US008156459B1
a2 United States Patent (10) Patent No.: US 8,156,459 B1
Ou et al. 45) Date of Patent: Apr. 10, 2012
(54) DETECTING DIFFERENCES BETWEEN 7,178,112 B1* 2/2007 Ciolfietal. ..ccccovvevnvinni... 703/2
HIGH LLEVEL BL.OCK DIAGRAM MODELS 7,194,705 B1* 3/2007 Deepaketal. ................ 716/103
7.222317 B1* 5/2007 Mathuretal. .....c....... 716/107
. _ : 7,346,486 B2* 3/2008 Ivancicetal. ................... 703/22
(75) Inventors: Jingzhao Ou, San Jose, CA (US); Chi 7383.166 B2*  6/2008 Ashar et al. oo 703/14
Bun Chan, San Jose, CA (US) 7.418,680 B2* 82008 Clarkeetal. .ooocoovvvin., 716/107
7,437,700 B2* 10/2008 Wang etal. .....cooov........ 716/104
(73) Assignee; Xilinx, Inc., San Jose, CA (IJS) 7.480,877 B2* 1/2009 Acunaetal. .................. 716/136
7.523.433 B1*  4/2009 Anderson ................ 716/139
" - - Lo - 7,539,602 B2%  5/2000 WIlLIS ovoveevorereereeieeeeinn, 703/2
(*) Notice:  Subject to any (gszlalmeé’; the germé?‘fthls 7681.151 B2* 3/2010 Ciolfietal. wovei. 716/116
patent 1s extended or adjusted under 35 7.685,545 B2* 3/2010 Chapmanetal. ........... 716/136
U.S.C. 154(b) by 315 days. 7,698,668 B2* 4/2010 Balasubramanian et al. 716/106
7,707,014 B2* 4/2010 Kodosky et al. .......co......... 703/2
(21) Appl. No.: 12/615,415 7.890.198 B1* 2/2011 Gahinet ......coovevvvvvvinn! 700/31
7.974,823 B1*  7/2011 Aldrich ..o 703/7
_— 7.992.111 B1* 82011 Maetal. woovveereninn., 716/103
(22)  Filed: Nov. 10, 2009 7.996.799 B2* 82011 Farkashetal. ............ 716/106
(51) Int. Cl. * cited by examiner
Go6l 17/50 (2006.01) _ _
G06F 9/455 (200601) Pmmary EJC(IH’EIHE?’ — Helen ROSSOShEk
(52) US.CL ... 716/107; 716/102; 716/103; 716/104;  (74) Attorney, Agent, or Firm — LeRoy D. Maunu
716/106;716/132; 716/136; 716/139; 703/2;
703/6: 703/7: 703/14 (07 ABSTRACT
(58) Field of Classification Search .................. 716/102, A method of detecting differences between high level block

diagram models using text based analysis. Previous methods
of determining differences between high level block diagram
models derive differences through traversal of the block hier-

716/103, 104, 106, 107, 132, 136, 139
See application file for complete search history.

(56) References Cited archy which 1s complex and cannot compare diflerences
between models created with third party design environ-
U.S. PATENT DOCUMENTS ments. The present invention increases interoperability and
5493507 A * 2/1996 Shindeetal. .......coo..... 703/14 capabilities of existing circuit design environments, and
5,995,736 A * 11/1999 Aleksicetal. ................ 716/103 achieves an advance 1n the art, by converting high level block
6,521,569 B: [1/2001 Hetle etal. ... 716/102 diagram models to a user readable text-based format and
545,084 B1* 12005 Pandey ot al, .1 716/1g7  Periomminga text-based differential analysis on the converted
7,007,261 B1* 2/2006 Ballaghetal. ............... 716/103 ~ models to determine differences.
7,093,224 B2* §/2006 Wheeleretal. ............... 716/102
7,090.809 B2*  8/20006 DOIL weevvvveeeeeeeeiiiiieeeieens 703/6 16 Claims, 7 Drawing Sheets

602 606
Block diagram Block diagram
model A model B
Y . J
604 608
Convert to text format Convert to text format
h
§10
Compare converted
files for differences
L . . J
§12

Generate Block diagram model from converted files and identified differences

l l

614 816
Display generated block diagram of Display generated block

whole model with changes indicated diagram model of changes only




U.S. Patent Apr. 10, 2012 Sheet 1 of 7 US 8,156,459 B1

100

104

Block diagram
model A

Block diagram
model B

102 106

Convert to text format Convert to text format

108

Compare converted
files for differences

11

|dentified
differences

FIG. 1



US 8,156,459 B1

Sheet 2 of 7

Apr. 10, 2012

U.S. Patent

weibold sbenbuej |gAsl-ubiy F57

lspow |eaiydeld piz

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII -] "
_ T AL
| : |

| J0C PUS — 1 — _

_ AJIAOBUU0D QFF | | uonezienul €7 |

_ ..m@:m - |

| Sjuswale)s AlAanDauuoiod (987 S S |

| suoneleloap Jajsweled 7¢7 HOU Jee iapow [eaiydesd “

! uoneledap uonoun} ,.207 H_

| — — abelo)s

| 007 UOIOUN: 0 UONEIONU TZZ AINIDBUU0O OEZ _co_ﬁ__m_“_:_ 244 “

_ sjuawalrls Ajandsuuodniod 977 — —

| uonezIenul Fzz (802) %0019 827 _ siojeweled 7zg

| suonelepap Jajsweled 77¢

_ uolele|osp uonsun) 007

| lapowl [ealydeld

|

|

|

.
|
|
|
|

|
|
sjod 977 902 “
|
|
|
|

A .

474
Joje[suel) uonebineu

aued ubisap
sJeqgjooynusiy
20¢ MOPUIM QoRLIBJLI JOST




U.S. Patent Apr. 10, 2012 Sheet 3 of 7 US 8,156,459 B1

302
Convert to neutral data
format

304 310
[dentify hierarchical Store model

Information hierarchy

306
Identify and remove
content unrelated to
model functionality

308
Store as plain text
file

FIG. 3



U.S. Patent

Apr. 10, 2012 Sheet 4 of 7

402
Compare converted block
diagram models to identify
differences

404

[dentify blocks which contain
differences in whole or in part

406
Determine whether blocks
containing differences have
been added, modified or

deleted

406
Data indicating status
of each block

US 8,156,459 B1



U.S. Patent Apr. 10, 2012 Sheet 5 of 7 US 8.156.,459 B1

202
Text-based
model A

204
Text-based
model B

206
Calculate the longest common subsequence
(LCS)
l \ 4
208 210
Mark characters in model A not Mark characters in model B not
contained in LCS as “deleted” contained in LCS as “added”
characters characters
212

For each block in model A and B

214
Any chars
changed?

216
All chars
changed?

Yes Yes

NO NO
520 922 924
E?ﬁeﬁg(}tﬁ Mark block as Mark block as Mark block as
“‘modified” “‘deleted” ‘added’

526
Store Modified, Deleted
and Added Blocks in
text-file

FIG. 5



U.S. Patent Apr. 10, 2012 Sheet 6 of 7 US 8,156,459 B1

602
Block diagram
model A

606
Block diagram
model B

604 603
Convert to text format Convert to text format

610
Compare converted
files for differences

12

(Generate Block diagram model from converted files and identified differences

l l

614 616
Display generated block diagram of Display generated block
whole model with changes indicated diagram model of changes only

FIG. 6



U.S. Patent Apr. 10, 2012 Sheet 7 of 7 US 8.156.,459 B1

702

processor(s) memory

712

708

710
storage/computer

e
control

readable media
device

FIG. 7



US 8,156,459 Bl

1

DETECTING DIFFERENCES BETWEEN
HIGH LEVEL BLOCK DIAGRAM MODELS

FIELD OF THE INVENTION

The present mmvention generally relates to tools for creating,
clectronic circuit designs.

BACKGROUND

Electronic circuit designs may be prepared using any of a
variety of approaches. In one approach, the designer creates a

graphical high level block diagram model of the system using
a tool such as the System Generator for DSP from XILINX®,

Inc., which enables use of the SIMULINK® model-based
environment from The MATHWORKS®. These types of
tools provide a graphical user interface (GUI) for preparing,
simulating, and even implementing a circuit design. Basic
building blocks are instantiated, connected, and combined
into larger blocks of the design via the GUI. Each block
generally has at least one input signal, at least one output
signal, and an equation that defines the relationship between
the input and output signals.

In another approach, a design can be specified 1n a hard-
ware description language (HDL) such as VHDL or Verilog.
Inan HDL approach the designer has a greater level of control
over the eventual implementation. However, when using an
HDL the designer may sacrifice the benefits associated with
the ability to abstract the design at a high level as provided by
a GUI approach.

A scripting language such as MATLAB provides a higher
level of abstraction for creating a design than does an HDL. A
scripting language supports ftlexible parameterization
through which, for example, components of a design may be
casily scaled for different applications. However, scripting
languages may be cumbersome for quickly assembling com-
ponents of a circuit design. Other high-level programming,
languages such as JAVA™, JAVASCRIPT™, C++, and TCL
(Tool Command Language), are also sometimes used to cre-
ate circuit designs. However, developing circuit designs using
these languages has the same drawbacks as using MATLAB.

A GUI-based modeling system allows a designer to easily
abstract and assemble different parts of a design. However,
tor designs that contain hundreds to thousands of blocks, and
for designs 1n which the number of blocks and connections
change subject to design parameters, 1t may be more straight-
torward for the designer to specity the design and define the
parameters that control the numbers of blocks and connec-
tions with a script-based specification rather than with a GUI-
based system.

Furthermore, designs are often prepared with the collabo-
ration of several designers preparing different components of
the overall design. Different designers may use different
design systems or design on different levels of abstraction.
Because changes to one component can adversely affect the
operation of others, 1t 1s desirable to compare and track
changes between various design tools.

SUMMARY

In one of the various contemplated embodiments of the
invention, a process 1s provided for detecting differences
between high level block diagram models using text based
analysis. First and second block diagram models are con-
verted 1nto respective first and second text based models.
Differences between the first and second text based models
are 1dentified. Identified differences are then displayed.

10

15

20

25

30

35

40

45

50

55

60

65

2

In another embodiment of the mvention, a system 1s pro-
vided foridentitying and displaying differences between two
block diagram models. The system 1ncludes a processor, a bus
coupled to the processor, a memory unit coupled to the bus,
and a storage unit coupled to the bus. The processor and the
memory are configured to convert the block diagram models
into respective first and second text based models. The pro-
cessor and memory are further configured to 1dentity differ-
ences between the first and second text-based models and
display the 1dentified differences.

In yet another of the various embodiments of the invention,
an article of manufacture 1s provided. The article of manufac-
ture 1s characterized by 1nstructions which, when executed by
a processor, cause the processor to convert first and second
block diagram models 1nto respective first and second text-
based models. The executed instructions further cause the
processor to 1dentily differences between the first and second
text-based models and store the 1dentified differences.

It will be appreciated that various other embodiments are
set forth 1n the Detailed Description and Claims, which fol-
low.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1illustrates a block diagram of the process of con-
verting two models 1nto a text-based format and identifying
differences 1n accordance with several embodiments of the
imnvention;

FIG. 2 illustrates a GUI interface and an example modu-
larized circuit design which 1s translated from a high level
block diagram model 1nto a high level language program in
accordance with various embodiments of the invention;

FIG. 3 illustrates a block diagram of a second process of
converting a high level block diagram model into a user
readable text format 1n accordance with various embodiments
of the invention;

FIG. 4 illustrates a block diagram of the process of com-
paring two models to i1dentily differences and determine
whether a module has been added, deleted, or modified 1n
accordance with various embodiments of the invention;

FIG. 5 1llustrates, as an example, an implementation of the
difference calculation 1n accordance with various embodi-
ments of the invention;

FIG. 6 1llustrates a block diagram of the process of con-
verting two models 1nto a text-based format, identifying dif-
terences, and displaying differences as a high level block
diagram 1n accordance with various embodiments of the
invention; and

FIG. 7 illustrates a block diagram of a general purpose
processor computing arrangement for implementing a ditfer-
ence utility 1n accordance with various embodiments of the
invention.

DETAILED DESCRIPTION

The present invention increases interoperability and capa-
bilities of existing circuit design environments, and achieves
an advance 1n the art, by converting high level block diagram
models to a user readable text-based format and performing a
text-based differential analysis on the converted models.
High level block diagram models are often encoded in special
formats. These model files may contain information unrelated
to the functionality of the designs, such as time stamps or
formatting information for a diagram. The conversion of high
level block diagram models to text based models places the
compared models 1n a format 1n which the models can be
compared for character differences without identifying char-



US 8,156,459 Bl

3

acter differences unrelated to the design functionality. In this
manner, false positives 1dentifying a block as changed when
there has been no substantive functional change, are pre-
vented. The conversion of the models mto a common plain-
text format further increases interoperability between designs
that have been converted and modified 1n different models. In
converting to text, the user is able to utilize inexpensive text-
based solutions rather than more complex, high-level block
diagram solutions. Additionally, the text conversion places
the models to be viewed 1n a more user readable format. There
1s no need for users to install high level modeling systems 1n
order to see the differences between the high level models.

FIG. 1 shows a block diagram of the process of converting,
two models 1nto a text-based format and identifying ditfer-
ences 1n accordance with several embodiments of the mven-
tion. The process takes two high level block diagram models
100 and 104 as input. Each model 1s converted into a text
based format at steps 102 and 106. The converted models are
compared for differences at step 108 and identified differ-
ences 110 are output in plain text format.

Various embodiments of the invention perform the conver-
sion to a text-based format differently. For example, a higd
level block diagram model may be converted to an HDL such
as Verilog, an HLL such as C or C++, a MATLAB script, or
other plaintext representation of the circuit design.

FIG. 2 shows a GUI interface and an example modularized
circuit design outer subsystem and inner subsystem which are
translated from a high level block diagram model into an HLL
program. The example user interface window 202 includes a
design pane in which a portion of an example electronic
circuit design 1s displayed. The portion of the example design
1s shown as having graphical objects 204, 206, and 208.
Graphical object 206 1s used to illustrate the translation of an
underlying graphical model into an HLL program.

In the description below, the following terminology 1s
employed. A “graphical object” refers to the graphical ren-
dering of a component of a design as displayed to a designer.
An abstract view of the circuit design 1s that the design 1s
comprised of functional or logic “blocks,” each performing
the designated function. A “graphical model” refers to the
stored data that defines a block of the design 1n a high level
block diagram model, including data for rendering a graphi-
cal object. The function of a block may be provided by one or
more blocks nested within that block. If the details of the
nested blocks are not important to the designer, the designer
may choose to view the block containing the nested blocks
without viewing the nested blocks. The term “‘outer sub-
system’ refers to a block that contains nested blocks, and each
nested block may be an “inner subsystem™ of the outer sub-
system. A block 1s a subsystem 1f 1t contains any nested
blocks, and a leat block 1t it does not contain any nested
blocks. “Block™ may sometimes be used as shorthand to
reference a graphical object, the underlying graphical model,
a subsystem, or a leat.

The graphical object 206 depicts an outer subsystem as
defined by graphical model 206' in storage 212, and the
graphical object(s) 208 depicts an inner subsystem as defined
by the graphical model 208'. The graphical model 206' 1s part
of graphical model 210, which includes other parts of the
overall electronic circuit design. Each graphical model 206
and 208' includes a set of attributes that define the model. The
attributes include parameters, initialization commands, ports,
blocks, and connectivity. For graphical model 206', the
attributes are shown as parameters 222, initialization com-
mands 224, ports 226, blocks 228, and connectivity 230.

Parameter attributes 222 are used 1n configuring the graphi-
cal model 206'. For example, the parameter attributes may

10

15

20

25

30

35

40

45

50

55

60

65

4

include variable names and values which are evaluated at the
time the graphical model 1s compiled into a simulation model.
Example parameters include values for constants used 1n the
function specified by the graphical model.

The mitialization attributes 224 include commands which
are optionally established by a designer. The commands may
be used to establish an 1nitial state for the graphical model
when that model 1s opened for simulation.

The ports attributes 226 specity characteristics of the ports
of the block specified by the graphical model 206'. Such
characteristics include the names and directions (input or
output) of the ports.

The block attributes 228 specily each block that 1s nested
within graphical model 206'. In the example, the block 206 1s
shown as including one or more blocks 208. The nested block
208 provides some part of the overall function of block 206.
Thus, the block attributes 228 of graphical model 206' specity
that block 208 1s nested within block 206. It will be appreci-
ated that graphical model 206' specifies that block 206 1s an
inner subsystem of the block defined by graphical model 210.
Thus, the block (not shown) defined by graphical model 210
1s an outer subsystem relative to block 206'.

The connectivity attributes 230 specily the connections
between the blocks specified by the blocks attributes 228 as
well as the connections to the ports specified by the ports
attributes 226. Values for the parameters and the initialization
commands may be specified by a designer using editing win-
dows such as the examples shown 1n FIGS. 2 and 3.

Graphical model 208’ specifies the attributes of block 208,
which 1s nested within block 206. The nested relationship 1s
shown as graphical model 208' being contained by graphical
model 206'.

The graphical model 208' includes parameter attributes
232, imitialization attributes 234, ports attributes 236, block
attributes 238, and connectivity attributes 240 as described
above for the graphical model 206'.

According to embodiments of the inventions, 1n response
to a designer selecting a particular graphical model and invok-
ing a translator 242, the selected graphical model 1s read from
storage 212 and translated into an HLL program 244. The
HLL may be a scripting language or a language for which
program code 1s typically interpreted or compiled and
executed. The generated HLL program 242 has a structure
that corresponds to the hierarchical relationship between the
components of the translated model. For example, the graphi-
cal model 206', which contains the graphical model 208', 1s
translated into a function 1n the HLL program which begins
with the function declaration 206". The function specification
206" includes parameter declarations 222" for the parameter
attributes 222 of the graphical model 206', initialization state-
ments 224' that implement the 1nitialization commands 224,
port and connectivity statements 226' that implement the port
attributes 226 and connectivity attributes 230, and a statement
228' that invokes a function corresponding to the block 208,
which 1s specified by the block attributes 228.

The graphical model 208’ 1s translated 1nto a function that
1s specified within the scope of function 206" 1n the HLL
program 244. The specification of the function for graphical
model 208' begins with the function declaration 208" and
includes statements 232", 234', 236', and 238', which corre-
spond to the attributes of graphical model 208 and are similar
to the statements 1n function 206".

In the example program 244, function 208" 1s shown as
being declared within the scope of function 206" by way of 1t
being specified before the end 206" statement. Parameters
referenced by function 206" can be referenced by function




US 8,156,459 Bl

S

208", which reflects the scope of parameter attributes 222 of
graphical model 206' being visible within graphical model
208'.

The HLL program code in Example 1 below 1llustrates an
example translation of a graphical model. The example code
1s a script in the MATLAB language. There are elements 1n
the example script that correspond to code that would be
generated from the graphical model 206' of FIG. 2. However,
it will be recognized that the script in Example 1 retlects
characteristics of a graphical model beyond those of graphi-
cal model 206'. In particular, the declared mner_subsystem
invokes the xBlock function twice for instantiating two con-
stant multipliers, with the output of the first constant multi-
plier connected to the input of the second constant multiplier.

function outer_subsystem(a, b)

% 1nitialization commands
c=a+b:;:
in =xInport(‘in’);
out=xOutport(‘out’);
xBlock(str2func(‘inner_subsystem”), {a, b});
function inner_subsystem(a, b)
% mask 1mitialization
dl1=c*2+a;
d2=c™*3+b:
in=xInport(‘1n’);
out=xOutport(‘out’);
% create a signal object which can
% connect two blocks
sig=xS1gnal( );
% create a const mult,
% connect subsystem nput port ‘1n’
% to the mput port of const mult
% connect signal ‘s1g’
% to the output port of const mult
xBlock(*Constant Multiplier’, . . .
f‘const’, d1}, ...
fin}, ...
1sigh);
% create another const mult 2,
% connect signal ‘s1g’
% to the mput port of const mult 2
% connect subsystem nput port ‘out
% with the output port of const mult
xBlock(*Constant Multiplier’, . . .
{‘const’, d2}, . ..

Isigh, . ..
out});
end % function mner_subsystem
end % function outer_subsystem

b

EXAMPLE 1

The outer_subsystem function corresponds to graphical
model 206'. The mner_subsystem function 1s declared and
defined within the definition of the outer_subsystem function
(before the “end” statement for the outer_subsystem). Thus,
the mnner_subsystem function 1s nested within the outer_sub-
system function, much as function 208" 1s nested within
function 206" in FIG. 2, which allows the inner_subsystem
function to reference parameters ol the outer_subsystem
function. For example, parameters a, b, and ¢, which are
declared 1n the outer_subsystem function, are referenced 1n
the inner_subsystem function.

For a scripting language, such as MATLAB, type declara-
tion 1s not required for the variables. However, those skilled in
the art will recognize that 11 the target HLL 1s strongly typed,
as are C++ and Java, each variable would be declared with a

5

10

15

20

25

30

35

40

45

50

55

60

65

6

type. In a strongly-typed language, the “in” 1n Example 1
would be declared as a type xInport, “out” would be declared
as a type xOutport, “s1g” would be declared as a type xSi1gnal,
and parameters a and b would be the type double. The types,
xInport, xOutport, and xSignal would be custom defined for
use 1n generating the desired model from the executed pro-
gram.

The comments 1n the script designate the initialization
commands for the outer_subsystem and for the inner sub-
system. The following statements:

in=xInport(‘in’);

out=xOutport(‘out’);
are generated from the port attributes of the graphical model.
Note that the outer_subsystem and the inner_subsystem both
have these port statements.

The statement, xBlock(str2func(‘inner_subsystem’), {a,
b}); invokes the inner_subsystem function and is generated
based on the block attributes of the graphical model of the
outer_subsystem. That 1s, the block attributes of the outer_
subsystem will identify the inner_subsystem as a constituent
block of the outer_subsystem.

A block that does not contain any nested blocks 1s a leaf
block, as noted above. The function that 1s specified for a leaf
block 1s that which generates a graphical model of that same
leat block when that function 1s invoked in executing the HLL
program. The following HLL statement from Example 1 1s
that generated from a leaf block 1n a graphical model:

xBlock(*Constant Multiplier’, . . .

f‘const’, d1}, . ..

fin}, ...

1sigh);
When the xBlock function 1s called with values for the speci-
fied parameters, the output 1s a graphical model for the con-
stant multiplier block. Thus, the predefined xBlock function
instantiates a leat block in the graphical model, with the leaf
block being a constant multiplier as specified with the param-
cter to xBlock. The xBlock function 1s programmed to gen-
erate a graphical model that 1s compliant with the underlying
graphical modeling system, for example, SIMULINK.

Based on the connectivity attributes of the graphical model
corresponding to the inner_subsystem function, the function
1s specified with a statement to instantiate the signal
(s1ig=xSignal( )). The signal named s1g, connects the output of
the first constant multiplier to an input of the second constant
multiplier, where the constant multipliers are instantiated
with the calls to xBlock(*Constant Multiplier’, . . . .

The generated HLL program 1s distinguished from the
graphical model in that the graphical model does not support
parameterization of the model by way of adding program-
matic control flow. For example, the script in Example 1 could
be supplemented with a for loop which contains the xBlock
(‘Constant Multiplier’, . . . ) statement, where the for loop
iterates some number of times based on an mput parameter
value. When the supplemented script 1s executed with the
parameter value of the for loop, a chain of constant multipliers
1s instantiated 1n the design. Whereas, with the GUI interface
the designer would have to manually instantiate and connect
the desired number constant multipliers 1n the chain, with the
supplemented script the designer need only input the desired
parameter value.

In converting a high level block diagram model mnto a
plain-text format, several embodiments of the present inven-
tion 1ncrease user readability of the converted file by remov-
ing operations and objects that are non-functional. FIG. 3
illustrates a tflowchart of an example process for converting a
high level block diagram model mto a user readable text
format 1n accordance with various embodiments of the inven-




US 8,156,459 Bl

7

tion. An mput model 1s first converted to a text-based format
at step 302. Hierarchical information of the model 1s 1denti-
fied at step 304 and stored in a file 310 for later use. Those
skilled 1n the art will understand that hierarchical information
can be preserved 1n a variety of ways. The hierarchy infor-
mation can be saved 1n a separate file or can be saved 1n the
same file 308 used to store the converted plain text format of
the model. Non-functional information 1s then 1dentified and
removed from converted file at step 306 and resulting file 308
1s stored. High level block diagram models include informa-
tion used by the specific modeling environment that 1s unre-
lated to the functionality of the design, such as the creation
time, creator of the model, display formatting, etc.

Removal of non-functional information from the model
not only increases user readability, 1t further allows a text
based differential analysis to identify changes without includ-
ing supertluous formatting changes that do not affect the
operation of the circuit design.

To aid designers 1n the tracking and debugging of circuit
design model changes, various embodiments of the invention
distinguish block module changes displayed to the user.
Changes to a block module show the block module has either:
added 1n whole, deleted in whole, or modified in part. FIG. 4
shows a block diagram of the process of comparing two
models to identify differences and determine whether a mod-
ule has been added, deleted, or modified. Two models are first
compared for differences at step 402. Identified differences
are correlated with specific block modules at step 404. At step
406, block modules are analyzed to determine whether each
module has been added, deleted, or modified. This status
information 408 1s then stored for later use.

Those skilled 1n the art will recognize that differences can
be detected and identified at step 402 using a variety of
difference algorithms. FIG. 5 shows, as an example, an imple-
mentation of the difference calculation in accordance with
various embodiments of the invention. Specific differences
can be i1dentified by calculating the longest common subse-
quence (LCS) at step 506 of the two plain text models, 502
and 504, and comparing the LCS with each file to determine
whether characters have been added, deleted, or remain
unchanged at steps 508 and 510. If characters from model A
are not contained 1n the LCS, characters are marked as being

deleted at step 508. If characters from model B are not con-
tained 1n the LCS, characters are marked as being added at
step 510. Individual blocks from models A and B are then
analyzed to determine whether the block has been added-1in-
whole, deleted-in-whole, or modified-in-part at step 512.

For each block, 11 decision step 514 finds no characters
marked as added or deleted, the block has not been changed
and 1s not marked. If decision block 514 finds a block contains
a change and decision step 316 finds that not all characters of
the block have changed, the block 1s marked as modified at
step 520. I decision step 516 finds that all characters of a
block have been changed and decision step 518 finds the
changes are from model A, the block 1s marked as deleted at
step 522. If decision step 518 finds the changes are from
model B, the block 1s marked as added at step 524. Blocks
marked as added, deleted, or modified are then stored as a
plain text file 526.

Alternatively, blocks may be first identified and difference
comparison can then be performed on per block basis. To
increase elliciency, various implementations may calculate a
hash of each block or subsequences to determine whether the
blocks or subsequences are identical. Those skilled in the art
will recogmize that difference comparison can be 1mple-

.

10

15

20

25

30

35

40

45

50

55

60

65

8

mented using text-based difference tools such as: cmp,
comm, diff, diff3, Kompare, Meld, rsync, tkdifl, winMerge,
etc.

The following code segment in Example 2 shows the gen-
erated output of the comparison process when implemented
by the UNIX difference utility difi3. In this example, the two
Simulink™ models were compared to generate the shown
output. The models were 1dentical 1n all respects except a
block “xlsub3 addr counter” was added to the second
model. In comparing the models, Dii13 generated the follow-
ng:

+% generated from Simulink block:myexample_systems/

address_generator/ . . .
+x1sub3_addrcounter=xBlock(struct(*source’,

‘Counter’, . ..
+ struct(‘cnt_to’, PI_ ADDR_RANGE, . ..
+ ‘n_bits’, PI ADDR_WIDTH, . ..
+ load_pin’, ‘on’, ...
+ ‘en’, ‘on’, ...
+ ‘use_rpm’, ‘oil’), . ..
+ (xlsub3_registerd_outl, . . .
+ xlsub3 slice2 outl, . ..
+ xlsub3_logixalS outl), . ..

+ {Xlsub3_addr_c ounter outl }) ;

EXAMPLE 2

In example 2, all lines of the “xlsub2_addr_counter” block
are preceded by “+” to indicate each line has been added.
[ikewise, 1 an entire block was deleted, all lines of the block
would be preceded by ‘-’ to indicate each line had been
deleted. If the block shown 1n example 2 was modified to
change the parameter ‘en’ to ‘off” and compared with the
block as shown, diil3 would generate the following:

. % generated from Simulink block:myexample_systems/

address_generator/ . . .

xlsub3_addrcounter=xBlock(struct(‘source’,
‘Counter’, . ..

. struct(‘cnt_to’, PI_ADDR_RANGE, . ..

. ‘n_bits’, PI_ ADDR_WIDTH,. ..

. ‘load_pin’, ‘on’, . ..

- ‘en’, ‘on’, ...

+ ‘en’, ‘off’, . ..

. ‘use_rpm’, ‘ofl’), . ..

. (xIsub3_registerd_outl, . ..

. XIsub3_slice2 outl, ...

. xlsub3_logixal5_outl), . . .

. {xIsub3_addr_counter_outl });

In this case the line “‘en’, ‘on’” 1s preceded by a -’ to
indicate 1t has been deleted and replaced by ““en’, ‘off”.”
Because different portions of this block are identified with
both added and deleted lines, the whole block 1s 1dentified as
modified.

Text-based tools can also be used for other included fea-
tures such as merging or patching. Merging 1s useful to com-
bine independent changes together in a single file. For
example, consider an original circuit design model A which
contains two block modules. The first module of model A 1s
modified by one designer and saved as circuit design model B.
The second module of model A 1s modified by a second
designer and saved as circuit design model C. Merging 1den-
tifies the differences between model A and B and then incor-
porates these differences into model C. Using the same
example, patching identifies the differences between models
A and B and creates an executable that can convert other
targeted copies of model A 1into model B.




US 8,156,459 Bl

9

FIG. 6 shows a tlowchart of an example process of con-
verting two models 1nto a text-based format, identifying dii-
ferences between them, and displaying the differences as a
high level block diagram. The process takes two high level
block diagram models as input, 602 and 606. Each model 1s
converted 1nto a text based format at steps 604 and 608. The
converted models are compared for differences at 610. The
process 1s similar to that i FIG. 1, except the i1dentified
differences are used to generate a high level block diagram
model 612 which 1s displayed to the user at steps 614 and 616.
I1 the hierarchy of the models 1s preserved as in FIG. 4, the
hierarchy 1s used to generate the graphical display model 612.
Otherwise, the text-based model must be parsed to determine
hierarchy of each block (not shown). After the model 1s gen-
crated, the whole model may be displayed with changed
blocks indicated as added, deleted, or modified at step 614, or
changed blocks may be displayed separate from the entire
model at step 616. The additions, deletions, and modifications
may be delineated with different block colors or shading, for
example.

FIG. 7 1s a block diagram of an example computing
arrangement on which the processes described herein may be
implemented using a general purpose processor. Those
skilled 1n the art will appreciate that various alternative com-
puting arrangements, including one or more processors and a
memory arrangement configured with program code, would
be suitable for hosting the processes and data structures and
implementing the algorithms of the different embodiments of
the present mvention. The computer code comprising the
processes of the present ivention, encoded 1n a processor
executable format, may be stored and provided via a variety of
computer-readable storage media or delivery channels such
as magnetic or optical disks or tapes, electronic storage
devices, or as application services over a network.

Processor computing arrangement 700 includes one or
more processors 702, a clock signal generator 704, a memory
unit 706, a storage unit 708, and an input/output control unit
710, all coupled to host bus 712. The arrangement 700 may be
implemented with separate components on a circuit board or
may be implemented internally within an integrated circuat.
When implemented internally within an integrated circuit, the
processor computing arrangement 1s otherwise known as a
microcontroller.

The architecture of the computing arrangement depends on
implementation requirements, as would be recogmized by
those skilled 1n the art. The processor 702 may be one or more
general purpose processors, or a combination of one or more
general purpose processors and suitable co-processors, or one
or more specialized processors (e.g., RISC, CISC, pipelined,
etc.), for example.

The memory arrangement 706 typically includes multiple
levels of cache memory, and a main memory. The storage
arrangement 708 may include local and/or remote persistent
storage such as provided by magnetic disks (not shown),
flash, EPROM, or other non-volatile data storage. The storage
unit may be read or read/write capable. Further, the memory
706 and storage 708 may be combined 1n a single arrange-
ment.

The processor arrangement 702 executes the software in
storage 708 and/or memory 706 arrangements, reads data
from and stores data to the storage 708 and/or memory 706
arrangements, and communicates with external devices
through the mput/output control arrangement 710. These
functions are synchronized by the clock signal generator 704.
The resources of the computing arrangement may be man-
aged by either an operating system (not shown), or a hardware
control unit (not shown).

10

15

20

25

30

35

40

45

50

55

60

65

10

The present invention 1s thought to be applicable to a vari-
ety of systems for detecting differences between high level
block diagram models. Other aspects and embodiments of the
present invention will be apparent to those skilled 1n the art
from consideration of the specification and practice of the
invention disclosed herein. It 1s intended that the specification
and 1llustrated embodiments be considered as examples only,
with a true scope and spirit of the invention being indicated by
the following claims.

What 1s claimed 1s:

1. A method of detecting differences between high level
block diagram models using text based analysis, comprising;:

converting a first block diagram-based model and a second

block diagram-based model to a first text-based model
and a second text-based model, respectively;
on a processor, 1dentifying differences between the first
text-based model and the second text-based model;

merging 1dentified differences mnto a third block diagram
model which has been converted to a plain text format;
and

displaying the i1dentified differences on a graphical user

interface.

2. The method of claim 1, further comprising indentifying
blocks of text within the first and second text-based models
which correspond to blocks of the high level block diagram-
based model.

3. The method of claim 2, further comprising;

identifying each block that has been added, modified, or

deleted; and

storing data indicating each block that has been added,

modified, or deleted.

4. The method of claim 3, wherein the converting includes
preserving in the first and second text-based models, hierar-
chical relationships between blocks as specified in the first
and second block diagram-based models.

5. The method of claim 4, further comprising:

generating a block diagram from the first and second text-

based models of blocks 1dentified as added, modified, or
deleted; and

displaying the generated block diagram in a manner that

graphically indicates each block that has been added,
modified, or deleted.

6. The method of claim 4, further comprising:

generating a block diagram from the first and second text-

based models; and

displaying the generated block diagram in a manner that

graphically indicates each block that has been added,
modified, or deleted.

7. The method of claim 1, wherein the text-based model
converted to 1s a hardware description language based model.

8. The method of claim 1, wherein the identifying of dif-
ferences comprises:

determinming a longest common subsequence of characters

in the first text-based model and the second text-based
model; and

1dentifying portions of the first and second text-based mod-

¢ls that are not part of the longest common subsequence.

9. The method of claim 1, further comprising: converting
merged file to a high-level block diagram format.

10. A system for identifying and displaying differences
between two block diagram models, comprising:

a Processor;

a bus coupled to the processor;

a memory unit coupled to the bus; and

a storage unit coupled to the bus;

wherein the processor and the memory are configured to:



US 8,156,459 Bl

11

convert the block diagram models to respective first and
second text-based models:

identily differences between the first and second text-
based models;

merge 1dentified differences into a third block diagram
model which has been converted to a plain text for-
mat; and

display the i1dentified differences on a graphical user
interface.

11. The method of claim 10, wherein the processor and the
memory are further configured to: indentily blocks of text
within the first and second text-based models which corre-
spond to blocks of the high level block diagram-based model.

12. The method of claim 11, wherein the processor and the

memory are further configured to:

identify each block that has been added, modified, or
deleted; and

store data indicating each block that has been added, modi-
fied, or deleted.

13. An article of manufacture, comprising;:

a processor-readable non-transitory storage medium con-
figured with processor-executable instructions, the
instructions when executed by a processor causing the
processor 1o:

convert first and second block diagram models into respec-
tive first and second text-based models;

5

10

15

25

12

identity differences between the first and second text-

based models:

merge 1dentified differences into a third block diagram

model which has been converted to a plain text format;
and

store the identified differences 1n an electronic storage

device.

14. The article of manufacture of claim 13, wherein the
instructions further cause the processor to:
indentily blocks of text within the first and second text-

based models which correspond to blocks of the high
level block diagram-based model.

15. The article of manufacture of claim 13, wherein the
instructions further cause the processor to:

identity each block that has been added, modified, or

deleted; and

store data indicating each block that has been added, modi-

fled, or deleted.

16. The article of manufacture of claim 13, wherein the

20 1nstructions further cause the processor to:
determine a longest common subsequence of characters in

the first text-based model and the second text-based
model; and

identily portions of the first and second text-based models

that are not part of the longest common subsequence.

¥ ¥ # ¥ ¥



	Front Page
	Drawings
	Specification
	Claims

