=9p0H UIN}dy °LOse)

IDIP ¥08yd paseq Jajoeieyn

9pO0 [IOSV

9p0Q {IOSY

US 8,171,475 B2

1

INTELLIGENT RETRY METHOD USING
REMOTE SHELL

FIELD OF THE INVENTION

The invention 1s directed to a method using remote execute
commands, €.g., remote shell commands, secure shell com-
mands, program function using distributed component object
model, to ensure completion of program, script, or commands
on a remote server.

BACKGROUND OF THE INVENTION

A server/client-type system 1s a computing architecture
generally implemented over a computer network and 1s well
known for performing a wide range of applications. A client/
server can be composed of a number of nodes, e.g., two
(two-tiered system) or more, which allow devices to share
files and resources. In this regard, client software, e.g., on a
user’s computer, can send data requests to one or more con-
nected servers, e.g., direct connection or via the Internet. In
turn, the servers, e.g., web, database, and/or mail server, can
accept these requests, process them, and return the requested
information to the client. Moreover, the servers can request
completion of certain programs, scripts, or commands on
another server.

A command line program, such as remote shell (RSH) can
be utilized to execute shell commands and to achieve remote
control between two servers. As an RSH command, which
can be used 1in both a UNIX and Windows environment,
identifies the host (remote server), user, and the desired com-
mand, shell commands can be executed as another user and/or
on another computer across a computer network.

However, in executing synchronous processing between
server systems using remote shell commands, network com-
munication quality may often become a problem. For
example, 1n the case of executing processing A on server 2 1n
response to a request from server 1 using a remote shell
command, 1t may not be known, e.g., whether processing was
successiul on server 2 or whether the remote shell command
falled. Moreover, as there 1s no way to know whether the
execution status ol processing A on server 2, retrial cannot be
performed from server 1. Thus, one processing failure can
lead to the failure of the entire task, and no context-sensitive
recovery will be performed.

One proposed solution to the above-noted problem for
ascertaining whether remote command or program have been
processed 1s to execute mterlock processing between a client
and server via a network, e.g., an integrated job scheduler or
a system management software. However, as these devices
can be extremely expensive and difficult to use, e.g., detailed
operational design 1s required as are the necessary skills to
perform the design in order to actually introduce them 1into
operation, a simpler solution 1s desired.

SUMMARY OF THE INVENTION

According to an aspect of the invention, a method 1s pro-
vided for 1ssuing and monitoring a remote batch job. The
method includes formatting a command to be sent to a remote
server to mclude a sequence 1dentification composed of an
1ssuing server identification and a time stamp, forwarding the
command from the 1ssuing server to the remote server for
processing, and determining success or failure of the process-

ing of the command at the remote server. When the failure of

the processing of the command at the remote server 1s deter-

10

15

20

25

30

35

40

45

50

55

60

65

2

mined, the method further includes instructing the remote
server to retry the command processing.

In accordance with another aspect of the invention, a
method 1s provided for processing a batch job. The method
includes recerving a command for processing from a remote
server, the command being formatted to include a sequence
identification composed of an identification of the remote
server and a time stamp, and informing the remote server of
success or failure in processing the command. When the
remote server 1s informed of the failure of the processing of
the command, the 1nstructions include recerving nstructions
from the remote server to retry the command processing.

According to still yet another aspect of the mvention, a
system 1s provided for processing a remote batch job. The
system 1ncludes a first server structured and arranged to
receive and process commands, a second server, remote from
the first server, structured and arranged to format a command
for processing 1n the first server to mclude a sequence 1den-
tification composed of an i1dentification of the second server
and a time stamp, and a communication path coupling the first
server to the second server. The first server includes a device
to send a confirmation of success or failure 1n the processing
of the command to the second server, and the second server
includes a device for instructing the first server to retry pro-

cessing of the command after receipt of the confirmation of
failure 1n the processing of the command.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an exemplary tlow diagram of an over-
view of the invention;

FIG. 2 1llustrates an exemplary detailed flow diagram for a
server 1ssuing a remote execution command to an execution
server according to the ivention;

FIG. 3 illustrates an exemplary detailed tlow diagram for
the executing server processing the remote execution com-
mand from the 1ssuing server according to the mvention;

FIG. 4 1llustrates another exemplary detailed flow diagram
for a server 1ssuing a remote execution command to an execu-
tion server according to the invention;

FIG. 5 1llustrates another exemplary detailed flow diagram
for the executing server processing the remote execution
command from the 1ssuing server according to the invention;

FIG. 6 illustrates the manner in which intelligent remote
shell commands replace remote shell commands; and

FIG. 7 illustrates examples of character based check digits.

DETAILED DESCRIPTION OF EMBODIMENTS
OF THE INVENTION

The 1nvention 1s directed to a method based on a remote
shell (RSH), a secure shell (SSH) or a program function using,
distributed component object model (DCOM). These com-
mands are remote execute commands for script-based batch
processing that normally come with an operating system (OS)
and/or other similar remote control methods, enabling 1nex-
pensive, yet highly-reliable processing that responds to the
deterioration of commumication quality. While RSH can
operate in both a UNIX and Windows environment, SSH may
be limited to operating 1n a UNIX environment, while DCOM
may be limited to operating 1n a Windows environment.

Thus, the invention provides a highly reliable remote batch
10b execution method by minimizing changes in commands
of batch processing, including remote executions that have
already been created, using existing remote communication

technologies such as RSH, SSH, and DCOM.

US 8,171,475 B2

3

Remote shell commands are generally executed 1n the for-
mat of RSH XXXXXYYYYY, in which XXXXX i1dentifies
a program, script, or command on the remote server and
YYYYY identifies parameters, which can be multiple speci-
fied parameters. According to the invention, the parameters
YYYYY for the scripts to be executed on the remote server
side can be provided either with a sequence ID uniquely
decided by the remote (or execution) server or with an execu-
tion time. Further, as the sequence ID can be processed and/or
utilized by the remote server as a file name (e.g., ID file) on
the remote server, a status inquiry can be made regarding the
processing ol the executing specified script on the remote
server and the status can be recorded. As a result of this
inquiry, a determination can be made whether processing
invoked at a certain time has been successful, has failed, has
not been executed, or 1s being executed, and processing may
be performed accordingly.

The server invoking or 1ssuing the command to the remote
server can reissue the command so the remote server i1s
instructed to continue retrying until processing of the com-
mand succeeds. This may be advantageous since there 1s no
concern the same processing will be repeated when retrial 1s
performed due to communication failure. Further, to ensure
the appropriate command has been sent, a check digit of the
character code of the script name or a parameter that follows
RSH as the final parameter can be added to the command line.
Thus, even 1n the event an incorrect command 1s sent, €.g., due
to communication failure, execution on the remote server can
be prevented or deterred. This allows the RSH execution
server to execute the script and to concentrate on retrying
correctly 1ssued commands.

FIGS. 1-5 are flow diagrams showing processing steps of
embodiments of the mnvention. FIGS. 1-5 may equally repre-
sent a high-level block diagram of components of the inven-
tion implementing the steps thereof. The steps of FIGS. 1-5
may be implemented on computer program code in combi-
nation with the appropriate hardware. This computer program
code may be stored on storage media such as a diskette, hard
disk, CD-ROM, DVD-ROM or tape, as well as a memory
storage device or collection of memory storage devices such
as read-only memory (ROM) or random access memory
(RAM). Additionally, the computer program code can be
transierred to a workstation over the Internet or some other
type of network.

The mvention can take the form of an enftirely hardware
embodiment or an embodiment containing both hardware and
soltware elements (any of which 1s referred generally as “file
management program’”). The hardware and software ele-
ments include a computer infrastructure configured to imple-
ment the functionality of the present invention. The computer
infrastructure may take the form of any conventional com-
puter system, platform, or environment. The software ele-
ments may be firmware, resident software, microcode, eftc.
Furthermore, the invention can take the form of a computer
program product accessible from a computer-usable or com-
puter-readable medium providing program code for use by or
in connection with a computer or any instruction execution
system. For the purposes of this description, a computer-
usable or computer readable medium can be any apparatus
that can contain, store, communicate, propagate, or transport
the program for use by or 1in connection with the instruction
execution system, apparatus, or device. The medium can be
an electronic, magnetic, optical, electromagnetic, infrared, or
semiconductor system (or apparatus or device) or a propaga-
tion medium. Examples of a computer-readable medium
include a semiconductor or solid state memory, magnetic
tape, a removable computer diskette, a random access

10

15

20

25

30

35

40

45

50

55

60

65

4

memory (RAM), a read-only memory (ROM), a rigid mag-
netic disk and an optical disk. Current examples of optical
disks include compact disk-read only memory (CD-ROM),
compact disk-read/write (CD-R/W) and DVD.

In embodiments, a service provider, such as a Solution
Integrator, could offer to perform the processes described
herein. In this case, the service provider can create, maintain,
deploy, support, etc., a computer infrastructure that performs
the process steps of the invention for one or more customers.
In return, the service provider can receive payment from the
customer(s) under a subscription and/or fee agreement.

A flow diagram of an exemplary overview of the invention
1s 1llustrated 1n FIG. 1 and can be implemented 1n an archi-
tecture composed of a server 1 for 1ssuing remote execute
commands, €.g., shell commands, and a server 2 for executing
remote processing of the commands. The dashed line repre-
sents a network communication path between server 1 and
server 2, which can be formed by any suitable communication
path, including wireless communication, enabling an
exchange of data between servers 1 and 2. When server 1

1ssues a program, script, or command, €.g., a remote shell
(RSH) or secure shell (SSH) command 1n a UNIX environ-
ment at step 101, e.g., to be executed by server 2. In the UNIX
environment, each OS command can be replaced with a user
defined command or function (referred to as an “ALIAS
function™). In a normal case, RSH 1s used on script code not
on binary code, because RSH 1s an OS command not an
application programming interface (API).

According to an embodiment of the invention, a sequence
ID and/or a check digit can be added to the command line as
an additional parameter. A number for the sequence ID may
be selected to ensure 1ts uniqueness among the multiple serv-
ers executing remote shell commands and multiple process-
ing within the same server. Moreover, the sequence 1D can be
processed or utilized by server 2 as a file name, e.g., ID file, on
server 2. By way of non-limiting example, the number for the
sequence 1D (or ID file on server 2) can be selected to be
server ID (1.e., server 1)+year/month/date/hour/minute/sec-
ond+random number(s). At step 102, a determination can be
made whether the command was successiully executed. IT
successiul, the process 1s completed at step 103, whereas, 11
not successtiul, the process may return to step 101, so an
instruction to retry the command can be 1ssued to remote
server 2. Thus, 1n accordance with the invention, server 1
monitors the success/failure of the execution of the command
processed 1n the remote server 2.

In server 2, a determination may be made at step 104
whether the ID file exists on server 2. In this regard, server 2
can process the sequence ID 1n the command line as a file
name (ID file) to be found on server 2. When the ID file exists
onserver 2, the ID file 1s checked at step 105 and a status of the
command 1s determined at step 106. If the command 1is
already executed, the process can proceed to step 107 to
determine the success or failure of the processing of the
command. Ifthe command 1s successiully executed, the result
may bereturned to server 1 at step 108. If the processing of the
command failed, the processing 1s re-executed at step 109 and
the result 1s returned to server 1 at step 108. If, at step 106, 1t
1s determined the command 1s being executed, the process can
wait for completion of the command at step 110. In this
regard, a polling of the contents of the ID file can be per-
formed at intervals of a few seconds. The results can then be
returned to server 1 at step 108. When the ID file at step 104
1s determined not to exist, the ID file can be created at step 111
and the command may be processed at step 109. The result
can then be returned to server 1 at step 108. Thus, server 2

US 8,171,475 B2

S

informs server 1 of progress and successiul completion of the
remote execute command, thereby avoiding unnecessary
commands for retrying.

A more detailed flow of the internal processing of server 1
1s 1llustrated 1n FIG. 2. At step 201, server 1 can 1ssue a request
for execution by server 2 of a program, script, or command 1n
a UNIX environment, €.g., a remote execute command, such
as a remote shell (RSH) or a secure shell (SSH) command.
The command format for such a command can be, e.g., RSH
[remote server IP address]-IRSHR|execution user ID][ex-
ccutable file name][ID file name][parameter 1, (2, 3, . . .
)][check digit]. Further, 1n a Windows environment, an upper
level batch file can be utilized, and the command format can
be, e.g., RSH[remote server IP address]-[execution user
ID]irshr.bat|executable file name][ID file name][parameter 1,
(2, 3, ...)][check digit]. The execution user ID can be for
remote execution and placed on remote server 2, and the 1D
file name on server 2 can correspond to the sequence ID and
the command can be formatted to include the ID file name
and/or the check digit. Processing of the requested command
1s to be performed 1n server 2 and the success or failure of the
command, 1.e., was the command successiully 1ssued to
server 2, 1s determined at step 202. When network commu-
nication quality 1s poor, the tflow represented by the dashed
line, 1.e., network communication, may fail. If the command
1s determined to have failed, e.g., due to poor transmission of
data or any other reason, the process can return to step 201 to
again request execution of the command, and retrying may be
unconditionally performed until the command 1s successtully
forwarded to remote server 2. I[f the command was successful,
a determination can be made at step 203 whether the remote
processing of the command at server 2 was successiul. In this
regard, server 1 1s informed of the success or failure of the
remote processing through receipt of a return code of the
command from server 2, which can be utilized for determin-
ing the success or failure of the execution of the command at
server 2. Thus, results of remote executions can be judged or
evaluated by receiving remote server message output, e.g.,
through an echo command by command execution server 2. IT
successiul, the process 1s completed at step 204. However, 11
execution fails, the process proceeds to step 205 to determine
whether to retry executing the command. Further, the number
ol times to perform retrial or the execution timeout period can
be specified 1n setting file 206. 11 the set number of tries has
been used or an execution timeout period has been exhausted,
it 1s no longer possible to retry executing the command, the
process 1s completed at step 204. Should any tries or time
remain, the process can return to step 201 to again request
execution of the command.

A detailed flow of the internal processing in server 2 1s
illustrated in FIG. 3. In server 2, all parameters may be picked
up when executing a specified file (normally, a program,
script, command, etc.) and the check digits in the command
format can be checked 1n response to recerving the command,
¢.g., remote execute command, from server 1. At step 301, a
determination 1s made whether the check digit1s confirmed or
valid, because no processing should be performed 11 the check
digit 1s invalid. If determined to be invalid, the result 1s output

by echo command to server 1 at step 312. The echo command
can be utilized since remote shell cannot return the status of
remote execution. By informing server 1 of the failure, server
1 can avoid making an incorrect decision even 1 commands
cannot be exchanged properly due to the deterioration of
communication quality. While 1t can be acceptable to misi-
dentify a success as an error, misidentifying an error as a
success should be avoided.

10

15

20

25

30

35

40

45

50

55

60

65

6

I1 the check digit 1s deemed correct 1n server 2, a determi-
nation 1s made at step 302 whether a temporary file exists
corresponding to ID file (the sequence ID). I such a file
exi1sts, 1t may be assumed processing has at least begun. In this
event, the ID file can be checked at step 303, and the status of
the ID file can be determined at step 304, ¢.g., has the com-
mand already been executed or i1s the command being
executed. If the ID file does not exist, processing can be
considered to have not yet been executed and an ID f{ile 1s
created at step 303, and the processing may be executed at
step 306. Atstep 307, the process checks to ensure the success
conditions have been met, and thereafter, the processing
result 1s recorded 1n the ID file at step 308, and the result 1s
sent to server 1 by an echo command at step 312.

If a determination 1s made from step 304 that processing
has already been executed, a determination of whether the
processing was successiul may be made at step 309. If suc-
cessiul, the result may be promptly sent to server 1 by an echo
command at step 312. If the processing failed, the processing
can be retried at step 306, and thereatter the process check to
ensure the success conditions have been met at step 307,
record the processing result in the ID file at step 308, and send
the result to server 1 by an echo command at step 312. More-
over, depending on the processing content, e.g., cases such as
multiple processing being bundled together, such that a por-
tion of the processing may be successiul, execution of the
processing may continue at step 310 and, after confirming the
conditions for considering the processing to be successtul are
finally met at step 307, a judgment of success or failure can be
made and the appropriate result may be 1s promptly sent to
server 1 by an echo command at step 312. If the determination
from step 304 1s the command 1s being executed, the process
can wait for completion of the command at step 311. In this
regard, a polling of the contents of the ID file can be per-
formed at intervals of a few seconds. The results can be sent
to server 1 by an echo command at step 312.

With the above exemplary tlow, retrial can be performed as
long as time permits or a number of retries remain the setting
file 1n server 1 without concern as to the status of the com-
munication with server 2 or the execution ol unnecessary
processing 1n server 2. In this way, the mnvention allows for an
improvement 1n the reliability of remote processing.

Further, because processing dates of temporary files, 1.e.,
ID files, on server 2 are made clear by their file names, 1t may
be advantageous to collectively delete files 2 or 3 days later by
simply filtering the files according to their file names. In this
way, the invention can avoid forcibly deleting temporary files
on server 2 when performing remote execution, which
enables easier housekeeping than with the scheduler associ-
ated with the OS. Additionally, 1t can be helpiul for analysis at
the time of the occurrence of problems. Further, since only a
minimal amount of information 1s contained 1n files, accumu-
lated files will not take up an inordinate amount of disk space.

In an alternative embodiment, the invention can utilize a
tentative program, script or command name referred to as an
Intelligent Remote Shell (IRSH), which can be operated 1n
both a UNIX and a Windows environment. When imple-
mented 1n a UNIX environment, a command wrapper can be
placed on both the command 1ssuing side (server 1) and on the
batch executing side (server 2) and no change may be required
on parent scripts by the system administrator. When 1mple-
mented 1n a Windows environment, a command wrapper can
be placed on both the command 1ssuing side (server 1) and on
the batch executing side (server 2) and the RSH command
statements of parent scripts that call for RSH commands can
be changed to IRSH commands, so the system administrator
may only need to change the command from *““rsh” to *“irsht-

US 8,171,475 B2

7

bat.” The command wrapper automatically performs retrial
ol remote execution processing, realizing processing that can
respond to RSH command failures resulting from the dete-
rioration ol communication quality. Further, the command
wrapper can include a file for setting the number of times to
perform retrial, the timeout period, the presence or absence of
the batch for result confirmation on the remote execution side
and to check the digit calculation method, etc. By editing this
file, the processing method can be changed.

FI1G. 4 1llustrates an exemplary alternative detailed flow of
the internal processing of server 1, and 1t 1s noted, with the
exception of utilizing an IRSH command, the process 1s the
same as 1llustrated 1n FIG. 2. The exemplary embodiment of
FIGS. 4 and S can be implemented 1n either a UNIX or a
Windows environment. In the UNIX environment, the
ALIAS function can execute the command “alias
rsh="‘1rsht.sh’” such that the command rsh 1s replaced with
irsht.sh, where ‘irsht.sh’ 1s a B-shell program that can actual-
ize IRSH transmitting side controller, as illustrated in the
dashed box in FIG. 4. Thus, no command replacement 1s
needed 1n remote control batch program. In contrast to the
UNIX environment, there 1s no ALIAS function 1n the Win-
dows environment. Thus, a Windows batch file, e.g., ‘irsht-
bat’, can be utilized to replace the RSH command with an
IRSH command 1n source code or script code, e.g., ‘irsht.bat’
to actualize the IRSH transmitting side controller 1llustrated
in FIG. 4. Server 1 1ssues a request for execution by server 2
ol aprogram, script, or command, €.g., a shell command, such
as a remote shell (RSH) or a program function using distrib-
uted component object model (DCOM). The command for-
mat can be, e.g., IRSH[remote server IP address]—-[execution
user ID][executable file name][parameter 1, (2, 3, .. .)].

According to this exemplary embodiment, the script in
server 1 requires almost no code rewriting, since the com-
mand wrapper performs the RSH processing in FIG. 2
through automatic retrial by simply rewriting the existing,
RSH command to IRSH, see, e.g., FIG. 6.

Further, the exemplary detailed tlow of server 2 utilizing
IRSH commands 1s illustrated in FIG. 5, in which an IRSH
receiving side controller 1s 1llustrated within the dashed box.
The exemplary tlow 1llustrated 1n FIG. 5 corresponds to the
flow illustrated 1n FIG. 3, except the flow utilizes the above-
noted IRSH command rather than the RSH command of FIG.
3. With regard to processing in server 2, the remote execution
batch processing and the result confirmation batch are put
into server 2. Thus, the name of the program 1s only used 1n
the IRSH transmitting side controller (see FIG. §), such that
remote control programs (upper batch program) do not use
the program name, €.g., irshr.bat (for Windows) and 1rshr.sh
(for UNIX). Therefore, the same script as 1s conventionally
used can be utilized.

FI1G. 7 1llustrates two exemplary cases for determination of
a character based check digit. In a first case, the return code
can be, e.g., 00h, and 1n a second case, the return code can be,
¢.g., FFh. A command echo may be 1ssued on server 2 as the
return code, so server 1 can receive the correct return code
assuring the check digit 1s acceptable on server 2. The data
length may be short enough so as to minimize transmission
error under poor communication quality. Moreover, because
of stmple logic, the check digit procedure can be easily imple-
mented in script language. It 1s further noted this check digit
procedure can be utilized 1n a text based command, e¢.g., RSH
command.

While the invention has been described in terms of embodi-
ments, those skilled in the art will recognize that the invention
can be practiced with modifications and 1n the spirit and scope
of the appended claims.

5

10

15

20

25

30

35

40

45

50

55

60

65

8

What 1s claimed 1s:

1. A method for 1ssuing and monitoring a remote batch job,
comprising;

formatting a command at an 1ssuing server to be sent to a

remote server to include a sequence identification
including an 1ssuing server identification and a time
stamp for 1dentifying a corresponding storage unit on the
remote server for storing a status of processing the com-
mand;

forwarding the command from the 1ssuing server to the

remote server for processing;

determiming success or failure of the processing of the

command at the remote server; and

when the failure of the processing of the command at the

remote server 1s determined, instructing the remote
server to retry the command processing, wherein
repeated processing of the command associated with the
retry 1s prevented in response to the status within the
storage unit indicating a prior successiul processing of
the command.

2. The method 1n accordance with claim 1, further com-
prising:

establishing at least one of a number of retries and a retry

timeout period, wherein the remote server 1s nstructed
to retry the command processing of failed command
processing to attain successiul command processing
until the number of retries or the retry timeout period 1s
exhausted.

3. The method 1n accordance with claim 1, further com-
prising determining a success or failure of 1ssuing the com-
mand.

4. The method 1n accordance with claim 3, wherein the
failure of 1ssuing the command comprises a communication
failure between the 1ssuing server and the remote server.

5. The method 1n accordance with claim 1, wherein the
determining of success or failure of the processing of the
command at the remote server comprises receipt of a remote
server message output through an echo command.

6. The method 1n accordance with claim 1, wherein the
command 1s formatted as one of a remote shell command, a
secure shell command, or a program function using distrib-
uted component object model.

7. The method in accordance with claim 1, wherein a
command wrapper 1s placed on both the 1ssuing server and the

remote server, and the command 1s formatted as an IRSH
function.

8. The method 1n accordance with claim 7, wherein the
command wrapper includes a file for setting at least one of a
number of retries and a retry timeout period, and the com-
mand wrapper automatically instructs the remote server,
when the failure of processing of the command at the remote
server 1s determined, to retry the command processing.

9. A method for processing a batch job, comprising:

recerving at an executing server a command for processing

from a remote server, the command being formatted to
include a sequence 1dentification including an 1dentifi-
cation of the remote server and a time stamp for 1denti-
fying a storage unmit of the executing server for storing a
status of processing the command;

informing the remote server of success or failure 1n pro-

cessing the command; and

when the remote server 1s informed of the failure of the

processing of the command, recerving at the executing
server instructions from the remote server to retry the
command processing, wherein repeated processing of
the command associated with the retry at the executing

US 8,171,475 B2

9

server 1s prevented 1n response to the status within the
storage unit indicating a prior successiul processing of
the command.
10. The method 1n accordance with claim 9, wherein the
sequence 1dentification identifies a storage unit including a
file, the method turther comprising one of:

determining the success or failure based on processing of
the file; and
creating and processing the file and determining the suc-

cess or failure based on processing of the file.

11. The method 1n accordance with claim 9, wherein the
informing of the success or failure 1n the processing of the
command comprises sending of a remote server message
output through an echo command.

12. The method 1n accordance with claim 9, wherein the
command 1s formatted to further include a check digit, and the
method further comprises confirming receipt of a valid check
digit with the command.

13. The method 1n accordance with claim 9, wherein the
command 1s formatted as one of a remote shell command, a
secure shell command, or a program function using distrib-
uted component object model.

14. The method 1n accordance with claim 9, wherein the
batch job 1s processed on the executing server, a command
wrapper 1s placed on the remote server and the executing
server, and the command 1s formatted as an IRSH function.

15. The method 1n accordance with claim 14, wherein the
command wrapper for the remote server includes a file for
setting at least one of a number of retries and a retry timeout
period, and the command wrapper for the executing server
recelves automatic istructions from the remote server, when
the failure of processing of the command at the remote server
1s determined, to retry the command processing.

16. A system for processing a remote batch job, compris-
ng:

a first server structured and arranged to receive and process

commands;

a second server, remote from the first server, structured and
arranged to format a command for processing in the first
server to iclude a sequence 1dentification including an
identification of the second server and a time stamp for

5

10

15

20

25

30

35

40

10

identifying a storage unit of the first server for storing a
status of processing the command;

a communication path coupling the first server to the sec-
ond server;

the first server comprising a device to send an indication of
success or failure 1 the processing of the command to
the second server; and

the second server comprising a device for instructing the
first server to retry processing of the command after
receipt of the indication of failure in the processing of
the command, wherein repeated processing of the com-
mand associated with the retry at the first server 1s pre-
vented 1n response to the status within the storage unit
indicating a prior successiul processing of the com-
mand.

17. The system 1n accordance with claim 16, wherein the
command from the second server 1s formatted as one of a
remote shell command, a secure shell command, or a program
function using distributed component object model.

18. The system in accordance with claim 16, further com-
prising a command wrapper placed on the first and second
servers, wherein the command 1s formatted as an IRSH func-
tion.

19. The system 1n accordance with claim 18, wherein the
command wrapper for the second server includes a file for
setting at least one of a number of retries and a retry timeout
period, and the command wrapper for the first server receives
automatic mnstructions from the second server, when the fail-
ure of processing of the command at the second server 1s
determined, to retry the command processing.

20. The system 1n accordance with claim 16, further com-
prising:

a setting file located at the second server for setting at least
one of a number of retries and a retry timeout period,
wherein the device for instructing the first server to retry
processing of the command aifter receipt of the indica-
tion of failure 1n the processing of the command contin-
ues operating to attain successiul command processing
until at least one of the number of retries and the retry
timeout period has been exhausted.

% o *H % x

	Front Page
	Drawings
	Specification
	Claims

