US008157654B2
12 United States Patent (10) Patent No.: US 8,157,654 B2
Link 45) Date of Patent: Apr. 17,2012
(54) HAND-HELD VIDEO GAME PLATFORM jjg% aggg i 13? iggg E&?H}ilzfﬂ
979, rederiksen
EMULATION 5,095,798 A 3/1992 Okada et al.
. . _ 5,134391 A 7/1992 Okada
(75) Inventor: Patrick J. Link, Carnation, WA (US) 5,153,577 A * 10/1992 Mackey et al.o....... 345/639
5,184,830 A * 2/1993 Okada et al.
(73) Assignee: Nintendo Co., Ltd., Kyoto (JP) 5,265,888 A 11/1993 Yamamoto et al.
5,282,621 A * 2/1994 Tseng
% S : : : - 5,300,944 A 4/1994 Shapiro et al.
(*) Notice: Subject‘ to any dlsclalmer_,‘ the term of this 5395112 A 3/1995 Darling
patent 1s extended or adjusted under 35 _
U.S.C. 154(b) by 1258 days. (Continued)
(21) Appl. No.: 10/690,818 FOREIGN PATENT DOCUMENTS
EP 0 960 637 12/1999
(22) Filed: Oct. 23, 2003 (antinued)
(65) Prior Publication Data OTHER PUBLICATIONS
US 2004/0157664 Al Aug. 12, 2004 /.80-68K-v150 Z80 Engine written 1n 68020 assembler for inclusion
in C/C++ projects, written by Gunter Woigk, dated Dec. 25, 1999.*
Related U.S. Application Data _
o o (Continued)
(62) Daivision of application No. 09/723,322, filed on Nov.
28, 2000, now Pat. No. 6,672,963. Primary Examiner — Dmitry Suhol
(51) Int.Cl Assistant Examiner — David Dully
nt. CI. . .
A63F 9/4 (2006.01) (74) Attorney, Agent, or Firm — Nixon & Vanderhye P.C.
(52) US.CL ... 463/43; 463/1; 463/44; 463/45 (57) ABSTRACT
58) Field of Classification S h ... 703/23-26; . .
(58) Field of Classification Searc 463/31. 1 43 45’ A software emulator for emulating a handheld video game
See application file for complete search hisgor;/. platiorm such as GAME BOY®’ GAME BOY CQLOR@
and/or GAME BOY ADVANCE® on a low-capability target
(56) References Cited platform (e.g., a seat-back display for airline or train use, a

U.S. PATENT DOCUMENTS

personal digital assistant, a cell phone) uses a number of
features and optimizations to provide high quality graphics
and sound that nearly duplicates the game playing experience
on the native platform. Some exemplary features include use
of bit BLITing, graphics character reformatting, modeling of
a native platform liquid crystal display controller using a
sequential state machine, and selective skipping of frame
display updates i1f the game play falls behind what would
occur on the native platform.

27 Claims, 33 Drawing Sheets

118

4,481,529 A 11/1984 Kerling
4,516,777 A 5/1985 Nikora
4,542,903 A 9/1985 Yokoi et al.
4,628,304 A 12/1986 Bottiau
4,756,528 A 7/1988 Umashankar
4,771,279 A * 9/1988 Hannah 345/559
4,858,930 A 8/1989 Sato
4,903,218 A 2/1990 Longo et al.
4,922,420 A 5/1990 Nakagawa et al.
4,924,413 A 5/1990 Suwannukul
MEMORY FUNCTHION
PTR PTR
M
M
M
0 X FF80 (KEY
0 X EOOC
172,115

0 x D000

10— X F000

0 > 8000

[

EXAMPLE PAGE TABLE

US 8,157,654 B2
Page 2

U.S. PATENT DOCUMENTS

5,400,053 A 3/1995 Johary et al.
5412,800 A 5/1995 Bril et al.
5,442,375 A 8/1995 Wojaczynski et al.
5,448,263 A 9/1995 Martin
5,552,799 A 9/1996 Hashiguchi
5,556,108 A * 9/1996 Nagano et al.
5,559,954 A 9/1996 Sakoda et al.
RE35,520 E 5/1997 Darling et al.
5,759,104 A 6/1998 Shirae et al.
5,768,593 A 6/1998 Walters et al.
5,781,758 A * 7/1998 Morley ...oooovvveviiiiinnnnn, 703/23
5,785,598 A 7/1998 Hsu
5,790,096 A 8/1998 Hill, Jr.
5,790,825 A * &/1998 Trautc.oovvnnniinin 712/209
5,793,351 A 8/1998 Leach
5,819,063 A * 10/1998 Dahletal. 703/27
5,844,532 A 12/1998 Silverbrook et al.
5,854,620 A 12/1998 Mills et al.
5,892,939 A 4/1999 Call et al.
5,903,760 A * 5/1999 Farberetal. 717/146
5,959,596 A 9/1999 McCarten et al.
6,007,428 A * 12/1999 Nishumietal. 463/36
6,020,751 A 2/2000 Rampone et al.
6,047,373 A 4/2000 Hall et al.
6,058,288 A * 5/2000 Reedetal. 455/3.06
6,084,600 A * 7/2000 Munshtol 345/545
6,115,054 A 9/2000 Giules
6,132,315 A 10/2000 Miyamoto et al.
6,192,446 B1* 2/2001 Mullarkey etal. 711/105
6,315,669 B1* 11/2001 QOkada et al.
6,390,920 Bl 5/2002 Infiesto et al.
6,409,602 Bl 6/2002 Wiltshire et al.
6,651,132 B1 11/2003 Traut
6,658,056 B1* 12/2003 Duruozetal. 375/240
2003/0207712 Al1* 11/2003 Sterchietal. 463/23
FOREIGN PATENT DOCUMENTS
JP 63-242293 10/1988
JP 4-49989 2/1992
JP 4-140791 5/1992
JP 4-140792 5/1992
JP 04261589 A * 9/1992
JP 7-204349 8/1995
JP 10-137447 5/1998
JP 10-328408 12/1998
JP 11-207034 8/1999
JP 11-333144 12/1999
WO WO0O0039693 7/2000
WO WO 02/06941 A2 1/2002
WO WO 02/06947 A2 1/2002
WO WO 02/08905 A2 1/2002
WO WO 02/08905 A3 1/2002
OTHER PUBLICATIONS

Snes9x: The Portable Super Nintendo Entertainment System Emu-

lator v1.19, Jun. 5, 1999 .*

Adam Polanski, Jan. 7, 1999, Gameboy 98 Homepage, pp. 1-4.*
Charest, “Z80 Emulator” (Microprofusion), 2000.*

Fayzeillin, Documents Relating to Emulators in General and the Z80
Processor, 1997-2000.*

Lanter Z.80 v.4.00 Emulator Documentation, 1999 .*

Multiple Arcade Machine Emulator (MAME) Documentation, 1997 -
1999 *

Shih, Ming-yu, Readmee.txt, “SMYGB—Game Boy Emulator
v0.20,” (smy@ip.csie.ncu.edu.tw), HTTP://www.billyjr.com/
smygb/ (Jan. 2, 1999).

“Snarkofagen’s Emulation, The Latest Emulator News,” HTTP://
home.swipnet.se/snarkofagen/, (Nov. 15, 1999 to Dec. 29, 1999).
“NOSGMB—version 2.5, nocash gameboy emulator/debugger for
dos/windows” HTTP://www.work.de/nocash/gmb.htm.

“Welcome to my Vgb page,” HTTP://elektron.et.tudelft.nl/~
jdegoede/vgb.html.

Bleem!™, Play hundreds of Playstation Games on Your PC.

bleem! technotes: graphics, “Support/PC/Technotes,” web site infor-
mation, www.bleem.com, 20 pages (2001).

CD containing the following files, Donkey1.zip file, S9x_ windows__
119a36_ 1386.z1p, smygb02.z1p, yosh1.GB, Directory listings of the
files on CD.

U.S. Appl. No. 09/617,669, filed Jul. 17, 2000.

U.S. Appl. No. 09/617,624, filed Jul. 17, 2000.

Printout of windows.txt file, “Snes9X: The Portable Super Nintendo
Entertainment System Emulator,” v1.19 (Jun. 5, 1999).

Printout of Readme.txt, “Snes9X: The Portable Super Nintendo
Entertainment System Emulator,” v1.19 (Jun. 5, 1999).

Printout of Readmee.txt, “SMYGB—Game Boy Emulator v0.20,”
by Ming-yu Shih (Jan. 2, 1999).

“Professional Power,” Sinclair Research promotional brochure
(1982), found at http://www.nvg.ntnu.no/sinclair/computers/
zxspectrum/professional _ power.htm.

“ZX Spectrum Technical Data,” Sinclair Research leaflet (1982),
found at http://www.nvg.ntnu.no/sinclair/computers/zxspectrum/
spec__technical htm.

MAME: The Official Multiple Arcade Machine Emulator Site, circa
1997, http://www.mame.net.

MAME: Readme: circa 1997, http://www.mame.net/readme . html.
MAME FAQs: circa 1997, http://www.mame.net/mamefaqg.html.
NOSGMB FAQs: circa 1997, published with program downloaded
from http://www.work.de/nocash/gmb.htm.

Computer Closet Collection, NEC Turbo Express, printed from
wysiwyg://22/http://www.geoclties.com/~compcloset/
NECTurboExpress.htm on Sep. 28, 2000 (2 pages), copyright 1997-
1999, last modified Jun. 24, 1999.

NEC Turbo Express, printed from http://www.edu.uni-klu.ac.at/~
kseiner/express.html on Sep. 28, 2000 (2 pages), document date
unknown.

Turbo Express FAQ, printed from http://www.gameconsoles.com/
turboexp_ fag.htm on Sep. 28, 2000 (18 pages), last revision of
document; May 25, 1995.

Computer Closet Collection, Sega Game Gear, printed from
wysiwyg://28/http://www.geoclties.com/~compcloset/
SegaGameGear.htm on Sep. 28, 2000 (2 pages), copyright 1997-
1999, last modified Jun. 22, 1999,

The Real Game Gear FAQ, Version GG.04, Dec. 1999, printed {from
http://www.classicgaming.com/museum/realggfaq.txt on Sep. 28,
2000 (32 pages).

Computer Closet Collection, Atar1 Lynx, printed from wysiwyg://12/
http://www.geocities.com/~compcloset/ AtariLynx.htm on Sep. 28,
2000 (2 pages), copyright 1997-1999, last modified Jun. 22, 1999,
|[FAQ] Atar1 Lynx Frequently-Asked Questions, printed from http://
www.landfield.com/faqs/games/video-games/atari/lynx on Sep. 28,
2000 (16 pages), last revision of document: May 1, 2000.
Computer Closet Collection, Nintendo Game Boy/Game Boy Light,
printed from wysiwyg://40/http://www.geoclities.com/~compcloset/
NintendoGameBoy.htm on Sep. 28, 2000 (5 pages), copyright 1997-
1999, last modified Jun. 22, 1999,

Computer Closet Collection, Milton-Bradley Microvision, printed
from wysiwyg://52/http:// www.geoclities.com/~compcloset/
MiltonBradley-Microvision.htm on Sep. 28, 2000 (2 pages), copy-
right 1997-1999, last modified Jun. 22, 1999.

Microvision FAQ Version 0.08, copyright 1994, 19935, printed from
http://www.gameconsoles.com/microvision_ fag.htm on Sep. 28,
2000 (13 pages).

Computer Closet Collection, Sega Nomad, printed from wysiwyg://
34/http://'www.geoclities.com/~compcloset/SegaNomad.htm on Sep.
28, 2000 (2 pages), copyright 1997-1999, last modified Jun. 22, 1999.
Sega Nomad Press Announcement of Aug. 22, 1995, printed from
http://gamezero.com/team-0/whats__new/pastnomad.html on Sep.
28, 2000 (2 pages).

Computer Closet Collection, Tiger Game.com, printed from
wysiwyg://46/http://www.geoclities.com/~compcloset/
TigerGameCom.htm on Sep. 28, 2000 (1 page), copyright 1997-
1999, last modified Jun. 22, 1999,

Tiger Game.Com, “Low Cost, Big Games”, printed from http://
gamecenter.com/Consoles/Features/Pocket/ss02.html on Sep. 28,
2000 (2 pages), document date unknown.

Lanter Z80 v4.00 Emulator Documentation, 1999.

Readme vba v0.4.txt, “Welcome to VisualBoyAdvance version 0.4”
(Sep. 16, 2001).

US 8,157,654 B2
Page 3

Copyright. Txt, homepage: http://vboy.emuhqg.com (2001).
VisualBoyAdvance Homepage, http://vba.ngemu.com/, Screen
shots, Downloads, FAQ, Links, Support Us (2002-2004).

Zophar’s Domain: GameBoy Emulators, http://www.zophar.net/gb.
html (12 pages).

Zophar’s Domain: GameBoy Advance Emulators, http://www.
zophar.net/gb.html (4 pages).

MAME—The official Multiple Arcade Machine Emulator site,
http://www.mame.net/.

Visual Boy Advance Quick Start Guide (2003).

Visual Boy Advance Software (copyright 2001-2002 by Forgotten).
PalmBoy by Bodo Wenzel, PalmBoy v.3.3b, http://palmboy.subur-
bia.com.au.

News about PalmBoy, http://palmboy.suburbia.com.au/news . htm.
Phoinix by Bodo Wenzel, Phoinix, the free Gameboy emulator for
PalmOS, http://phoinix.sourceforge.net/.

Gambit Studios—Liberty Game Boy Emulator, http://www.
gambitstudios.com/Liberty.asp.
Gambit Studios About Us,
companyinfo.asp.

Gambit Studios What’s New, http://www.gambitstudios.com/
whatsnew.asp.

U.S. Appl. No. 09/617,709, filed Jul. 17, 2000.

NOSGMB FAQs: circa 1997. published with program downloaded
from http://www.work.de/nocash/gmb.htm.

http://www.gambitstudios.com/

* cited by examiner

U.S. Patent Apr. 17,2012 Sheet 1 of 33 US 8,157,654 B2

U.S. Patent Apr. 17,2012 Sheet 2 of 33 US 8,157,654 B2

US 8,157,654 B2

Sheet 3 of 33

Apr. 17, 2012

U.S. Patent

U.S. Patent Apr. 17,2012 Sheet 4 of 33 US 8,157,654 B2

US 8,157,654 B2

Sheet 5 of 33

Apr. 17, 2012

U.S. Patent

J4N1LO31IHOAY
JOLVINNG F1dINVY X

Z 'bi4
|
_
_
.‘._
89 - "
_
_
_
_
2 _
_
\ vIA SANYWWOD |
SOHAVAO |
20 |
b9 "
NEIRNAL |
' aNNoS SANYINWOD |
0 ONNOS |
85 "
_
IOV ILNI |
& QYdATY _
9 .
)G 00L-

ddivinng

NOILY 1NN
SOIHJYAD

NOILV 1NN
ANNOS

NOILY TN

aVdAdX

801

901

JN
J31VINN

2001
TVALAIA

1409
J0SS33048d0dIIN
VALAIA

¢0lL

JO1V 1NN

—

IIIIIiIiIIIII!III[IIlI'IIII

U.S. Patent Apr. 17,2012 Sheet 6 of 33 US 8,157,654 B2

Receive game binary image 70

Activate any game-specific
emulator options
Pause and interpret binary image 72

g
Generate sound commands 76

Generate graphics commands 78
Emulate motive LCD controller 80

Emulate motive Memory 82

71

Fig. 2A

U.S. Patent

Apr. 17,2012 Sheet 7 of 33

RUNGAME

R

120
122
124
126
128

130
132

134
136
138
140
142
144
146
148

150

152
194

US 8,157,654 B2

Fig. 3 ExAVMPLE FUNCTIONAL MODULES

US 8,157,654 B2

Sheet 8 of 33

Apr. 17,2012

U.S. Patent

SLL

WV
490

A
(abpriue?)

Wey Oalk

S103rdO AJOWIW F1dINV X4

AE|

_ _ _

0 0 0
198, LIHO qog{ #rdo eggl 9

Sojjojed 10|00 ONA
81 (8l
N ==
—— =
0
(40

= —

[
|
| 0
og Awoud-mo1 9g Awoud-ybig ™\
sajjaled 1010 999 RpgL

t9l
val
vl dO1VISN 791

991

—_— 21eQ e1eQ)
11081819 1910B1BY) MEY
puno.byoeg haddews
891

091

191Ng
U33J0S§0

1oYng

U931ISUQ) a|qe 191sibay

tll

81
aiqe | dwnf

a|qe | abey

BL1

3|qeu3 rdo

9.1

Xapul 140

bLL

DL
(Ssalppe

WVO pabed-uou)

felie 3p9

ANO¥ 39014 1dVYD dJ LV INNG I T1dINVY XS

G bl

US 8,157,654 B2

(UzLL
95¢ 39Vd WOY

e "
— "
I~
S !
< "
@ LNNOD 39vd WO]
z !
" Z239vd oy | (@)2LL
b0 "
O |
oy i
~ !
= 1 39vd WOH et
= 10313S 39vd WO
—
< syueg WOY ebpupe)

¢0¢

¢Ll

U.S. Patent

dld ISvd WO

U.S. Patent Apr. 17,2012 Sheet 10 of 33 US 8,157,654 B2

Fig. 6
Compatibility modes:

CGB_INCOMPATIBLE

CGB_COMPATIBLE
CGB_EXCLUSIVE

Registration Data Locations:

ROMREG_CGB
ROMREG_CARTRIDGE
ROMREG_ROM

ROMREG. RAM ‘

U.S. Patent

Apr. 17,2012 Sheet 11 of 33

Fig. 8

US 8,157,654 B2

EXAMPLE VIRTUAL LCD CONTROLLER STATE MACHINE

250
OAM SEARCH
26(21)/52 cycles
252
OAM XFER
47(42) /94 cycles
Lines
1-143 254
HBLANK
56(51)/112 cycles
Lines 144-154
256

VBLANK

(HBLANK + OAM + Transfer)

U.S. Patent Apr. 17,2012 Sheet 12 of 33 US 8,157,654 B2

260

LCD CYCLE COUNTER

262 LCDMODE HBLANK
LCDMODE_VBLANK

LCOMODE_OAM
LCD MODL - LCDOMODE_TRANSFER

LCOMODE_DISABLED
LCOMODE_REENABLED

264

LCD_ BG_ ENABLED

266

LCD_WINDOW_ENABLED

208

LCD_OBJ_ENABLED

210

LCD_BIG_OBJ

212

LAST_OBJ_DRAW_LINE

Fig. 9A

EXAMPLE LCD CONTROLLER EMULATION

US 8,157,654 B2

Sheet 13 of 33

Apr. 17, 2012

U.S. Patent

SHILSIDTY INIHOVIN JLVLS F1dINY X

g6 ‘bi4

86¢ 96¢

F1dYNd d4NIL JTOHSF4HL ddNIL

0007 139yVL JANIL
882

JNVYd STT0AD

HIASNYHEL STTIAD

8L¢

9L¢

vLC

v6C

98¢

ANVO S310AD

ANVI1dA S10A0

ANV IEH S410A0

d3INNOD JTOAD ddNIL

d31INMOIT 10AD

IAOIL AL

V82
NdJ 1SV
06
JNVY4 0d
(62

US 8,157,654 B2

Sheet 14 of 33

Apr. 17, 2012

U.S. Patent

SHILINYHVL TTIAD INIHOVIA 41LVLS JF 1dINVX S

J6

'bI4

) (GL . MNVIGN) JNVYA

(0 - YIASNVL (MI4ISNYHL I
MNY1GA

+ YO + MNY19H) + ANVO + MNV19H)

ll HO¥Y3IS WYO

1G) 94 v_zq._mx

PGl . ANV IdA

U.S. Patent Apr. 17,2012 Sheet 15 of 33 US 8,157,654 B2

300

< ' START
302
INIT

304

LOAD CYCLE COUNTER

TH APPROPRIATE VALUE

306

DECREMENT CYCLE COUNTER
AT EMULATED CPU RATE

308

310

TRANSITION VIRTUAL
LCD CONTROLLER TO NEXT
PHASE

312

314

RUNNING

BEHIND
7

316

SET DO_FRAME FLAG TO
SKIP DRAWING NEXT FRAME

Fig. 10

EXAMPLE LIQUID CRYSTAL DISPLAY CONTROLLER

U.S. Patent Apr. 17,2012 Sheet 16 of 33 US 8,157,654 B2

BINARY
OPCODE

= OPCODE ADDRESS A 1

OPCODE 2 ADDRESS A g

OPCODE 2 ADDRESS A -

OPCODE N ADDRESS A \

Fig. 11

EXAMPLE OPCODE JUMP TABLE

U.S. Patent Apr. 17,2012 Sheet 17 of 33 US 8,157,654 B2

320

N~

OPQQ?

INCREMENT 322
PROGRAM
COUNTER

DECREMENT 306

CYCLE
COUNT

308

NO

YES TIMER
324 '
PARSE NEXT
OP-CODE

Fig. 12

EXAMPLE NOP EMULATION

J19V.L J9Vd J 1dINV X

gL bi4

o 3009
INYS

‘e Q3Xi4
.o 039Vd

US 8,157,654 B2

Sheet 18 of 33

-
- YA |0
I
I
I
d1d 1

NOILIONNY AJOWIW

U.S. Patent

0
000y X 0

0008 X 0

0004 X O
000d X 0

000d X 0

0844 X O

cil

OL1
GLL'2LL

U.S. Patent Apr. 17,2012 Sheet 19 of 33 US 8,157,654 B2

330

J

WRITE TO MAPPED

GB MEMORY AREA

332
ACCESS PAGE
TABLE
334
N (Function)
v 336 338

READ/WRITE TO JUMP TO

MIEMORY LOC FUNCTION

RETURN

Fig. 14

EXAMPLE MEMORY ACCESS OPERATION

U.S. Patent Apr. 17,2012 Sheet 20 of 33 US 8,157,654 B2

READ POINTER TABLE

. WRITE POINTER TABLE

Fig. 15

EXAMPLE READ + WRITE TABLES

US 8,157,654 B2

Sheet 21 of 33

Apr. 17,2012

U.S. Patent

— RII.....I L.

dld MOILS

NOILV 1NN
A3LS103
3 1dINVX 3

9 L .Q.\ h.s a|qe] s1s1bay |enuip

AT
10ss320.1d00nN sjdwex H
Y14 0¥ 37 it €
W14 9NS aqy ot 4
W14 AHHYD-4TVH GySe
VAR L™ g [og

:SOV14 NdI AOSINYO
_ V H3LSIO3H ONOT 082 g6c :SHILSIOTY AHOM 082

1413
OV 14 1 18VYNd d41SVIN 1dNdd 41NN

OIS 1dNYAFLNI

SNOLING 1dNyA3 1IN
JINIL LdNAATLNI

0007 1dNAY LN
MINVIEA LdNEYI LN

HOL3A 1Y YIINI
| SH3LSIOIN 087 :SHILSIOTY FLAG 087

— L A e

apppeeslly, sy SaskeeslER $ENELEEEE A SEESEEST pENESeER wummiesy vl 2 "TIENEEENE 2 TEEEEEEEE TS I O TSI 0 DTS ISR "D Sy SRS wilessiV BESesiEN$ ADSSpR $ EEEESelEn $ wiFFEESgms RS TpiEEERph WD TUSE—— EES—

U.S. Patent Apr. 17,2012 Sheet 22 of 33

WRITE TO HL
REGISTER

370

INDEXED

ADDRESS FOR
SPECIAL
H/W LOC?

Y

ACCESS PAGE
TABLE

RETURN

372

Fig. 17/

EXAMPLE HL REGISTER
WRITE OPTIMIZATION

US 8,157,654 B2

US 8,157,654 B2

Sheet 23 of 33

Apr. 17, 2012

U.S. Patent

(3LV1S NOL1Ng)
NOILLYINATE 33 7171043LNOD 3 T1dNVYX3

gL ‘b4

98t

1000 | 1HORTNOLLNG
w0 | aATNOLING.

o0 [viouns_
w0 | awouns
~ p000 | 10373S NOLLNE
~80X0 | JMVISTNOLING

140d 13 11VdVa

J3ONVHO SNOLLNG

SNO1ilnd SNOLLNd

NOILD3HIa SNOLLNG

8t

¢8¢

U.S. Patent Apr. 17,2012 Sheet 24 of 33 US 8,157,654 B2

GAME SPE CIFIC E MULATION OPTIO NS:

4(2a
SINGLE CGB_RAM_PTR

402

402b
STACK_IN_FIXED_CGB_RAM

404
DMG ONLY

406
RUMBLE_PaK_FLAG

TSR_INTERRUPT

DMA_SOURCE

408

410

412
DMA_DESTINATION

414

MEMORY_BASE_PTR |

Fig. 19A

EXAMPLE VIRTUAL MICROPROCESSOR
DATA STRUCTURES

U.S. Patent Apr. 17,2012 Sheet 25 of 33 US 8,157,654 B2

REGISTERS
SB OxFFOT
OXFFU/
D)X)£
A OXEEC
—TAC T OFF0T :
T Offor Fig. 19B
= XAMPLE VIRTUAL
NR12 . O0xEF12_ | MICROPROCESSOR DATA STRUCTURES
NR14 OxFF14
LCDC BG 0X01

NRZ3 OxFF18

NR24 OxEF19 LCDC_OBJ 0x02
NR3C : LCDC_OBJSIZE 0x04

LCDC_WINCODE 0x40
LCDC_CONTROL 0x80

NR41 OxFF20

N IR 4
A

NR50 OXEF24

LCDC OxFF40

DMA OxFF46
BGP OxFF47
OBPO OxFF48

< OXFE4Y
WY OxFF4A
WX OxFF4B

STAT_MATCH
STAT _INT_HBLANK 0x08
AT INT_VBLANK Ox1C

STAT_INT_OAM 0x20

0X04

VBK OxFF4F STAT INT_MATCH 0x40

"HDMA1 __ OxFF51 |
DMA 0¥ /

= DIVIA)X

HDIVIAL X .

BCPS OxFFG68

BCPD OxFF69

OCPS OxFFBA
"OCPD OxFFBB

nls b)) ’
i)

US 8,157,654 B2

Sheet 26 of 33

Apr. 17, 2012

U.S. Patent

NOLLYINI SOIHAVAD F1dWVX3 0Z "Bl

v.iv Ol

£l
d0LVISNVHL

vt

GlY H1d

ejeq 13jaeieyn paddewyig

L AOVd
A 19vd

eie(g cm

| 39V
g 3Ivd
¢

eleq 1djaeiey) mvyd

U.S. Patent Apr. 17,2012 Sheet 27 of 33 US 8,157,654 B2

EXAMPLE CHARACTER DATA

164

======== 8 X 8 8 x 8 PRE-RENDERED
======== ' NOT cT(])LLEoSRleD)
HENEEEER -

US 8,157,654 B2

Sheet 28 of 33

Apr. 17, 2012

U.S. Patent

b

9

F

A 39dN0S MOCNIM

¢

0Sv

A MOUNIM

X MOONIM

SYILNIO 13740 SOIHAVYO I1dNYX3 g7 B

¢Ov

84v

| INVE HLld MOANIM

BYNVE Hld MOANIM

| INVE Hid 98

g YNVE Hld 94

Hld | MNVE X3IONI dING YHD

Hid @YNVE X3aNI dJNE HH)

2Ly
dld ISvd WvH 28I

0LV

Hld 3ISVE dINE HHD

89b

Hld 3ISVE WYY 899

/9
Yid 3ISve o¢

G}
Hid 3SvE HHD

99

US 8,157,654 B2

Sheet 29 of 33

Apr. 17,2012

U.S. Patent

08X0 ALRMONd rdO
0¥ X0 TYIILY3A 4O

02 X0 TWINOZIYOH 40
0L X0 31131vd g0

80 X 0 MNVE 80

ANVO d4LV INING 3 1dINV X3

pe ‘bl

1037380 AWVO

4 1d 3SYE WYO

9LV

US 8,157,654 B2

Sheet 30 of 33

Apr. 17, 2012

U.S. Patent

091

89l

AYOW3IW N3OS 440

434418

Q371S
NA3HIS

AJOWIN OddIN 4 1dINVX S

Gz 'bi4

139¥VL Jd1S
8LY
w0)

dO
1114

A9G¢

U.S. Patent Apr. 17,2012 Sheet 31 of 33 US 8,157,654 B2

480

SELECTOR_GRAPHICS ENGINE
482
SELECTOR OFF SCREEN

484

SELECTOR_ON_SCREEN

Fig. 26 £xAMPLE GRAPHICS MODE SELECTORS

U.S. Patent Apr. 17, 2012 Sheet 32 of 33

9y

00

LNOAVY 1 NIFHIS JTdINVX S

/2 "bi4

>

bl

U.S. Patent Apr. 17,2012 Sheet 33 of 33 US 8,157,654 B2

FI1g. 28 £xavPLE VGA MODE CONTROL

VIDEO INT 0x10
SET_MODE 0x00

VGA 256 COLOR_MQDE 0x13

TEXT MODE 0x03
REGISTER_MASK 0x3C6
COLOR_INDEX 0x3C8
PALETTE REG 0x3C9
INPUT STATUS 1 Ox3DA

VRETRACE 0x08

GE DESTINATION BASE 0x018
GE DESTINATION PITCH 0x028

GE DESTINATION XY 0x10000
GE HEIGHT 0x048
GE PIXEL DEPTH 0x07C
GE_RASTER QP 0x08C
GE_SOURCE_BASE 0x098
GE SOURCE_PITCH 0x0AC
GE_SOURCE XY 0x0BC
GE_WIDTH 0xC8

FIg. 29 exavpLE GRAPHICS
ENGINE REGISTER INDEXES

US 8,157,654 B2

1

HAND-HELD VIDEO GAME PLATFORM
EMULATION

CROSS REFERENCE TO RELATED
APPLICATIONS

This application 1s a divisional application of application
Ser. No. 09/723,322 filed Nov. 28, 2000, now U.S. Pat. No.
6,672,963, This application 1s related to copending com-
monly-assigned application Ser. No. 09/722,410 filed Nov.
28, 2000 entitled PORTABLE VIDEO GAME SYSTEM,
which 1s a continuation-in-part of application Ser. No.
09/627,440, filed Jul. 28, 2000. This application 1s also
related to copending commonly-assigned application Ser.
No. 09/321,201 of Okada et al filed May 27, 1999 entitled
“Portable Color Display Game Machine and Storage Medium
for The Same”. Priority 1s also claimed from provisional
application No. 60/233,622 filed Sep. 18, 2000 entitled
“Method and Apparatus for Emulating a Portable Game
Machine.” Each of these related applications 1s incorporated
herein by reference.

FIELD

This invention relates to systems, methods, techniques,
data structures, and other features for running software appli-
cations including but not limited to video games on platforms
different from the ones the software 1s intended or designed to
run on.

BACKGROUND AND SUMMARY

Nintendo’s GAME BOY® hand-held video game plat-
forms have been extraordinarily successful. Nintendo
released the first GAME BOY® 1n the late 1980s. Since then,
this product and 1ts successors (GAME BOY COLOR® and
GAME BOY ADVANCE® have captured the imaginations of
millions of video game players throughout the world.

A wide number of different software applications (1includ-
ing but not limited to video games) have been designed to run
on these platforms. People throughout the world enjoy these
applications every day. One can see them being used on
subways, at sports arenas, after school, and in a number of
other contexts. See FIG. 1A.

Nintendo’s GAME BOY®, GAME BOY COLOR® and
GAME BOY ADVANCE® are examples of platforms having
specialized hardware that 1s optimized for low cost, excellent
performance and good graphics. These devices are not really
general purpose computers; rather, they are special-purpose
devices with specialized capabilities particularly adapted to
video game play. These special capabilities provide low cost
and exciting video game play action with good graphics and
sound.

While GAME BOY® platforms are inexpensive and have

long battery life, there may be situations in which 1t would be
desirable to play or use applications developed for GAME
BOY® on other platforms. For example, an airline, train or
other vehicle passenger might want to play video games
during a long journey. As shown in FIG. 1B, airlines are
installing seat-back computer displays into the backs of air-
line seats. Such seat-back displays may provide a low cost
personal computer including a processor, random access
memory, liquid crystal display and mput device(s). Similar
displays could be installed in other vehicles (e.g., trains,
ships, vans, cars, etc.) or 1n other contexts (e.g., at walk-up
kiosks, within hotel rooms, etc.). It would be desirable under

certain circumstances to allow users to execute all sorts of

10

15

20

25

30

35

40

45

50

55

60

65

2

different applications including GAME BOYS video games
and other applications using the general-purpose computer
capabilities of such seat-back or similar display devices.

Personal computers have also proliferated throughout the
world and are now available at relatively low cost. A trend has
shifted some entertainment from the home television set to
the home personal computer, where children and adults can
view 1nteresting web pages and play downloaded video
games and other applications. In some circumstances, 1t may
be desirable to allow users to play GAME BOY® wvideo
games on their home personal computers (see FIG. 1C).

A wide variety of so-called personal digital assistants
(PDA’s) have become available 1n recent years. Such devices
now comprise an entire miniature computer within a package
small enough to fit into your pocket. Mobile cellular tele-
phones are also becoming increasingly computationally-in-
tensive and have better displays so they can access the World
Wide Web and perform a variety of downloaded applications.
In some circumstances, it may be desirable to enable people
to play GAME BOY® video games and other GAME BOY®
applications on a personal digital assistant, cellular telephone
or other such device (see FIG. 1D).

The special-purpose sound and graphics circuitry provided
by the GAME BOY® platforms 1s not generally found in the
various other platforms shown in FIGS. 1B, 1C and 1D.
Providing these missing capabilities 1s one of the challenges
to running a GAME BOY® video game (or other GAME
BOY® application) on these other target platforms.

Another challenge relates to 1nstruction set compatibility.
Nintendo’s GAME BOY® 1s based on an older, relatively
inexpensive microprocessor (the Zilog Z80) that 1s no longer
being used 1n most modern general purpose computer sys-
tems such as personal computers, seat-back displays and per-
sonal digital assistants. The Z80 instruction set (the language
in which all GAME BOY® games and other GAME BOY®
applications are written 1n) 1s not directly understood by the
more modern Intel microprocessors (e.g., the 8086, 80286,
80386, Pentium and other processors 1n the Intel family) that
are now widely used and found 1n most personal computers,
seat-back displays, personal digital assistants, and the like.
While 1t 1s possible to “port” certain GAME BOY® games or
other applications to different microprocessor families (e.g.,
by cross-compiling the source code to a different target
microprocessor), there may be an advantage in certain con-
texts to being able to play or execute the same binary images
stored in GAME BOY® cartridges on target platforms other
than GAME BOY®.

One way to provide a cross-platform capability 1s to pro-
vide a GAME BOY® software emulator on the target plat-
form. Generally, a software emulator 1s a computer program
that executes on a desired target platiorm (e.g., a seat-back
display device, a personal computer or a personal digital
assistant shown in FIGS. 1B-1D) and uses software to supply
native platform capabilities that are missing from the target
platiorm. For example, a software emulator may perform
some or all of GAME BOY®’s specialized graphics func-
tions 1n software, and may interface with whatever graphics
resources are available on the target platform to display
resulting 1mages. A software emulator may translate or inter-
pret Z80 instructions so the microprocessor of the target
platform can perform the functions that GAME BOY® would
perform 1f presented with the same instructions. The software
emulator may include soitware code that emulates hardware
capabilities within the GAME BOY® circuitry (e.g., audio
and/or graphics processing) and/or translate associated
GAME BOY® application requests 1nto requests that can be
handled by the hardware resources available on the target

US 8,157,654 B2

3

platiorm. For example, the target platform may include a
graphics adapter and associated display that 1s incompatible
with GAME BOY®’s graphics hardware but which can per-
form some of the basic graphics functions required to display
GAME BOY® graphics on a display.

A number of GAME BOY® emulators have been written
for a variety of different platforms ranging from personal
digital assistants to personal computers. However, further
improvements are possible and desirable.

One area of needed improvement relates to obtaiming
acceptable speed performance and high quality sound and
graphics on a low-capability platform. A low-capability plat-
form (e.g., a seat-back display or a personal digital assistant)
may not have enough processing power to readily provide
acceptable speed performance. Unless the software emulator
1s carefully designed and carefully optimized, 1t will not be
able to maintain real time speed performance when running
on a slower or less highly capable processor. Slow-downs 1n
game performance are generally unacceptable 1f the average
user can notice them since they immediately affect and
degrade the fun and excitement of the game playing experi-
ence.

Performance problems are exacerbated by the penchant of
some video game developers to squeeze the last bit of perfor-
mance out of the GAME BOY ® platform. Performance tricks
and optimizations within a GAME BOYS application may
place additional demands on any emulator running the appli-
cation. Some prior art emulators provide acceptable results
when running certain games but unacceptable results (or do
not work at all) for other games. An 1deal emulator provides
acceptable results across a wide range of different games and
other applications such that the emulator can run virtually any
game or other application developed for the original platform.

Another challenge to designing a good software emulator
relates to maintaining excellent 1image and sound quality.
Ideally, the software emulator running on the target platform
should be able to produce graphic displays that are at least the
same quality as those that would be seen on the native plat-
form. Additionally, the color rendition and other aspects of
the 1image should be nearly if not exactly the same. Sounds
(e.g., music and speech) from the emulator should have at
least the same quality as would be heard on the original
platform. All of these capabilities should be relatively closely
matched even on platforms with radically different sound and

graphics hardware capabilities.

One prior attempt to develop a video game platform emu-
lator 1s disclosed 1n U.S. Pat. No. 6,115,054 to Giles. That
patent describes a general purpose computer based video
game platform solftware emulator including an execution
skipping feature that evaluates the ability of the general pur-
pose computer to generate video frames fully synchronized
with the target platform computer system. It the evaluation
determines that the emulator 1s falling behind the target sys-
tem, the emulator executes only a first subset of the graphics
commands while skipping execution of a second subset of
graphics commands so as to partially render the frame. For
example, the patent discloses fully executing certain graphics
commands while partially executing others (e.g., clipped
drawing commands) to provide a partial rendering of the
frame. One disadvantage to the approach described 1n the
(riles patent 1s that partial rendering of a frame can lead to
uncertain 1imaging results that will degrade the quality of the
image being produced by the emulator.

The present invention solves these and other problems by
providing a unique software emulator capable of providing

10

15

20

25

30

35

40

45

50

55

60

65

4

acceptable speed performance and good image and sound
quality on even a low-capability target platform such as a seat
back display for example.

The preferred embodiment software emulator provided by
this mvention maintains high-quality graphics and sound in
real time across a wide variety of video games and other

applications—and nearly duplicates the graphics and sound
that would be experienced by a user of the GAME BOY®,

GAME BOY COLOR® and/or GAME BOY ADVANCE®
platform running the same game or other application. The
preferred embodiment emulator achieves this through a
unique combination of features and optimizations including,
for example:
use of a virtual liquid crystal display controller (state
machine) to maintain real time synchronization with
events as they would occur on the native platiorm,
use ol a hardware-assisted bit BLIT memory transfer
operation to efficiently transfer graphics information
into video memory,
pre-computed translation table for translating native plat-
form graphics character formats into formats more com-
patible with standard graphics adapters,
emulation of native platiorm color palette information to
provide compatibility with games and other applications
that change color palettes within a frame,
emulation of major registers and other hardware-based
memory structures within the native platform in RAM
under software control,
use of a jump table able to efliciently parse immcoming
binary instruction formats,
use of a unique page table to control memory access by
remapping memory access instructions into different
memory locations and/or function calls,
availability of a ROM protection function to eliminate
ROM overwriting during emulated operations,
responsive to video game compatibility modes and regis-
tration data,
models native platform using state machine defining
search, transfer, horizontal blank and vertical blank
states,
cycle counter to determine when a modeled state has
expired and transition to a new state 1s desired,
selective frame display update skipping while maintaining
execution of all instructions to maintain state informa-
tion while minimizing game play slowdowns,
optional NOP loop look ahead feature to avoid wasting
processing time 1 NOP loops,
redundant emulated RAM and ROM storage to optimize
execution efficiency,
separate page tables for read and write operations,
modeling of native microprocessor registers as a unmon of
byte, word and long register formats,
modeling native instruction CPU flags to allow efficient
updating after operations are performed by target plat-
form microprocessor,
mapping emulated program counter into target platform
microprocessor general purpose register,
reads and writes via mdex register go through pointer
tables to increase execution efficiency,
adaptable mput controller emulator to provide user inputs

from a variety of different user input devices,
emulated object attribute memory, and
use of screen memory buflers larger than screen size to

increase paging eificiency by eliminating clipping cal-

US 8,157,654 B2

S

culations and using the hardware BitBlt to transfer a
subset of the memory butfer to displayed video memory.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages provided by the
invention will be better and more completely understood by
referring to the following detailed description of presently
preferred embodiments 1n conjunction with the drawings, of
which:

FIG. 1A shows someone playing a Nintendo GAM
BOY® portable video game platform;

FIGS. 1B-1D show various different target platforms that
could be used to emulate the FIG. 1 GAMFE BOY®;

FI1G. 2 1s a block diagram of an example software emulator
architecture;

FIG. 2A 1s a flow chart of example overall software emu-
lator steps;

FI1G. 3 1s a block diagram of example functional models of
the FIG. 2 emulator:

FIG. 4 1s a block diagram of example emulator memory
objects/data structures;

FIG. 5§ shows an example emulated cartridge read only
memory data structure;

FIG. 6 shows example compatibility modes;

FIG. 7 shows example registration data locations;

FIG. 8 shows an example virtual liquid crystal display
controller state machine state diagram;

FIGS. 9A-9B show example virtual LCD controller emu-
lation/control registers;

FI1G. 9C shows example state machine cycle parameters;

FIG. 10 shows an example tlow diagram of an emulated
liquad crystal display controller;

FIG. 11 shows an example op code jump table;

FIG. 12 shows example emulation of a particular (NOP)
mstruction;

FIG. 13 shows an example page table;

FIG. 14 shows an example memory access operation;

FIG. 15 shows example read and write pointer tables;

FIG. 16 shows example virtual microprocessor registers;

FI1G. 17 shows an example HL register write optimization;

FIG. 18 shows an example input controller emulation reg-
1ster set:;

FIGS. 19A and 19B show example additional emulator
control registers;

FIG. 20 shows an example graphics emulation optimiza-
tion;

FIG. 21 shows an example native character data;

FIG. 22 shows example pre-rendered un-colorized “bit-
map-ized” character tiles;

FIG. 23 shows example graphics object pointers;

FI1G. 24 shows example emulated object attribute memory;

FIG. 25 shows an example video memory transfer process;

FI1G. 26 shows example graphics mode selectors;

FI1G. 27 shows example screen layouts;

FIG. 28 shows example VGA mode control parameters;
and

FI1G. 29 shows example graphics engine register indices.

(L]

DETAILED DESCRIPTION

FIG. 2 shows an example software emulator 100 provided
by a preferred embodiment of the invention. Emulator 100 1s
designed to operate on a target platiorm of the type shown 1n
FIG. 1B above, but could run on any desired platform includ-
ing, for example, the target platforms shown 1n FIGS. 1C and

1D.

10

15

20

25

30

35

40

45

50

55

60

65

6

In the example embodiment, the target platform includes:
a microprocessor (€.g., an Intel 386);
a disk or other file system 52;
a keypad interface 54 coupled to a handheld controller 56;
a sound blaster or other audio interface card 58 coupled to
a loud speaker or other sound transducer; and

a VGA or other graphics adapter 62 that outputs video
information to a display 64 such as a liquid crystal dis-
play screen or video monitor.

Emulator 100 (which executes on the target platform
microprocessor and uses the resources of the target platform)
receives the binary image of a game (or other application) file
66 stored on disk or other file system 52 (FIG. 2A block 70).
Emulator 100 parses and interprets this binary image (FIG.
2A block 72). Emulator 100 also receives user mputs from
handheld controller 56 via target platform keypad interface
54 (FIG. 2A block 74). In response to these inputs, emulator
100 generates sound commands for the audio adapter 58
(FIG. 2A block 76) and generates graphics commands for
application to the video graphics adapter 62 (FIG. 2A block
78)——creating sounds on audio transducer 60 and 1mages on
display 64. These sounds and images nearly duplicate what
one would hear and see if running file 66 on a native GAME
BOY® platiorm.

In the example embodiment, the game file binary 1image 66
can be a video game or any other application that can run on
a GAME BOY®, COLOR GAME BOY® or GAME BOY
ADVANCE®. Binary image 66 includes binary audio com-
mands and binary graphics commands, compatible with a
GAME BOY® native platform but which are not compatible
with the application programming interface features of audio
interface 58 and VGA adapter 62. Emulator 100 interprets
those graphics commands and sound commands, and gener-
ates a corresponding sequence of graphics and sound com-
mands that are understandable by and compatible with the
audio and sound capabilities of the target platform.

In the example embodiment, emulator 100 1includes a vir-
tual microprocessor core 102. Virtual microprocessor core
102 interprets instructions within the binary game file 66 that
would be executed by the actual GAME BOY® native plat-

form (Z80) microprocessor (FI1G. 2A block 72), and provides

a corresponding sequence ol microprocessor instructions for
execution by the target platform microprocessor (which in the
general case, 1s different from the microprocessor found 1n
GAME BOY® and does not understand and 1s incompatible
with the native platform microprocessor instruction set).

Virtual microprocessor core 102 recerves mputs from a
keypad emulation block 104 (FIG. 2A block 74). Block 104 in
turn, recerves 1teractive iputs from the user via target plat-
form keypad interface 54. Keypad emulator block 104 emu-
lates the GAME BOY ® control input circuitry and associated
functionality and translates iputs received from the target
platiorm keypad interface—which may have a ditferent set of
control mnputs and configurations from that found 1n a GAME
BOY® native platform.

Virtual microprocessor core 102 also communicates with
sound emulation block 106 and graphics emulation block
108. Sound emulation block 106 emulates or simulates the
sound generation circuitry within a GAME BOY®, GAME
BOY COLOR® and/or GAME BOY ADVANCE® to pro-
vide a set of sound commands for application to the target
platform sound adapter 58 (FIG. 2A block 76). Graphics
emulation block 108 emulates or simulates the hardware
acceleration and other graphics circuitry found within a

GAME BOY®, GAME BOY COLOR® and/or GAME BOY

US 8,157,654 B2

7

ADVANCE® platform to provide a set of graphics com-
mands for application to a target platform graphics adapter 62
(FIG. 2A block 78).

In the example embodiment, virtual microprocessor core
102 also includes a virtual liquid crystal display controller

103 used for the purpose of maintaining timing. Events within
the GAME BOY®, GAME BOY COLOR®, and GAME

BOY ADVANCE® native platforms are generally driven by
activities relating to updating the liquid crystal display every
one-sixtieth of a second. The example embodiment of emu-
lator 100 emulates the native platform liquid crystal display
controller (FIG. 2A block 80) 1n order to synchronize events

occurring within the emulator with emulated events that
would occur within a GAME BOY®, GAME BOY

COLOR®, and/or GAME BOY ADVANCE® native plat-
form. As will be described below 1n detail, the virtual liquid
crystal display controller 103 of the example embodiment
does not actually perform any display functions, but rather 1s
used to tell emulator 100 what would be going on 1n terms of
display timing on a real GAME BOY®, GAME BOY
COLOR®, or GAME BOY ADVANCE®. A virtual liquid
crystal display controller 103 allows emulator 100 to syn-
chronize 1ts pace with what the pace of areal GAME BOY®,
GAME BOY COLOR®, and/or GAME BOY ADVANCE®
native platform would be running the same application file 66.
Virtual liquid crystal display controller 103 may be viewed as

a soltware-implemented model of the event timing sequence
of a GAME BOY®, GAME BOY COLOR®, and/or GAME

BOY ADVANCE® native platiorm.

Emulator 100 also includes an emulated random access
memory 110, an emulated read only memory 112, and an
emulated memory bank controller (MBC) 114. Emulated ran-
dom access memory 110 and emulated read only memory 112
provide memory storage locations within the (read/write)
random access memory 68 of the target platform. The emu-
lated random access memory 110 emulates or simulates the
random access memory of a GAME BOY®, GAME BOY
COLOR® and/or GAME BOY ADVANCE®, and the emu-
lated read only memory 112 emulates or simulates the read
only memory within the game cartridge of a GAME BOY®,
GAME BOY COLOR® and/or GAME BOY ADVANCE®
(FIG. 2A block 82). The emulated memory bank controller
114 emulates or simulates the hardware memory bank con-

troller (bank switching) circuitry found within certain a
GAME BOY®, GAME BOY COLOR® and/or GAME BOY

ADVANCE® game cartridges.

FIG. 2A shows example steps performed by emulator 100.
The emulator receives a binary game image (block 70) and
activates any game-title-specific emulator options (block 71).
The example emulator 100 parses and interprets the game
binary image (block 72) and receives user inputs (block 74).
The example emulator 100 generates sound commands
(block 76) and graphics commands (block 78). The example
emulator 100 emulates a native liquid crystal display control-
ler (block 80) and native memory (block 82).

Example Emulator Functional Modules

FIG. 3 shows a breakdown of example 1illustrative func-
tional modules used to implement the FIG. 2 emulator in
software. These functional modules include:

run game module 120,

emulate module 122,
draw_CGB module 124,
draw_DMG module 126,
draw_AGB module 128,

ROM authentication check (“ROM REG”) module 130,
video module 132,
VGA module 134,

10

15

20

25

30

35

40

45

50

55

60

65

buttons module 136,
sound module 138,
no write module 140,

port mode module 142,
CGB RAM module 144,

DMA module 146,

MBC module 148,

SIO module 150,

ADDPTRS module 152, and

timer module 154.

The example functional modules shown 1n FIG. 3 provide
various functions that can be called by name from other parts
of the emulator code. Each of these functional modules may
be implemented with a C or C++ and/or assembler function or
other routine 1n one example implementation. In this particu-
lar implementation, the entire executable file (the aggregate
of all modules) 1s designed as a DOS protected mode appli-
cation that runs with a minimum number of drivers to maxi-
mize elliciency.

The run game functional module 120 loads the game file 66
into emulated ROM 112 and then calls the emulate functional
module 122 (FIG. 2A block 70). The run game module 120
may also by 1tself (or 1n conjunction with an additional func-
tion if desired) mitialize each of the hardware-handler mod-
ules within the emulator 100. Emulate functional module 122
1s the main emulation loop and 1s executed until the user quits
the game or other application.

In the example embodiment, the draw functional modules
124, 126, 128 perform the task of drawing graphics objects
generated by emulator 100 by sending graphics commands to
the graphics adapter 62 (FIG. 2A block 78). For example, the
draw_CGB functional module 124 may draw each of 144
color background lines of the COLOR GAME BOY® on the
screen and may also by 1tself (or 1n conjunction with another
module) draw the moving objects after the background has
been drawn. The draw_DMG functional module 126 per-
forms a similar drawing task for original GAME BOY®
games and other applications, and the draw_AGB functional
module 128 performs similar drawing tasks for GAME BOY
ADVANCE® games and other applications. Example emu-
lator 100 1s capable of emulating any/all of a number of
different platforms across the Nintendo GAME BOY® prod-
uct line.

In this example, the ROM check (“ROM REG™) functional
module 130 1s used to check (and/or display) registration data
within the game file 66. This functional module 130 1s used to
ensure, for example, proper authorization on the part of the
user before game play 1s allowed. In another embodiment, the
ROM registration module does not do anything regarding
user authorization, but just reads the ROM registration data in
the game file, sets emulator variables and optionally displays
the registration data on the screen. A game file validation
function may be included in the ROM registration module to
validate the game file, not the user.

The video functional module 132 1s used in the example to
transier character graphics data. The functions in the video
module 132 perform character bitmap translation for any type
of write to the character RAM area, whether 1t 1s a direct write
from the CPU or a DMA ftransier. Functions in the video
module also handle the RAM bank switching register for
character data areas, control and status registers for the LCD
controller and palette registers for both CGB and DMG
modes. When a game file 66 instruction calls for a direct
memory access data transfer of character information into the
GAME BOY® character RAM space, video functional mod-
ule 132 performs a character bit map translation into a portion
of emulated RAM 110 to prepare graphics characters for

US 8,157,654 B2

9

display. The video functional module 132 may, by itself or 1in
conjunction with another functional module, place appropri-
ate function pointers into appropriate mput/output read/write
tables for all of the register handling functions that should be
performed.

In the example embodiment, the VGA functional module
134 15 used to set the appropriate video mode of the target
platform graphics adapter 62. In addition, this VGA func-
tional module 134 may be responsible for transferring full
screens of graphics data to VGA graphics adapter 62 under
certain circumstances (e.g., 11 a hardware-assisted bit BLIT
operation 1s not available on the target platform).

The buttons functional module 136 1s responsible for get-
ting the keypad data from keypad interface 54 and writing this

data mnto a set of input 1nterface registers that emulate actual
hardware interface registers within GAME BOY®, GAME
BOY COLOR® and/or GAME BOY ADVANCE®.

The sound functional module 138 1n the example embodi-
ment generates and writes appropriate sound information to
the target platform sound adapter 38 by translating writes to
the virtual sound registers to appropriate sound information
for the target platform sound adapter (,ﬁIG 2A block 76). The
sound functional module 138, by 1tself or 1n conjunction with
another functional module, may also be used to put function
pointers mto appropriate input/output, read/write tables for
all of the register handling functions performed by the sound
functional module.

In this example module, the no write functional module
140 protects the emulated ROM 112 from being written to
(thus making sure this memory segment 1s emulated as a read
only memory as opposed to a read-write memory during
game play). The no write functional module 140, by 1tself or
in conjunction with an additional functional module, may
place appropriate function pointers into the appropriate input/
output read/write tables for all of the register handling func-
tions 1n the no write functional module.

The port mode functional module 142 emulates a CPU
timer and provides a keypad handler. It has functions that
handle the keypad, the timers, and the CPU speed control
(e.g.,to provide a CPU speed change operation since COLOR
GAME BOY® operates twice as fast as GAME BOY® and
GAME BOY ADVANCE operates still faster). The port mode
functional module 142 may also set appropriate function
pointers or call an additional function module(s) to perform
this task. The main function of the CPU timer is to generate
CPU interrupts at specified intervals. Registers to specily this
interval are handled in the port/mode module. There are a
couple of registers that provide real-time views of a free-
running counter. These registers can be emulated by returning,
a random number. This 1s only a partial emulation (a random
number 1s not a real time value). However, the most common
use of these registers by games 1s to generate a random num-
ber by looking at a fast clock at an arbitrary point in time. It 1s
therefore possible to completely satisty such games by pro-
viding a random number as opposed to a real time clock
indication. A more accurate emulation can be provided if a
game requires the real-time view of the counter actually pro-
vided in the native hardware.

The CGB RAM {functional module 144 emulates the
COLOR GAME BOY® RAM to provide (additional) emu-
lated RAM 110. DMA functional module 146 performs direct
memory access transiers between the various emulated stor-
age resources within emulator 100—thereby emulating the
GAME BOY® native platform DMA controller. The MBC
tfunctional module 148 emulates the native platform memory
bank controller to provide emulated MBC 114.

10

15

20

25

30

35

40

45

50

55

60

65

10

The SIO functional module 150 emulates a serial input/
H BOY®,

output port available on a GAME GAME BOY

COLOR® and/or GAME BOY ADVANCE® platiorm (e.g.,

to provide a “game link™ operation whereby plural platforms
can exchange data over a cable or other communications

interface). The ADDPTRS functional module 152 performs

the task of registering various handlers for operation (in par-
ticular, 1t may contain a single function that all hardware
support modules call to register their memory/function point-
ers 1n an I/O handler table, and accomplishes this by register-
ing pointers for reading and writing to I/O addresses). The
timer functional module 154 implements the virtual liquid
crystal display controller 103 by maintaining an emulated
state machine that keeps track of the state and associated

timing information of a GAME BOY®, GAME BOY
COLOR® and/or GAME BOY ADVANCE® platiorm.
Timer module 154 thus allows the target platform (which may
operate at a completely different speed from the original
platform) to maintain a sense of the event timing as those
events would occur on the native platform—ensuring that
emulator 100 provides event timings that are consistent with
the native platform. Without such timing information, the
speed of the application’s graphics and/or sound might be
different on the emulator 100 as compared to on the original
platform—resulting 1n an unsatisfying game play experience.
Example Memory Objects and Data Structures
FIG. 4 1s a block diagram of exemplary memory objects/
data structures that emulator 100 maintains in the random
access memory 68 of the target platform. In some cases, these
data structures emulate hardware resources of the native plat-
form. In other cases, these data structures do not correspond
directly to any part of the native platform but instead provide
support for optimized execution of emulator 100.
FIG. 4 shows the following exemplary data structures:
emulated “read only memory™ 112,
emulated random access memory 110,
register table 160,
raw character data butfer 162,
translator 163
“bit-map-1zed” character data butier 164,
background data builer 166,
off screen display builer 168,
on screen display butifer 170,
memory bank switched (cartridge) RAM butfer 172,
object attribute memory bufier 173,
object index data structure 174,
CGB RAM buifer 175
object enable data structure 176,
page table 178,
jump table 182,
various color palettes including a high priority background
palette 184a, a low priority background palette 1845,
and an object color palette 184¢ for emulating COLOR
GAME BOY®, and
various monochrome color (gray scale) palettes for GAME
BOY ® monochrome game emulation, including a back-
ground palette 186a, an object 0 palette 1865 and an
object 1 palette 186¢.
The FIG. 4 data structures may be globally-defined
memory arrays.
Themain RAM array 110 1s, 1n one example, a generic 64K
memory array used for any non-paged address space. A CGB

buifer 175 1s used to emulate the internal RAM banks for
COLOR GAME BOY®. MBC RAM 172 i1s used to emulate
the random access memory that may be provided within
certain game cartridges.

US 8,157,654 B2

11

The object index array 174 may be used for sorting moving
objects.

The object enable array 176 may include a flag for each
display line indicating that drawing of moving objects was
ecnabled for that line (flags may be sent/queried as the back-
ground 1s drawn).

Page table 178 may comprise a 64K table of pointers to the
base pointers that handle each address, and may be used to
reestablish the program counter on jumps, calls, returns, etc.

Page table 178 may be used for making pointer adjustments
to both the program counter and the stack pointer. In another
embodiment, a separate stack table comprising for example a
64K table can be used 1n a similar manner to page table 178,
but with a coverage of each base pointer extending one
address higher and used to reestablish the base of the stack
pointer when 1t 1s manually changed.

The ROM pages 112 may be used to emulate the cartridge
read only memory arrays (1n the example embodiment, this
ROM array 1s twice as big as the actual ROM pages since the
bottom half 1s always duplicated).

The raw character data array 162 1s used to store raw
character data, and the further character data array 164 1s used
to store corresponding “bit map-1zed” character data. A trans-
lator 163 1s used to provide precomputed translation data for
translating the raw character data 162 into the bit mapped
character data 164. Different sets of pointers are used for each
page and addressing mode in this example. The background
data buffer 166 1s used to store background data in pages 0 and
1.

The off screen buifer 162 (which may comprise an entry of
192x160x2) may be used to compose 1images oif screen. This
buffer may not be needed when a bit BLIT capability 1s
available within the hardware of the target platiform.

Color background palettes 184a, 1845 comprise two sets of
eight palettes, one for high priority background pixels and the
other for low priority background pixels. Color object palette
184¢c provides object palette data to emulate the COLOR
GAME BOY® object color palette (one set of e1ght palettes
may be provided). GAME BOY® color palettes 186a, 1865,
186¢ emulate the monochrome GAME BOYS palettes, with
background palette 186a providing four background palette
data entries and object palettes 1865, 186¢ comprising object
palette data for object 0 and object 1 (four entries per palette).
The native COLOR GAME BOY® platiorm has selectable
palettes for “colorizing” monochrome GAME BOY®
games—and this capability may also be emulated by, for
example, changing the color entries within palettes 186a,
1865, 186¢. In another embodiment, these palettes 186 may
be preassigned to provide certain default colors (e.g., red
objects on a green background).

Jump table 182 1s used to facilitate the parsing and execu-
tion of target instructions by emulator 100, as 1s explained
below.

Example Emulated Cartridge ROM 112

FIG. 5 shows an example emulated cartridge ROM 112. In
the native platform, the cartridge ROM may have a number of
banks up to a maximum. Preferred embodiment emulator 100
emulates each of these banks with a different RAM page
112(1), 112(2), 112(»). In one example embodiment, the
number of pages that may be allocated can be fixed (e.g., to a
maximum of n=256) to provide static allocation for a four-
megabyte game. In another embodiment, the number of ROM
pages to allocate can be determined dynamaically based on the
particular game or other application.

In the example embodiment, the lower 16K in each allo-
cated ROM page 112(1), . . . 112(») 1s duplicated to facilitate

page selection and reduce page swapping. A ROM page selec-

.

10

15

20

25

30

35

40

45

50

55

60

65

12

tion pointer 202 1s used to select the current ROM page, and
a ROM page count register 204 specifies the number of ROM
pages loaded for the current game or other application. As
mentioned above, the “no write” functional module 140 1s
used to protect the ROM space so that mnadvertent write
instructions within the application and/or emulator 100 do not
succeed 1 overwriting emulated read only memory 112.

As mentioned above, the run game routine 120 1s respon-
sible for loading the game (application) file 166 into emulated
ROM 112. Part of this loading operation loads particular
compatibility information (see FIG. 6) and registration data
(see FI1G. 7) into the emulated ROM 112. The FIG. 6 com-
patibility information 1s used to specily whether an applica-
tion 1s compatible or incompatible with certain native plat-
forms (e.g., compatibility with the COLOR GAME BOY®
mode of emulator 100, or whether 1t can run exclusively on
the COLOR GAME BOY® mode). This compatibility infor-
mation 1s present in a normal binary game file 166 to provide
instructions to the COLOR GAME BOY® platform; emula-
tor 100 reads and takes advantage of this information in
determining 1ts own emulation mode. The registration data
shown 1n FI1G. 7 1s used 1n the example embodiment to ensure
that game file 66 1s authorized and authentic, and emulator
100 performs checks similar to those performed by the
GAME BOY®, COLOR GAME BOY® and GAME BOY
ADVANCE® native platforms (as well as possibly other
security checks such as digital signatures, decryption, digital
certificates, etc.) to ensure the user has proper authorization.
Example Virtual Liquid Crystal Controller 103 Implementa-
tion

In the example embodiment, emulator 100 uses an internal

state machine to keep track of and emulate the states of an
actual GAME BOY®, COLOR GAME BOY® or GAME

BOY ADVANCE® platform during emulation operation. The
emulator 100 could execute the instructions within game file
66 without keeping track of corresponding events within the
native platform, but this would lead to loss of real time syn-
chronization. In video game play, the pacing of the audio and
video presentation i1s very important to the game play expe-
rience. Playing a game too fast or too slow will tend to destroy
the fun of the game It 1s therefore desirable to emulate a game
playing experience that 1s close to or nearly the same as the
game playing experience one would have when running the
application on the original native platform.

Emulator 100 accomplishes this result by maintaining lig-
uid crystal display controller 103 providing a sequential state
machine that 1s synchronized with event states that would
occur on the original native platform. Emulator 100 synchro-
nizes its operation to the state transitions within this internal
state machine to maintain real time synchronization of game
play.

FIG. 8 shows an example four-state virtual state machine
state transition diagram that can be maintained by virtual
LCD controller 103. These states include:

an object attribute memory search state 250,

a memory transier state 252,

a horizontal blanking state 254, and

a vertical blanking state 256.

Additional states (e.g., enable and disable) can also be pro-
vided.

In the example embodiment, the sequential progression
through all four states 250-256 comprises a frame that results
in the display of a new 1image on display 64. In the native
platform, one frame comprises a vertical blanking state 256
and various repetitions of the hblank, OAM search and OAM
transier states 254, 250, 252 dependent on the number of lines
(e.g., 144) within a frame. Because the native platform hard-

US 8,157,654 B2

13

ware 1s driven by line scanning operation of a liquid crystal
display, so too 1s preferred embodiment emulator 100 driven
by an emulated state machine that models the same line
scanning and other time intervals to ensure proper game
timing as the developers of the game intended it and as a user

would see and experience a game on the native platiorm.

Within each line there 1s an hblank interval and associated
state 254, as well as an OAM search state 250 (during which
a native platform would search 1ts object attribute memory for
objects to be displayed on the next line) and an OAM transier
state 252 (during which a native platform transfers object
character information into a line butfer for display). The table
of FIG. 9C shows example cycle parameters for the FIG. 8
virtual state machine.

The preferred embodiment emulator 100 emulates a virtual
state machine by maintaining the various registers shown 1n
FIGS. 9A and 9B. The registers shown 1n FIG. 9A generally
comprise various registers used to keep track of the virtual
state and operation of a liquid crystal display controller that1s
being emulated. In this example, emulator 100 emulates a
liquad crystal display controller using the following registers:

LCD cycle counter 260 (maintains the number of CPU
cycles remaining before a transition to the next liquid
crystal display controller phase/state should occur),

liguid crystal display mode register 262 (maintains the
current phase/state of the liquid crystal display control-
ler including the various states shown in FIG. 8 as well as
an additional disabled and re-enabled state),

a liquid crystal display background enabled tlag 264 (indi-
cates whether the background should be drawn),

a liquid crystal display window enabled tlag 266 (1indicates
whether the current display window 1s enabled),

a liquid crystal display object enabled flag 268 (indicates
that the drawing of moving objects 1s enabled),

a liquid crystal display big object tlag 270 (indicates that
objects are sixteen lines high istead of eight),

a last object draw line register 272 (indicates the last line at
which a direct memory access to object attribute
memory occurred).

The FIG. 9B timing registers are used to maintain the
various parameters pertaining to the timing parameters asso-
ciated with the FIG. 8 virtual state machine. These registers
include:

a cycleshblank register 274 (specifying the number of vir-
tual CPU cycles needed in the horizontal blanking
period),

a cyclesvblank register 276 (indicating the number of vir-
tual CPU cycles needed 1n the vertical blanking period),

a cycles OAM (search) register 278 (indicating the number
of virtual CPU cycles needed in the OAM search
period),

a cycles transfer register 280 (indicating the number of
virtual CPU cycles need 1n the liquid crystal display data
transier period),

a cycles frame register 282 (indicating the number of vir-
tual CPU cycles needed for an entire frame),

a timer ticks register 284 (this comprises a master game
timer and is incremented by interrupt every Yso” of a
second),

a cycle counter 286 (this may be implemented by a local
variable within the main emulation functional module
122 and 1s used to keep track of the current number of
cycles within the frame),

a timer target liquid crystal display counter flag 288 (this 1s
a flag indicating when the cycle counter 286 reaches O 1n
order to control the virtual liquid crystal display control-
ler to transition to the next phase shown 1n FIG. 8),

10

15

20

25

30

35

40

45

50

55

60

65

14

a fast CPU flag 290 (a tlag indicating that the emulated
COLOR GAME BOY® CPU 1s running in double-
speed mode),

a do frame flag 292 (a flag indicating whether emulator 100
should draw the current and/or next video frame or skip
drawing 1t),

a timer cycle counter 294 (indicates the number of CPU
cycles remaining before a timer interrupt should be
asserted),

a timer threshold register 296 (indicates the number of
CPU cycles corresponding to the current timer interrupt
period),

a timer enable register 298 (a flag indicating that timer
interrupts are enabled).

FIG. 10 15 a flow diagram of an example emulated liquid
crystal display controller 103. This flow diagram uses the
various registers shown i FIGS. 9A and 9B to implement the
FIG. 8 state machine. The FIG. 10 flow diagram has been
simplified for purposes of illustration; additional operations
may occur in an actual implementation. As shown in FIG. 10,
the virtual state machine 1s initialized with an 1nitial state by
updating an express or implied state counter (state may be
explicitly stored 1n register 262 or 1t may be implied through
inline code for efficiency purposes if desired) (block 302).
Then, the cycle counter register 286 1s loaded with an appro-
priate number of cycles from the one of registers 274, 276,
278, 280 corresponding to the current state of the state
machine (block 304, see FIGS. 8 and 9C). The cycle counter
286 1s continually decremented at the emulated CPU rate
(block 306) (as determined, for example, by the fast CPU flag
290) 1n response to timer ticks 284. This cycle counter 286 1s
continually compared with zero (decision block 308) to deter-
mine whether the current state 1s over. When the cycle counter

has been decremented to zero (the “=" exit to decision block

308), the emulated LCD controller 103 transitions to the next
state of the virtual state machine (see FIG. 8) (block 310). In
the example embodiment, the cycle counter register 1s decre-
mented by a fixed amount for each CPU 1nstruction emulated.
The effect of double-speed CPU operation 1s accomplished
by loading the cycle counter with twice the number for each
LCD controller phase than would be loaded for single-speed
operation. So the cycle counter gets decremented at the same
rate (which 1s determined by the speed of the host CPU), but
the CPU canrun through twice as many cycles per LCD phase
in double-speed mode. Since the game speed 1s governed by
throwing in an appropriate wait time once per frame in the
example embodiment, the game speed 1s correct for both fast
and slow modes, but 1n fast mode the CPU can do twice as
much work.

I1 the next state 1s vertical blanking (““ves™ exit to decision
block 312), then emulator 100 determines whether it 1s run-
ning behind (e.g., by determining the amount of time until the
next timer mterrupt 1s going to occur). Preferred embodiment
emulator 100 tries to maintain the sixty frames-per-second
screen update rate of the native platform. However, 1n one
particular embodiment, i1t 1s not always possible (e.g.,
depending upon the particular game of other application
being executed) to maintain a sixty frame-per-second rate on
a slow target platform. In that example embodiment, emulator
100 dynamically scales back to a slower, thirty frame-per-
second rate by setting the do-frame flag 292 (*yes” exit to
decision block 314, block 316) which will have the result of
entirely skipping the drawing of the next frame. In that
example embodiment, this frame-skipping operation does not
skip execution of any instruction from game file 66. All such
instructions are executed by virtual microprocessor core 102
in order to continually maintain and update appropriate state

US 8,157,654 B2

15

information. Furthermore, this frame-skipping operation
does not have the result, in the embodiment, of partially
rendering the frame being skipped. For example, there 1s no
selective execution of certain graphics commands 1n a com-
mand bufier depending on whether or not the emulator 1s
falling behind. In that example embodiment of emulator 100,
the only operations that are skipped are internal emulator 100
operations of transferring graphic information to the VGA
graphics adapter 62 and updating the display 64——resulting 1n
the frame either being rendered or not being rendered. Since
the GAME BOY platiforms operate to render an entire new
frame each V60 of a second “from scratch”, there is no need
to partially render a frame for use 1n generating a next frame,
and such a partial rendering would tend only to degrade speed
performance and generate uncertain image results. A maxi-
mum of every other frame may be skipped 1n the example
embodiment since using a frame update rate of less than 1/30™
of a second would noticeably degrade i1mage quality.

In a further embodiment, the “dynamic-scaling” feature 1s
omitted from the emulator 100 to allow better emulation of
transparency-based images. It turns out there are some games
that achieve transparency effects by enabling and disabling
the visibility of entities on the screen at a 30 ips rate (on for
one frame, off the next). Allowing the emulator to skip *“as
needed” between 30 Ips and 60 1ps causes undesirable tlick-
ering 1n such games. In this alternate configuration, the emu-
lator 100 may draw frames at either a fixed 30 fps (skip
drawing of every other frame) or a fixed 45 1ps (skip drawing
of every third frame). Running at 30 ips causes the object to
cither always be visible or never be visible, depending on
which phase you hit on. This 1s less than perfect emulation,
but actually 1s the best solution for at least some games. For
example, the 45 Ips rate 1s currently used 1n certain games to
make characters blink when they are hit by an enemy. Run-
ning at 45 ips (which provides acceptable game speed in
certain games but not many other CGB games) allows you to
alternate between visible and 1nvisible and provides a good
tlickering character. If the emulator could draw at 60 1ps, none
of these problems would exist, but slow target hardware does
not permait this. Luckily, 30 1ps provides good game play for
most games. It 1s possible to modily a few bytes (the “game
code”, which the emulator does not use) 1n the ROM regis-
tration area of the game file to tell the emulator what frame
rate to use. There may be other game-specific emulation
parameters put into the game file 1n the future.

Example Instruction Parsing/Execution By Virtual Micropro-
cessor Core 102

In the example embodiment, the virtual microprocessor
core 102 interprets the binary instruction formats of game file
66 (F1G. 2A block 72). As mentioned above, the game file 66
binary instruction formats in the example embodiment are
compiled for execution by a Z80 microprocessor of the native
plattorm—whereas the target platform on which emulator
100 runs may be any microprocessor (e.g., an Intel 8086
family microprocessor). In the example embodiment, the vir-
tual microprocessor core 102 may include a binary instruc-
tion format parser implemented as a jump table (e.g., C or
C++ “case” statement) that parses the binary op code portion
of the mcoming 1nstruction and jumps to appropriate code
that performs one or a series of steps that will cause emulator
100 to emulate the operation of that mstruction. FIG. 11
shows an example jump table flow based on the jump table
182 (which may be implemented as inline code 11 desired).

Those skilled in the art will understand that different native
istructions can be emulated in different ways depending
upon the particular mstruction. FIG. 12 shows an example
flow diagram for emulation of an example “no operation”

10

15

20

25

30

35

40

45

50

55

60

65

16

(NOP) 1instruction. In this FIG. 12 example, an op code of
“00” parsed by the FIG. 11 process results in transferring
control to the FIG. 12 process for emulating the “no opera-
tion” instruction. On the native platiorm, a “no operation”
instruction results 1n nothing happening (wait) for a CPU
cycle. Within emulator 100, in contrast, certain tasks are
performed 1n response to such a “no operation” struction.
For example, an emulated program counter (which 1s differ-
ent from the target platform program counter and 1s used to
emulate the program counter of the native platform) 1s 1ncre-
mented (block 322), and the cycle counter 1s decremented
(see block 306, FIG. 10). As shown 1n FIG. 10, 11 the cycle
counter 1s not greater than zero, a “timer” function 1s called to
perform the steps of blocks 310-316 shown 1n FIG. 10. If the

cycle counter 1s still greater than zero, then control returns to
the FIG. 11 operation to parse the next op code (block 324).

Some games and other applications make extensive use of
“no operation” loops to maintain game timing. Somewhat
surprisingly, such “no operation” loops can cause emulator
100 to run very slowly. To avoid this particular 1ssue, i1t 1s
possible for emulator 100 to include a dynamic code analyzer
that “looks ahead” to the next few instructions surrounding a
“no op” istruction to determine whether the game file 66
includes a “no op” loop. If emulator 100 determines that such
a loop 1s present, then the emulator may intelligently use
events other than a wait loop (e.g., setting a timer and waiting
for 1t to expire, or relying on the virtual liquid crystal display
controller 103) as alternate means for providing the requisite
“wait loop” timing. This optimization can result 1n increased
cificiency by preventing the emulator 100 from becoming
bogged down with “no operation” wait loops. In other
embodiments, no NOP-reduction analysis 1s implemented,
and the only such technique implemented is to detect whether
a loop was waiting for a transition of the LCD machine and
automatically force the transition. The problem is that such a
technique may work for some games, but could cause some
games to malfunction.
Example Memory Access Instruction Emulation

FIG. 13 shows an example page table 178 within the con-
text of a memory map that also includes emulated RAM 110,
172,175 and emulated ROM 112. This page table 178 1s used
in the example embodiment to process memory access coms-
mands within game file 66. In this example embodiment,
some memory access (read or write) commands can be
executed by performing the requested read or write operation
on a specified location within memory. In such cases, page
table 178 includes a memory pointer specifying a correspond-
ing memory location—remapping various read/write loca-
tions 1nto other locations as defined within the emulator 100
(see FI1G. 14, blocks 332, 334, 336). In some cases, a read or
write to a particular memory location will trigger the perfor-
mance of a sequence of steps by emulator 100. As an example,
a read by the game file 66 of a game controller mnput register
of the native platform may cause emulator 100 to execute a
“key” function in order to poll the keypad interface 54 and get
a user controller input value. The preferred embodiment page
table 178 handles this situation by providing a zero-valued
memory pointer within page table 178 (FIG. 14, block 334)
that causes the emulator to reference an associated “key”
function pointer—resulting 1n the calling of a “key” function
(FI1G. 14, block 338). In this way, page table 178 eificiently
maps native mstruction memory accesses to the same or dif-
ferent memory locations within emulated memory and/or to
calling a function that emulates a result which would occur on
the native platform in response to such a memory access
command.

US 8,157,654 B2

17

Also as shown 1n FIG. 13 and alluded to above, the emu-
lated random access memory 172, 175, 110 and the emulated
read only memory 112 may include multiple copies of the
same 1nformation within the target platform random access
memory 68 in order to provide more eflicient paging and
corresponding reduction 1n processing time.

FIG. 15 shows implementation detail for one detailed
implementation of page table 178. In this example, the page
table may comprise two different tables 178a, 1785—one for
read memory accesses and one for write memory accesses.
Each of these tables may be 64 kilobytes (or other convenient
s1ze). All memory accesses by virtual microprocessor core
102 are performed via these tables 178a, 1785. The code that
1s reading or writing first looks to see 1f there 1s a non-null
value 1n the “PTR” element for the desired address. The
“PTR” element 1s a pointer to the pointer that defines the base
of the target platform memory array that applies for the
desired address. If there 1s a non-null “PTR” value, de-refer-
encing “PTR” and adding the desired address will get emu-
lator 100 to the target platform address to read/write. If, on the
other hand, the “PTR” value 1s null, that means that there 1s a
handler function defined for reading/writing to the desired
address. The handler function can be called via the “FUNCT”
clement of the appropriate table.

Different functions can be called for reading from and
writing to the same address 1n this example arrangement, and
different pointers may be used reading from and writing to the
same address. Similarly, a read operation with respect to a
particular native address may cause a read from an active
“PTR” memory mapped value whereas a write operation to
the same address can invoke a handler function—or vice
versa. The flexibility provided by this arrangement simplifies
the architecture of emulator 100 while providing an efficient
way to execute mstructions from game file 66.

Emulated Microprocessor Registers

FIG. 16 shows example emulated registers within the vir-
tual microprocessor core 102. In this example, the native
(e.g., Z80) microprocessor registers are emulated with ran-
dom access memory values within the target platform RAM
68 and/or actual registers internal to the target platform CPU.
For example, 1t may be desirable to map certain emulated
native microprocessor registers to target microprocessor reg-
1sters for efficiency purposes (€.g., to map a program counter
350 to a general purpose register within the target platiorm
CPU).

In the example embodiment, the program counter or pro-
gram pointer 350 may include a current base pointer for the
program counter as well as an offset portion. Similarly, a
stack pointer 352 may include a base pointer for an emulated
stack pointer to which may be added an offset (e.g., 1n a target
platform register). Virtual microprocessor core 102 may fur-
ther include a set of emulated native platform flags 3354
including:

a carry flag 354aq,

a halt-carry tlag 3545,

an add sub flag 354c,

a zero tlag 3544d.

In the example embodiment, emulated flags 354 are not in
the same bit positions as the native platform flags, but rather
they are 1n positions used by the target platform processor.
This allows emulator 100 to pass “virtual” flags to the target
platform processor before performing operations that effect
the flags. The target platform flags are retrieved into the
virtual flag data structure 354 after the operation i1s per-
formed.

In the example embodiment, the various native platform
general purpose registers are defined in three separate data

5

10

15

20

25

30

35

40

45

50

55

60

65

18

structures as bytes (block 356), words (block 358) and long
words (block 360). The three structures 356, 358, 360 arc
bundled 1nto a union so that emulator 100 can access a par-
ticular register as a byte, a word or a long word as needed. In
the example embodiment, the program pointer 350 1s not
included because 1t 1s maintained as a C character pointer for
maximum efficiency. The program counter or pointer can be
declared as a local variable in the main emulation function
122, and the compiler preferably implements the program
pomnter 350 as a register 1 the target platform CPU as
described above.

Some additional optimizations are possible when access-
ing the emulated registers shown in FIG. 16. For example, the
HL register within the native platform CPU 1s often used as an
index register. As FIG. 17 shows, 1t 1s possible for virtual
microprocessor core 102 to “look ahead” by determining
whether the indexed address 1s for a special hardware location
in response to a write to the HL register (decision block
370)—and to access page table 178 immediately 1n response
to such an indexed address so that the corresponding memory
pointer and/or function are available when a further instruc-
tion comes along that uses the HL register contents for an
indexed operation (block 372). This optimization can save
processing time. Indirect accesses via HL or any other 16-bit
register (BC or DE) are all handled by referring to the 1/O
read/write handler tables in the example embodiment. One
“look-ahead” technique the preferred embodiment emulator
uses 1s the “prefetch queue” implemented by always fetching
four bytes 1nto a 32-bit target platform register each time. The
low-order byte 1s the opcode the emulator 1s after, but many
opcodes require one or two subsequent bytes as data or
extended opcode. By having four bytes i a register, any
opcode handlers that need subsequent bytes already have
them 1n a CPU register.

Referring once again to FIG. 16, the virtual microprocessor
core 102 further includes a set of iterrupt vectors and an

interrupt master enable flag that are used to emulate the inter-
rupt structure within a GAME BOY®, GAME BOY

COLOR® and/or GAME BOY ADVANCE® native plat-
form. This interrupt vector (when enabled by the interrupt
master enable flag) can be read to determine what portion of
emulator 100 caused a particular interrupt (e.g., vblank, the
liquid crystal display controller, a timer, button depression, or
serial input/output). Emulator 100 provides an emulated
interrupt controller that emulates the actual native platform
interrupt structure 1n controller to maintain compatibility and
event-driven functionality of game file 66.

Example Keypad Emulation

As shown 1n FIG. 18, preferred embodiment emulator 100
provides keypad emulation 104 1n the example embodiment
through the use of certain data registers/tlags including:

a buttons direction register 380 that maintains the data for

emulated direction keys,

a buttons buttons register 382 that maintains the data for the

emulated control buttons, and

a buttons changed flag 384 that indicates that the button

data has been changed.

In one example embodiment, the buttons direction register
380 and the buttons buttons register 382 encode various but-
ton parameters in certain bit positions as shown in FI1G. 18. As
mentioned above, the buttons functional module 136 shown
in FI1G. 3 may be used to retrieve imnputs from keypad interface
54 and load them into the FIG. 18 data structures for reading
by virtual microprocessor core 102. These data structures and
associated functionality emulate the hardware control input
controller of the native platform by duplicating the register
interface of the native platform 1n software. Target platform

US 8,157,654 B2

19

controller device 56 may be any of a variety of different
configurations including, for example, an SNES handheld
controller, a keypad, or any other input device capable of
interacting with a user. A “parallel port” register or indicator
388 may be used to define the type of keypad interface 54
(e.g., SNES controller adapter or keyboard) that will be used
tor the controller input on the target platform.
Miscellaneous Additional Virtual Microprocessor Data
Structures/Functions

FIGS. 19A and 19B show example additional wvirtual
microprocessor data structures. These data structures are used
to provide a variety of different additional functionality 1n the
example embodiment of emulator 100.

As shown 1n FIG. 19A, preferred embodiment emulator
100 may include one or more game-specific emulation
options that go 1nto effect for particular games or other appli-
cations (FIG. 2A block 71). As one example, an “options”
data structure 402 may specily particular functions and/or
teatures that could be activated selectively depending upon
the particular application or game being supplied by game file
66. Such game-specific emulation options can improve eili-
ciency by tailoring the operation of emulator 100 for particu-
lar applications or games on a dynamic, as-needed basis.
While 1n some embodiments 1t would be best to avoid using
game-specific options, in other examples it might be desirable
to use such game-specific options to increase etficiency and/
or functionality.

As shown 1n FIG. 19A, one game-specific option might be
using a single CGB_RAM memory pointer. Another game-
specific option 1s the 30/45 fps frame rate option described
previously. Other game-specific options are possible.

FIG. 19A also shows a “DMG only™ flag 404 that 1s used in
the example embodiment to indicate that the loaded game file
66 1s COLOR GAME BOY® incompatible. This DMG only
flag 404 (which 1s set or unset depending on the compatibility
modes shown mn FIG. 6) i1s used to determine whether
COLOR GAME BOY® functionality of emulator 100 1is
enabled or disabled. It 1s also possible to provide a flag indi-
cating that the stack pointer 1s allocated to a particular region
of memory (e.g., fixed emulated COLOR GAME BOY®
RAM). The flag that indicates that the stack pointer 1s point-
ing to a particular region of memory (fixed CGB RAM) 1s not
a game-specific option in one example embodiment, and 1s set
dynamically by the emulator 100.

A rumble pack tlag 406 1s used 1n the example embodiment
to indicate whether the loaded game file 66 supports the
rumble pack feature of certain native platform games.

The TSR interrupt register 408 in the example embodiment
specifies the number of the DOS interrupt used for host-to-
emulator communication.

A DMA source register 410 specifies a source address for
emulated direct memory access operations, and a DMA des-
tination register 412 specifies a destination address for emu-
lated direct memory access operations. A memory base
pointer 414 specifies a base pointer for non-paged memory
110.

Referring to FIG. 19B, a register file including for
example, various native platform registers emulated in soit-
ware (RAM locations) 1s shown. Such registers include, for
example, sound control registers (“NR10-NR52), a liquid
crystal display controller register having the bit assignments
shown, and a status register STAT having the bit assignments
shown.

In terms of sound emulation, certain information written to
the sound control registers may be straight-forwardly trans-
lated and passed on to the target platform sound adapter 58
using the particular API used by that sound adapter. Other

10

15

20

25

30

35

40

45

50

55

60

65

20

sound generation commands are peculiar to the GAME
BOY®, GAME BOY COLOR® and GAME BOY
ADVANCE® native platforms, and need to be emulated
using sound-producing functions. These sound-producing
functions take advantage, as much as possible, of the target
platform sound generation capabilities, but typically need to
provide additional state information (e.g., implementation of
a sound-generation state machine) 1n order to ensure sound
timing synchronization. Maintaining real time sound timing
sound synchronization 1s especially important with voices—
which will sound unnatural 11 played back too fast or too slow.
Unfortunately, voice reproduction may be difficult to achieve
since the strict CPU timing necessary to play back voice takes
up too much time in itself, and may not be possible to perform
on a low-resource target platform. Games that rely on voice
playback for a satisfactory game play experience may have to
be excluded. In the example embodiment, the sound module
translates writes to the virtual sound registers to approprate
sound information for the target platform sound adapter. If the
sound library used does not provide for automatic termination
of sounds after specified durations, then the emulator 100
may also be provided with the capabaility to terminate sounds
at appropriate times.

Graphics Emulation

As described above, a graphics emulation 108 portion of
emulator 100 1n the example embodiment receives com-
mands from the virtual microprocessor core 102 and per-
forms responsive graphics tasks. This graphics emulation
functionality performed by block 108 supplies capabilities
normally supplied by the graphics acceleration hardware of
the native platform.

One way to provide such graphics emulation 108 would be
to nearly exactly implement, 1n software, each of the hard-
ware structures of the native platform’s graphics circuitry.
This 1s not necessarily the best approach, however, since 1t
may be more eflicient to perform certain graphics-related
tasks differently 1n software. FIG. 20 shows an example of
how the efficiency of preferred embodiment emulator 100 1s
enhanced by handling character data diflerently than the way
it 1s handled in the native platiorm.

In the FIG. 20 example, a pre-computed translation table

163 1s used to translate “raw” character data within an array
162 1nto a “bit mapped-1zed” character data format for stor-
age 1nto buffer 164. FIGS. 21 and 22 further illustrate this
teature. The FIG. 21 representation shows a portion of the
“raw”” character data buifer 162 storing the character data bit
planes as they are typically maintained by the native platform.
Pre-computed translator 163 translates this raw character data
representation into a differently-ordered and organized, bit
mapped character data representation more like the format
found 1n a conventional bit map (.bmp) file. This character
data reorganization 1s useful 1n minimizing processing time
required to output character graphics data to the video adapter
62. The FIG. 22 “bit mapped-1zed” representation 1s more
compatible with VGA and other commonly-used video
adapter hardware, and the pre-computation of translator 163
allows this data reorganization to occur 1n a straight forward
manner 1n advance of the time when the graphics data 1s sent
to the graphics adapter 62.
FIG. 23 shows a number of example graphics object point-
ers used by graphics emulation block 108, including:
window X, window y registers 450, 452 specilying the
coordinates of the display window (these coordinates
may be copied from the memory [wx], memory [ly]
values at the top of each frame),

US 8,157,654 B2

21

a window source y register 454 specilying the y coordinate
for the source data for a window (this may start at zero at
the top of the window),

a background base pointer 456 that stores the base pointer
for the current background RAM area (moves between
background 1 and background 2, pages zero and one),

a background pointer bank zero and background pointer
bank one register 438, 460 specitying the base pointer
for the current background RAM page zero and page one
(these registers move between background 1 and back-
ground 2 areas),

a window pointer bank zero register and a window pointer
bank one register 462, 464 (these registers specily base
pointers for the current window RAM page zero and one
respectively (they move between pages zero and one)),

a character base pointer register 466 specifying the base
pointer for the current character RAM area (moves
between pages zero and one),

a character RAM base pointer 467 specilying the base
pointer for the current mnternal COLOR GAME BOY®
RAM area 175 (0xC000-0xE000),

a character bit mapped base pointer 468 specitying the base
pointer for the “bit map-1zed” character data 164 (this
pointer moves between pages zero and one),

a memory bank controller RAM base pointer 470 specily-
ing the base pointer for the current cartridge RAM page
172,

a character bit map 1ndex bank zero pointer and a character
bit map index bank one pointer 472, 474 used as pointers
to pre-sort an (addressing mode appropriate) array of
pointers to the bank zero (bank one) “bit map-1zed”
character data.

FIG. 24 shows an example illustration of a preferred
embodiment emulated object attribute memory 173. In this
example, the native platform includes an object attribute
memory that maintains pointer and other information relating,
to characters to be displayed on the next frame. Preferred
example embodiment emulator 100 includes an emulated
object attribute memory 173 including an array of up to 40
objects each including y (vertical position), x (horizontal
position), character (1dentifier) and attribute field. The bit-
encoding of the attribute field information 1s also shown 1n
FIG. 24. An OAM base pointer 476 1s used to function as a
pre-allocated pointer to the emulated object attribute memory
object 173.

FIG. 25 shows an example video memory arrangement
including an off screen memory builer 168 and an on screen
memory bulfer 170. In the example embodiment, the off
screen memory buffer 168 is defined to be larger than the
display size of the native platform. For example, the display
size of a GAME BOY® or COLOR GAME BOY® i1s 160
pixels by 144 pixels high. In the example embodiment, off
screen memory builer 168 1s defined to be 192 pixels wide by
160 pixels high—leaving additional memory locations on all
sides of the screen size butler. A bulfer zone of sixteen bytes
or eight bytes 1s useful 1n 1improving etficiency. The use of
screen memory buffers larger than screen size 1s an attempt to
increase graphic drawing eiliciency by eliminating clipping
calculations and using the hardware BitBlt to transier a subset
of the memory butfer to displayed video memory. It may be
desirable to use two off-screen buflers and one on-screen
buffer in a classic “double-builering” technique. Emulator
100 may draw to one buffer until 1t 1s complete, then switch to
the other buifer. On the target hardware’s vertical retrace
interrupt, the emulator 100 copies the last-completed buifer
to the on-screen area via BitBlt. This works well when a way
1s provided to implement the vertical retrace interrupt. As

10

15

20

25

30

35

40

45

50

55

60

65

22

mentioned above, the “bufler zone™ in the memory builer 1s
used to eliminate clipping calculations.

The example embodiment emulator 100 uses a hardware-
assisted bit BLIT operation to copy the contents of the screen
s1ze buller mto on screen buffer 170. Such a bit-BLIT hard-
ware-assisted operator can increase transier times without
corresponding increases 1n overhead. IT a bit BLIT operation
1s not available, then a conventional direct memory access or
other memory transfer can be used instead. In the example
embodiment, a STPC_TARGET register 478 1s used to
specily whether a bit BLIT engine of the target platform 1s
available and can be used (if one 1s not available, then a
conventional memory copy function can be used instead).

FIG. 26 shows some example additional graphics mode
selectors used by emulator 100 in the preferred embodiment,
including:

a selector graphics engine register 480 that selects pro-

tected-mode memory for the graphics engine registers,

a selector off screen register 482 that selects protected

mode memory for the off-screen video memory builer
168 (two such selector registers can be used to indicate
which one of two double butffered buffers 1s currently
being drawn, with an index variable indicating this), and
a selector on screen register 484 that selects protected
mode memory for the on-screen video memory builer
170.

FIG. 27 shows an example screen layout of display 64
showing that the emulated display provided by on-screen
buifer 170 may be smaller than the actual display area of
display 64. In one example embodiment, the graphics adapter
62 and associated display 64 may provide a resolution o1 320
pixels by 200 pixels, whereas emulator 100 produces an emu-
lated 1mage of 160 pixels by 144 pixels. Emulator 100 uses
only a subset of display 64 to display emulated images 1n
order to preserve aspect ratio.

FIG. 28 shows an example set of graphics adapter 62 con-
trol constants that may be set to the VG A graphics adapter in
order to set the graphics adapter’s mode for use with emulator
100. Emulator 100 may be hard-coded to a particular graphics
mode (320x200x16), an 8-bit color mode, or other mode
available on the target hardware. If the 320x200x16 color
mode (VESA mode O0x10E) works on a particular target plat-
form, emulator 100 may use this mode exclusively—and
there will be no need for different control constants for the
VGA.

FIG. 29 shows example graphics engine register indices
and associated example values. A screen pitch of 384 may
also be defined as a constant 1n the example embodiment.
Example Color Palette Processing

In the example embodiment, the handling of color palettes
can lead to efliciency problems. In the example native plat-
forms, graphics characters are represented in a color lookup
table (CLUT) format (1.e., the graphics characters themselves
include a reduced number of bits that are used to look up a
color value 1n a color palette for display). See FIG. 21. The
example COLOR GAME BOY® native platform can display
56 colors on the screen nominally (eight palettes of four
colors each for background, and eight palettes of four colors
cach for object characters minus transparency). It would seem
therefore that with only 56 simultaneous colors on the screen
at any one time, 1t would be possible to use a 320x200x8-bit
VGA mode (13H) which would provide 256 different colors
on the screen at once (much more than 56 colors). One pos-
s1ibility would be to simply add an offset into a VGA palette
when using 8 bits of color. However, certain game developers
for the COLOR GAME BOY® native platform change color

palettes during horizontal blanking periods to achieve greater

US 8,157,654 B2

23

color variety on the screen. To emulate for these particular
games, 1t 1s necessary to provide more than 256 colors on the
screen at atime. A mode such asthe VESA standard (320x216
bits) provides 65,000 different colors (RGB 565)—about
twice as much as the 32,000 colors the GAME BOY
COLOR® 1s capable of displaying. Thus, this video adapter
mode 1s adequate for even applications that change their color
palettes 1 the middle of a frame—but using this mode
doubles the amount of information that must be sent to the
video memory per frame and costs processing time. More-
over, 1t also requires emulator 100 1n the preferred embodi-
ment to map color information (4 bits) into 32,000 colors. The
16-bit color resolution makes 1t desirable for emulator 100 to
write 16-bit color palette information into the video adapter
62. This, 1n turn, necessitates a memory array of 16-bit num-
bers associated with the various color palettes. The color
palettes (see FIG. 4) can be accessed on a character-by-char-
acter basis, using pointers to apply color information to the
“bi1t map-1zed” character data 164 before the data 1s written to

the display butier 168.

While the invention has been described in connection with
what 1s presently considered to be the most practical and
preferred embodiment, 1t 1s to be understood that the mven-
tion 1s not to be limited to the disclosed embodiment, but on
the contrary, 1s intended to cover various modifications and
equivalent arrangements included within the scope of the
appended claims.

I claim:

1. A method of emulating a video game device of the type
that includes a housing having an electronic display thereon,
said housing having therein a processor that runs a video
game soltware 1image out of a page-based read only memory
(ROM) to present interactive displays on said electronic dis-
play of animated video game play in response to user inputs,
the method comprising:

executing a video game device emulator program on a

target computing device ditlerent from said video game
device including said housing having said electronic
display thereon, said target computing device being
capable of displaying graphical information on a target
computing device display, said target computing device
having read/write memory and receiving user inputs,
said executing video game device emulator program
controlling said target computing device to at least 1n
part emulate said video game device so as to at least in
part enable said target computing device to run said
video game soltware and present interactive displays of
said ammated video game play on said target computing
device display 1n response to user mputs to said target
computing platform;

modeling at least some display timing activities of said

video game device electronic display on said target com-
puting device;

processing, with said emulator program executing on said

target computing device, said video game software
image capable of being executed on said video game
device processor within said housing that runs video
game soltware to present interactive displays on said
clectronic display of animated video game play in
response to user mputs; and

generating a real time interactive video game presentation

on said target computing device display at least in part 1n
response to said processed video game software image
and said modeled display timing activities,

wherein said video game software image comprises mul-

tiple ROM pages and said method further includes said
emulator program (a) providing a pointer table system

10

15

20

25

30

35

40

45

50

55

60

65

24

that allocates emulated ROM pages 1n said target com-
puting device read/write memory to emulate said mul-
tiple ROM pages of said video game software image,
and (b) duplicating at least a portion of one of said
multiple ROM pages into plural of said allocated emu-
lated ROM pages to facilitate page selection and reduce
page swapping, and

wherein the method further comprises using said pointer

table system to control memory access by remapping
native memory access instructions into function calls.

2. The method of claim 1 wherein said target computing,
device display comprises a liquid crystal display.

3. The method of claim 1 wherein said display comprises a
liquid crystal display and said modeling comprises modeling
a virtual liquid crystal display controller state machine cor-
responding to said liquid crystal display to maintain real time
synchronization with events as they would occur on said
video game device.

4. The method of claim 1 further including using hardware-
assisted BLIT memory transier operations to efficiently
transier graphics information.

5. The method of claim 1 further including using a pre-
computed translation table that translates native platform
graphics character formats.

6. The method of claim 1 further including emulating reg-
isters and hardware-based memory structures within the
video game device 1n random access memory under software
control.

7. The method of claim 1 further including using a jump
table to efliciently parse incoming binary instruction formats.

8. The method of claim 1 further including using said
pointer table system to control memory access by remapping,
memory access instructions mnto function calls.

9. The method of claim 1 further including using said
pointer table system to implement a read only memory pro-
tection function to eliminate overwriting of read only
memory.

10. The method of claim 1 wherein said modeling includes
using a state machine defining at least a horizontal blank state
and a vertical blank state.

11. The method of claam 1 further including selectively
skipping {frames while maintaining execution of instructions

to maintain state information while mimmizing game play
slowdowns.

12. The method of claim 1 further including performing
no-operation look-ahead to avoid wasting processing time in
no-operation loops.

13. The method of claim 1 further including modeling each
video game device native instruction register as a union of
byte, word and long register formats.

14. The method of claim 1 further including modeling
video game device native istruction CPU flags to allow
cificient updating after operations are performed by the target
computing device.

15. The method of claim 1 further including mapping the
video game device emulated program counter into at least one
target computing device microprocessor general purpose reg-
ister.

16. The method of claim 1 further including providing an
adaptable put controller emulator to receive user inputs
from a variety of different user input devices.

17. The method of claim 1 further including using screen
memory bullers larger than said predetermined display area
to 1ncrease paging elliciency by eliminating clipping calcu-
lations and using hardware Bitblit to transfer a subset of said
memory buller to display video memory.

US 8,157,654 B2

25

18. The method of claim 1 wherein said target computing
device comprises an airline seat back controller.

19. The method of claim 1 wherein said target computing
device comprises a personal digital assistant (PDA).

20. The method of claim 1 wherein said target computing,
device comprises a portable computing device.

21. The method of claim 1 further including using said
allocated emulated ROM pages to emulate read only memory
arrays within a ROM-based pluggable game cartridge.

22. The method of claim 1 further including allocating, in
random access memory, at least twice the space occupied by
ROM pages 1n the video game device, and duplicating half of
cach page allocated 1n random access memory.

23. The method of claim 1 wherein said video game device

1s adapted for use with a pluggable game cartridge ROM

having ROM banks, and said emulator emulates each of said
ROM banks with a different RAM page.

10

15

26

24. The method of claim 1 further including using a ROM
selection pointer to select a current ROM page and a ROM
page count register to specily the number of emulated ROM
pages that have been loaded.

25. The method of claim 1 further including using a no-
write functional module to protect allocated emulated ROM
space so that mnadvertent write imstructions do not succeed 1n
overwriting emulated read only memory.

26. The method of claim 1 further including using a no-
write function to protect emulated ROM space from being
written to, thus making sure the emulated ROM space 1s
emulated as read only memory rather than read-write
memory.

2’7. The method of claim 1 further including using function
pointers to implement no-write allocated ROM space protec-
tion.

	Front Page
	Drawings
	Specification
	Claims

