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RELATIONAL OBJECTS FOR THE
OPTIMIZED MANAGEMENT OF
FIXED-CONTENT STORAGE SYSTEMS

RELATED APPLICATIONS

This application 1s a continuation of U.S. patent applica-
tion Ser. No. 12/036,162, filed Feb. 22, 2008, now U.S. Pat.

No. 7,899,850, and entitled “RELATIONAL OBJECTS FOR
THE OPITIMIZED MANAGEMENT OF FIXED-CON-

TENT STORAGE SYSTEMS,” which is hereby incorpo-
rated by reference.

TECHNICAL FIELD

The present mnvention relates to fixed-content storage sys-
tems. In particular, the present invention relates to managing,
data objects 1n a fixe-content storage system.

BACKGROUND

A fixed-content object 1s a container of digital information
that, once created, remains fixed. Examples of objects that
could be fixed include medical images, PDF documents, pho-
tographs, document images, static documents, financial
records, e-mail, audio, and video. Altering a fixed-content
object results 1n the creation of a new fixed-content object. A
fixed-content object once stored becomes immutable.

Fixed-content digital data 1s often subject to regulatory
requirements for availability, confidentiality, integrity, and
retention over a period of many years. As such, fixed-content
data stores grow without bounds and storage of these digital
assets over long periods of time presents significant logistical
and economic challenges.

To address the economic and logistical challenges associ-
ated with storing an ever growing volume of information for
long periods of time, fixed-content storage systems imple-
ment a multi-tier storage hierarchy and apply Information
Lifecycle Management (ILM) policies that determine the
number of copies of each object, the location of each object,
and the storage tier for each object. These policies will vary
based on the content of each object, age of each object, and
the relevance of the object to the business processes.

A multi-site, multi-tier storage system, large scale distrib-
uted fixed-content storage 1s needed, for example, to address
the requirement for storing multiple billions of fixed-content
data objects. These systems ensure the integrity, availability,
and authenticity of stored objects while ensuring the enforce-
ment of Information Lifecycle Management and regulatory
policies. Examples of regulatory policies include retention
times and version control.

SUMMARY

Fixed-content storage systems grow as new objects are
stored. This growth 1s accelerated by providing redundant
copies of fixed-content objects 1n order to reduce the prob-
ability of data loss. As the size and complexity of the fixed-
content storage system grow, the resources necessary to man-
age the storage system also increase. Improved data
management techniques are therefore needed as the system
scales to more elliciently store, organize, and manage data in
a fixed-content storage system, while also fulfilling appli-
cable regulations.

In one embodiment, a data object to be stored 1n a distrib-
uted fixed-content storage system i1s intelligently decom-
posed along the data object’s logical boundaries. Intelligently
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decomposed objects are compared with other reference
objects and, where they are 1dentical, one reference object 1s
stored and referenced by a reference content block. For
example, a medical study archive contains thousands of
instances of a template form with minor variations. For each
instance, the template 1s stored separately from the additional
data. Intelligent decomposition of the template data and the
additional data when storing the archive allows for one
instance of the template data to be referenced by other objects
containing reference content blocks. Thus, storage resources
may be used efficiently where 1dentical data 1s stored in only
as many places as required by regulatory or other require-
ments.

In another embodiment, multiple external data objects are
consolidated into a single data object. The external data
objects are accessed by reference to metadata that indicates an
offset and size of the external data object. By consolidating
many objects 1nto a single object, the total number of data
objects 1s reduced. This allows for the simplified management
of the data stored 1n the fixed-content storage system.

In another embodiment, differenced objects are created
when an object stored 1n a fixed-content storage system 1s
edited. The edits to the original object may represent a small
change 1n the original object, but because the stored original
object 1s immutable 1t 1s not possible to simply overwrite the
small portion that 1s edited. In order to store the edited data
without requiring duplication of existing data, a new object 1s
created that references both the original object and the edited
data. The metadata of the new object includes information
relating to the offset and the size of the edited data so that the
edited data 1s accessed instead of the corresponding portion of
the original object.

In yet another embodiment, composite objects are pro-
vided that reference multiple objects. A manifest data object
1s created that references each object, and accessing the mani-
test data object allows for the identification, access, and man-
agement ol objects joined 1n the composite object.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates various nodes in a distributed storage
system.

FIG. 2 illustrates an embodiment of a fixed-content storage
subsystem that comprises multiple data objects.

FIGS. 2A-E illustrate a method of intelligent decomposi-
tion and storage of content.

FIGS. 3A-C illustrate a method of object consolidation and
storage of content.

FIGS. 4A-C illustrate a method of storing content as a
differenced object.

FIGS. 5A-C illustrate a method of storing content as a
composite object.

FIG. 6 illustrates a composite object utilizing various stor-
age methods.

DETAILED DESCRIPTION

Continued adoption of digital technology 1n nearly all sec-
tors including healthcare, media, government, and financial
services 1s accelerating the creation of fixed-content data.
Regulatory and business requirements for retention are
resulting in the continued growth of data that must be stored
and managed. In many sectors, the retention times exceed the
practical lifetime of the storage media, and long term, data
archiving 1s an ongoing business challenge. As the archives
grow, scaling limitations arise due to the size of the stored
data as well as the number of fixed content objects that need
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to be stored and managed. There 1s a market demand for
fixed-content storage systems that can intelligently manage
fixed-content data to provide for more efficient scaling.

Fixed-content storage involves the storage and manage-
ment of data such that once stored, the data 1s immutable—t
cannot be changed. Thus, locks are not required for alter-
ations to the contents of the object. However, despite the
object 1tsell being immutable, additional objects may be
stored that consist of minor variations of an existing object
and many objects may have large amounts of 1dentical data.
Efficiency 1s provided according to certain embodiments by
recognizing where these minor variations and duplicate data
exist. Rather than providing more copies of any particular
data than necessary, metadata 1s configured to provide refer-
ences to data objects containing the data. Additionally, object
management may be simplified by reducing the total number
of objects or providing a single object that allows access to
and management of additional objects.

Storage Grid Overview

As 1illustrated 1 FIG. 1, a typical fixed-content storage
system deployment may involve multiple nodes, oiten span-
ning multiple geographically separated sites. When a request
for information 1s made, the storage grid 200 may serve that
request based on the location of the data, the location of the
user, the load on the system, and the state of the network. This
balances the load on the network, storage and servers in order
to minimize bandwidth usage and increase performance. The
storage grid 200 1s a unified structure, but there may be
multiple servers or repositories of content or metadata.

Nodes may be grouped based on the services they provide.
For example, storage nodes 232, 236 may provide for secure
data storage and transmission. A storage node may consist of
a service running on a computing resource that manages
storage and archival media such as a spinming media resource
or tape.

The storage resource 224, 242 on a storage node can be
based on any storage technology, such as RAID, NAS, SAN,
or JBOD. Furthermore, this resource may be based on any
grade of disk such as a high performance fiber channel or ATA
disk. Storage nodes may be linked together over, for example,
LAN and WAN network links of differing bandwidth.

Storage nodes can accept data and process retrieval
requests, and information input into a storage node can be
retrieved from other storage nodes. Storage nodes may pro-
cess client protocol requests and include support for DICOM,
HTTP and RTP/RTSP. Support for NFS/CIFS may be pro-
vided, for example, through gateway nodes.

Storage nodes may replicate and cache data across multiple
sites and multiple nodes. Data replication 1s based on a set of
configurable rules that are applied to the object metadata and
may take 1nto account geographic separation ol nodes as well
as the bandwidth between nodes. The logic that governs rep-
lication and distribution may be enforced by control nodes.

Gateway nodes 228 provide an interface through which
external applications 220 may communicate with the storage
or1d. Gateway nodes 228 route incoming requests to storage
nodes based on, for example, the available CPU, bandwidth,
storage and geographic proximately. For applications that
require direct file system access, the gateway nodes 228 may
provide a NFS/CIFS interface to the storage grid.

Control nodes 238 may consist of separate soltware ser-
vices, such as the Content Metadata Service (CMS) and the
Administrative Domain Controller (ADC). Although these
services can run on separate computing resources, they may
also share a single server. The Content Metadata Service
constitutes a distributed business rules engine that provides
for content metadata storage, metadata synchronization,
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metadata query and enforcement of replication and informa-
tion lifecycle management business logic. Replication and
information lifecycle management policies may be based on
metadata that 1s associated with stored objects. This allows
the creation of business rules that determine where content 1s
stored, how many copies are stored, and on what media 1t 1s
stored on throughout 1ts lifecycle. A Content Metadata Ser-
vice may 1nterface, for example, with a local SQL database
through a database abstraction layer.

The Administrative Domain Controller acts as a trusted
authentication repository for node-to-node communication.

It also provides knowledge of system topology and informa-
tion to optimize real-time usage of bandwidth, CPU and
storage resources. This allows automated management of
computational resources and dynamic load balancing of
requests based on the available CPU, storage and bandwidth
resources.

The Administration Node 234 may consist ol software
components such as the Network Management Service and
the Audit Service. These services may share a common com-
puting resource, or they may be run on separate computing
resources. A management interface 226 may be used to moni-
tor and manage the operational status of the grid and associ-
ated services.

The Audit Service provides for the secure and reliable
delivery and storage of audited events corresponding to con-
tent transactions across the entire storage grid. Audit events
are generated, 1n real-time, by Storage Nodes and Control
Nodes. Events are then relayed through the storage grid using
a reliable transport mechanism and delivered to the Admin-
istration Nodes. Audit messages are processed by the Audit
Service and may be directed to an external database or file.

The Network Management Service collects and processes
real-time metrics on utilization of computing, storage and
bandwidth resources. It provides real-time and historical
usage reports. In addition 1t 1s responsible for fault reporting,
and configuration management.

The Archive Node 230, 240 may manage a locally attached
tape drive or library 246 for the archiving and retrieval of grid
managed objects. Archive nodes may be added to diversily
archive pools and to provide archival storage at multiple sites.
The storage grid 200 may also utilize external storage
resources, such as a managed tape library 222 or an enterprise
SAN 224,

Storage Nodes and Control Nodes in the storage grid can be
upgraded, decommissioned, replaced or temporarily discon-
nected without any disruption. Nodes do not need to run on
the same hardware or have the same storage capacity. Nodes
replicate and cache data across multiple sites and multiple
nodes. In addition to bandwidth savings, the intelligent dis-
tribution of information provides for real-time backup, auto-
mated disaster recovery and increased reliability.

Capacity, performance and geographic footprint of the
storage grid can be increased by adding nodes as needed,
when needed, without impacting end-users. This enables the
storage grid to accommodate thousands of terabytes of data
across hundreds of locations. The storage grid combines the
power of multiple computers to achieve extremely high levels
of scalability and throughput. As nodes are added to the
storage grid, they contribute to the available computational
and storage resources. These resources are seamlessly uti-
lized based on bandwidth availability and geographical suit-
ability.

In traditional archives, information 1s stored as files, and
access to data 1s gained through a path pointer stored in an
external database. When storage scales, old storage 1is
replaced, or 1s offline, this results 1n broken pointers and
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unavailable data. In order to scale, costly and disruptive
migration procedures are required. Furthermore, 1t 1s difficult
to operate 1n heterogeneous environments and multi-site
deployments. This 1s because the approach relies on the
underlying file system and network file system protocols.

Within the storage grid, data are stored and referenced as
objects. An object can be one file or a collection of files with
relationships that are defined by object metadata. Object
metadata constitutes application specific information that 1s
associated with a data object. This information can be
attached to or extracted from the object at the time of 1mput
into the storage grid. Object metadata can be queried and the
storage grid can enforce business rules based on this infor-
mation. This allows for efficient utilization of storage/band-
width resources, and enforcement of storage management
policies.

In this object oriented architecture, external applications
no longer use pointers to a path, but a universal handle to an
object. This enables high levels of reliability, scalability and
cificient data management without the need for disruptive
migration processes. Multiple object classes can be defined
and for each object class, there are specific business rules that
determine the storage management strategy.

In this embodiment, the storage grid 1s fault tolerant, resil-
ient and self-healing. Transactions continue to be processed
even after multiple hardware, storage and network failures.
The design philosophy 1s that hardware, network, and cata-
strophic failures will occur, and the system should be able to
deal with faults 1n an automated manner without impacting
the stored data or end-users.

Reliability 1s achieved through replicas, which are 1denti-
cal copies of objects (both data and metadata) that are stored
on multiple nodes and kept synchronized. Increasing reliabil-
ity mvolves adding nodes to the storage grid and increasing
the number of replicas for each object. The location and
number of the replicas 1s based on a set of rules that can be
configured to ensure geographical separation and the desired
level of redundancy. The storage grid will automatically
enforce this logic across all nodes. It a failure 1s detected, the
system 1s self-healing 1n that additional replicas are automati-
cally created to restore the level of resiliency.

Asnodes are added, removed or replaced, the system man-
ages the available storage. Incoming data 1s transparently
re-directed to the take advantage of the newly added storage
capacity. Within the storage grid objects are redistributed,
purged, or replicated based on metadata and policies that are
applied to the metadata. Objects can also migrate from one
storage grade (e.g., disk) to another (e.g., tape) not simply
based on time and date stamps, but external metadata that
indicates the importance of the object to the specific business
application. For example in medical applications, certain
imaging exams may be immediately committed to deep stor-
age. In applications for the financial sector, retention policies
may be set up to facilitate compliance with regulatory
requirements for data retention.

Users may mnput and retrieve data from the location within
the storage grid that 1s closest to them, thereby eificiently
utilizing bandwidth and reducing latency. In addition, as
information 1s requested, 1t may be cached at the requesting
Storage Node to enable improved bandwidth efficiency.

Obsolete components can be removed without impacting
services or endangering stability and reliability. A Storage
Node may be decommissioned through the administrative
console. When this takes place, the storage grid may auto-
matically redirect requests to alternate nodes. Furthermore,
the storage grid may transparently re-distribute the stored
data on other suitable Storage Nodes. This allows for seam-
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less removal of obsolete hardware without any disruptions to
storage grid operations. This 1s 1n contrast to disruptive data
migration procedures that are common 1n many fixed content
applications. Operators can eliminate support for obsolete
hardware while taking advantage of the economic benefits of
decreasing costs of storage and increases in processing
power. Each newly added node costs less and provides more
processing power and storage capacity.

When data and metadata are stored into the storage grid,
the data and metadata 1s packaged 1nto an object. Objects
consist of data and associated metadata that are managed as
an unalterable and atomic entity. Once stored, these objects
are actively managed throughout their information lifecycle.
When an object 1s retrieved, the original data and associated
metadata 1s presented for use. This provides a transparent
storage service to external entities.

Each object stored may have a unique 1dentifier that acts as
the primary identifier for the object. This 1dentifier may be
assigned at the time the object 1s created. Objects can be
moved from one object store to another.

Objects stored within the grid may contain metadata,
which 1s used to manage the objects over their lifecycle and
tacilitate access to the objects. Object metadata may include,
for example, Content Block metadata, Protocol metadata,
Content metadata, User metadata, or Management metadata.

Content Block metadata may be metadata associated with
the object creation process itself, and provides information
about the packaging and protection of the user provided data
and metadata. An example of this type of metadata is the size
of the data stored 1n a given object.

Protocol metadata may be metadata associated with the
protocol used to store the object, but not intrinsic to the data
within the object. This includes metadata required to perform
protocol specific transactions. For data stored through the
DICOM protocol, an example of this type of metadata 1s the
DICOM AE title of the enftity that stored the data.

Content metadata may include metadata contained within
recognized types of content. If so processed, metadata spe-
cific to each recognized type of content 1s extracted from the
content. For content of type PDF, an example of this type of
metadata 1s the number of pages 1n a document.

User metadata may include arbitrary metadata specified by
the entity storing content into the grid. This abaility to attach
user metadata 1s limited by the protocol used to store the
objects. An example of this type of metadata 1s a private
identifier assigned by the user.

Management metadata consists of metadata generated and
modified over time as objects are managed within the grid.
Unlike the previous four classes of metadata, this metadata 1s
not immutable, and 1s not present as part of the object 1tself.
An example of this type of metadata 1s the time when an
object was last accessed.

Each time a new object 1s stored, the metadata associated
with the object 1s also stored 1n a separate subsystem that
maintains a repository of metadata. The metadata store can be
queried to return the metadata associated with a given object.
(Queries can also be performed to return a list of objects and
requested metadata for all objects that have metadata that
matches a specific query.

Placement of objects may be based on the capabilities of
the storage grid computing resources. Different computing
resources have different capacity to perform work. While this
1s primarily measured based on the clock frequency of the
processor, the number of processors and relative efficiencies
of different processor families may also be taken 1nto account.
In addition, the amount of CPU resources that are currently in
use provides a mechanism to determine how “busy” a given
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resource 1s. These characteristics are monitored and mea-
sured to allow decisions to be made within the grid about
which computing resource 1s best suited to use to perform a
given task.

Placement of objects may also be based on the character-
istics of the storage resources, such as storage latency, reli-
ability, and cost. Storage capacity provides information for
calculating risk in the event of rebuild. A measurement of the
amount of storage capacity that 1s currently 1n use provides a

mechanism to determine how full a given storage resource 1s,
and determine which locations are more able to handle the
storage or migration of new content. Different storage
resources have different throughput. For example, high per-
formance Fiber-Channel RAID systems will deliver better
performance then a lower performance software RAID on
IDE drives. A measurement of the amount of I/O bandwidth
that 1s currently 1n use provides amechanism to determine the
extent to which a given storage resource 1s able to handle
additional transactions, and how much 1t will slow down
current transactions. Storage resources can be read-only, and
thus not a candidate for the storage of new objects. These
characteristics may be monitored and measured to allow deci-
s10ms to be made within the grid about which storage resource
1s best suited to use to retain objects over time, and 1intluence
the rules that determine where objects should be stored.

Placement of objects may also consider the characteristics
ol network paths, such as latency, reliability and cost. Differ-
ent network paths have different amounts of bandwidth avail-
able. This directly maps into the time required to transfer
objects from one storage repository to another. The amount of
the network bandwidth that 1s currently 1n use may also be
considered. This provides a mechanism to determine how
“busy” a given network link 1s, and to compare the expected
performance as compared to the theoretical performance.
These characteristics may be monitored and measured to
allow decisions to be made within the grid about which net-
work path 1s best suited to use to transfer objects through the
or1d.

When objects are stored in multiple different locations, the
probability of data loss 1s reduced. By taking common-mode
failure relationships and fault probability information into
account, the probability of data loss and data 1naccessibility
for a given placement of objects can be quantified and
reduced to manageable levels based on the value of the data in
question.

To avoid common mode failures, replicas of objects can be
placed 1n separate failure zones. For example, two replicas
created within a single server room can take into account that
storage on nodes that do not share a single UPS has a higher
probability of accessibility then two replicas stored on two
nodes that share the same UPS. On a larger scale, two replicas
created 1n geographically distant locations have a lower prob-
ability of loss then two nodes within the same facility.

Asreplica placement rules are metadata driven, they can be
influenced by external systems and can change over time.
Changes to existing replicas and changes to the topology of
the grid can also influence replica placement rules.

Replica placement can retlect the instantaneous, historical
and predictive information associated with a given resource.
For example, monitoring of server and storage health can
dynamically influence the degree of reliability attributed to a
given resource. Different types of storage resources, such as
IDE vs. SCSI, have different reliability characteristics. In
addition, archival and offline storage often have a distinct
media lifetime, which need to be managed to preserve archive
integrity. These are both examples of the use of information
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about available resources 1s used to determine the best solu-
tion for a given set of constraints.

Implementation of configuration information based on for-
mal risk analysis can further optimize the resource tradeoil by
providing information about common mode failures that can-
not be automatically discovered by the grid. For example, the
placement of two replicas on nodes situated along the same
fault line may be considered to be within a common failure
mode, and thus suboptimal when compared to the placement
of one of the replica 1n a facility not located on the fault.

The use of external data feeds can provide valuable infor-
mation about changes in the reliability of a given failure zone.
In one scenario, a live feed from the weather monitoring
system can provide advance notice of extreme weather
events, which could allow the grid to dynamically rebalance
content to reduce the risks associated with the loss of connec-
tivity to a given facility.

Content stored 1n a fixed-content storage system can be, but
1s not limited to, audio, video, data, graphics, text and multi-
media information. The content 1s preferably transmitted via
a distribution system which can be a communications net-
work including, but not limited to, direct network connec-
tions, server-based environments, telephone networks, the
Internet, intranets, local area networks (LAN), wide area
networks (WAN), the WW W or other webs, transters of con-
tent via storage devices, coaxial cable, power distribution
lines (e.g., erther residential or commercial power lines), fiber
optics, among other paths (e.g., physical paths and wireless
paths). For example, content can be sent via satellite or other
wireless path, as well as wireline communications networks,
or on the same path as a unit of power provided by a utility
company.

Reference Blocks

According to some embodiments, novel data structures are
utilized 1n order to allow certain features described herein.
Objects stored within the storage system are stored as one or
more packets. Fach packet includes a certain non-zero
amount of packet metadata and zero or more bytes of payload
data. In a preferred embodiment, the quantity of packet meta-
data and the quantity of payload data vary among different
packets. A maximum packet size or quantity of payload data
may be utilized. For example, the maximum quantity of pay-
load data 1n a variable size packet may be configured to be 16
KB. Each packet may include a predetermined identical
amount of packet metadata and payload data 1n some embodi-
ments.

The packet metadata may contain information allowing for
the processing of variable sized packets when the amount of
packet metadata and payload data 1s not predefined. Types of
packet metadata include offset data, packet size data, and the
like. This packet metadata may allow for the arbitrary
retrieval of data 1n an object by 1dentitying a specific packet or
bytes within or across one or more packets.

FIG. 2 shows an embodiment of a fixed-content storage
subsystem 700 that comprises multiple data objects. The data
objects comprise metadata 701 and payload data 702. Fur-
thermore, the fixed-content storage system 700 1s accessible
by a remote server 720.

As shown 1n FIG. 2, one or more packets may comprise
reference content blocks 710 and/or floating reference con-
tent blocks 705 according to some embodiments. A reference
content block 710 preferably has only packet metadata that
refers to a different packet or content block, and does not
contain any payload data. The packet metadata reference may
cause an application accessing the reference content block to
access some other packet(s) in place of the reference content
block. For example, with a video file stored 1n a fixed-content
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storage system, a reference content block may be stored
rather than another short video (such as a geographically
specific clip). The reference content block may refer to that
short clip stored separately, either in the fixed-content system
or 1n another storage system.

A floating reference content block 705 1s a reference con-
tent block that does not yet point to a packet or reference
content block. Unlike reference content blocks 710, which
are resolved at the storage system 700 (for example, by refer-
ring to a logical or physical memory address, or by referring,
to a particular object or instance), floating reference content
blocks 705 are resolved at a server 720 or computing system
outside the fixed-content storage system when the data is
accessed. The packet metadata associated with the floating
reference content block 705 specifies the size, duration, and/
or other information that enables the server 720 to resolve the
floating reference content block 705. Accordingly, an object
comprising one or more packets may reference other objects
or portions of other objects within the storage system 700.
According to some embodiments and as shown 1n FIG. 2, a
server 720 resolving a floating reference content block 705
may also resolve the storage location to an external storage
system 730.

With tloating reference content blocks, an object may ref-
erence variable data within the storage system. Though the
data written to the fixed-content storage system 700 1s not
altered, floating reference content blocks 705 allow for the
modification of an object as seen by an external user access-
ing the storage system 700. Floating reference content blocks
may therefore be a powertul tool when used with a fixed-
content storage system as described herein.

For example, 11 a medical report/form template 1s stored in
a fixed-content storage system, there may be a number of
blank fields. For each patient having a report stored, the
values of these fields may be different, but the template 1s
largely the same. If these fields are stored as floating reference
content blocks, then the patient data may be stored separately
for each patient, without duplicating the template data. When
the data 1s accessed, for example by a medical professional,
they may request information on one of the patients. The
template would be loaded, and based on the patient informa-
tion requested, the medical professional’s computing system
can resolve the floating reference content blocks 1n order to
access the specific patient data requested along with the
report form.

Floating reference content blocks may be resolved accord-
ing to any criteria appropriate to the particular file. For
example, a floating reference content block may be resolved
based on the geographic location of the computing system
accessing the data, an IP address, data submitted by the com-
puting system, or the like.

The metadata 1n a reference content block or a floating
reference content block can override some of the metadata in
a packet (or group of packets) that 1s pointed to. This may
allow certain data stored 1n the fixed-content storage system
to be treated differently according to how it 1s accessed. This
in turn may allow for objects to be stored once rather than
requiring near identical copies, as the data 1s immutable. By
changing the management rules of the fixed-content storage
system, more flexibility 1s obtained without modifying the
protected data. Several embodiments ol operations per-
formed using reference content blocks and floating reference
content blocks will be described in more detail below.
Intelligent Decomposition

FIGS. 2A-E demonstrate a method for intelligently decom-
posing data stored 1n a fixed-content storage system accord-
ing to one embodiment. Intelligent decomposition stores data
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objects according to their logical boundaries and allows for
single istance storage of objects or portions of objects that
may be identical. For example, 1n some systems multiple
instances of similar data are stored, where the difference 1s the
payload within a well-known structure, such as a TAR
archive. A TAR archive 1s the concatenation of one or more
files.

FIG. 2A shows one embodiment of an implementation of
intelligent decomposition data management techmques with
reference to a TAR archive 10 for a medical system storing,
for example, cardiology and radiology images. Other
embodiments utilize other data file types having known
boundaries. The TAR archive 10 includes two archived files
12, 14. Each archived file 12, 14 1s preceded by a header block
16, 18. The archived file data 1s written unaltered except that
its length 1s rounded up to amultiple o1 512 bytes and the extra
space 1s zero filled. The TAR headers 16, 18 may comprise
512 byte blocks of data indicating the si1ze of each data file, the
owner and group ID, the last modification time, and other
data.

As discussed previously, objects such as a TAR archive
may be stored 1n one or more packets. For example, FIG. 2B
illustrates partitioning of the TAR archive 10 1nto five packets
20, 22, 24, 26, 28. The partitioning of the packets 20, 22, 24,
26, 28 was done without regard for the file boundaries within
the TAR archive. Accordingly, the packets 20, 22, 24, 26, 28
contain data from various sources that may not be logically
related. For example, the packet 24 contains data correspond-
ing to file 12, header block 18, and file 14. There 1s no
alignment of the TAR headers, and no references to data 1n
external objects.

FIG. 2C 1llustrates the partitioning of the TAR archive 10
by using the file boundaries and the alignment of TAR head-
ers. TAR header 16 1s placed in packet 30, archived file 12 1s
placed 1 packets 32, 34, TAR header 18 1s placed 1n packet
36, and archived file 14 1s placed 1n packets 38, 40. Because
the TAR archive 10 was partitioned along the TAR archive
header and file boundaries, each of the TAR archive headers
and files can be handled separately.

FIG. 2D illustrates an exemplary embodiment for storing
the partitions from FIG. 2C as multiple objects. A master
object 42 corresponds to the TAR archive 10. The master
object 42 includes a component for each of the two files 1n the
TAR archive. The first component includes metadata packet
25A, TAR file header packet 30 ({from FIG. 2C), and reference
block 27A. The second component includes metadata packet
258, TAR file header packet 36 (irom FIG. 2C), and reference
block 27B.

Reference block 27A provides a reference to a reference
object 46. Reference object 46 includes partitions 32, 34
corresponding to the first file 12 1n the TAR archive 10, and
packet metadata 25D and 25E. Reference block 27B provides
a reference to a reference object 48. Reference object 48
includes partitions 38, 40 corresponding to the second file 14
in the TAR archive 10, and packet metadata 25F and 25G.
Thus, each archived file 12, 14 1s stored as a unique object and
referenced by a master object.

FIG. 2D also includes a second master object 44. Master
object 44 includes a packet 31 corresponding to a third
header. In this example, the third header 1s found 1n a TAR
archive that also contains the first data file 12. Rather than
storing an additional reference object representing a duplicate
copy of the reference object 46, the reference content block
277C references the existing stored reference object 46. By
reducing the required storage of duplicate objects, the total
amount of storage resources required by the fixed-content
storage subsystem may be reduced.
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Although the example shown 1n FIGS. 2A-2D relates to a
TAR file, a stmilar procedure could be applied to other file
types. In one example, a media file may contain a series of
media clips, and each media clip could be treated as an object.
In another example, a pdf file may contain pages or other
content that could be treated as separate objects.

One embodiment of a process for intelligently decompos-
ing objects stored to a fixed-content storage system 1s shown
in FIG. 2E. The process begins at state 201 where an object to
be stored 1s recerved. The object recerved 1s preferably of a
type having a well known file structure so that it can be
decomposed or packetized at state 202 along 1its logical
boundaries. For example, header data may be separated from
payload data.

The decomposed object 1s thus broken 1nto separate por-
tions, each of which may comprise one or more packets. One
of the portions 1s selected at state 203, and at decision state
204 1t 1s determined 11 the selected portion 1s 1dentical to an
existing stored reference object. The existing object may
comprise any other object, but 1s likely to be a reference
object related to the current object being stored. For example,
il the current object being stored 1s an 1nstance of a medical
study, then existing instances of the study may be identified
based on metadata or additional data from the external system
providing the object. I the portion already exists as a refer-
ence object, then the existing object 1s referenced by a refer-
ence content block at state 205. If the portion does not already
exi1st 1n the storage system, then the decomposed object por-
tion 1s stored at state 206. At decision state 207 1t 1s deter-
mined whether the entire received object has been stored or
referenced. IT any portion remains, then the process returns to
state 203. When all portions have been handled, then a master
object exists 1n the storage system for the recerved object that
references existing data as well as any new data. Thus, this
process may advantageously be used in a fixed-content stor-
age system 1n order to allow greater flexibility and reduce the
need for increased storage space.

In one embodiment, the decomposed object portion 1s
stored prior to identification of existing instances of the
object. After it 1s determined that equivalent content to the
decomposed object portion 1s stored 1n another object, the
identifier for the decomposed object portion may be repointed
to the other object. The stored decomposed object portion
may then be removed.

Object Consolidation

FIGS. 3A-C show a method of object consolidation for a
fixed-content storage system. For multiple data objects rep-
resenting individual instances of a particular group, 1t may be
inellicient to store each instance as a separate object. Even
when 1dentical data 1s handled efficiently, the management of
a large number of objects may create inelliciencies in object
management.

As an example, a data object representing an advertisement
1s created for distribution and display 1n a variety of geo-
graphical areas. The advertisement data object may be con-
figured to reference a large number of additional data objects
(e.g., endings), with each of the additional data objects cor-
responding to one of the geographical areas. Rather than
storing a separate data object including the advertisement
data object for each additional data object or storing the
advertisement data object once and storing each of the addi-
tional data objects separately, a single object may be created
with each of the additional data objects stored back-to-back.
When the advertisement object 1s accessed, a tloating refer-
ence content block resolves to a different offset based on the
geographic location. Thus, for 200 different regions, rather
than storing a relatively large advertisement and 200 rela-
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tively short endings as 201 objects, the endings are stored
back-to-back so that a single object 1s created including the
advertisement and all of the endings. The cost of managing
many small objects for different applications, sometimes hav-
ing tens of thousands or more individual 1nstances, can be
quite large. Storing the small objects as a single object allows
for random access retrieval while reducing the number of
objects required, thus making storage management more cost
elfective.

As another example, a data object representing a medical
study may include thousands of individual cases or instances.
The cost of managing many small objects can be large from a
licensing or hardware standpoint. Consolidating the cases or
instances reduces the number of objects required. The ndi-
vidual cases or istances would still be accessible using ofi-
sets for random-access.

FIG. 3A shows an example of object consolidation of two
external data objects 51 and 52 according to one embodiment.
The external data objects 51 and 52 may be any type of data
object, such as media files, medical storage files, or the like.
For example, external data object 51 may represent a first file
of a medical study to be stored, and external data object 52
may represent an additional instance of the study. In another
embodiment, the external data objects 31 and 52 are files that
were originally stored in the same folder.

Rather than store external data objects 51 and 52 as sepa-
rate objects, they may be stored as a single consolidated data
object 50 as shown 1n FIG. 3B. Data object 50 comprises
metadata 54, 35 and external data objects 51 and 52. Metadata
54, 55 may indicate, for example, an offset and size of a
particular section of an object. While the example shown in
FIGS. 3A and 3B show only two external data objects con-
solidated to form data object 50, 1n some embodiments a
different number of external data objects are consolidated. As
the number of external objects increases, object consolidation
as described herein provides additional efficiency 1n manag-
ing the objects 1n a fixed-content storage system.

FIG. 3C shows a process for creating a consolidated data
object. At state 301 multiple objects are recerved or accessed.
In some embodiments, these objects are accessed and con-
solidated from within a storage system. In some embodi-
ments, multiple objects are recerved from an external com-
puting system to be stored, and every object to be
consolidated 1s recerved 1n a single data transfer. In some
embodiments, one or more new objects to be consolidated
with existing stored data are recerved.

At state 302, metadata 1s generated for the consolidated
object that indicates an offset and size for the received data
objects. For example, the metadata may indicate that a first
data object stored in a consolidated data object may have no
offset and be 64 KB, while the second data object may have a

4 KB offset and be 32 KB.

At state 303, the multiple received objects are stored back-
to-back as a single object. Any reference to the multiple
received objects can be handled by the consolidated object
that will reference each of the received objects by offset.
Accordingly, management ol many related objects may be
simplified and costs reduced because a smaller number of
objects are stored 1n the storage system.

Differenced Objects

Because data 1n fixed-content storage systems 1s 1mmu-
table, small changes made to large files may be handled
inelliciently by traditional systems. For example, a large data-
base containing approximately 50 GB of data 1s stored as an
object 1n a fixed-content storage system. An edit to that data-
base 1s made by a user that comprises approximately 100 KB
of changed data. The originally stored object cannot be modi-
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fied with these changes 1n the fixed-content storage system, as
the stored data may not be edited. In traditional fixed-content
storage systems, even though the vast majority of the data
from the original object has not been changed, a new object
must be stored including the more than 49 GB that remains
identical.

Medical data may include an 1mage and corresponding
demographic data. The size of the image 1s much larger than
the corresponding demographic data. Thus, a 50 MB 1image
may be updated to write 32 bytes worth of patient name
information.

FIGS. 4A-C show an example of a method for generating,
and storing a differenced object 1n a fixed-content storage
system to more etficiently handle such changes according to
one embodiment. FIG. 4A shows an original data object 60
and an edited data object 65 as stored 1n a traditional fixed-
content storage system. Original object 60 comprises meta-
data 71 and payload data 61A-C. For example, the original
data object 60 may be a 50 MB radiology image along with a
relatively small amount of associated data 61B that represents
patient name, demographic data, and the like. The associated
data 61B may represent, for example 32 bytes of 50 MB data
object 60. When a change 1s made to the associated data 61B,
a typical fixed-content system may store the edited object as
a new data object 65 that includes most of the data from the
original data object 60, but has replaced the associated data
61B with the edited data 66.

Rather than storing, as shown in FIG. 4A, the original
object 60 and a separate object 65 containing the entire origi-
nal object with the edited data 66, F1G. 4B shows a method for
storing a differenced object including essentially only the
changes. FI1G. 5B shows original object 60 comprising packet
metadata 71 and payload data 61 A-C. An edit represented by
data 66 has again been made to the associated data 61B
representing a small portion of the original object 60. A
differenced object 70 1s created as the edited object. Ditfer-
enced object 70 comprises reference content block 72A. Ret-
erence content block 72 A references the original object 60 so
that the data shared by the edited object 65 and the original
object 60 may be accessed by differenced object 70 without
storing additional copies of the data. Reference content block
72A turther references an object including metadata 71,
edited data 66, and reference content block 72B. The refer-
ence content block 72A and the reference content block 72B
may indicate the location or offset where associated data 61B
of the original object 60 1s to be replaced by edited data 66
when the edited and differenced object 70 1s accessed, the size
of the edited data 66, the size of the associated data 61B, and
the like. Referencing the identical data from the original
object 60 allows original object 60 to be maintained as a
fixed-content object, while small changes are eificiently
stored to create additional instances of edited objects.

FIG. 4C 1s a flowchart indicating one embodiment of a
process for generating a differenced object. At state 401, an
edited object 1s recerved. Next, at state 402, the edited object
1s compared to the original object. In the example shown 1n
FIGS. 4A and 4B, associated data 61B 1s shown as the pay-
load data from one packet. However, 1n some embodiments
edits may comprise only a portion of the payload data from a
packet or may comprise multiple packets or portions thereof.
Furthermore, although edited data 66 is shown 1n FIGS. 4A

and 4B as containing the same quantity of data as the associ-
ated data 61B, this need not be the case. In some embodi-
ments, the edited data may contain more or less data than the
section of the original object 1t replaces.

In some embodiments, the fixed-content storage system 1s
configured to determine whether to store a new object or
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create a differenced object based on the magnitude of the
changes to the original object relative to the object’s size.
When the changes are larger than a threshold determined, for
example, based on the size of the original object, the edited
object 1s stored as a new object. When the changes are less
than the determined threshold, then the edited object may be
stored as a differenced object. For example, the threshold may
be that the size of the edited data must not be larger than 50%
of the size of original file.

After the edited portions have been determined (and are
determined to be small relative to the original object 1n some
embodiments), then at state 403 a reference 1s stored to the
original data object that may include metadata indicating
which portions and how much of the original object 1s utilized
by the edited object. At state 404, a reference 1s stored to the
edited data. Metadata may also be stored that indicates the
positioning of the edited data within the original object.

In some embodiments, differenced objects may addition-
ally be ‘flattened” when the original object they reference 1s
no longer necessary. The referenced data from the original
object may be copied and stored 1n the differenced object with
all of the changes, creating a new object. The original object
may then be deleted.

Composite Objects

In order to realize certain advanced applications 1t may be
desirable that several objects be grouped within a single con-
tainer as a composite object. The objects may therefore be
managed according to a single set of rules. For example, a
medical study may contain a number of 1nstances represent-
ing, for example, 1images captured as part of an examination.
A user accessing the stored images may want to retrieve only
one 1mage ol more than 500. If the user were forced to retrieve
cach image, a great deal of time and resources may be wasted.
This may be accomplished using composite objects. For
medical systems though, this 1s usually done using propri-
ctary container files that are application-specific, or accom-
plished by using file-system directories as containers.

FIGS. SA-C show an example of a method for storing
composite objects 1n an object-oriented fixed-content storage
system. FIG. SA includes data objects 80, 85, and 90. In some
embodiments, the contents of the data objects 80, 85, and 90
are related, but the objects represent different file types. In
some embodiments, each data object used to form a compos-
ite object 1s of the same {ile type.

As shown 1n the embodiment of FIG. 5B, a manifest data
object 100 1s created 1n order to simplity the management of
data objects 80, 85, and 90. Manifest data object 100 includes
reference data 101, which references each sub-object 80, 85,
and 90 1n the composite object 100. In some embodiments,
manifest data object 100 1s compliant with certain standards
such as XAM so that updated APl commands access the
manifest object. If data 1s changed, only the manifest and
changed data need to be updated. Thus, composite objects
described here provide a large degree of tlexibility and
increase data management capabilities.

In some embodiments, composite objects may be managed
by a single set of rules, for example stored 1n the metadata 102
of manifest data object 100. In some embodiments, sub-
objects referenced by the mamifest data object 100 include a
“managed as” field within the sub-object metadata that
instructs the fixed-content storage system how to manage the
given sub-object when it 1s desired that the object not be
managed according to the manifest data object 100.

FIG. 5C shows an embodiment of a process for generating,
a composite object. At state 501, multiple objects that are to
be related by the composite object are recerved or accessed. In
some embodiments, multiple objects are received from an
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external computing system to be stored substantially simul-
taneously as a composite object. In some embodiments, mul-
tiple objects already stored in the fixed-content storage sys-
tem are accessed 1n order to generate a composite object.

At state 502, a manifest object 1s generated. At state 503,
reference data indicating the multiple objects received or
accessed at state 501 1s stored 1n the manifest object. In a
preferred embodiment, the reference data 1s stored as content
data, rather than a metadata reference content block, in order
to prevent the alteration of the manifest object 1n the storage
system. In some embodiments, one or more reference content
blocks are utilized.

FIG. 6 demonstrates a composite object referencing sev-
eral data objects using many of the data management tech-
niques discussed herein. In the embodiment shown, manifest
data object 110 references consolidated object 120, differ-
enced object 140, and intelligently decomposed object 130. A
skilled artisan will realize that these storage management
systems and methods may be combined 1n a variety of ways
without departing from the scope of the invention.

The high-level overview 1llustrated in the figures partitions
the fTunctionality of the overall system 1nto modules for ease
of explanation. It 1s to be understood, however, that one or
more modules may operate as a single unit. Conversely, a
single module may comprise one or more subcomponents
that are distributed throughout one or more locations. Further,
the communication between the modules may occur in a
variety of ways, such as hardware implementations, software
implementation, or a combination of hardware and software.
Further, the modules may be realized using state machines,
microcode, microprocessors, digital signal processors, or any
other appropriate digital or analog technology.

It should be understood that the methods and systems
described herein may be implemented in a variety of ways.
Methods described herein may utilize other steps or omit
certain steps. Other embodiments that are apparent to those of
ordinary skill 1n the art, including embodiments which do not
provide all of the benefits and features set forth herein, are
also within the scope of the mvention. For example, mtelli-
gent decomposition may be used to store objects even where
multiple copies of objects are required according to lifecycle
management policies or regulations. While some of the
embodiments described herein provide specific details for
implementation, the scope of the disclosure 1s intended to be
broad and not limited to the specific embodiments described.
Accordingly, details described 1n the specification should not
be construed as limitations of the claimed invention. Rather,
the scope of the claims should be ascertained from the lan-
guage of the claims, which use terms consistent with their
plain and ordinary meaning.

What is claimed 1s:

1. A method of storing multiple immutable objects on a
computer readable medium, comprising:

receiving a first immutable data object;

receiving a second immutable data object;

generating first metadata for the first immutable data object

and second metadata for the second immutable data
object;

constructing, using one or more computer processors, a

consolidated data object comprising the first immutable
data object and the second immutable data object, the
consolidated data object further comprising consoli-
dated object metadata;

configuring the consolidated object metadata to indicate

the relative locations of the first immutable data object
and the second immutable data object within the con-
solidated data object, the relative locations indicating
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one or more storage positions of the first immutable data
object and the second immutable data object; and

storing 1n a fixed content storage system the consolidated
object as a single data object, whereby the first immu-
table data object and the immutable second data object
need not be stored separately 1n the fixed content storage
system.

2. The method of claim 1, wherein constructing the con-
solidated object comprises concatenating the first metadata,
the first immutable data object, the second metadata, and the
second immutable data object 1n logically adjacent locations
on the computer readable medium.

3. The method of claim 1, wherein the consolidated object
metadata comprises an offset and a size for each of the first
and second immutable data objects.

4. The method of claim 1, further comprising;

receving a third immutable data object;

generating third metadata for the third immutable data

object;

constructing, using the one or more computer processors, a

second consolidated data object comprising the first, the
second, and the third data objects, wherein the consoli-
dated data object further comprises second consolidated
object metadata;

configuring the second consolidated object metadata to

indicate the relative locations of the first, the second, and
the third immutable data objects within the consolidated
data object, the relative locations indicating one or more
storage positions of the first, the second, and the third
immutable data objects; and

storing 1n the fixed content storage system the second con-

solidated object.

5. The method of claim 1, wherein the consolidated data
object further comprises the first metadata and the second
metadata.

6. The method of claim 1, wherein the consolidated object
metadata further comprises rules relating to data retention
and replication, the fixed content storage system being con-
figured to retain and replicate the first immutable data object
and the second data object 1n accordance with the rules,
without requiring configuration of rules for the first immu-
table data object or the second immutable data object.

7. A computer system, comprising:

a fixed content storage system configured to store immu-

table data objects; and

one or more computer processors configured to perform

operations comprising;

recerving a first data object;

recerving a second data object;

generating first metadata for the first data object and sec-

ond metadata for the second data object;

constructing a consolidated data object comprising the first

data object and the second data object, the consolidated
data object further comprising consolidated object meta-
data;

configuring the consolidated object metadata to indicate

the relative locations of the first data object and the
second data object within the consolidated data object,
the relative locations indicating one or more storage
positions of the first data object and the second data
object; and

storing, 1n the fixed content storage system, the consoli-

dated object as a single data object, whereby the first
data object and the second data object need not be stored
separately 1n the fixed content storage system.

8. The system of claim 7, wherein constructing the con-
solidated object comprises concatenating the first metadata,
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the first data object, the second metadata, and the second data
object 1n logically adjacent locations on the fixed content
storage system.

9. The system of claim 7, wherein the consolidated object
metadata comprises an offset and a size for each of the first
and second data objects.

10. The system of claim 7, wherein the one or more com-
puter processors are further configured to perform operations
comprising;

receiving a third data object;

generating third metadata for the third data object;

constructing, using the one or more computer processors, a

second consolidated data object comprising the first data
object, the second data object, and the third data object,
wherein the consolidated data object further comprises
consolidated object metadata;

configuring the consolidated object metadata to indicate
the relative locations of the first data object, the second
data object, and the third data object within the consoli-
dated data object, the relative locations indicating one or
more storage positions of the first data object, the second
data object, and the third data object; and
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storing 1n the fixed content storage system the second con-

solidated object.

11. The system of claim 7, wherein the consolidated data
object further comprises the first metadata and the second
metadata.

12. The system of claim 7, wherein the consolidated object
metadata further comprises rules relating to data retention
and replication, the fixed content storage system being con-
figured to retain and replicate the first data object and the
second data object in accordance with the rules, without
requiring configuration of rules for the first data object or the
second data object.

13. The system of claim 7, wherein the system comprises a
plurality of distributed nodes, each distributed node compris-
ing at least one processor and at least one storage device, and
wherein storing the consolidated data object comprises stor-
ing the consolidated data object on more than one distributed
node, wherein the plurality of distributed nodes spans mul-
tiple geographically separated sites, and wherein at least a
portion of the plurality of distributed nodes are configured to
communicate on a network.
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