US008171119B2

a2 United States Patent (10) Patent No.: US 8,171,119 B2

Tameshige et al. 45) Date of Patent: *May 1, 2012
(54) PROGRAM DEPLOYMENT APPARATUS AND (58) Field of Classification Search 709/222,
METHOD 709/223, 220

See application file for complete search history.

(75) Inventors: Takashi Tameshige, Tokyo (JP); |
Yoshifumi Takamoto, Kokubunji (JP) (56) References Cited

U.S. PATENT DOCUMENTS

7,206,827 B2 4/2007 Viswanath et al.
7,373,661 B2 5/2008 Smith et al.

(73) Assignee: Hitachi, Ltd., Tokyo (IP)

(*) Notice: Subject to any disclaimer, the term of this

. : 2009/0070771 Al 3/2009 Yuvitu t al.
patent 1s extended or adjusted under 35 2000/0217255 Al 22000 T:.lgaln e s
U.S.C. 154(b) by 0 days. 2009/0328225 Al 12/2009 Chambers et al.
This patent 1s subject to a terminal dis- FOREIGN PATENT DOCUMENTS
claimer. TP 2000276332 10/2000
JP 200758664 3/2007

(21) Appl- No.: 13/009,909 Primary Examiner — Asghar Bilgrami

(22) Filed: Tan. 20. 2011 (74) Attorney, Agent, or Firm — Mattingly & Malur, PC

(57) ABSTRACT

With a management server that 1s connected via a network to
at least one physical server including a physical server with a
virtualization facility for providing a virtual server to a client
Related U.S. Application Data and deploys a program to the at least one physical server as

(63) Continuation of application No. 12/191,767, filed on necessary, and by a program deployment method for such a

Auo. 14 2008 now Pat. No. 7.800.613 management server for deploying a program to the at least
S ’ T one physical server as necessary, there 1s provided units for

detecting one or more nodes which are any of the physical
server, the virtualization facility, and the virtual server and
connected via the network, acquiring first configuration infor-
mation about a virtual layer of each detected node for each
detected node, and selectively deploying the program to the

relevant node based on the first configuration information for

(65) Prior Publication Data
US 2011/0113127 Al May 12, 2011

(30) Foreign Application Priority Data

May 19, 2008 (JP) covveiieeiiiiiiiieeeee, 2008-130677

(51) Int.CL.

GOo6F 15/177 (2006.01) each acquired node.
GO6F 15/173 (2006.01)
(52) US.CL .., 709/220; 709/223 13 Claims, 22 Drawing Sheets
g
2
fJ
MANAGEMENT SERVER
13 14
¢ o
CONTROL. MANAGEMENT
PROGRAM GROUP | | TABLE GROUP
3
(_}
| NW-SW
37 37 31 31 31 31
o 2 = Z
VIRTUAL|VIRTUAL| ... | VIRTUAL VIRTUAL [VIRTUAL| .., [VIRTUAL
SERVER [SERVER SERVER SERVER | SERVER SERVER
VIRTUALIZATION —— 30 VIRTUALIZATION -~ 30
FACILITY T FACILITY
PHYSICAL SERVER |4 PHYSICAL SERVER |4
| 5
r_f
NW-SW
6
r}
STORAGE APPARATUS
37 37 37 37 37
z o
VOLUME VOILLUME
25 25 .. 25 25
ad fad r r
PHOGHAMJ'" PHOGRﬂMJ PHQGHAMJ PHOGRAMJ

U.S. Patent May 1, 2012 Sheet 1 of 22 US 8,171,119 B2

FiG.1
1
2 F
— Yo
MANAGEMENT SERVER
14
CONTROL MANAGEMENT
PROGRAM GROUP TABLE GROUP
3
NW-SW] |
31 31 3 31 31 31
. = A r’ I
VIRTUAL|VIRTUAL| [VIRTUAL |vIRTUAL
SERVER | SERVER SERVER SERVER
VIRTUALIZATION 30 VIRTUALIZATION 30
FACILITY "~ FACILITY
PHYSICAL SERVER 4 PHYSICAL SERVER 4
5
NW-SW
6
— - o
STORAGE APPARATUS
Oy (L
VOLUME | | vOLUME | - W
37 37 37 37 37

VOLUME
20 20 29 295

VOLUME

5
’PHOGRAM | IPHOGRAM | QF%OGRAM ‘PROGHAM ’

—____//

.

U.S. Patent May 1, 2012 Sheet 2 of 22 US 8,171,119 B2

FIG.2
2(64)

MANAGEMENT SERVER 11

MEMORY 13

CONTROL PROGRAM GROUP

SERVER PROBE 40 |SERVER CONFIGURATION 42
PROGRAM ACQUISITION PROGRAM | (68)
SERVER REGISTRATION |._44 |VIRTUALIZATION FACILITY

PROGRAM CONFIGURATION 43
GENERATION PROGRAM

MANAGEMENT MEANS 44

JUDGMENT PROGRAM
DEPLOYMENT ~45
EXECUTION PROGRAM
14
MANAGEMENT TABLE GROUP _
| [SERVER MANAGEMENTTABLE 46

' | |SERVER LOGICAL INFORMATION MANAGEMENT TABLE ~—47

| [SERVER MODEL INFORMATION MANAGEMENT TABLE |~—48(67)
| VIRTUALIZATION FACILITY MANAGEMENTTABLE |49
IDATA CENTER OPERATION POLICY MANAGEMENT TABLE [~ 50

 |[PROGRAM MANAGEMENTTABLE |51

10
CPU
13 [— 12
~
DISK NETWORK
INTERFACE INTERFACE

U.S. Patent May 1, 2012 Sheet 3 of 22 US 8,171,119 B2

FIG.3

4
e

PHYSICAL SERVER 21

MEMORY

[- PROGRAM l ' APPLICATION l

et ey

~\-24

iyl

20

CPU

22 23

NETWORK DISK
INTERFACE INTERFACE

U.S. Patent May 1, 2012 Sheet 4 of 22 US 8,171,119 B2

FIG.4

PHYSICAL SERVER D1

MEMORY 31 31 3]

VIRTUAL SERVER 33

VIRTUAL 2de

26
MEMORY
PROGRAM APPLICATION

III 24
VIHTUAL CPU ||

F
VIFITUAL NETWORK]| | VIRTUAL DISK

INTERFACE INTERFACE
VIRTUALIZATION FACILITY I 30

36

VIRTUALIZATION FACILITY
MANAGEMENT INTERFACE

NETWORK
INTERFACE

DISK
INTERFACE

U.S. Patent May 1, 2012 Sheet 5 of 22 US 8,171,119 B2

FIG.5

@D PROBE (SP1) @ SERVER DETECTION (SP2)

CONFIGURATION
AND PARENTAGE

UNKNOWN VIRTUAL QS INFORMATION
SERVER COLLECTION (SP3)

4 30 31

VIRTUAL

(NOT PROGRAM
TARGET)

SERVER

MANAGEMENT SERVER
@ CLARIFICATION §
O(Z)SI; E;JPOLOGY PHYSICAL SERVER (NOT PROGRAM TARGET)
PHYSICAL SERVER 4

'_y_IRTUALIZATION FACILITY }’\/30
-—[VIRTUAL SERVER ™3

VIRTUAL SERVER I/\/31

P eyl Rl -y P

® IF POSSIBLE, START @ IF IMPOSSIBLE, START
MANAGEMENT BY MANAGEMENT BY
MANAGEMENT SERVER MANAGEMENT SERVER,
AFTER PROGRAM USING 0/S
DEPLOYMENT (SP6) ® JUDGE STANDARD I/F (SP7)

WHETHER PROGRAM
DEPLOYMENT IS POSSIBLE
OR NOT (SP5)

ST

31 20)

VIRTUAL
SERVER

PHYSICAL
SERVER

VIRTUALIZATION
FACILITY
PHYSICAL SERVER

(NOT PROGRAM
TARGET) J

US 8,171,119 B2

Sheet 6 of 22

May 1, 2012

U.S. Patent

Qv

0S¥ d9¥

NO7 WOP 19P

ASF [POF

L
L
o

....I..III...L.'II.I'IJ||._.||‘|.“||II

o ALITIOVA NOWVZITYNLHIA | HIAHIS | X71300W HIAHZS oee | cee | eee | SOMICN (BOVING L OIN |
3 ANVAHOD | vnldIA 130v19 8 ANVAWOO| NO 100G | §908 |ISOS| G48AHQ-H 'eNMM| | | VEBH |6ainn| zevt | 6 ICON
o ALIIOVA NOMYZIIVALYIA | ALITIOVS | es e |0 | OIN |
3 ANVAINOD NOILYZITYNLYIA NO | eon | voe | aes 0 | VEH |sainni zevi | 8 3QON
2 ALITIOVA NOLLYZITYNLHIA X 1300 YIAHIS ee | eee [oee | PAOMIQN JJOVIN] L | JIN
9 ANVAINGD WOISAHd |30v18 8 ANVIINOD| NO [1000| §908 [ISOS| pRANG-H [INMM| | [vEH jlann} zevi | 300N
X I—MQOE Im>mmm "o . Y 284 ﬂh@.?m-_ﬂlz | NQ«E —. a“_..-:z |_
e YOISAHd |3av1g 8 Em%oi NO [1o0a| go0g [iSoS| veAug-H ANMM| L | VEH |9QInn| 2evi | 93GON]
B ALITIOV4 NOILYZITVNLLHIA HIAHIS Z 7300W HIAH3S o0 | GOAUG-N |90VIR| OIN “
¥ ANVAIROQD TYNLEIA 30V ¥V ANVAINOD| NO [1004 ISAS | SIRALA-H [SNMM! L
B ALIIOVA NOUVZITYNIMIA | H3AH3S | 2712001 H3AL3S SOMION |SOVN| | OIN
¥ ANVAINOD TVNLHIA - 130VI9 ¥V ANVAINOD| NO (100G ! €908 [I1SOS| £18ALG-H [SNMM| |
llLIII'[Il_Illl
ZIOALG-N | 7OYM
Ty s *e 9 N‘h@b.—hmlz moqE N O—z
e ALITIOVA NOLLYZITVALHIA HIAHIS | 273001 HIAHES BIep | §908 | mow_ ZOAUG-H {PNMM
v ANVAINOD TVNLYIA 3AV19 ¥ ANYdINOO! NO 100G | 8908 [ISOS| &@AMO-H |ENMM| ¢ veH |Edinn cEvl £ 3AON _
I B~ e
B ALITIOVE NOUVZIIVALHIA | ALTIOVA sor | e 0 [JIN
¥ ANYAINOD NOLLYZIIYNLLHIA "o NO *re too sor | "oy *os a vaH {2ainn! XX ¢ JAON |
LIBALA-N | 2OV
IBALG-
| _ vgw_o.” ..Ba,_ﬁi ‘ I |
e ALITIOV4 NOILYZITVALHIA Z 13001 HIAH3S | LOAIAH [cNMM, | |
¥ ANVdINOD JYOISAHd |30v19 Y ANVAWOD| NO 100G | 9908 | 301 | Meaug-H [INMM| ¢ | YEH [tainn] 2Evl | L 300N
| SNLVLS |
JdAL 2ounog SdALALOVAVD] A 3dALBINEA) NAVA |ALINVID 391AIC SHNLOZLHOHY | HaIAILNIC
NOLLYZITVYNLHIA HIAVTIVNLHIA| T300W HIAHIS | ¥3mod ANNTOA 39[A30 O] ainn Nd2 300N
\ ~ I\ ~ A v L__{... ~ A N Jlll\{{/l/\l\
[Of Ot 91 k74 497 49V dev o8 89%¢ VOV

US 8,171,119 B2

Sheet 7 of 22

May 1, 2012

U.S. Patent

LV
| L L & 8§ i | L » # 8) L
HSS piomssed
h&>m s s PR _.F.Nn.._- | 1001 s e s e aess | e e _ PP Q—. maoz
_ o e oy 0 ¢i9di | jopiomssed €002 |19 IOV 1V
€ WYHHOHd Y3001 | INOLLYOIlddY| (1odi L9PI [LOISOH| ZevI UM | Msia |3DIAYIS | 6 SAON
HSS I
——23 &9 4 4 8 “I—.m&_ e 8 & o B & o % 8 4 b & &% w4 b wmmoz —
JOY4HILNI |
nmN_Qm.MQzE.w coe ‘o 10Sd! vee see cevi eee ree tec L AQGON |
JovauaING |, SSENON v | clvdl | jppiomssed £002 LY IOV 1Y
|G3ZIGHVANYLS | = Sy3i507 = (NOLLYOIddY[1ivdi IpPI [LPISOH| Zevl | WM | MSIQ |[3DIAHIS| 9 3AON
mmm_\,_s_mm.qm w_.m._on_ q Lepiomssed ¢'9°C 1€ IDVINI -8
__ C 54&..“_!501!&“. H3LSNTI-NON rzimu_._.dlo_n_nm_ﬁ F._.m&_ | EPI [E1SOH 14542 XU MSId (IDIAHIS | ¢ IAON
tHO S v v lzpiomssed €002 |12 IOVINI| 2V
¢ NvHOOHd divoipo1 |INOLLVYIITddY L12d} L CP! }C1SOH AR UIM | MSIA (3dOIAHES | ¥ 23GON
TN, ' ¢hidl |pipiomssed €002 |1 IOVINI| -V
F AIVHOOdd di viino1 |NOLLYOIddV L1 Ll I I FHISOH| 2EVI UIAA | MSId [3OIAHIS | € 2AO0N
dod ‘HSH
Emmg a4 8 & & 8 H —-—.om_ L B B & & & & & & 2 B & » 4 8 s s B chcz
JOV4HILNI
Q3Z210HYANYLS PP see L 00dA] cee oo s oY oo oo se e I AAGON
SNYVII ONILLIS |NOLLYWHOANI QHOMSSVd | SWYN | JHNL- |3dAL| SO0 [H3UNIGH HI3HLLNEA)
INFWIDVNVYIN | DIdI03dS dd | IWVNdd dl SO/Al | LSOH |O3LIHOHVY | SO | Ygig | 30IAH3S | ZAON
VA7 rLY VA H.LY oﬁ.\. 4/ 3y 4l Oy 8lp V.V

U.S. Patent May 1, 2012 Sheet 8 of 22 US 8,171,119 B2

FIG.8
48A 488 48C

PHYSICAL SERVER | VIRTUALIZATION FACILITY| VIRTUAL SERVER
(NODE IDENTIFIER) (NODE IDENTIFIER) (NODE IDENTIFIER)

NODE 3
NODE 1 NODE 2 NODE 4

NODE 5
NODE 6 cos ‘oo
NODHE 7) | NOIZ;E 8 - “ NbDE 9 -

US 8,171,119 B2

Sheet 9 of 22

May 1, 2012

U.S. Patent

67

3181SS0d

37491SSCd

> W

d4AddS
TVNLYIA

167

3191SSOd I

318ISSOd N

yo e

ALNIDVA
NOLLVZITVNLYIA

a6v

HEV

ddAd3S

Y ANVdIAOO

ATNO dO4d
37818504

37191SSOdINI

* 09

d3AHES
TV IISAHd

ALITEISSOd
NOLLYTIVLSNI NVdDOdd

D67

HSS
HAIAA

HSS
JTAA0ON

AN0DINN

dOH ‘HSH
‘W3 gm

10900.10dd

nllal

=

=467

3dAl
NOILVZITVNLEIA
GNV
H3AV1 TVNLYIA
NOH4 3DANF

d3AH3S TVNLAIAOL

| ONIONOdS3dd09

ainn dNv

SdAL ALITIOVA
NOILVZITVNLHIA

ddAl
NOLLVZITVNLdIA
OGNV
d3AVT TVNLYIA
WOd4 304nr

QOHIL3INW

!

=67

| HOSSID0OHd

30IAH3S

SHAAHIS
TYALHIA
40 ANV

J0V4H3 1N
INJWNIOVNYIA
ALI'NIOVS
NOILVZITVLAIA

324dN0S
NOLLISINDOV

NOILVIAIHOZNI

NOILVYOIJdILNZJI
S — NUNESSS—————_ e, e e

067
=

:

|

V ALV
NOLLVZITVN.LaIA
J ANVdINOOD

q ALFIDYA
NOLLYZITVNLYIA
g ANVdINOD

e ALNIOVS
NOLLVZITVNLHIA
¥V ANVdINOO

(INVYN
195Naodd)
JdALALITIOVS
NOILLYZITYNLHIA

aév

£
ALIMIOYH
NOILVZITVNLHIA

¢
ALIOVH
NOLLYZITYNLHIA

4
ALITIOV
NOLLYZITVNLHIA

d3I3LINIA
ALIIOVd
NOILYZITVNLHIA

V6

U.S. Patent May 1, 2012 Sheet 10 of 22 US 8,171,119 B2

H0A 508 50C 500 50k 50F
RULE RULE PARAMETER | PARAMETER | EXCEPTION PROBE
IDENTIFIER | PARAMETER | FIXEDVALUE | RANGE |PARAMETER METHOD
RULE | | 192.168.0.0~ | 192.168.0.0
A IP ADDRESS 192.168.255.255,| 192.168.0.2 ping
] | 192.168.200.10 | 192.168.100.1
| | ssH
RULE ~ | ~ COMBINATION
” | HOST NAME | hostname 0001~1000 | 050070550 | Aol E 3
“AND RULE 4
SSH
RULE D . root, voe COMBINATION
3 : lusri, usr2, usr3 OF RULE 2
AND RULE 4
RULE root, COMBINATIO
g | PASSWORD | password |, ... ysr2 usr3 OF RULE 2
AND RULE 3
RULE | HARDWARE]
. U VENDOR | COMPANY A CIM
RULE Linux | ~ oo |
; | 0S _ D 6. 2.6.10~2.6.12 | Civ
| | telnet
F-'U?LE | M“:,[;?;EE | Cosminexus l\J’er..':"n-“*---*Ver.?’.,a' Ver.7.5 c%@?ﬁfé’? N
| | AND RULE 4
FIUBLE | MANA(EEMENT . SMASH L el SMACH CLP
i
Agent Program
H%LE | PF?ggglM AgentProgram Ver.1.2 cee PROPRIETARY
COMMUNICATION
|
[| | COMMUNICATION
. DESCRIBED |
RULE | VIRTUALIZATION] TR O || VIRTUALIZATION
10 | FACILITY EAGILITY | Ver.1.0 FACILITY
9 | | MANAGEMENT
J | | TABLE
IP ADDRESS | | 200.100.0.1™ | SSH
RULE | FOR 200.100.0.20, COMBINATION
11 SERVICE | 200.100.1.1~ | OF RULE 3
| PROCESSOR | 200,100.1.10 | AND RULE 4
R z s
— . N I S S

US 8,171,119 B2

Sheet 11 of 22

May 1, 2012

U.S. Patent

1S HLG 011G <41 G
) 2 73AON ALITIOVS
6002 AN 8
35012 Bn G G e NOILYZITYN.LHIA
v/1E 9 ZXNUIT A N0 NYHOOHd |
] | 213A0N ALITIOVH
6002 ANd L
380710 Bn 6 1 v NOLLYZITVNLHIA
V/LE €00CUIM 5 ANYAINOD NYHDO0Hd __
0102 Z2EVI X T3AON H3IAH3AS| 9
AS007 idy/1 0l 0 OISHEIOS |3AVTE 8 ANVAINOD| WVHOOH |
- mwmo._ 0102 o o ZEVI LX 73A0N HIAHAS G
advy/L g gZxXnhur 3AVv19 9 ANVdINOD| NVYHDOHd
B 6002 | 4 YoV 1121300 H3AYSS | v
38010 uer/gz 0 Oc £00ZUIM 30v18 ¥ ANVdINOD| WYHDOHd
!mwoo.d - 6002 , o - Zev R REGLIEEICER e
uer/gz | £002UlM 3aV18 ¥V ANVAINOD| INVHDOU
15015 6002 o 5 ZeVI 1Z 130N HIAHIS A _
094/6¢ g'Zxnuii AAV18 ¥V ANVdINOD! INVHEDOHd
-~ 6002 .1 - zZevl 1Z 13A0N HAAH3S| |
38007 uer/gz - O o oZxnurl |3AV1E V ANVANOD| INVHDOH
31V ALILINYND | ALLLNVND
SdALIWHOH1IV1Id| 3IdALHIAHIS
13A3T NOLLVHIdXH [ONINIVINSH | 438N 1 yoliyNiLsaa NOILVNILS3a | HII4ILNIal
ININIDYNY I 9SNIDI LNINAO143a LNINAOIHIA | NVHDHOUd

L DI

U.S. Patent May 1, 2012 Sheet 12 of 22 US 8,171,119 B2

FI1(:.12

START
— - SP10
SERVER PROBE UNIT PERFORMS
PROBING UPON MONITORING

SP11

SERVER REGISTRATION UNIT REGISTERS
NEWLY FOUND SERVER WITH
MANAGEMENT TABLE GROUP

" SP12
SERVER CONFIGURATION ACQUISITION UNIT

ACQUIRES CONFIGURATION INFORMATION
ABOUT REGISTERED SERVER AND
UPDATES MANAGEMENT TABLE GROUP

o

SP13

VIRTUALIZATION FACILITY CONFIGURATION
GENERATION UNIT REFERSTO
MANAGEMENT TABLE GROUP AND GENERATES
TABLE RELATING TO MODEL INFORMATION

SP14

CANNOT DEPLOY
PROGRAM

MANAGEMENT
MEANS JUDGMENT UNIT JUDGES

WHETHER PROGRAM CAN BE
DEPLOYED OR NOT

CAN DEPLOY PROGRAM

" SP15
DEPLOYMENT EXECUTION
UNIT DEPLOYS PROGRAM _

e —

U.S. Patent May 1, 2012 Sheet 13 of 22 US 8,171,119 B2

FIG.13

MONITORING
TIME?

| YES
SP21
REFER TO DATA CENTER OPERATION
POLICY MANAGEMENT TABLE
SP22

DESIGNATED FOR EACH RULE

DETECT SERVER BY PROBE METHOD

U.S. Patent May 1, 2012 Sheet 14 of 22 US 8,171,119 B2

FIG.14

SP30
YES

DETECTED SERVER
IS NEW?

o IS_P31

ADD NECESSARY INFORMATION
ABOUT DETECTED SERVERTO
SERVER MANAGEMENT TABLE AND
SERVER LOGICAL INFORMATION
MANAGEMENT TABLE

NO

SP32

PROCESSING
FOR ALL THE DETECTED
SERVERS HAS
FINISHED?

NO

YES

END

U.S. Patent May 1, 2012 Sheet 15 of 22 US 8,171,119 B2

FIG.15

SP40
REFER TO SERVER MANAGEMENT TABLE
SP41
REFER TO SERVER LOGICAL
INFORMATION MANAGEMENT TABLE
SP4z2
REFER TO DATA CENTER OPERATION
POLICY MANAGEMENT TABLE
SP43
PROBE SERVER BY PROBE METHOD
DESIGNATED FOR EACH RULE AND
ACQUIRE SERVER INFORMATION
SP44

UPDATE SERVER MANAGEMENT TABLE

- SP45
UPDATE SERVER LOGICAL INFORMATION
MANAGEMENT TABLE

oP46

PROCESSING FOR
ALL THE NEW ENTRIES
HAS FINISHED?

NO

YES

U.S. Patent May 1, 2012 Sheet 16 of 22 US 8,171,119 B2

FIG.16
START
SP50
REFER TO SERVER MANAGEMENT TABLE
: SP51
REFER TO DATA CENTER OPERATION
POLICY MANAGEMENT TABLE

SP52

REFER TO VIRTUALIZATION

FACILITY MANAGEMENT TABLE
SP53
ESTABLISH CONNECTION TO
SERVER TO BE MANAGED
' SP54
CONNECTION __NO
SUCCESS?
y YES SP55
ACQUIRE VIRTUALIZATION TYPE

j SP56

ACQUIRE VIRTUAL LAYER
SP57

UPDATE SERVER MANAGEMENT TABLE

SP38
ACQUIRE IDENTIFIER INDICATING r

PHYSICAL SERVER
SP39Y
ACQUIRE IDENTIFIER INDICATING
VIRTUAL SERVER
L SPo0

ACQUIRE IDENTIFIER INDICATING
VIRTUALIZATION FACILITY

SPO1

PROCESSING
FOR ALL THE NEW ENTRIES
HAS FINISHED?

~ YES, SP62
UPDATE SERVER MODEL INFORMATION
MANAGEMENT TABLE

NO

U.S. Patent May 1, 2012 Sheet 17 of 22 US 8,171,119 B2

FIG.17

: SP70
REFER TO SERVER
MANAGEMENT TABLE

SP71

REFER TO SERVER MODEL
INFORMATION MANAGEMENT TABLE

SP72

REFER TO VIRTUALIZATION
FACILITY MANAGEMENT TABLE

iy)) SP /73
REFER TO PROGRAM
MANAGEMENT TABLE

SP74
YES

DEPLOY PROGRAM?

NO

SP73

[— DECIDE MANAGEMENT METHOD

FEY R ER S FEY vy T TF T R

SP76
UPDATE SERVER LOGICAL
INFORMATION MANAGEMENT TABLE

SP 77

PROCESSING
FOR ALL NEW ENTRIES

HAS FINISHED?

NO

YES

END

U.S. Patent May 1, 2012 Sheet 18 of 22 US 8,171,119 B2

FIG.18

SP80

DEPLOY PROGRAM

| SP81
UPDATE PROGRAM MANAGEMENT TABLE

SP82

PROGRAM
HAS BEEN DEPLOYED TO
ALL TARGET NODES?

NO

YES

END

U.S. Patent May 1, 2012 Sheet 19 of 22
FIG.19
60
64
e Y =
MANAGEMENT SERVER
65 66
- e
CONTROL MANAGEMENT
PROGRAM GROUP | TABLE GROUFJ
NW-SW 3 62 62 62 61
: —))P
CHASSIS
SERVICE PROCESSOR)« 63
31 31 31 31 31 3
A
VIRTUAL[VIRTUAL] [VIRTUAL VIRTUAL[VIRTUAL] _ [VIRTUAL
SEHVEFJSERVEH‘ SERVER| SERVER|SERVER| """ | SERVER
VIRTUALIZATION 30| VIRTUALIZATION 30
FACILITY FACILITY
1 PHYSICAL SERVER | __| PHYSICAL SERVER 4
| g N
6
| o o
| STORAGE APPARATUS
< Y <>
VOLUME | | VOLUME| --* | VOLUME
37 37 37 37 37
] T Y

>

o5 o5 |
r JJ

PROGRAM | - iPROGRAM[J
y -
4___._——*—"'/

VOLUME

VOLUME
29 25
., —

[PROG RAMJ e I PROGRAMJ

US 8,171,119 B2

L9

6 JGON 8 3AON L JA0ON
0L JAON

G 3AON |
v JAON 2 IGON - L IAON cos

¢ 4AON

US 8,171,119 B2

Sheet 20 of 22

| (43141LNIAl 3AON) |
(43I41LN3al 3AON) ALITIOY4 (434ILN3A 3aON) | (43141LN3al 2dON)

HIAHAS TYNLHIA | NOILVZIIVNLYIA | HIAHSS TVIISAHd [HOSS300Hd 30IAdES

a.L9 QLS a.9 RS

May 1, 2012

U.S. Patent

U.S. Patent May 1, 2012 Sheet 21 of 22 US 8,171,119 B2

FI1G.21

CHASSIS 62

CHASSIS 62

PHYSICAL SERVER (NOT PROGRAM TARGET) 4

PHYSICAL SERVER 4

VIRTUALIZATION FACILITY f’vSO

VIRTUAL SERVER 31

VIRTUAL SERVER 31

U.S. Patent May 1, 2012 Sheet 22 of 22 US 8,171,119 B2

FI1G.22

SPA0

REFER TO SERVER MANAGEMENT TABLE
- : - SPA91
REFER TO SERVER LOGICAL
INFORMATION MANAGEMENT TABLE

' SP92
REFER TO DATA CENTER OPERATION
POLICY MANAGEMENT TABLE

' : PO3
PROBE SERVER BY PROBE METHOD SP3
DESIGNATED FOR EACH RULE AND
ACQUIRE SERVER INFORMATION
; _ SP94
UPDATE SERVER MANAGEMENT TABLE
SP95

UPDATE SERVER LOGICAL
INFORMATION MANAGEMENT TABLE

SP9Y6

PROCESSING
FOR ALL NEW ENTRIES
HAS FINISHED?

NO

YES

END

US 8,171,119 B2

1

PROGRAM DEPLOYMENT APPARATUS AND
METHOD

CROSS-REFERENCES TO RELATED
APPLICATIONS

This 1s a continuation application of U.S. application Ser.
No. 12/191,767, filed Aug. 14, 2008, now allowed, the con-
tents of which are hereby incorporated by reference into this
application.

This application relates to and claims priority from Japa-
nese Patent Application No. 2008-130677, filed on May 19,

2008, the entire disclosure of which 1s incorporated herein by
reference.

BACKGROUND

1. Field of the Invention

The 1nvention relates to a program deployment apparatus
and method and 1s suited for use 1n, for example, a manage-
ment server for managing physical servers and virtual servers
set on the physical servers (hereinafter referred to as “virtual
servers’’), 1n a server system.

2. Description of Related Art

Conventionally, various servers and server virtualization
products exist at data centers. Various methods for managing,
those servers and server virtualization products have been
suggested. As one example of such a management method, a
method of deploying a server management program called an
“agent program’ to physical servers and virtual servers pro-
vided on the physical servers, both of which are targets to be
managed, and 1nstalling the program on the physical servers
and the virtual servers has been widely employed.

When deploying the agent program to the physical servers
and the virtual servers in the above-described case, a system
administrator has to assume a large burden of, for example,
tudging whether or not the platform for the physical servers
and virtual servers 1s of the type to which the agent program
can be deployed, and also judging which agent program from
among the different kinds should be deplovyed.

As a means for solving the above-described problem, a
technique of selectively installing an appropriate program to

a remote client existing on a network and a technique of

installing desired software on computers of different models
have been suggested (Japan Patent Laid-Open (Kokai) Appli-
cation Publication No. 2007-58664 and Japan Patent Laid-
Open (Kokai) Application Publication No. 2000-276332).

Users of servers installed at data centers wish to minimize
the use of memory resources for server management 1n con-
sideration of costs and other factors. If virtual servers are
active on physical servers, some users accept installing a
management program on virtual servers used directly for
their services, but avoid installing such programs on physical
servers not used directly for the services. Therefore, an opera-
tion for server management to deploy the program only to the
virtual servers and not to the physical servers 1s required in the
above-described case.

However, the techniques disclosed 1n Japan Patent Laid-
Open (Koka1) Application Publication No. 2007-58664 and
Japan Patent Laid-Open (Kokai1) Application Publication No.
2000-276332 are based on the premise that a program 1is
deployed to all the remote clients and computers existing on
a network. So, the conventional art has a problem of being
unable to selectively deploy a program, as described above.

SUMMARY

The present invention was devised in light of the circum-
stances described above. It 1s an object of the mvention to

10

15

20

25

30

35

40

45

50

55

60

65

2

provide a program deployment apparatus and method capable
of selective program deployment.

In order to achieve the above-described object, the present
invention has a feature whereby, a program deployment appa-
ratus that 1s connected via a network to at least one physical
server including a physical server with a virtualization facility
for providing a virtual server to a client, and deploys a pro-
gram to the at least one physical server as necessary includes:
a detection unit for detecting one or more nodes which are any
of the physical server, the virtualization facility, and the vir-
tual server and connected via the network; an acquisition unit
for acquiring, for each node detected by the detection unit,
first configuration information about a virtual layer of the
node; and a deployment unit for selectively deploying the
program to the relevant node based on the first configuration
information for each node which 1s acquired by the acquisi-
tion unit.

The ivention also has a feature whereby, a program
deployment method for an apparatus connected via a network
to at least one physical server including a physical server with
a virtualization facility for providing a virtual server to a
client, for deploying a program to the at least one physical
server as necessary includes: a first step of detecting one or
more nodes which are any of the physical server, the virtual-
1zation facility, and the virtual server and connected via the
network; a second step of acquiring, for each detected node,
first configuration information about a virtual layer of the
node; and a third step of selectively deploying the program to
the corresponding node based on the first configuration infor-
mation for each node acquired.

This invention enables selective program deployment. As a
result, the operation for server management can be per-
formed, for example, to deploy a program to virtual servers
and physical servers with mnactive virtualization facilities, and
not deploy the program to equipment incompatible with the
program or physical servers with active virtualization facili-
ties. Consequently, a highly convenmient program deployment
apparatus and method can be realized.

Other aspects and advantages of the invention will be
apparent from the following description and the appended
claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram showing the schematic configu-
ration of a server system according to the first embodiment of
the present invention.

FIG. 2 1s a block diagram showing the schematic configu-
ration of a management server.

FIG. 3 1s a block diagram showing the schematic configu-
ration of a physical server.

FIG. 4 1s a block diagram showing the schematic configu-
ration of a physical server, a virtualization facility, and virtual
SErvers.

FIG. 5 1s a conceptual diagram explaining the outline of
program deployment processing according to the first
embodiment.

FIG. 6 shows a server management table.

FIG. 7 shows a server logical information management
table.

FIG. 8 shows a server model information management
table.

FIG. 9 shows a virtualization facility management table.

FIG. 10 shows a data center operation policy management
table.

FIG. 11 shows a program management table.

US 8,171,119 B2

3

FI1G. 121s aflowchart 1llustrating a processing sequence for
program deployment processing.

FI1G. 13 1s aflowchart illustrating a processing sequence for
server probe processing.

FI1G. 14 1s a flowchart 1llustrating a processing sequence for
server registration processing.

FIG. 151s aflowchart 1llustrating a processing sequence for
server configuration acquisition processing.

FI1G. 1615 a flowchart illustrating a processing sequence for
virtualization facility configuration generation processing.

FI1G. 17 1s atflowchart illustrating a processing sequence for
management means judgment processing.

FI1G. 18 1s a flowchart illustrating a processing sequence for
deployment execution processing.

FI1G. 19 1s a block diagram showing the schematic configu-
ration of a server system according to the second embodi-
ment.

FIG. 20 shows a server model information management
table according to the second embodiment.

FIG. 21 1s a conceptual diagram showing the topology
between chassis, physical servers, a virtualization facility,
and virtual servers according to the second embodiment.

FI1G. 22 1s a flowchart illustrating a processing sequence for
server configuration acquisition processing according to the
second embodiment.

DETAILED DESCRIPTION OF PR
EMBODIMENTS

L1
Y

ERRED

Embodiments of the present invention will be explained
below with reference to the attached drawings.

(1) First Embodiment

(1-1) Configuration of Server System According to
First Embodiment

In FIG. 1, reference numeral “1” represents, as a whole, a
server system 1installed at a data center according to this
embodiment. This server system 1 1s configured so that a
management server 2 1s connected via a first network switch
(NW-SW) 3 to one or more physical servers 4, and the man-
agement server 2 and the physical server(s) 4 are respectively
connected via a second network switch (NW-SW) 5 to a
storage apparatus 0.

The management server 2 1s composed of, for example, a
personal computer or a workstation and includes a CPU (Cen-
tral Processing Unit) 10, memory 11, a network interface 12,
and a disk interface 13 as shown 1n FIG. 2.

The CPU 10 1s a processor for controlling the operation of
the entire management server 2 and executes necessary pro-
cessing based on a control program group 13 and manage-
ment table group 14 (described later) stored in the memory
11. The memory 11 1s used to store the control program group
13 and management table group 14 (described later) and also
serves as work memory for the CPU 10.

The network interface 12 1s a communication interface
compatible with the first network switch 3 (FIG. 1) and per-
forms protocol control when the management server 2 com-
municates with each physical server 4. The disk interface 13
1s a communication interface compatible with the second
network switch 5 and performs protocol control when the
management server 2 communicates with the storage appa-
ratus 6.

Each physical server 4 1s composed of, for example, a
personal computer or a workstation like the management
server 2 and includes a CPU 20, memory 21, a network

5

10

15

20

25

30

35

40

45

50

55

60

65

4

interface 22, and a disk interface 23 as shown in FIG. 3. Since
the CPU 20, the memory 21, the network interface 22, and the
disk interface 23 have functions respectively similar to those
of the CPU 10, the memory 11, the network interface 12, and
the disk interface 13 for the management server 2, a descrip-
tion of the details of those components of the physical server
4 has been omitted.

The physical server 4 has an OS (Operating System) 24
installed for device management within the physical server 4,
and the OS 24 1s active 1n the physical server 4. Incidentally,
when the OS 24 for the physical servers 4 1s not active, the OS
24 can be activated by turning power on via a WOL (Wake up
On Lan) or a BMC (Basement Management Controller).

The OS 24 15 equipped with, for example, a management
program 25 and a service-providing application 26, and the
program 23 and application 26 operate on the OS 24. The
program 25 1s a program dedicated to managing the physical
servers 4 and the virtual servers 31. The program enables
acquisition of asset, performance, and fault information about
the OS 24 and the physical servers 4. Also, the program 25 can
start or terminate other programs and enter a termination
command to the OS 24 itself. Furthermore, the program 25
can manage the operation of the application 26 by providing

the program 25 with a function for monitoring the application
26.

As shown 1n FIG. 4, a virtualization facility 30, which 1s
one of control programs stored in the memory 21, operates on
cach physical server 4. This virtualization facility 30 creates
virtual servers 31, each composed of, for example, a virtual
CPU 32, virtual memory 33, a virtual network interface 34,
and a virtual disk interface 35, all of which are virtual versions
of devices such as the CPU 20, the memory 21, the network

interface 22, and the disk interface 23 for the physical server
4.

The virtual memory 31 for each virtual server 31 stores its
program 25, application 26, and OS 24 separately from those
for other virtual servers 31. The individual virtual server 31 1s

designed to provide services similar to those of the physical

servers 30 1n accordance with the program 25, the application
26, and the OS 24.

The virtualization facility 30 and each virtual server 31 are
also connected to the management server 2 via a virtualiza-
tion facility management interface 36 for the virtualization
facility 30. The management server 2 can collect and set
information about the virtualization facilities 30 and each
virtual server 31 via the virtualization facility management
interface 36 and also control a power source for each virtual
server 31.

The storage apparatus 6 (FI1G. 1) 1includes a plurality of disk
devices (not shown in the drawing) operated according to, for
example, a RAID (Redundant Array of Inexpensive Disks)
system. As shown i FIG. 1, a plurality of volumes 37 1s
defined 1n storage areas provided by the plurality of disk
devices. Incidentally, examples of attributes of these volumes
37 include system volumes and data volumes. The system
volumes are used to store system information about the OS
and the like, and the data volumes are used to store user data.

One or more volumes 37 connected to the management

server 2 also exist 1n the storage apparatus 6, and these vol-
umes 37 store and retain one or more kinds of programs 23 to
be deployed to the physical servers 4 and the virtual servers
31, as described later.

US 8,171,119 B2

~
(1-2) Program Deployment Method 1n Server System

(1-2-1) Outline of Program Deployment Method

In the server system 1 according to the first embodiment
described above, the management server 2 deploys a manage-
ment program 23 to newly introduced physical servers 4 and
virtual servers 31 for the purpose of managing the physical
servers 4 and the virtual servers 31, and then manages the
physical servers 4 and the virtual servers 31 using the pro-
gram 23. Also, the management server 2 manages the virtu-
alization facilities 30 by a management method without using
the management program 25 (for example, a management
method using an OS standard interface or other standardized
interface).

However, such a program 235 sometimes cannot be
deployed to the physical servers 4 or the virtual servers 31
because of a server user’s request or a compatibility problem
between the program 25 and the servers.

One of features of the server system 1 1s that the server
system 1 judges whether or not newly introduced physical
servers 4 or virtual servers 31 are servers to which the man-
agement program 25 can be deployed; and the server system
1 then selectively deploys the program 25 to the physical
servers 4 and virtual servers 31 to which the program 25 can
be deployed.

FIG. § shows the outline of a management program deploy-
ment method according to this embodiment. Periodically or
upon the occurrence of a specified event, the management
server 2 1n the server system 1 according to this embodiment
probes nodes (which are physical nodes 4, virtualization
facilities 30, and virtual servers 31 as shown 1n FIG. 5) (SP1)
connected to the first network switch 3 and searches the nodes
connected to the first network switch 3 (SP1).

If the management server 2 detects nodes newly connected
to the first network switch 3 (hereinafter referred to as “new
nodes™) as a result of probing (SP2), 1t collects information
about the new nodes (SP3). In order to collect this informa-
tion, methods using an information collection program or
using the OS standard interface or standardized protocol can
be utilized.

The detailed information can be collected by performing,
information collection 1n accordance with the operation
policy of the relevant data center. An example of the operation
policy of the data center 1s definition of the range of IP
addresses given to the physical servers 4, the virtualization
tacilities 30, and the virtual servers 31. It this operation policy
1s Tollowed when detecting the new nodes by means of, for
example, “pinging,” good elficiency with respect to time can
be achieved and an extra load on the network due to unnec-
essary packets can be prevented. Also, when collecting infor-
mation, a naming convention for a host name and user ID and
password generation rules (described later) are useful. Using,
this convention and rules makes 1t possible to establish con-
nection to the servers and collect the information. If the opera-
tion designating a connection method 1s employed, the des-
ignated connection method can be defined as the operation
policy, thereby enabling collection of the information with
more certainty and efficiency.

Subsequently, the management server 2 judges the type of
cach node—whether 1t 1s a physical server 4, a virtualization
facilities 30, or a virtual server 31—based on the information
collected 1n step SP3; and clarifies the lineage between these
new nodes (the topology between the newly-found physical
servers 4, virtualization facilities 30, and virtual servers 31)
(SP4). By clarifying this lineage, the operation for, for
example, not deploying the program 25 to the physical servers

10

15

20

25

30

35

40

45

50

55

60

65

6

4 on which the virtual servers 31 are active, or to the virtual-
1ization facilities 30 can be performed.

Next, the management server 2 judges whether or not the
program 23 can be deployed to the new nodes detected 1n step
SP2 (SPS5). This means that the method for managing the new
nodes 1s decided.

If an affirmative judgment 1s returned 1n SP5, the manage-
ment server 2 deploys the program 25 to the new nodes and
then starts managing the new nodes, using the program 23
(SP6). The targets to be managed are the physical servers 4
and the wvirtual servers 31. The program 25 may not be
deplovyed to the physical servers 4, depending on the opera-
tion policy of the data center. In this embodiment, the pro-
gram 25 1s not deployed to the physical servers 4 on which the
virtual servers 31 are active. On the other hand, the program
235 1s deployed to the physical servers 4 if the virtualization
tacilities 30 are not active on the physical servers 4, or 11 the
virtualization facilities 30 employ a commonly-used host OS.
Once the program 25 1s deployed to the physical servers 4
and/or the virtual servers 31, information collection relating
to, and monitoring, setting, and control of, the physical serv-
ers 4 and the virtual servers 31 will be performed via the
program 23.

I a negative judgment 1s returned 1n SP5, the management
server 2 does not deploy the program 25 to the new nodes and
then starts managing the new nodes, using, for example, the
OS standard interface or a standardized interface (SP7). The
targets to be managed are the virtualization facilities 30 and
the physical servers 502 incompatible with the program 25. In
this way, 1t 1s possible to prevent deployment of the server
management program 25 to the virtualization facilities 30.

(1-2-2) Configuration of Various Programs and Various
Tables

As a means for realizing the program deployment method
according to the first embodiment described above, the
memory 11 for the management server 2 stores, as shown in
FIG. 2: a program group 13 consisting of a server probe
program 40, a server registration program 41, a server con-
figuration acquisition program 42, a virtualization facility
configuration generation program 43, a management means
judgment program 44, and a deployment execution program
45; and a management table group 14 consisting of a server
management table 46, a server logical information manage-
ment table 47, a server model information management table
48, a virtualization facility management table 49, a data cen-
ter operation policy management table 50, and a program
management table 51.

Of the above-listed programs, the server probe program 40
1s a program for probing the nodes (physical servers 4, virtu-
alization facilities 30, and virtual servers 31) connected via
the first network switch 3 (FIG. 1) to the management server
2, and the server registration program 41 1s a program for
registering the new nodes detected as a result of probing, with
the server management table 46.

The server configuration acquisition program 42 1s a pro-
gram for acquiring configuration information about each
node registered with the server management table 46 by the
server registration program 41, and the virtualization facility
configuration generation program 43 1s a program for detect-
ing the topology between the new nodes.

The management means judgment program 44 1s a pro-
gram for judging whether or not the program 25 should be
deployed to the new nodes registered with the server manage-
ment table 46, and the deployment execution program 43 1s a
program for deploying the program 25 to the new nodes for
which the judgment 1s made to deploy the program 25.

US 8,171,119 B2

7

Incidentally, the following explanation will be given
assuming that agents executing various kinds of processing
are the server probe program 40, the server registration pro-
gram 41, the server configuration acquisition program 42, the
virtualization facility configuration generation program 43,
the management means judgment program 44, or the deploy-
ment execution program 45; however, needless to say, the
CPU 10 for the management server 2 actually executes pro-
cessing based on the relevant programs.

Meanwhile, the server management table 46 1s a table used
by the management server 2 to manage nodes connected to
the management server 2, and 1s composed of a “node 1den-
tifier” field 46 A, a “CPU architecture” field 46B, an “UUID”
field 46C, an “1I/O device” field 46D, a “volume” field 46F, a
“power source status” field 46F, a “server model” field 46G,
a “virtual layer” field 46H, and a ““virtualization type” field
46].

The “node 1dentifier” field 46 A stores an 1dentifier given to
cach node (physical server 4, virtualization facility 30, or
virtual server 31) connected to the management server 2 and
detected by the server probe program 40 (hereinafter referred
to as the “node 1dentifier”). The “CPU architecture” field 46B
stores the architecture of the CPU mounted on the relevant
node. The CPU architecture 1s iformation required when
selecting the type of the program 25. If the program 25 1s of
the type prepared for CPU architecture different from that of
the node to which the program 25 has been deployed, there 1s
a high possibility that the program 25 may operate, but fail to
tulfill 1ts role sutiliciently.

The “UUID” field 46C stores an UUID (Universal Unique
Identifier) given to the relevant node. The UUID 1s an 1den-
tifier whose format 1s originally defined so that there will be
no redundant 1dentifiers globally, and whose uniqueness can
be guaranteed with certainty. Therefore, the UUID 1s an can-
didate for the node identifier to be stored in the “node 1den-
tifier” field 46 A and 1s very effective for a wide range of server
management. However, a node 1dentifier requested by a sys-
tem administrator may be used as the node identifier to be
stored 1n the “node 1dentifier” field 46 A. In fact, there would
be no problem 1f redundant node identifiers are not used for
different nodes. So, although 1t 1s desirable to use the UUID,
it 1s not always necessary to do so. For example, a host name,
an IP address, a MAC (Media Access Control) address, and a
WWN (World Wide Name) can be used for the node 1denti-
fier.

The “1/0 device™ field 46D 1s composed of a “device” field
461], a “quantity” ficld 46K, a“WWN" field 461, and a “driver
type” field 46 M. The “device” field 461 stores the device type
of an I/O (Input/Output) device(s) used by the relevant node
for communication with the management server 2. Examples
of the device type include an HBA (Host Bus Adaptor) and an
NIC (Network Interface Card).

The “quantity” field 46K stores the number of the I/O
devices. If the number of I/O devices 1s small, since it 1s
desirable for the load placed by the program 25 on the net-
work or similar to be lighter, 1t 1s necessary to select a program
25 with a light load as the program 25 to be deployed to the
relevant node. If the relevant node has a plurality of I/O
devices, one or more 1/0 devices may be monitored. In this
case, a program 25 capable of maintaining close cooperation
between the management server 2 and the relevant node needs

to be selected as the program 25 to be deployed to the relevant
node.

The “WWN” field 46K stores a network address (such as a
“WWN” for an HBA or an “MAC address™ for an NIC) given
to the 1/0 device(s) whose device type 1s stored in the corre-
sponding “device” field 46J. The network address serves as an

10

15

20

25

30

35

40

45

50

55

60

65

8

identifier for identitying the relevant node 1n a SAN (Storage
Area Network) environment. Therefore, the network address
sometimes serves as a node identifier in a system configured
for a SAN environment. Since the MAC address 1s generally
a unique identifier, 1t may sometimes assume the role of a
node 1dentifier.

The “driver type” field 46 M stores the device driver type of
the relevant I/O device(s). In order to avoid the system from
going down due to incompatibility between the devices, it 1s
important to know what kind of device drivers are incorpo-
rated 1n the system.

The “volume”™ field 46E 1s composed of an “interface™ field
46N, a “capacity” field 46P, and a “type” field 46Q. The
“interface™ field 46N stores the type of interface (such as IDE
[Integrated Device Environment] or SCSI [Small Computer
System Interface]) used by the relevant node when inputting/
outputting data to/from volumes 37 (F1G. 1) connected to the
node.

The “capacity’ field 46P stores the capacity of the volumes
377. If the total capacity of the volumes 37 1s small, consuming
a large amount of database area for the program 23 1s unac-
ceptable, so the operation with lightest possible load 1s pre-
terred. On the other hand, 11 the total capacity of the volumes
37 1s large and a large number of nodes need to be managed,
it would be better to create a database, which would make it
possible to construct a highly-reliable system in terms of
information search and accumulation.

Furthermore, the “type” field 46Q) stores information 1ndi-
cating the attribute of the relevant volume 37, whether 1t 1s a
system volume (“boot”) or a data volume (*data’). The 1nitial
setting value for the “type” field 46QQ may be set to the former
attribute (“boot”) and kept unchanged; however, generally, a
system administrator sets the attribute of the volume(s) 37 1n
the “type” field 46(Q). Input to the “node identifier” field 46 A
may be omitted by designating information stored in any of
the fields 1n this server management table 46 or a combination
ol pieces of mnformation stored 1n a plurality of fields in the
server management table 46. Alternatively, the node 1dentifi-
ers may be automatically assigned, for example, 1n ascending
order.

The “power source status” field 46F stores the power
source status of the relevant node. There are two kinds of
power source status: active state (“on”) and inactive state
(“ofl™). If the power source for a node 1s off when deploying
the program 25 to the node, it 1s necessary to turn power on;
and therefore, the management server 2 manages the power
source status of each node. Information cannot be collected
about the virtual servers 31 if their power 1s oif; however,
when storing values 1n the server model information manage-
ment table 48 (described later) (see FIG. 8), 1t 1s necessary to
{11l In all the necessary information 1n that table 28 properly.
As a result, the virtualization facilities 30 and the virtual
servers 31 can operate and false deployment of the program
235 to the defined physical servers 4 can be avoided.

The “server model” field 46 G stores the server model (such
as a vendor name and a model name) of the relevant node.
This information 1s used to judge whether or not the relevant
node can be managed, using the program 235.

The “virtual layer” field 46H stores a virtual layer of the
relevant node. There are three types of virtual layer: a “physi-
cal” layer, a “virtualization facility” layer, and a “virtual
server” layer which respectively correspond to a physical
server 4, a virtualization facility 30, and a virtual server 31.
The management server 2 judges, based on the above 1infor-
mation, the type of each node, whether 1t 1s a physical server

US 8,171,119 B2

9

4, a virtualization facility 30, or a virtual server 31; and the
management server 2 then determines the topology between
the nodes.

The “virtualization type™ field 461 stores the virtualization
type (the name of a vendor providing the relevant virtualiza-
tion product and the product name) of the relevant node. This
information 1s necessary for acquisition of information indi-
cating, for example, whether or not the relevant node 1s com-
patible with an information acquisition interface, protocol,
and a CIM (Common Information Model). A virtualization
tacility 1dentifier (described later) (see FIG. 9) has the same
meaning.

This server management table 46 basically stores no infor-
mation at the time of initialization. Every time the server
probe program 40 (FIG. 2) detects a new node (physical
server 4, virtualization facility 30, and/or virtual server 31),
various kinds of information about the new node are collected
and then necessary pieces of information from among the
collected information are stored in the server management
table 46.

Since the virtualization facilities 30 can be recognized by a
user as 11 they do not use any device, there 1s a possibility that
no information may be stored in the “CPU architecture” field
468, the “quantity” field 46K, the “WWN” field 46L, the
“driver type” ficld 46M, the “interface” field 46N, the “capac-
ity” field 46P, or the “type” field 46Q (1.¢., the corresponding
information cannot be collected) as shown 1n entries for the
node 1dentifiers “node 2 and “node 3” 1n FIG. 6.

This depends on what form of virtualization facilities 30
the vendor providing server virtualization products intends to
provide. If information 1s stored 1n the fields listed above, the
information may be shared with physical devices. Conse-
quently, 1t 1s possible to presume that a physical server 4 and
a virtualization facility 30 having identical information may
constitute a pair.

The server logical information management table 47 1s a
table for the management server 2 to manage the logical
configuration of each node (physical server 4, virtualization
tacility 30, or virtual server 31) connected to the management
server 2 1tself, and 1s composed of, as shown 1n FIG. 7, a
“node 1dentifier” field 47 A, a “service 1dentifier” field 47B, a
“disk 1mage name” field 47C, an “OS type” field 47D, an
“architecture” field 47F, a “host name” field 47F, an “ID/OS
password” field 47G, an “IP information” field 47H, a “pro-
gram name” field 471, a “program specific setting” field 471,
and a “management means” field 47K.

The “node identifier” field 47A stores a node identifier
given to the relevant node, and the “service identifier” field
4'7B stores a service 1dentifier identitying a service for which
the relevant node 1s used. Examples of a method for describ-
ing the service identifier include: a description method of
specilying individual services at a server level by describing,
for example, a first server and a second server for service A; a
description method of indicating installation of common sofit-
ware for service A and specilying the service level; and a
description method of indicating installation of common sofit-
ware for the system and specilying a common environment
level. Incidentally, the service for which the relevant node 1s
used 1s normally described by the system administrator, but
can be deduced by the management server 2 from the installed
hardware and programs.

There 1s also a case where the service can be specified at the
stage when a packaged program 1s found based on the opera-
tion policy of the data center. Using the specified service in a
cooperative manner makes 1t possible to change the version of
the program 25 to be deployed. As a result, the management
level for the relevant node (as described later with reference to

10

15

20

25

30

35

40

45

50

55

60

65

10

FIG. 11) 1s changed, and the operation can be performed so
that a program 25 which will place a load on the physical
servers 4 and the virtual servers 31, but can closely cooperate
with the OS and hardware will be deployed, or conversely, a
program 25 which will not place a load on the physical servers
4 or the virtual servers 31, but can only loosely cooperate with
the OS or hardware will be deployed. Since different program
functions are required for different services and applications,
the management policy 1s used i1n different manners as
required depending on the situation (policy management).

When recerving an OS activation notice, a fault notice, a
hardware information notice (insertion or removal of a blade
server), or a software update information notice (including,
updates) such as installation and uninstallation of programs,
the management server 2 can update the server logical infor-
mation management table 47 and then select and deploy the
program 25.

The “disk 1image name™ field 47C stores a disk image name
for a volume 37 (FIG. 1) used by the relevant node. The disk
image name 1s an i1dentifier for speciiying each disk image.
This identifies the disk 1image of a physical server 4 or a virtual
server 31 and can be considered to have almost the same
meaning as a service. However, there are disk images on
which applications are not installed, and disk 1mages on
which the OS and applications are installed, but not set up.
Deploying such disk images makes it easier to improve the
services or add the physical servers 4 or virtual servers 31 for
providing the services. Using such information in a coopera-
tive manner makes 1t possible to perform cooperative opera-
tion so that a program 25 for loose cooperation 1s deployed
first and then, when the time comes for full provision of the
service(s), a program 23 for close cooperation 1s redeployed.

While providing the various services, hardware-specific
functions can be used to enhance the reliability of the system.
On the other hand, the program 25 for loose cooperation may
sometimes be redeployed. As a result, 1t 1s possible to utilize
the program 25 as an mformation collecting tool required
only when constructing the system. Also, a completely dii-
ferent program 235 may be redeployed depending on the
intended use, thereby enabling flexible system construction
and operation to eliminate resident programs as much as
possible 1n accordance with the users’ needs. In order to
redeploy the program 25, a method of deploying the program
25 by means of RCP (Remote Copy) or RSH (Remote Shell)
and executing an installer may be used, or deployment sofit-
ware may be used. A number of means for deploying the
program 23 may be tried as deployment procedures, with the
best method then being selected. It 1s also possible to delete
the used program 23 from the node. Computer resources can
be effectively utilized for the services by reducing resident
programs as much as possible. A trigger for redeployment
may be given by the user or by an alert notice from the node.
Examples of the trigger include activation of the OS, 1insertion
and removal of a blade server, and hardware and software
fault notices, a predictive fault notice, performance failure
notice, and predictive performance failure notice. Redeploy-
ment of a program 23 for close cooperation for acquisition of
detailed information when detecting a fault or a predictive
fault, and redeployment of a program 25 having a function of
incorporating a system configuration into an HA (High Avail-
ability) configuration that places an emphasis on high avail-
ability can contribute to analysis of causes of the relevant
fault, examination of how to deal with the fault, and the
enhancement in the availability of the system.

The “OS type” field 47D stores the type of the OS used for
the relevant node. Including information such as service
packs and patches 1n the mformation to be stored 1n the “OS

US 8,171,119 B2

11

type” field 47D makes it possible to judge based on the above
information whether the program 25 1s compatible with the
node or not, and to select the compatible program 25. From
the viewpoint of security, the imnformation 1n the “OS type”

ficld 47D has the advantage of enabling easy maintenance of 5

the relevant node. In this embodiment, the type of the OS used
by the relevant node 1s described 1n the “OS type” field 47D,
but the OS types other than those shown in FIG. 7 can also be
stored 1n thus “OS type” field 47D in the same manner.

The ““architecture™ field 47E stores a CPU architecture
compatible with the OS for the relevant node. Like the OS
type stored 1n the “OS type” field 47D, the CPU architecture
stored 1n the “architecture” field 47E can be used as the basis
for judgment of whether the individual program 25 1s com-
patible with the node or not, and for selection of the compat-
ible program 25. Incidentally, CPU architectures other than
those shown 1n FIG. 7 may be stored in the “architecture™ field
4'7E 1n the server logical information management table 47 1n
the same manner.

The “host name™ field 47F stores the host name of a host
(physical server 4 or virtual server 31) accessible to the rel-
evant node. Establishing connection by limiting the host
name can be tried according to the data center operation
policy. As a result, the possibility of connection will be
improved spectacularly and contributions will be made to
promotion of efficiency and certainty 1n acquisition of infor-
mation. The result of a successtul connection (host name) 1s
stored 1n the “host name™ field 47F.

The “ID/OS password™ field 47G stores a password for the
OS used by the relevant node. Like the “host name” field 47F,
this password 1s information necessary for collecting infor-
mation and 1s based on information obtained according to the
data center operation policy. The result of a successiul con-
nection 1s stored 1n the “ID/OS password” field 47G.

The “IP information” field 47H stores IP information, such
as an IP address, a subnet mask, and a default gateway, about
the relevant node. Probing can be performed by designating,
the range of the IP address according to the data center opera-
tion policy (as described later). The IP address may become
an 1dentifier for 1dentifying the relevant node, depending on
the system administrator or the application.

The “program name” field 471 stores the name of a middle-
ware or application program that 1s packaged 1n the relevant
node and 1s required for providing the relevant service, as well
as version information about the program. Using the infor-
mation stored 1n this “program name” field 471 1n a coopera-
tive manner makes 1t possible to change the version of the
program 25 to be deployed. As a result, the management level
tfor the relevant node 1s changed, and the management can be
performed so that a program 25 which will place a load on the
physical servers 4 and the virtual servers 31, but can closely
cooperate with the OS and hardware will be deployed, or
conversely, a program 25 which will not place a load on the
physical servers 4 or the virtual servers 31, but can only
loosely cooperate with the OS or hardware will be deployed.
Since different program functions are required for different
services and applications, the management policy 1s used 1n
different manners as required depending on the situation
(policy management).

The “program specific setting” field 471] stores the relevant
node-specific information. Examples of the node-specific
information are an IP address (logical IP address) or a port
number used for the relevant program. If there are redundant
port numbers, soltware may not be activated or, even if it 1s
activated, 1t may not operate properly. Therefore, 1n order to
avold redundancy, values for the port numbers and similar
used for each program need to be collected, thereby prevent-

10

15

20

25

30

35

40

45

50

55

60

65

12

ing any trouble. When deploying and installing the program
235, 1t 1s also possible to change the port to be used.

This information can be deduced by acquiring the port 1n
use and the provided service, using the OS standard interface.
If conditions for coexistence with other programs are decided
according to the data center operation policy, whether or not
the program 25 may be deployed can be judged. An example
of the data center operation policy 1n this case 1s limitations on
operating environments such as JRE (Java [registered trade-
mark]| Runtime Environment).

The “management means” field 47K stores a means for
managing the relevant node. If the program 25 1s used to
manage the node, an 1dentifier for the program 25 1s stored in
the “management means™ field 47K. It the node 1s managed
using the OS standard interface or another standardized inter-
face, information such as a management model or communi-
cation protocol 1s stored 1n the “management means™ field
47K. When information 1s being collected, no value is stored
in the “management means™ field 47K. The information will
be stored later 1n the “management means™ field 47K by the
management means judgment program 44 for deciding the
management means (FIG. 2).

This server logical information management table 47 basi-
cally stores no information at the time of initialization. Every
time the server probe program 40 (F1G. 2) detects a new node
(physical server 4, virtualization facility 30, and/or virtual
server 31), various kinds of information about the new node 1s
collected and then necessary pieces ol information from
among the collected information are stored 1n the server logi-
cal information management table 47.

Meanwhile, the server model mnformation management
table 48 1s a table for managing the hierarchical configuration
(server model) between nodes registered with the server man-
agement table 46 (FIG. 6), and 1s composed of a “physical
server” field 48A, a “virtualization facility” field 48B, and a
“virtual server” field 48C as shown 1n FIG. 8.

The “physical server” ficld 48 A stores a node identifier for
cach physical server 4 from among the nodes managed by the
management server 2, and the “virtualization facility™ field
48B stores a node identifier for a virtualization facility 30
mounted on the relevant physical server 4 1n association with
the node 1dentifier for that physical server 4. Incidentally, the
“virtualization facility” field 48B may store a virtualization
facility identifier described later with reference to FIG. 9.
Furthermore, the “virtual server” field 48C stores node 1den-
tifiers for virtual servers 31 that are set on the relevant virtu-
alization facility 30 in association with the node identifier for
that virtualization facility 30.

This server model information management table 48 basi-
cally stores no information at the time of initialization. Every
time the server probe program 40 (FI1G. 2) detects anew node,
various kinds of information about the new node are collected
and then the node 1dentifiers are stored in the server model
information management table 48 1n association with each
other.

This server model information management table 48
makes 1t possible to recognize the topology between the
physical servers 4, the virtualization facilities 30, and the
virtual servers 31. As a result, a judgment can be made, for
example, to deploy the program 235 to the virtual servers 31
and not deploy the program 25 to the physical servers 4 and
the virtualization facilities 30, or to deploy the program 23 to
the physical servers 4 where no virtual server 31 exists.

When making the judgment as described above, 1t 1s impor-
tant for the node 1dentifiers for the virtual servers 31 whose
power 1s oif to be stored in the “virtual server” field 48C. IT
their node 1dentifiers are not registered, the program 25 may

US 8,171,119 B2

13

be mistakenly deployed to the physical servers 4 to which the
program 25 should not be deployed. Therefore, 1t 1s possible
to avoid the occurrence of such a mistake by also considering
the virtual servers 31 whose power 1s oil.

Completion of this server model information management
table 48 enables judgment of the management means for each
node, so that values to be stored in the “management means™
field 47K 1n the server logical information management table
4’7 described above with reference to FIG. 7 can be decided.

The virtualization facility management table 49 is a table
created by the system administrator in order to manage access
methods for different types of virtualization facilities 30 and
whether programs can be istalled or not. As shown in FI1G. 9,
the virtualization facility management table 49 1s composed
of a “virtualization facility 1dentifier” field 49A, a “virtual-
1zation facility type™ field 49B, an “identification™ field 49C,
and a “program 1nstallation possibility” field 49D.

The “virtualization facility identifier” field 49 A stores an
identifier given by the system administrator to each virtual-
ization facility 30 (heremnafter referred to as the “virtualiza-
tion facility identifier”), and the “virtualization facility type”
field 498 stores product information about the relevant virtu-
alization facility 30. Specifically speaking, the name of a
vendor who manufactures and sells the virtualization facility
30, and the product name of the relevant virtualization facility
30 are stored i the “virtualization facility type” field 49B.

The “1dentification” field 49C 1s composed of an “informa-
tion acquisition source” field 49E, a “method™ field 49F, and
a “protocol” field 49G. The “information acquisition source™
ficld 49E stores an information acquisition source (informa-
tion source) from which information to be stored in the server
management table 46 (FI1G. 6) and the server model informa-
tion management table 48 (FIG. 8) described above 1s
acquired. If the virtual server 31 or the virtualization facility
management interface 36 (FI1G. 4) 1s used to acquire informa-
tion about the virtualization facility 30 and the virtual server
31 or to acquire an i1dentifier (such as UUID) for the physical
server 4 on which the virtualization facility 30 1s active, the
“information acquisition source” field 49E stores the node
identifier for the relevant virtual server 31 or the identifier for
the relevant virtualization facility management interface 36.

The “method™ field 49F stores a method for identifying the
relevant virtualization facility 30 and the physical server 4 on
which that virtualization facility 30 operates. If information
about the virtual layer and the virtualization type (see FI1G. 6)
1s acquired and whether the relevant node 1s a virtualization
tacility 30 or not 1s judged based on the acquired information,
the “method” field 49F stores information to that effect. If the
type of the virtualization facility 30 corresponding to the
virtual server 31 or 1dentifiers (such as UUID) for the virtu-
alization facility 30 and the physical server 4 are acquired
from the virtual server 31 1n order to 1dentity the virtualiza-
tion facility 30 and the physical server 4 on which the virtu-
alization facility 30 operates, the “method” field 49F stores
information to that effect.

The “protocol” field 49G stores a protocol for Connectlon
with the information acquisition source stored in the “infor-
mation acquisition source” field 49E or a data model when
collecting information. This operation policy enables infor-
mation collection by specifying the information acquisition
source and the method.

The “program installation possibility™ field 49D 1s com-
posed of a “physical server” field 49H, a “virtualization facil-
ity field 491, and a “virtual server” field 49]J. The “physical
server’” field 49H stores information indicating whether or not
the program 25 can be nstalled (*possible” or “impossible™)
on the physical server 4 on which the relevant virtualization

10

15

20

25

30

35

40

45

50

55

60

65

14

tacility 30 operates; and the “virtualization facility™ field 491
stores information indicating whether or not the program 25
can be installed on the relevant virtualization facility 30.
Furthermore, the “virtual server’” field 49] stores whether or
not the program 25 can be installed on the virtual server 41
that operates on that virtualization facility 30.

Incidentally, default values are prepared in advance as
information to be stored 1n each of the “physical server” field
49H, the “virtualization facility” field 491, and the “virtual
server’” field 49]. If no information 1s stored in the “physical
server’” field 49H, the “virtualization facility” field 491, or the
“virtual server” field 491], the corresponding default value will
be applied to the physical server 4, the virtualization facility
30, or the virtual server 31. As an example, the default value
for the physical server 4 and the virtualization facility 30 may
be “1mpossible,” and the default value for the virtual server 31
may be “possible’ in accordance with the original purpose of

the field 49D.

The data center operation policy management table 50 1s a
table for managing rules according to the operation policy of
the relevant data center. As shown in FIG. 10, the data center
operation policy management table 30 1s composed of a “rule
identifier” field 50A, a “rule parameter” field 50B, a “param-
eter fixed value™ field 50C, a “parameter range” field 50D, an
“exception parameter’” field 50E, and a “probe method™ field
50F.

The “rule 1dentifier” field S0A stores an 1dentifier given to
cach rule according to the operation policy of the relevant data
center (heremafiter referred to as the “rule identifier’”), and the
“rule parameter” field 50B stores a parameter to which the
relevant rule 1s to be applied. Examples of this parameter
include an IP address, a host name, an ID, and a password.

The “parameter fixed value™ field 50C stores a fixed value
for the parameter defined according to the data center opera-
tion policy, and the “parameter range™ field 50D stores the
parameter range defined for the parameter according to the
data center operation policy.

FIG. 10 shows an example in which the range of IP
addresses according to the operation policy 1s defined as from
“192.168.0.0” to *192.168.255.255” and *“192.168.200.10.”
FIG. 10 also shows that the host name according to the opera-
tion policy should be given 1n accordance with a naming
convention as a combination of “hostname,” which 1s a “fixed
value,” and an “integer 1n ascending order” such as “host-
nameQ001”, “hostname0002”, “hostname0003”, and so on
up to “hostnamel000.”

The “exception parameter” field 50E stores exception val-
ues 1n the parameter range defined in the “parameter range”™
field 50D. For example, FIG. 10 shows that the range from
“hostname03500” to “hostname03550” should not be used (for
naming purposes) as a host name.

The “probe method” field S0F stores a collection method
(probe method) for the management server 2 when collecting
a parameter value such as an IP address or a host name from
the node to which the management server 2 1s connected. For
example, FIG. 10 shows that the IP address should be col-
lected from each node by means of “pinging.”

In this case, a plurality of probe methods may be registered
with the “probe method” field SOF. For example, a plurality of
probe methods may be registered with the “probe method”
field SOF when a plurality of connection protocols are per-
mitted. Referring to an example shown 1n FI1G. 10, the “probe
method” field 50F defines that the host name should be col-
lected from each node in accordance with “SSH (Secure
Shell)” and a “combination of rule 3 and rule 4” of the opera-
tion policy.

US 8,171,119 B2

15

When the management server 2 collects an IP address of
cach node connected to the management server 2 1n the case
of the example shown in FIG. 10 described above, the man-

agement server 2 probes, by means of “ping” 1n accordance
with “rule 1,7 the range from “192.168.0.0” to

“192.168.255.255” and *192.168.200.10,” except irom
“192.168.0.07 10 *192.168.0.2”and “192.168.100.1”’; and the
management server 2 determines that a node exists at the IP
address for which a response 1s made, and the management
server 2 executes processing for registering the node with the
server management table 46 (FIG. 6).

Incidentally, “rule 27 1n FIG. 10 1s the operation policy
regarding a “host name” given to each node and 1s utilized
when the host name 1s used to try connection to the server.
“Rule 3” in FIG. 10 1s the operation policy regarding a user
“ID” registered with each node and 1s used as a combination
with a password (described later) when logging into the node
to collect information.

“Rule 4” in FIG. 10 1s the operation policy regarding a
login “password” set for each node and 1s used when logging
into the node and collecting information. The password 1s
used when SSH or telnet 1s used to establish connection to the
node.

Furthermore, “rule 5 1n FIG. 10 1s the operation policy
regarding a “hardware vendor.”” Hardware vendors include
vendors who provide the physical servers 4 and the virtual
servers 31, and vendors who provide server virtualization
products; and different connection interfaces and protocols
used for imnformation collection may be required, depending
on the vendors. Theretore, this information 1s utilized to
recognize the connection interface and protocol when access-
ing the node to collect information.

Meanwhile, “rule 6 1n FIG. 10 1s the operation policy
regarding the “OS” used by each node. An interface and an
information model provided as a standard set may be different
depending on the type of OS. Therefore, this information 1s
utilized when accessing the node to collect information.

“Rule 77 in FIG. 10 1s the operation policy regarding
“middleware” and “‘applications” packaged in each node.
Like the OS, the port, interface, or information model to be
accessed when collecting information may be different for
cach middleware or application. When information needs to
be collected and 1f there 1s no information about how to
collect the necessary information, It 1s not easy to find, from
among many existing connection methods, an iformation
acquisition method that 1s permitted or packaged for each
middleware or application. Therefore, this iformation 1s
used when collecting the above information.

“Rule 8” i FIG. 10 1s the operation policy regarding a
“management interface” provided for each node. With an
interface for which the management interface 1s standardized,
it 1s possible to manage platforms provided by different ven-
dors. This information 1s used for not only collection of infor-
mation about each platform, but also the setting of values and
control of each platiorm.

“Rule 9” in FIG. 10 1s the operation policy regarding an
“agent program,” which 1s an example of the program 25.
“Rule 9” defines the version of the agent program which 1s
permitted to be deployed.

“Rule 10” in FIG. 10 1s the operation policy regarding a
“virtualization facility” mounted on the physical server 4.
Like the OS, a management method, management interface,
or protocol to be provided may be different depending on the
type of server virtualization product. This information 1s used
not only for collection of information, but also for the setting,
of values and control of the virtualization facility. When there
1s no mnformation, 1t 1s not easy to find an information acqui-

10

15

20

25

30

35

40

45

50

55

60

65

16

sition method permitted or packaged for each virtualization
facility 30. However, this information makes 1t possible to
collect information by narrowing down the virtualization
tacility 30 detected as a result of server probe processing by
the server probe program 40.

“Rule 11”7 1n FIG. 101s the operation policy regarding an IP
address of a service processor mounted on the physical server
4. As described later 1in the second embodiment, there 1s a
platform capable of collecting information via a service pro-
cessor provided on the physical server 4. In this case, a man-
agement iterface which 1s not a server to be managed, but
reacts to “pinging’” exists. This information 1s utilized when
collecting information about each node via the service pro-
CESSOT.

The program management table 51 1s a table used by the
management server 2 which deploys the program 23 to man-
age the program 25 to be deployed to the node. As shown 1n
FIG. 11, the program management table 51 1s composed of a
“program 1dentifier” field S1A, a “deployment destination
server type” field 51B, a “deployment destination platform
type” field 51C, a “license™ field 51D, and a “management
level” field 51E.

The “program 1dentifier” field 51A stores an identifier
given to each of one or more kinds of programs 25 (herein-
alter referred to as the “program 1dentifier”), and the “deploy-
ment destination server type” field 51B stores the type of a
node (such as a vendor name and a model name) to which the
relevant program 25 can be deployed. If the program 25 to be
deployed needs to be changed depending on the machine
type, 1t 1s possible to do so by referring to the value in this
“deployment destination server type” field 51B.

The “deployment destination platform type” field 51C
stores the type of compatible platform at the node to which the
relevant program 1s deployed. Specifically speaking, the CPU
architecture and the OS type are stored 1n this “deployment
destination platform type™ field S1C. If the program 25 to be
deployed needs to be changed depending on the environment,
it 1s possible to do so by referring to the value 1n the “deploy-
ment destination platform type” field 51C just like the server
type stored 1n the “deployment destination server type” field
51B.

The “license” field 51D 1s composed of a “used quantity”
field 51F, a “remaining quantity” field 531G, and an “expira-
tion date” field 51H. The “‘used quantity” field 51F, the
“remaining quantity” field 531G, and the “expiration date”
field S1H store the current used quantity of the relevant pro-
gram 25, its remaining license quantity, and 1ts expiration date
respectively. These pieces of information make 1t possible to
prevent excessive deployment of the program 25 beyond the
licensed quantity, and display and report the expiration of the
license or an alert of the shortage of licenses to the system
administrator. Convenience ol management can be improved
by providing the management server 2 with an interface for
updating and referring to this program management table 51.
Incidentally, the management server 2 can update the “used
quantity” field 51F and the “remaining quantity” field 51G
when the program 25 1s successiully deployed to the node, but
initial setup by the user 1s required.

The “management level” field S1E stores a management
level indicating the degree of cooperation between the rel-
evant program 25 and the OS and hardware of the node to
which the program 25 1s deployed. Of the programs 25, there
are some programs that will place a load on the node, but can
closely cooperate with the OS and hardware, and there are
also some programs which will not place a load on the node,
but can only loosely cooperate with the OS and hardware.
Since different program functions are required for different

US 8,171,119 B2

17

services and applications, the management policy 1s used 1n
different manners as required depending on the situation
(policy management).

Only two management levels “close” and “loose” are
described 1n this embodiment, but further management levels
can be set, thereby making 1t possible to apply management
levels for many different uses. The case where only one
management level 1s prepared 1s also permitted. In that case
too, the advantageous etlect of this embodiment will be main-
tained.

(1-2-3) Processing for Program Deployment Method
According to First Embodiment

(1-2-3-1) Program Deployment Processing

The flow of processing for the program deployment
method according to the first embodiment will be explained
below. This program deployment processing will be per-
formed 1n the following procedure as shown 1n FIG. 11.

When specified monitoring time has come, the server
probe program 40 for the management server 2 performs
specified server probe processing for detecting a node con-
nected to the management server 2 (SP10).

The “monitoring time™ herein used means, for example,
periodical monitoring or monitoring based on a schedule. The
monitoring time may be set by the user via a Ul (User Inter-
face). The monitoring time may be when the configuration of
software 1s changed by, for example, installation, uninstalla-
tion, or update of a program. Alternatively, the monitoring,
time may be when the type or version of the virtual servers 31
and the virtualization facilities 30 1s changed, or when the
device configuration of the physical servers 4 1s changed, or
when an alert reporting the type or version change or the
device configuration change described above 1s made to the
user.

If new nodes are detected as a result of the server probe
processing, the server registration program 41 for the man-
agement server 2 registers the nodes with the server manage-
ment table 46 (FIG. 2) and the server logical information
management table 47 (FIG. 2) (SP11).

Subsequently, the server configuration acquisition pro-
gram 42 for the management server 2 acquires configuration
information about the new nodes and updates the server man-
agement table 46 and the server logical information manage-
ment table 47 based on the acquired configuration informa-
tion (SP12).

Next, the virtualization facility configuration generation
program 43 for the management server 2 refers to the server
management table 46 and the server logical information man-
agement table 47 and then generates the server model 1nfor-
mation management table 48 (SP13). The generated server
model information management table 48 clarifies the topol-
ogy between the new nodes (the topology between the new
physical servers 4, virtualization facilities 30 and virtual serv-
ers 31).

Subsequently, the management means judgment program
44 for the management server 2 judges, for each new node
detected by the server probe processing in step SP10, whether
the program 25 should be deployed to the node or not
deployed to the node and be managed by another manage-
ment method (SP14). If the management means judgment
program 44 determines 1n step SP14 that the program 25 will
not be deployed to the new nodes, the management means
judgment program 44 then terminates this program deploy-
ment processing.

On the other hand, 11 the management means judgment
program 44 determines 1n step SP14 that the program 25 will
be deployed to the new nodes, the deployment execution
program 43 for the management server 2 deploys the relevant

10

15

20

25

30

35

40

45

50

55

60

65

18

program to the new nodes, which are the destinations of
deployment of the program 235 (SP15), and then terminates
this program deployment processing.

(1-2-3-2) Server Probe Processing

FIG. 13 shows specific details of processing executed by
the server probe program 40 1n step SP10 during the program
deployment processing.

After the management server 2 1s activated, the server
probe program 40 starts the server probe processing shown in
FIG. 13 and then waits for the specified monmitoring time
(SP20). When the specified monitoring time has elapsed, the
server probe program 40 refers to the data center operation
policy management table 50 (FIG. 10) (SP21) and searches
the nodes connected to the management server 2 by the des-
ignated probe method 1n accordance with rules stored in the
data center operation policy management table 50.

Specifically speaking, the server probe program 40 sends a
ping packet to all the IP addresses within the IP address range
stored 1n the data center operation policy management table
50 and then waits for a response to the ping packet from the
nodes. The server probe program 40 records the IP addresses
from which a response has been made, and the server probe
program 40 then determines that the nodes with those IP
addresses have been detected.

The server probe program 40 also tries establishing a con-
nection to the nodes by the method of designating host names
using a protocol (such as SSH) stored 1n the “probe method”
field S0F in the data center operation policy management
table 50 (FIG. 10). An attempted login does not have to result
in success; and 1f there 1s a node 1n the state capable of
accepting the connection, that means the node having that
host name exists, and the server probe program 40 determines
that the node has been detected. Incidentally, other methods
can be used 1n order to confirm the existence of the node.

Subsequently, the server probe program 40 activates the
server registration program 41 and then terminates this server
probe processing.

(1-2-3-3) Server Registration Processing,

When the server registration program 41 1s activated by the
server probe program 40, 1t executes step SP11 1n the program
deployment processing described above with reference to
FIG. 12 in accordance with the server registration processing
sequence shown 1n FIG. 14.

Specifically speaking, the server registration program 41
selects one node detected by the server probe processing,
refers to the server management table 46 (FIG. 6) and the
server logical information management table 47 (FI1G. 7), and
judges whether or not the node 1s a new node that 1s not
registered yet with the server management table 46 and the
server logical information management table 47 (SP30).

If the node was found by a ping, 1ts IP address 1s known.
Theretore, the server registration program 41 refers to the IP
information stored 1n each “IP information™ field 47H 1n the
server logical information management table 47 (FIG. 7) and
then judges whether or not the IP address of the then target
node 1s stored i any of the “IP information” fields 47H 1n the
server logical information management table 47.

If a negative judgment 1s returned 1n step SP30, the server
registration program 41 proceeds to step SP32; or if an affir-
mative judgment 1s returned in step SP30, the server registra-
tion program 41 newly registers necessary pieces ol informa-
tion, from among the various mformation included in the
response recerved from the relevant node 1n step SP22 during
the server probe processing described above with reference to
FIG. 13, with the server management table 46 and the server
logical information management table 47 (SP31).

US 8,171,119 B2

19

Subsequently, the server registration program 41 judges
whether or not the same processing has finished for all the
nodes detected by the server probe processing; and 11 a nega-
tive judgment 1s returned, the processing returns to step SP30.
The server registration program 41 then switches to another
node selected 1n step SP30 and repeats the same processing,

(from SP30 to SP32 and back to SP30).

After fimshing the same processing for all the nodes
detected by the server probe processing, the server registra-
tion program 41 activates the server configuration acquisition
program 42 and then terminates this server registration pro-
cessing.

(1-2-3-4) Server Configuration Acquisition Processing,

When the server configuration acquisition program 42 1s
activated by the server registration program 41, 1t executes
step SP13 1n the program deployment processing described
above with reference to FIG. 12 1n accordance with a server

configuration information processing sequence shown 1n
FIG. 15.

Specifically speaking, the server configuration acquisition
program 42 first refers to the server management table 40
(FIG. 6) and selects one new entry in the server management
table 40. The server configuration acquisition program 42
then reads registered imformation about the selected new
entry from the server management table 40 (SP40).

Subsequently, the server configuration acquisition pro-
gram 42 refers to the server logical information management
table 47 (F1G. 7), detects an entry 1n the server logical infor-
mation management table 47 corresponding to the new entry
selected 1n step SP40, and reads registered information about
that entry (SP41).

Next, the server configuration acquisition program 42
refers to the data center operation policy management table
50 (FIG. 10), and reads rules for acquiring the configuration
information about a new node corresponding to the new entry
based on the information read from the server management
table 46 1n step SP40 and the information read from the server
logical information management table 47 in step SP41
(SP42).

Then, the server configuration acquisition program 42
probes the new node by a probe method designated by each
rule acquired m step SP42 and acquires the configuration
information from the new node (SP43). For example, the
server configuration acquisition program 42 logs into the new
node, using the IP address as well as the ID and password
information read from the data center operation policy man-
agement table 50. Subsequently, the server configuration
acquisition program 42 acquires information about the new
node and the OS, using WMI (Windows (registered trade-
mark) Management Instrumentation).

Next, the server configuration acquisition program 42
updates the server management table 46 and the server logical
information management table 47 respectively based on the
configuration information acquired in step SP43 about the
new node (SP44, SP435). At this moment, the server configu-
ration acquisition program 42 stores the ID and password,
with which connection to the new node was made success-
tully 1n step SP43, 1n the “management means” ficld 47K of
the relevant entry 1n the server logical information manage-
ment table 47 (FI1G. 7).

Furthermore, the server configuration acquisition program
42 judges whether or not the processing from step SP40 to
step SP45 has finished for all the new entries 1n the server
management table 40 (SP46); and i a negative judgment 1s
returned, the processing returns to step SP40. Subsequently,
the server configuration acquisition program 42 switches to

10

15

20

25

30

35

40

45

50

55

60

65

20

another new entry selected 1n the server management table 40
in step SP40 and then repeats the same processing ({from SP40
to SP46 and back to SP40).

After finishing similar processing for all the new entries 1n
the server management table 40, the server configuration
acquisition program 42 activates the virtualization facility
configuration generation program 43 and then terminates this

server conflguration acquisition processing.

(1-2-3-5) Virtualization facility Configuration Generation
Processing,

FIG. 16 shows specific details of the processing of the
virtualization facility configuration generation program 43 in
step SP13 1n the program deployment processing described
above with reference to FIG. 12. When the virtualization
facility configuration generation program 43 1s activated by
the server configuration acquisition program 42, 1t executes
step SP13 1n the program deployment processing in accor-
dance with the virtualization facility configuration generation
processing sequence shown in FIG. 16.

Specifically speaking, the virtualization facility configura-
tion generation program 43 {irst refers to the server manage-
ment table 46 and selects one new entry 1n the server man-
agement table 40. Then, the wvirtualization {facility
configuration generation program 43 reads registered infor-
mation about the selected new entry from the server manage-
ment table 46 (SP50).

Next, the virtualization facility configuration generation
program 43 refers to the data center operation policy man-
agement table S0 and reads the virtualization facility 30 type
and the probe method corresponding to the new entry selected
in step SP50 from the data center operation policy manage-
ment table 50 (SP31).

Subsequently, the virtualization facility configuration gen-
cration program 43 refers to the virtualization facility man-
agement table 49, checks i1t with the virtualization facility 30
type obtained in step SP31, and acquires an acquisition
source, ifrom which 1dentification information for identiiying
the virtualization facility 30 can be acquired, an acquisition
method, and protocol to be used when acquiring the 1dentifi-
cation information, from the “identification” field 49C 1n the
virtualization facility management table 49 (F1G. 9) (SP52).
Examples of such identification information acquisition
source include a virtualization facility management interface
36 (FIG. 4) and any of the virtual servers shown in FIG. 9.
Also, a service console can be the 1dentification information
acquisition source. The service console 1s a virtual server
specially provided for the management purpose from among,
the virtual servers 31 and includes a management information
acquisition interface and a control interface.

Next, the virtualization facility configuration generation
program 43 tries establishing connection to the new node
detected 1n step SP30 (SP53), and then judges whether this
connection was established successtully or not (SP34).

I a negative judgment 1s returned 1n SP54, the virtualiza-
tion facility configuration generation program 43 terminates
this virtualization facility configuration generation process-
ing; or 1i an affirmative judgment 1s returned 1n SP54, the
virtualization facility configuration generation program 43
acquires nformation about the virtualization type and the
virtual layer of the connected new node from that new node
(SP55, SP36). Then, the virtualization facility configuration
generation program 43 stores the thus obtained information
(the virtualization type and the virtual layer) in the server
management table 46 (SP57).

Next, the virtualization facility configuration generation
program 43 acquires necessary respective node identifiers
from the connected new node (SP38 to SP60).

US 8,171,119 B2

21

Specifically speaking, 1f the connected node 1s a physical
server 4, the virtualization facility configuration generation
program 43 acquires, from the physical server 4, a node
identifier for the physical server 4, a node 1dentifier for the
virtualization facility 30 which 1s active on that physical
server 4, and a node identifier for each virtual server 31
provided by the virtualization facility 30.

If the connected node 1s a virtualization facility 30, the
virtualization facility configuration generation program 43
acquires, from the virtualization facility 30, a node 1dentifier
tor the physical server 4 on which the virtualization facility 30
1s active, a node identifier for the virtualization facility 30, and
a node 1dentifier for each virtual server 31 provided by the
virtualization facility 30.

If the connected node 1s a virtual server 31, the virtualiza-
tion facility configuration generation program 43 acquires,
from the virtual server 31, a node 1dentifier for the physical
server on which that virtual server 31 1s created, a node
identifier for the virtualization facility 30 providing that vir-
tual server 31, and node 1dentifiers for all the virtual servers
31 including that virtual server 31 provided by the virtualiza-
tion facility 30.

Subsequently, the virtualization facility configuration gen-
eration program 43 judges whether or not the processing from
step SP50 to step SP60 has finished for all the new entries 1n
the server management table 40 (SP61); and 1f a negative
judgment 1s returned, the processing returns to step SPS50.
Then, the virtualization facility configuration generation pro-
gram 43 switches to another new entry selected from the
server management table 40 in step SP30 and repeats the
same processing (from SP30 to SP60 and back to SP50).

After finishing the same processing for all the new entries
in the server management table 40, the virtualization facility
configuration generation program 43 stores the above-ob-
tained node identifiers for the respective new nodes 1n the
server model mnformation management table 48 by making
the new nodes be associated with each other in accordance
with the lineage between the new nodes (the topology
between the new physical servers 4, virtualization facilities
30, and virtual servers 31) (SP62).

As a result of the above-described processing, the server
model information management table 48 1s completed and the
topology between the physical servers 4, the virtualization
facilities 30, and the virtual servers 31 is clarified. Conse-
quently, 1t 1s possible to prevent the program 25 from being
deployed to the virtualization facilities 30 on which the vir-
tual servers 31 are active, or to the physical servers 4.

Subsequently, the virtualization facility configuration gen-
cration program 43 activates the management means judg-
ment program 44 and then terminates this virtualization facil-
ity configuration generation processing.

(1-2-3-6) Management Means Judgment Processing

When the management means judgment program 44 1s
activated by the virtualization facility configuration genera-
tion program 43, 1t executes step SP14 1n the program deploy-
ment processing described above with reference to F1IG. 12 1n
accordance with the management means judgment process-
ing sequence shown i FIG. 17.

Specifically speaking, the management means judgment
program 44 first refers to the server management table 46 and
selects one new entry from the server management table 46.
Then, the management means judgment program 44 reads
registered information about the selected new entry (the node
identifier, the virtualization type, and the virtual layer) from
the server management table 46 (SP70).

Next, the management means judgment program 44 reads
a virtual layer of the new node corresponding to each new

10

15

20

25

30

35

40

45

50

55

60

65

22

entry detected 1n step SP70 from the server model informa-
tion management table 48 (SP71).

Subsequently, the management means judgment program
44 reads information 1ndicating the possibility of installation
of the program 25 on the new node from the “program 1instal-
lation possibility” field 49D 1n the virtualization facility man-
agement table 49 (SP72).

Furthermore, the management means judgment program
44 refers to the program management table 351, judges
whether any program 25 that corresponds with the hardware
and OS information about the new node exists or not, and
checks license information about the program 25 (SP73).

The management means judgment program 44 then judges
whether the program 25 should be deployed to the new node
or not (SP74). Specifically speaking, the management means
judgment program 44 judges whether the program 25 that
corresponds with the hardware and OS information about the
new node exists or not, whether the license of the program 235
1s still effective or not, and whether the program 25 can be
deployed to the new node or not. When all the above-de-
scribed conditions are satisfied, an affirmative judgment on
the new node 1s returned 1n step SP74.

If an affirmative judgment 1s returned 1n step SP74, the
management means judgment program 44 proceeds to step
SP76; and 1T a negative judgment 1s returned 1n step SP74, the
management means judgment program 44 chooses another
management means that does not use the program 25, as a
means for managing the new node (SP75). For example, the
connection method which resulted in success when the server
configuration acquisition program 42 collected the configu-
ration information 1n step SP43 1n the server configuration
acquisition processing described above with reference to
FIG. 15 1s stored 1n the “management means™ field 47K 1n the
server logical information management table 47 (FIG. 7).
Therefore, the management means judgment program 44
chooses that connection method as “another management
means.”

Subsequently, 1 the management means judgment pro-
ogram 44 1s going to deploy the program 25, 1t stores informa-
tion to that effect in the relevant “management means”™ field
47K 1n the server logical information management table 47;
or i the management means judgment program 44 1s not
going to deploy the program 25, 1t stores the management
means chosen in step SP75 1n the relevant “management
means’ field 47K 1n the server logical information manage-
ment table 47 (SP76).

Then, the management means judgment program 44
judges whether or not the processing from step SP70 to step
SP76 has finished for all the new entries 1n the server man-
agement table 40 (SP77); and 11 a negative judgment 1is
returned, the processing returns to step SP70. Subsequently,
the management means judgment program 44 switches to
another new entry selected from the server management table
40 1n step SP70 and repeats the same processing (ifrom SP70
to SP77 and back to SP70).

After finishing the same processing for all the new entries
in the server management table 40, the management means
judgment program 44 activates the deployment execution
program 45 and then terminates this management means
judgment processing.

(1-2-3-7) Deployment Execution Processing

When the deployment execution program 45 1s activated by
the management means judgment program 44, 1t executes
step SP15 1n the program deployment processing described
above with reference to FIG. 12 1n accordance with the
deployment execution processing sequence shown in FIG.

18.

US 8,171,119 B2

23

Specifically speaking, when the deployment execution
program 45 1s activated by the management means judgment
program 44, 1t {irst selects one node which was chosen as a
deployment destination of the program 23 1n step SP74 1n the
management means judgment processing described above
with reference to FIG. 17; and the deployment execution
program 45 deploys the program 25 corresponding to the
node to the node (SP80).

As a deployment method used 1n this step, a method of
deploying the program 23 and executing an installer by means
of RCP (Remote Copy) and RSH (Remote Shell) may be
used, or deployment software may be used. A number of
means for deploying the program 25 may be tried as deploy-
ment procedures, with the best method then being selected.

Next, the deployment execution program 45 updates the
“license” field 51D 1n the program management table 51
(FIG. 11) based on the result of the program deployment 1n
step SP80 (SP81).

Then, the deployment execution program 435 judges
whether or not the program 25 has been deployed to all the
nodes which were chosen as the destinations of deployment
of the program 235 in the management means judgment pro-
cessing (FIG. 17) (SP82); and if a negative judgment 1s
returned, the processing returns to step SP80. Subsequently,
the deployment execution program 45 switches to another
node selected 1n step SP80 and repeats the same processing,
(from SP80 to SP82 and back to SP80).

After finishing the same processing for all the target nodes,
the deployment execution program 43 terminates this deploy-
ment execution processing.

(1-4) Advantageous Effects of First Embodiment

With the server system 1 according to the first embodiment
described above, the management server 2 collects the con-
figuration information about each node connected via the first
network switch 3 to the management server 2 and selectively
deploys, based on the configuration information, the program
25 to the nodes to which the program 235 can be deployed.
Theretore, the operation can be performed to, for example,
deploy the program 25 to the virtual servers 31 and the physi-
cal servers with 1nactive virtualization facilities 30, and not
deploy the program 25 to the physical servers 4 and virtual
servers 31 incompatible with the program 25 or the physical
servers 4 with active virtualization facilities. As a result, a
server system capable of reducing the workload on the system
administrator and improving convenience can be constructed.

(2) Second Embodiment

FI1G. 19 shows a server system 60 according to the second
embodiment of the invention, with elements similar to those
shown 1n FIG. 1 given the same reference numerals as those
in FIG. 1. The difference between the server system 60 and
the server system 1 according to the first embodiment (FIG. 1)
1s that the destination to which the program 25 1s deployed 1s
a blade server 61.

The blade server 61 includes a plurality of chassis 62, and
one or more physical servers 4 are contained 1n (1nserted into)
cach chassis 62. Each chassis 62 1s provided with a service
processor 63. The physical servers 4 in the same chassis 62
can be managed (for, for example, information acquisition
and power control), using the service processor 63.

A management server 64 can acquire information about the
physical servers 4 in the same chassis 61 from the service
processor 63. The management server 64 can also acquire
information about the virtualization facilities 30 which are

10

15

20

25

30

35

40

45

50

55

60

65

24

active on the physical servers 4, and information about the
virtual servers 31 provided by the virtualization facilities 30,
sequentially via the service processor 63 in the same chassis
62 and then the virtualization facility management interface
36 for the virtualization facilities 30 (FIG. 4).

FIG. 20 shows a server model information management
table 67 according to the second embodiment that constitutes
a management table group 66 (FIG. 19) for the management
server 60 together with the server management table 46,
server logical information management table 47, virtualiza-
tion facility management table 49, data center operation
policy management table 50, and program management table
51 described above with reference to FIG. 6, FIG. 7, and
FIGS. 9 to 11.

In the second embodiment, the topology between the chas-
s1s 62 (the service processor 63), the physical servers 4, the
virtualization facilities 30, and the virtual servers 31 has a
hierarchical structure shown in FIG. 21. Therefore, the server
model information management table 67 according to the
second embodiment 1s composed by adding a “service pro-
cessor’ field 67A to the server model information manage-
ment table 48 according to the first embodiment as described
above with reference to FIG. 8.

This server model information management table 67 can
be created by acquiring information about the physical serv-
ers 4 and the virtualization facilities 30 from the service
processor 63 and by having the service processor 63 acquire
information about the virtual servers 31 from the virtualiza-
tion facility management interface 36 (FI1G. 4).

FIG. 22 shows the flow of server configuration acquisition
processing according to the second embodiment that 1s per-
formed 1n step SP12 in the program deployment processing
described above with reference to FIG. 12. This server con-
figuration acquisition processing 1s executed by a server con-
figuration acquisition program 68 (FIG. 2) according to the
second embodiment that, together with the server probe pro-
gram 40, server registration program 41, virtualization facil-
ity configuration generation program 43, management means
judgment program 44, and deployment execution program 43
described above with reference to FIG. 2, constitutes the
control program group 65 for the management server 64.

Specifically speaking, when the server configuration
acquisition program 68 1s activated by the server registration
program 41, 1t starts this server configuration acquisition
processing and executes step SP90 to step SP92 1n the same
manner as step SP40 to step SP42 for the server configuration
acquisition processing according to the first embodiment as
described above with reference to FIG. 13.

Subsequently, the server configuration acquisition pro-
gram 68 probes the new node using the probe method desig-
nated based on each rule acquired 1n step SP92 and acquires
configuration information about the new node from the new
node (SP93). This embodiment 1s characterized 1n that for the
above-described purpose, the server configuration acquisi-
tion program 68 connects to the service processor 63 for the
relevant chassis 62, but not to each new node.

Specifically speaking, the server configuration acquisition
program 68 connects to the service processor 63, using the IP
address, ID, and password information about the service pro-
cessor 63 obtained based on the rules acquired in step SP92,
acquires information via the packaged Ul and also acquires
information about the physical servers 4 and the virtualiza-
tion facilities 30. Also, the server configuration acquisition
program 68 acquires information about the virtual servers 31
via the service processor 63 and then the virtualization facility
management interface 36 (FIG. 4). The OS information 1s
acquired using the method explained 1n the first embodiment.

US 8,171,119 B2

25

By acquiring necessary information via the service proces-
sor 63 as described above, information about the physical
servers 4 (blade servers) inserted into the same chassis 62 can
be collected promptly and with certainty, without the need to
attempt to connect to all the nodes.

Subsequently, the server configuration acquisition pro-
gram 68 executes step SP94 to step SP96 1n the same manner
as 1 step SP44 to step SP46 1n the server configuration
acquisition processing according to the first embodiment as
described above with reference to FIG. 15, and then termi-
nates this server configuration acquisition processing.

In this way, the server system 60 according to the second
embodiment can selectively deploy the program 25 to the
blade servers 61 as well.

(3) Other Embodiments

The atorementioned embodiments describe the case where
the management server 2 or 64 1n which this mvention 1s

utilized 1s configured as shown in FIG. 1 or FIG. 19. However,
the invention 1s not limited to this example, and a wide variety
ol other configurations can be utilized in the management
server 2 or 64.

Also, the atorementioned embodiments describe the case
where the detection unit for detecting one or more nodes
which are connected via the first network switch 3 and are any
of the physical servers 4, the virtualization facilities 30, and
the virtual servers 31 1s constituted from the CPU 10 for the
management server 2 or 64 and the server probe program 40;
and the acquisition unit for acquiring, for each detected node,
the first configuration mformation about the virtual layer of
the node 1s constituted from the CPU 10 for the management
server 2 or 64 and the server configuration acquisition pro-
gram 42; and the deployment unit for selectively deploying a
program to the relevant node based on the first configuration
information about each acquired node 1s constituted from the
CPU 10 for the management server 2 or 64, the virtualization
facility configuration generation program 43, the manage-
ment means judgment program 44, and the deployment
execution program 45. However, the invention 1s not limited
to this example, and a wide variety of other configurations can
be utilized for the detection umit, the acquisition unit, and the
deployment unait.

Furthermore, the atorementioned embodiments describe
the case where the program to be deployed 1s the management
program 25. However, the mvention 1s not limited to this
example, and can be utilized when programs other than the
program 25 are deploved.

The present invention can be utilized in a wide variety of
information processing apparatuses other than management
servers for a server system.

While the invention has been described with respect to a
limited number of embodiments, those skilled 1n the art,
having benefit of this disclosure, will appreciate that other
embodiments can be devised that do not depart from the scope
of the invention as disclosed herein. Accordingly, the scope of
the invention should be limited only by the attached claims.

What 1s claimed 1s:

1. A management server connected, via a first network, to
one or more physical servers that are connected to a storage
apparatus via a second network, at least one of the physical
servers being a physical server with a virtualization facility
for providing one or more split resources that are made by
virtualizing and splitting a resource of the physical server, the
management server comprising:

10

15

20

25

30

35

40

45

50

55

60

65

26

a detection unit for detecting one or more nodes which are
any of the physical servers, the virtualization facility,
and the split resources and connected via the first net-
work;

an acquisition unit for acquiring, for each node detected by
the detection unit, first configuration information about
a virtual layer of the node; and

a deployment unit for deploying a program to each node
based on the first configuration information for each
node that 1s acquired by the acquisition unit,

wherein, the deployment unait:

detects a topology for each node based on the first configu-
ration information corresponding to the node,

does not deploy the program to the virtualization facility
and the physical server which are incompatible with the
program, but deploys the program to the physical server
on which the virtualization facility 1s mnactive and the
split resources corresponding to the physical server on
which the virtualization facility 1s mnactive, and

the management server manages, via the deployed pro-
gram, the physical server on which the virtualization
facility 1s inactive and the split resources corresponding
to the physical server on which the virtualization facility
1s 1nactive.

2. The management server according to claim 1 wherein

the split resources are a virtual server.

3. The management server according to claim 1, wherein
the acquisition unit acquires second configuration mforma-
tion for each node detected by the detection unit about the
type of operation system mounted on the node; and

the deployment unit decides the type of program to be
deployed to the node based on the second configuration
information corresponding to the node.

4. The management server according to claim 1, wherein
the acquisition unit acquires third configuration information
for each node detected by the detection unit about a service
for which the node 1s used; and

the deployment unit decides the type of the program to be
deployed to the node based on the third configuration
information corresponding to the node.

5. The management server according to claim 1, wherein
the acquisition unit stores a table 1n which at least one piece of
information from among: an imnformation acquisition source
for acquisition of the first configuration information for the
virtualization facility, a method for identifying the virtualiza-
tion facility, and a communication protocol for connection
with the information acquisition source 1s registered for each
type of virtualization facility; and

when judging the type of virtualization facility, the acqui-
sition unit attempts, for each type of virtualization facil-
ity stored 1n the table, access to the information acqui-
sition source according to the communication protocol
and 1dentification processing by the 1dentification
method, and then judges the type of virtualization facil-
ity based on the success of the attempt.

6. The management server according to claim 1, wherein
the deployment unit judges, based on license information of
the program, whether the program can be deployed or not.

7. The management server according to claim 1, wherein
the deployment unit deploys the program by establishing
connection to the node by a connection method used when the
acquisition unit acquires the first configuration information
from the node to which the program 1s to be deployed.

8. A management server method performed by a manage-
ment server connected, via a first network, to one or more
physical servers that are connected to a storage apparatus via
a second network, at least one of the physical servers being a

US 8,171,119 B2

27

physical server with a virtualization facility for providing one
or more split resources that are made by virtualizing and
splitting a resource of the physical server, the management
server method comprising:

a first step of detecting one or more nodes which are any of >

the physical servers, the virtualization facility, and the
split resources and connected via the first network;

a second step of acquiring, for each detected node, first
configuration information about a virtual layer of the
node; and

a third step of deploying a program to each node based on
the first configuration information for each node
acquired in the second step,

wherein, the third step includes:

detecting a topology for each node based on the first con-
figuration information corresponding to the node, and
not deploying the program to the virtualization facility and
the physical server which are incompatible with the
program, but deploying the program to the physical
server on which the virtualization facility 1s inactive, and
the split resources corresponding to the physical server
on which the virtualization facility 1s mactive, and
the management server manages, via the deployed pro-
gram, the physical server on which the virtualization
facility 1s mactive and the split resources corresponding
to the physical server on which the virtualization facility
1S 1nactive.
9. The management server method according to claim 8,
wherein the split resources are a virtual server.
10. The management server method according to claim 8,
wherein 1n the second step, second configuration information

10

15

20

25

30

28

about the type of operation system mounted on the node is
acquired for each detected node; and

in the third step, the type of program to be deployed to the

node 1s decided based on the second configuration infor-
mation corresponding to the node.

11. The management server method according to claim 8,
wherein 1n the second step, third configuration information
about a service for which the node 1s used 1s acquired for each
detected node; and

the type of program to be deployed to the node 1s decided

based on the third configuration information corre-
sponding to the node.

12. The management server method according to claim 8,
wherein 1n the second step, when judging the type of virtual-
1zation facility based on a table 1n which at least one piece of
information from among: an imnformation acquisition source
for acquisition of the first configuration mformation for the
virtualization facility, a method for identifying the virtualiza-
tion facility, and a communication protocol for connection
with the information acquisition source 1s registered for each
type of virtualization facility, access to the information acqui-
sition source according to the communication protocol and
identification processing by the identification method are
attempted for each type of virtualization facility stored 1n the
table, and then the type of virtualization facility 1s judged
based on the success of the attempt.

13. The management server method according to claim 8,
wherein 1n the third step, whether the program can be
deployed or not 1s judged based on license information of the
program.

	Front Page
	Drawings
	Specification
	Claims

