US008156346B2
a2y United States Patent (10) Patent No.: US 8,156,346 B2
Kim 45) Date of Patent: Apr. 10, 2012
(54) KEYBOARD-INPUT FOREIGN PATENT DOCUMENTS
INFORMATION-SECURITY APPARATUS AND KR 1020010099090 11/2001
METHOD KR 1020020048313 6/2002
KR 1020040009575 1/2004
(75) Inventor: Yong Hoon Kim, Gyeonggi-do (KR) KR 1020040066237 7/2004
KR 1020040092101 11/2004
KR 1020060097548 9/2006

(73) Assignee: Kings Information and Network, Seoul
(KR) OTHER PUBLICATIONS

(*) Notice: Subject to any disclaimer, the term of this Intel, Intel 64 adn IA-32 Architecture, May 2007.*

patent 1s extended or adjusted under 35 ¥ itad b _
U.S.C. 154(b) by 416 days. cited by examiner

(21) Appl. No.: 12/410,403 Primary Examiner — Jung Kim
Assistant Examiner — Shan Elahi

(74) Attorney, Agent, or Firm — Charles A. Lemaire;
[Lemaire Patent Law Firm, P.L..L..C.

(22) Filed: Mar. 24, 2009

(65) Prior Publication Data
US 2010/0185876 Al Jul. 22, 2010 (57) ABSTRACT
(30) Foreign Application Priority Data A keyboard-input 1nformation-security apparatus and

method are provided. The apparatus includes an interrupt-
descriptor table for storing a list of addresses of functions for
handling interrupts, and storing an address of a secure input
interrupt-service routine at a specific location in an address

Jan. 20, 2009 (KR) .ooeeeiiiii 10-2009-0004732

(51) Int.CL

GO6rl 21/00 (2006.01)
area for an operating-system input imterrupt-service routine
(52) US.CL ..., 713/190; 726/22;°719/321 supported by an operating system; a secure input-device
(38) Field of Classification Search 713/190; driver for changing keyboard-interrupt-vector information to
o 726/ 2_25 719/321 invoke the address of the secure input interrupt-service rou-
See application file for complete search history. tine when a keyboard interrupt is generated by a keyboard,
_ and receiving and encoding data input via the keyboard based
(56) References Cited on the address of the secure input interrupt-service routine;

and a secure 1nput unit for delivering the encoded data from

U.S. PATENT DOCUMENTS . . . L
the secure 1nput-device driver to an application program,

ga é ?éa"‘i‘g gi : 121//(3881 Eaﬂfell} etal. ... ;8? %gg thereby providing higher-level security than a conventional
7774505 BY* /9010 Ch?nlgm(’}ésﬂ T 713/154 keyboard-security scheme, and particularly, effectively
7797251 B2* 9/2010 Smithooo.....ooooo.... 705/72 blocking a port-polling attack or an action trying to change a
8,056,124 B2* 11/2011 Bassettetal.oco........ 726/11 setting 1n a debug register.

2005/0177649 Al1* 8/2005 Chung Geonetal. 710/1

2010/0138918 Al* 6/2010 Kimetal.oooooon. 726/22

2010/0228994 A1* 9/2010 Kangccccovvvrennnn, 713/189 17 Claims, 12 Drawing Sheets

PR — 1

VECTOR |l SECURITY-||
CONTROLLER|INFORMATION STATE

e —————]

UNIT

— 1 5 —~_-200 420

, CENTRAL 1

' |[PROCESSING UNIT 410
— N [A GRS M R A
|) : X 1 / E
: : ENCODER '
i 140 - i :
; e 1

130 :

340 330 (
420

100 500 ——1{ APPLICATION PROGRAM H—

L e

KEYBOARD KEYBOARD

INPUT/
CONTROLLER OUTPUT

POR'T

I——-——l-—

US 8,156,346 B2

Sheet 1 of 12

Apr. 10, 2012

U.S. Patent

OLT™ aquvodaxa
ooc ooﬂxfg —
| - LYO0d I B
G SN EarTTouinos
YA 4 m m QUVOYA A JHVOdAHdM
0€¢ 0¥ ¢ w m
i LINO | A T T
| Avidsia || | p———m-—-— e
| 3LviS || HYATIOWINOD ot
|-ALTHNOES| || i J
m ' m w HHAOJON4H HAAIADHY “ |
EIOHEAETT T viva VIVA || m
w T T T] s
01¥ | ' ILINO HONISSADOHd
L TVHINAD
00¢ 007 0 “r

007V

["DId

U.S. Patent Apr. 10, 2012 Sheet 2 of 12 US 8,156,346 B2

Fl1G. 2

5100

ACTIVATE APPLICATION PROGRAM

CHANGE VALUE OF KEYBOARD INTERRUPT
VECTOR NUMBER AND REGISTER ADDRESS L ~S110

OF SECURE INPUT INTERRUPT SERVICE
ROUTINE AT SPECIFIC LOCATION

i D e e S S e e

y

GENERATE INTERRUPT BY L c1920
KEYBOARD INPUT DEVICE

DRIVE SECURE INPUT DEVICE DRIVER BY Y
REFERRING TO ADDRESS OF DATA
RECEIVER PREVIOUSLY REGISTERED IN IDT |

P Y

Rt e Ty e ———

ENCODER ENCODES RECEIVED DATA -~ $140

SECURE INPUT UNIT DECODES ENCODED DATA | o=
AND DELIVERS DATA TO APPLICATION PROGRAM |

—_—

U.S. Patent Apr. 10, 2012 Sheet 3 of 12 US 8,156,346 B2

FIG. 3

PYVOID

MmMaploSpace (

: IN PHYSICAL_ADDRESS PhysicalAddress,
IN ULONG NumberOfBytes,
IN MEMORY_CACHING_TYPE Cache'lvpe

(a)

PVOID
- MmUnmaploSpaced

IN PVOID BaseAddress,
IN SIZE_T NumberOfByvies

(b)

US 8,156,346 B2

Sheet 4 of 12

Apr. 10, 2012

U.S. Patent

_ I0129A

AIJAITA(]

0

3

INS=010

01 11

| 4

— H#INS/EENITLNI

#LNOINS=T |
sng DIdV=0
11 SN

¢l &1 vI 41 91 Ll

bk

Tmmz

D14

US 8,156,346 B2

Sheet Sof 12

Apr. 10, 2012

U.S. Patent

ATNAONW HNISSHOOHI | o
WALSAS ONTLVIAJO WALSAS NOLLOA.LOYHd V.LV{

mf E4mQOmmE.

m

00S

~ LINDO LOIdNT HHNODHS

067 |

LIOAANT HH1DHS

- :

| MAATADAY VLV =

I] G|

| HEnnN

AIGV.L HOLATHOSEA
LJINYYHINI

SHAGWNON

JAADONVHD

U.S. Patent Apr. 10, 2012 Sheet 6 of 12 US 8,156,346 B2

FI1G. 6

START)
.]
. L | T . " v—/}l

i

STORE ADDRESS VALUE G200
OF DATA RECEIVER

READ ADDRESS VALUE OF INPUT | . <919
INTERRUPT SERVICE ROUTINE

™™ ™™ ™ ™™ ™ ™ T i e e

__—"COMPARE ~—{__

—ADDRESS VALUES ARE

=~ ADDRESS VALUES
S THE SAME? =

- YEDS

' NO

B
]
4
]
y Y Rl Al O ' : TN N v N O e T
REPLACE ADDRESS VAL UE OF INPUT |
. . kN - - e T NN W N el . - ; » . \
:
- Ak R - i w ! vy e ~y - T FEN T PR, e w g E R TP] ng{j

INTERRUPT SERVICE ROUTINE WITH o040
: . i S [’ . E
‘K]
ADDRESS VALUE OF DATA RECEIVER |
' ' o ’_ : - 1 ' a y
i : N R L W 1 Jf A S] . P X £ ot R T / A ';:'
]
]
e]

r HawrMer r M M r M ear

RN, Y™ L R 'l 5 AP R B ENENEN NN _.t-n._h_ *quﬁ
GENERATE ALERT MESSAGE P D &

.l wifn sk wifa ik s ek s Eak uis dabh ofal Gl Eal walis al il Hal maia KAl nala sk s Sk s ek ofs sk ofs sk ofial Eak Al Gaie Sl ala Bl s ek b Kk ofial Eak sl A s ek okl Sab Mak LEa sEak A

L TUVMONYH
OLT 1 QuvOodAay

WVHMHOHd NOTLLVOI1ddV | 00€

US 8,156,346 B2

OO L

o o o o G L L L R L L L

1O

WVHDHOUd | ~ I Ladrno |

SMOV.LLY ONPT10d 1 /10dN] FE HIORLNOD
QUVOFATN | QUVOYATN

.Il.Il.Il.l...l.l.l.l.l.l.l.l.l.‘l.‘l.l.‘l.‘l.l.‘l.‘l.l.‘l‘l‘lh- FEFFFFrFrFrFrFrFrFrFrFrrFrFrrrrrrrrrryEErE;m

""""""""""""""""""""""""""""""

JINI)
AV iidSid
JLV.LS
- ALPHI10dS

NOLLYIWHOANI

M TTOMINOD
YOLDIA ”

A & ed LN

Sheet 7 of 12

)
| g
| !
t;t;tFtFtFtFtFt1tttFt;t$ — - -
: ¢ I &
1 _
K FFFFFFrFFrFrFrFrFrFrFrFrFrFrFrF rrrrrrrrrrrrrrrrrrrrrrer — .II% I‘

mu ATdd D1 ﬁmﬁ
JLEOWANT SIS

T T e e R A i L T e L T B ol e BT o o T T

L, L, LW LT WL, LT WL, L O L, L MW, LY AW, L, W, LW L, LW LWL WL, LWL N, LWL R, b R, WL

M |ET ST TETR OLTET WSt T MR

Apr. 10, 2012

hwimmfddﬁmm
AV N

00¢ LLIND

Lzﬂ‘“wuﬂu“u#u“u““HuH\-I"n.l-l-ﬁ-l-!..-l-hl-f.l-l.-l-l.-l.-pl-ll-l-..-l-l'l-l-Hu“““““““h‘-‘“*‘uﬂu-ﬂI-I--I-II-I-.-I-II-I..-I-Ia"l-l-u““‘“*‘u*uﬂu*uﬂuﬂuuuﬂz‘J

L Dld

U.S. Patent

e HUVMAOHVH
DL (IMVO9ALIM

“...1 = - - = L - o .

WY dDOHA NOLLY O idd vy e Hi

OOT

US 8,156,346 B2

LHOA
L LI
JLdN]T
GHVYOUAM

£

‘\..‘..—11 F

01 071

P

L HATIOWLNOD
(HVOHATM

¥
-

re-eEFeErF FrerF e P FFFF PR FEFFEFFEF_ FF_F FE_F_ I BT ‘

LIND m
AV IS | |
ALYLS | |
~ALTHADHS] |

JTIOHLNGOD
LdfiidHdd LN

= kv

NOTLVIKHOANT
HO1LOHA

A T, T A AT Tl AT Tae W G A WA A TE e s WA A Ta. A O

e e e

i
]
i
a
i
i
d
a
i
i
i
i
f]
i
i
i
L
-
i
s
4
a
i
a
]
a
d
1
a
i
i
i
a
i
a
A
A
i
r |
.
]
A
a
i
L
i]
i
A
a
i
4
A
i
A
i
i
d
A
]
a
i
i
d
a
i
a
A
A
i
a
1
]
]
i
r |
i

ik
-

Sheet 8 of 12

L] |-l |-l |-l |-l |-l |-l |l |-l |-l ll |-l |-l ll |-l |-l I-l |-l |-l |-l |-l |-l |-l |-l |-I |-l |-l |l |-l |-l I-l |-l |-l ll |-l |-l|-l |-l |-l |-l |-l |-I |-l |-l |l |-l |-l ll |-l |-l ll |-l Lll-l |-l |-l |-l |-l -

MAATMC ID1AIA |
LOdNT AHN0AS

MAGODH

e
:i

Apr. 10, 2012
}
b
L
£
=4
r
b
E
t
“}
b
b
r
i
¢
b
L
b
'
i
b

il ol ol ol i ol kol ol N al al al al al al al al wl ol ol kol ol al al al al al al al ala a al al aN al al aak o ak)

WVYHIOHd ANY

S8 wld

U.S. Patent

aFm e Fa' "dTa el oA AT, w el A AT, Al A A WA AP A A WA Pt T T A A e A AT AT e AT At WAl Fa Taltl A AT W aF A A A aaE AT T W AT A wta Tt TaTL ata A e el

o

L-—l— F I T R e e e el A R R T R B T R B I TR i e R R R T T T R T R T T I T e B R T e e e e el T R R R B T R R R e TR R i TR e e T R e e

U.S. Patent Apr. 10, 2012 Sheet 9 of 12 US 8,156,346 B2

NAME OF -
| REGISTERS PURPOSE OF REGISTERS

DRO ~ DR3 Breakpoint Address Register

PR AR, el el el Y S B S L T S S B L P AT P o e S A AT - PP S L AT it oA W o T WY A TR

DR Debug Control Register

U.S. Patent Apr. 10, 2012 Sheet 10 of 12 US 8,156,346 B2

FI1G. 10

31 3029 2827 26 25 24 232221 2019 18171615 1413121110 9 8 7 6 5 4 3 2 1 0O

LEN R/W!uEN R/W|LEN|R/W|LEN|R/W
31 3| 2 2J1 11 o | o [PV

=)

0 0 1 DRY

Tyl
T
o

31 16 1014131211109 8 7 6 5 4 3 2 1 ¢

B

B o
Reserved (set to 1) lelpl0 T T L 1110

B|B|B|B
3121110 DR6
|

wp—— r X PO

- W

31 O

Reserved DR5

arixrm T TR S N T Likiak Wik LT TN

31 ()

Reserved DRR4

L'u“mwm PP O 0% il oLl i 2 el - L P TN TR T Y I O Y Sl L Tl okl ™ S o e ' o S LY T T PR Wk o NI AP e i P, % ¥

3l

e Py S el L o i - ik = . Cacxia L WAL

Breakpoint 3 Linear Address DR3

R O Ll T Tl wi Bk it - TP T I TR B Tl Lk A T S T T, T T L ST Bkl SR BT T P F i1 W A e e el b D

31 0

Breakpoint 2 Linear Address DRZ

N B B Ll T Tl aP — - e PRI IR Y NN NPT N sl Wi’ Lol s =) a1 J

31 0

TN I T I T T P TS S e ey e, m riasr

Breakpoint 1 Linear Address DR1

31

e e A L BT I NN I O T il il I TN - T il L Y T PN P T T N S sl e

Breakpoint 0 Linear Address ' DRO

U.S. Patent Apr. 10, 2012 Sheet 11 of 12 US 8,156,346 B2

FIG. 11

- FIELD ACTION CONDITION FOR EXCEPTION |
| VALUE HANDLING OCCURRENCE

00 Break on instruction execution only

01 Break on data writes only

10 Break on I/0 reads or writes

Break on data reads or writes

11 but not instruction fetches

FlG. 12

FIELD MONITORING SCOPE AT EXCEPTION
VALUE HANDLING OCCURRENCE LOCATION |

R

00 1 bvte length

I 01 2 bytes length 5

I 10 Undefined

11 4 bytes length

U.S. Patent Apr. 10, 2012 Sheet 12 of 12 US 8,156,346 B2

FlG. 13

REGISTER SECURITY EXCEPTION HANDLER | gaqp
__IN SPECIFIC VECTOR NUMBER OF IDT |

SET PORTS 60H AND 64H OF KEYBOARD - s30s
INPUT/OUTPUT PORT IN DEBUG REGISTERS |

SET GD BIT IN DEBUG REGISTER -~ S$310

ACCESS OCCURS |--s315

INVOKE PREVIOUSLY REGISTERED 5220

s e =t T T g e

ANALYZE DEBUG REGISTER DR6 J(D329
8330

1S DEBUG L
DR6 AS’%UA TED =55

5350

__\ y
TRACE PROGRAM
ACCESSING |
KEYBOARD INPUT/ |

;OUTPU T __ R

e

"TRACE PROGRAM
ACCESSING DEBUG_

. BLOCK ACCESS

~ CHANGE PORT
TO DEBUG REGISTER|

ACCESS VALUE INTO|
_ANOTHER VALUE

US 8,156,346 B2

1

KEYBOARD-INPUT
INFORMATION-SECURITY APPARATUS AND
METHOD

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims prionity to and the benefit of
Korean Patent Application No. 10-2009-0004782, filed on
Jan. 20, 2009, the disclosure of which 1s incorporated herein
by reference 1n 1ts entirety.

BACKGROUND

Field of the Invention

1. Field of the Invention

The present invention relates to a keyboard-input informa-
tion-security apparatus and method, and particularly, to a
keyboard-input information-security apparatus and method
that are capable of effectively blocking keyboard-input infor-
mation irom being taken by hacking with an information-
intrusion tool while the keyboard-input information 1s being
processed, and particularly, blocking a port-polling attack or
an action trying to change a setting 1n a debug register.

2. Discussion of Related Art

As computers and the Internet have been recently develop-
ing, important online financial transactions such as Internet
banking or securities trading are conducted by web browsers
or a client software such as home trading system (HTS).
However, personal data can be compromised by spyware or a
key-stroke logger which intercept user data.

There are schemes to prevent the above-mentioned hack-
ing attempts: antivirus, anti-spyware and personal firewall.
However, these tools are not eflective 1n dealing with fast-
evolving variants ol malicious programs.

To solve this problem, schemes by which a system receives
input data and safely delivers the input data to a target appli-
cation program to prevent malicious programs from inter-
cepting the input data have been 1ntroduced.

Examples of such schemes include following references:
Korean Patent Laid-open Publication No. 2002-48313
entitled “Method For Preventing Keyboard Hacking,” Korean
Patent No. 0378586 entitled “Ant1 Keylog Method of ActiveX
Base and Equipment Thereot,” Korean Patent Laid-open Pub-
lication No. 2004-92101 entitled “Apparatus And Method For
Hacking Protection Using Virtual Data Transmission,”
Korean Patent Laid-open Publication No. 2004-66237
entitled “Method For Protecting From Keystroke Logging,”
and Korean Patent No. 04477777 entitled “Hacking Prevention
of Key Stroke Data.”

Korean Patent No. 0378586 1s a representative example.
This patent discloses a scheme for intercepting window-1in-
put-message information and protecting mput data on the
same level as an application program. However, the security
capability of this scheme may be neutralized by use of a filter
driver for intercepting input data earlier than a security-de-
vice driver or by use of a hacking program for receiving input
data in a lower step such as an mterrupt-service routine.

A computer-security system using a secure input-device
driver to solve this problem 1s disclosed in Korean Patent
Laid-open Publication No. 2003-36276. In the system, data
input via a data-input device 1s directly encoded by the secure
input-device driver, not by an operating system’s 1nput-de-
vice driver, thereby essentially preventing hacking programs
from 1illegally acquiring the data mput via the data-input
device.

10

15

20

25

30

35

40

45

50

55

60

65

2

However, the system has technical vulnerability. For
example, the system may be incapacitated by a method for
registering an address of a security interrupt-service routine
in an interrupt-descriptor table, for example, through a secu-
rity interrupt-service-routine registration method, and then
registering the address as an interrupt-service-routine address
for 1llegal data acquisition.

A more recent 1ssue ncludes a port-polling attack, which
suppresses a keyboard interrupt and then reads a port. Even
when a key 1s 1input, an interrupt 1s not generated 1n a central
processing unit (CPU) due to the port-polling attack. That 1s,
a keyboard-security function registered 1in an interrupt-de-
scriptor table 1s not invoked.

Since a debug register set to defend against a PS/2(PS-2
keyboard) port-polling attack may be accessed and changed
by anyone, functionality of maintaining/protecting a set con-
figuration 1s required. That 1s, there 1s a need for a security
solution capable of blocking an action trying to change a
setting 1n a debug register while keyboard security 1s active.

Thus, there 1s a need for a system capable of overcoming,
shortcomings of the scheme disclosed in Korean Patent Laid-
open Publication No. 2003-36276 to maintain effective secu-

rity in implementing a computer-security apparatus, such as
using the scheme described in the present invention.

SUMMARY OF THE INVENTION

The present invention 1s directed to a keyboard-1nput infor-
mation-security apparatus and method capable of effectively
blocking keyboard-input information from being taken by
hacking with an information-intrusion tool while the key-
board-input information 1s being processed, and particularly,
blocking a port-polling attack or an action trying to change a
setting 1n a debug register.

According to an aspect of the present invention, there 1s
provided a keyboard-input information security apparatus
including: an iterrupt-descriptor table for storing a list of
addresses of functions for handling interrupts, and storing an
address of a secure input interrupt-service routine at a specific
location 1n an address area for an operating-system input
interrupt-service routine supported by an operating system; a
secure mput-device driver for changing keyboard-interrupt-
vector information to mvoke the address of the secure input
interrupt-service routine when a keyboard interrupt 1s gener-
ated by a keyboard-input device, and receiving and encoding
data input via the keyboard-input device based on the address
of the secure mput interrupt-service routine; and a secure
input unit for delivering the encoded data from the secure
input-device driver to an application program.

The secure input-device driver may include: a data recerver
for receiving the data input from the keyboard-input device
when the keyboard interrupt 1s generated by the keyboard-
input device; an encoder for encoding the data received by the
data receiver; a monitor for monitoring a change in the
address of the secure mput interrupt-service routine that 1s
registered 1n the mterrupt-descriptor table; and a controller
for changing the keyboard-interrupt-vector information to
invoke the address of the secure iput interrupt-service rou-
tine when the keyboard interrupt 1s generated by the key-
board-input device, and controlling operation of the secure
iput-device driver.

The address of the secure mput interrupt-service routine
may be an address of the data recerver.

The monitor may momnitor a change in the keyboard-inter-
rupt-vector information and access to a keyboard input/output
port.

US 8,156,346 B2

3

The secure mput-device driver may set a GD (thirteenth)
bit of a debug register DR7 among debug registers DRO to
DR7 to a specific value and set a keyboard input/output port in
at least one of registers DR0 to DR3 1n order to defend against
a port-polling attack, and when a security-exception handler
1s registered 1n a vector number of the interrupt-descriptor
table corresponding to the specific value and the debug reg-
1ster 1s accessed, an exception may occur and the registered
security-exception handler may be invoked, and the security-
exception handler may analyze the debug register DR6
among the debug registers, determine whether an accessing
program 1s an authorized program or an unauthorized pro-
gram depending on association with the GD bit, and control to
permit or block the access depending on the determination
result.

When bit BD (the thirteenth bit) of the debug register DR 6
among the debug registers has been set to the specific value as
a result of analyzing the register DR 6, the security-exception
handler may trace a program accessing the debug register
back to determine whether the accessing program 1s an autho-
rized program or an unauthorized program, and block the
access to the debug register when the accessing program 1s an
unauthorized program, and when at least one of bits B0 to B3
(bit zero to bit three) of the debug register DR 6 has been set to
the specific value, the security-exception handler may trace a
program accessing a keyboard mput/output port back to
determine whether the accessing program 1s an authorized
program or an unauthorized program, and control to change a
port-access value into another value when the accessing pro-
gram 1s an unauthorized program.

The specific value may be “1”” and the security-exception
handler may be set in vector 1 of the interrupt-descriptor
table.

According to another aspect of the present invention, there
1s provided a keyboard-input information-security method
including: storing an address of a secure input interrupt-
service routine at a specific location 1n an address area for an
operating-system input interrupt-service routine supported
by an operating system 1n an interrupt-descriptor table that
stores a list of addresses of functions for handling interrupts;
and changing keyboard-interrupt-vector information to
invoke the address of the secure input interrupt-service rou-
tine when a keyboard interrupt 1s generated by a keyboard-
input device, and executing the secure mnput interrupt-service
routine based on the address of the secure mput interrupt-
service routine previously registered in the interrupt-descrip-
tor table, wherein the secure mnput interrupt-service routine
comprises fetching and encoding data input by the keyboard-
iput device.

The method may further include monitoring a change in
the address of the secure input interrupt-service routine reg-
istered previously in the interrupt-descriptor table.

The method may further include decoding the encoded
data and transmitting the decoded data to an application pro-
gram.

The method may further include monitoring a change in
the keyboard-interrupt-vector mformation and access to a
keyboard mput/output port.

The method may further include setting a GD (thirteenth)
bit of a debug register DR7 among debug registers DRO to
DR to a specific value, setting a keyboard input/output port
in at least one of registers DRO to DR3, and registering a
security-exception handler 1n a vector number of the inter-
rupt-descriptor table corresponding to the specific value, in
order to defend against a port-polling attack, wherein an
exception may occur and the registered security-exception
handler may be mnvoked when the debug register 1s accessed,

10

15

20

25

30

35

40

45

50

55

60

65

4

and wherein the security-exception handler may analyze the
debug register DR6 among the debug registers, determine

whether an accessing program 1s an authorized program or an
unauthorized program depending on association with the GD
bit, and permait or block the access depending on the determi-
nation result.

When bit BD (the thirteenth bit) of the debug register DR6
among the debug registers has been set to the specific value as
a result of analyzing the register DR 6, the security-exception
handler may trace a program accessing the debug register
back to determine whether the accessing program 1s an autho-
rized program or an unauthorized program, and block the
access to the debug register when the accessing program 1s an
unauthorized program, and when at least one of bits B0 to B3
(bit zero to bit three) ol the debug register DR 6 has been set to
the specific value, the security-exception handler may trace a
program accessing a keyboard input/output port back to
determine whether the accessing program 1s an authorized
program or an unauthorized program, and change a port
access value 1nto another value when the accessing program
1s an unauthorized program.

The specific value may be “1” and the security-exception
handler may be set 1n vector 1 of the interrupt-descriptor
table.

According to a still another aspect of the present invention,
there 1s provided a computer-readable recording medium
having a program for performing the above method recorded
thereon.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other objects, features and advantages ol the
present 1mvention will become more apparent to those of
ordinary skill 1n the art by describing in detail exemplary
embodiments thereol with reference to the accompanying
drawings, 1n which:

FIG. 1 1s a schematic diagram illustrating a keyboard-input
information-security apparatus according to an exemplary
embodiment of the present invention;

FIG. 2 1s a flowchart illustrating a method for protecting
data mput via a keyboard-input device 1n a keyboard-input
information-security apparatus of the present invention;

FIG. 3 1illustrates an example of functions for mapping a
physical address of a register to a virtual address in order to
access a redirection table of an iterrupt controller, 1n which
FIG. 3a illustrates a function used upon mapping and FI1G. 35
illustrates a function used upon unmapping;

FIG. 4 illustrates an entry structure of a redirection table
that 1s accessed through an IOWIN register;

FIG. 5 1s a data-flow diagram for explaining a method for
protecting data mput via a keyboard-input device according
to an exemplary embodiment of the present invention;

FIG. 6 1s a tlowchart 1llustrating a monitoring operation of
a monitor according to an exemplary embodiment of the
present invention;

FIG. 7 1s a conceptual diagram for explaining security
deteriorated by port scanning the keyboard input/output port;

FIG. 8 1s a conceptual diagram for explaining security
deteriorated by changing a set value 1n a debug register;

FIG. 9 1s a table showing purposes of the debug registers;

FIG. 10 illustrates configurations of the debug registers;

FIG. 11 illustrates a read/write field defined 1n a debug
register DR7;

FIG. 12 illustrates a length field defined 1n the debug reg-
1ster DR7; and

FIG. 13 1s a tflowchart illustrating a process of solving a
problem of security deterioration due to a polling attack 1n a

US 8,156,346 B2

S

keyboard-input information-security apparatus according to
an exemplary embodiment of the present invention.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

Exemplary embodiments of the present invention will be
described in detail below with reference to the accompanying
drawings. While the present invention 1s shown and described
in connection with exemplary embodiments thereof, it will be
apparent to those skilled in the art that various modifications
can be made without departing from the spirit and scope of the
ivention.

FIG. 1 1s a schematic diagram illustrating a keyboard-input
information-security apparatus according to an exemplary
embodiment of the present invention.

Referring to FI1G. 1, the keyboard-input information-secu-
rity apparatus according to an exemplary embodiment of the
present invention 1s intended to protect data mput from a
keyboard input device 100, and includes an interrupt-descrip-
tor table (IDT) 200, a secure input-device driver 300, and a
secure mnput unit 400.

Here, the keyboard-input device 100 1s a user-interface
device widely used 1n a personal computer (PC) for receiving
keyboard data, but 1s not limited thereto. For example, the
keyboard-input device 100 may be a user-interface device for
a mouse or a joystick.

This keyboard-input device 100 includes keyboard hard-
ware 110, a keyboard controller 120, a keyboard input/output
port 130, an interrupt controller 140, and a central processing
unit (CPU) 150.

Operation of the keyboard-input device 100 having such a
configuration will now be described. First, when any key of
the keyboard hardware 110 1s pressed (a key-press event), an
clectric signal 1s generated and delivered to an 8042 chip set
on a main board. Since all keys of the keyboard hardware 110
are disposed on intersections of a matrix structure, a pressed
key can be recognized by checking horizontal and vertical
lines on which a change in current occurs.

The keyboard controller 120 for controlling the 8042 chip
set writes keyboard-input information, as keyboard-scan
code, to the bidirectional keyboard input/output port 130,
which 1s used to deliver the keyboard-input information to the
CPU 150 or recerve a hardware-control instruction delivered
from the CPU 150, and generates an interrupt to the CPU 150.

The bidirectional keyboard mput/output port 130 includes
ports 60/ and 64/. The port 60/ 1s used to process the key-
board-input information and the hardware-control instruction
and the port 64/ 1s used to manage a state of the port 60/ and
1ssue an instruction for the port 604%.

Meanwhile, the interrupt refers to temporarily halting any
ongoing process and causing the CPU 150 to perform task
processing.

That 1s, when recerving the electric signal generated by
physical keyboard input, the keyboard controller 120 requests
the mterrupt controller 140, which controls the 82359 chip set,
to generate an 1nterrupt.

The interrupt controller 140 informs the CPU 150 of gen-
eration of the interrupt (Interrupt Request, IRQ), and the CPU
150 reads an interrupt-vector table, 1.¢., the interrupt-descrip-
tor table 200, from a memory and obtains an address value (or
a value of a vector number) corresponding to the generated
interrupt 1n order to mvoke a corresponding interrupt-han-
dling function (1.e., an interrupt handler).

This address value 1s a value of an address at which 1s
stored a function that 1s invoked when the interrupt 1s gener-

ated. When the keyboard hardware 110 requests the CPU 150

10

15

20

25

30

35

40

45

50

55

60

65

6

to perform any computation or task, the CPU moves to the
address and performs the interrupt-handling function. The
interrupt-handling function recorded 1n the interrupt-descrip-
tor table 200 may be considered to be first performed in
connection with computation associated with the keyboard
hardware 110.

The iterrupt-descriptor table 200 stores a list of addresses
of functions for handling interrupts, and particularly, stores
an address of a secure mput iterrupt-service routine at a
specific location 1n an address area for an operating-system
input interrupt-service routine supported by an operating sys-
tem.

The interrupt-descriptor table 200 1s an area provided by
the operating system of the system for storing a list of
addresses of functions for handling external interrupts, inter-
nal interrupts, and exception handling. For example, the inter-
rupt-descriptor table 200 1s one 8-byte array 1n a memory
assigned for 256 interrupt-service routines. In this case, the
first 32 entries may be used for processor exception handling,
another 16 entries may be used for hardware interrupts (i.e.,
external interrupts), and the remainder may be used for soft
interrupts (1.e., internal iterrupts).

An address of the interrupt-descriptor table 200 1s stored 1n
a processor register called an “interrupt descriptor table reg-
ister.”” For details of a relationship between the interrupt-
descriptor table 200 and the interrupt-descriptor table regis-
ter, “IA-32 Intel Architecture Soiftware Developer’s Manual
Volume 3, System Programming Guide” (which 1s incorpo-
rated herein by reference) may be retferred to.

Meanwhile, when data 1s input via the keyboard-input
device 100, an interrupt 1s generated and an 1dentification
number for the keyboard-input device 100 1s generated. This
identification number 1s called an “interrupt vector.”” The
operating system uses the interrupt vector as an index to
discover an interrupt-service-routine address from the inter-
rupt-descriptor table 200 and execute an interrupt-service
routine that 1s a function created according to 1its purpose.

In this case, the secure mnput-device driver 300 according to
an exemplary embodiment of the present invention changes
keyboard-interrupt-vector information (e.g., a value of a vec-
tor number) stored 1n the interrupt controller 140 of the key-
board-mput device 100. An address of a secure input inter-
rupt-service routine executed by the secure input-device
driver 300 1s registered and stored at a specific location of an
iput interrupt-service routine address area supported by a
conventional operating system, 1.¢., a location corresponding
to the keyboard-interrupt-vector number changed by the
secure 1nput-device driver 300 in the interrupt-descriptor
table 200.

Accordingly, when the keyboard-input information-secu-
rity apparatus 1s 1n an activated state, according to an exem-
plary embodiment of the present invention, when data 1s input
to the keyboard-input device 100 and an interrupt i1s gener-
ated, the value of the keyboard-interrupt-vector number
(which 1s changed by the secure input-device driver 300) 1s
transmitted to the CPU 150. Through this process, the oper-
ating-system 1nput interrupt-service routine supported by the
operating system 1s not executed, but instead, the secure input
interrupt-service routine supported by the secure mput-de-
vice driver 300 1s executed.

The secure input-device driver 300 recerves the data viathe
keyboard-input device 100 based on the address of the secure
input interrupt-service routine previously registered in the
interrupt-descriptor table 200, encodes the data, and transmits
the encoded data to the secure input unit 400.

The secure mput unit 400 decodes the encoded data from
the secure input-device driver 300 1nto the original data, and

US 8,156,346 B2

7

delivers the decoded original data to an application program
500. When the data has been decoded, the secure input unit
400 displays an indication that decoding 1s completed. For
example, the secure mput unit 400 may indicate to a user
whether the security apparatus 1s operating normally using a
tray icon.

In the exemplary embodiment of the present invention, the
secure mput unit 400 decodes the encoded data 1into original
data and delivers the original data to the application program
500. However, 1n an actual implementation, the application
program 300 may perform decoding or a specific server may
perform decoding on encoded information delivered via the
Internet.

For example, there may be a variety of implementation
methods to meet a requirement of displaying a key value on a
screen for the application program 500. A key value of a
password may be displayed as “*” on the screen for the
application program 500.

The secure 1input-device driver 300 will now be described
in greater detail.

The secure input-device driver 300 includes a data receiver
310, a data encoder 320, and a controller 330. The secure
input-device driver 300 may further include a monitor 340, 1f
needed. The monitor 340 monitors a change 1n an address of
the data receiver 310 registered in the interrupt-descriptor
table 200, a change 1n the keyboard-interrupt-vector informa-
tion stored 1n the interrupt controller 140, or access to the
keyboard input/output port 130. A function and role of the
monitor 340 will be described 1n detail later.

When an interrupt 1s generated by the keyboard-input
device 100, the data recerver 310 fetches the data input via the
keyboard-input device 100 and transmuits the data to the data
encoder 320.

The data encoder 320 encodes the data received from the
data recerver 310 and transmits the encoded data to the secure
input unit 400. That 1s, since the data input via the keyboard-
input device 100 1s encoded directly by the secure nput-
device driver 300, not by the operating-system’s input-device
driver, and transmitted to the secure input unit 400, a hacking
program fails to acquire the original input data or acquires the
previously encoded data from the data encoder 320.

Preferably, the data 1s encoded using a 128-bit encryption
scheme using a Rijndael algorithm that 1s a standard algo-
rithm of the advanced encryption standard (AES) 1n the U.S.
The Riyjndael algorithm has excellent performance in security,
processing speed, and memory utilization. This algorithm 1s
merely one example, and 1t will be easily appreciated that any
conventional excellent encryption algorithm may be used.

The controller 330 may be configured to control the moni-
tor 340 and the data encoder 320 and may also control the
decoder 410 of the secure-input unit 400. In an actual imple-
mentation, the secure mput unit 400 may separately include
the controller 330.

That 1s, the controller 330 controls general operation of the
secure mput-device driver 300, and particularly, functions to
change the value of the keyboard-interrupt-vector number
stored 1n the interrupt controller 140 of the keyboard input
device 100, so that the address of the secure input interrupt-
service routine previously registered in the interrupt-descrip-
tor table 200 1s imnvoked when a keyboard interrupt 1s gener-
ated by the keyboard-input device 100.

The secure mput unit 400 1ncludes a decoder 410 for
decoding the encoded data from the secure input-device
driver 300 1into original data, and a security-state display unit
420 for indicating that the data has been decoded and display-
ing an indication as to whether the security apparatus 1s oper-
ating normally.

5

10

15

20

25

30

35

40

45

50

55

60

65

8

The security-state display unit 420 1s configured to operate
when the decoder 410 delivers the decoded data to the appli-
cation program 500. For example, an 1mage of a tray 1con or
an 1con included 1n the application program may be changed
to 1ndicate to the user that the input data 1s under protection.

Operation of the keyboard-security apparatus according to
an exemplary embodiment of the present invention will now
be briefly described with reference to FIGS. 2 and 5. FIG. 2 1s
a flowchart 1llustrating a method for protecting data input via
a keyboard-input device 1n the keyboard-input information-
security apparatus of the present invention. It 1s noted that the
method 1s performed by the controller 330 of the secure
input-device driver 300, unless mentioned otherwise.

Retferring to FIG. 2, after the application program 500 1s
activated (5100), the secure input-device driver 300 analyzes
the keyboard-interrupt-vector information stored 1n the inter-
rupt controller 140, changes a value of the keyboard-inter-
rupt-vector number into a previously set value, and registers
an address of a secure input interrupt-service routine, which is
an address of the data receiver 310, 1n an address area for an
operating-system input interrupt-service routine of the inter-
rupt-descriptor table 200 corresponding to the changed value
of the keyboard-interrupt-vector number (S110).

The value of the keyboard-interrupt-vector number of the
interrupt controller 140 may be changed as follows:

The mterrupt controller 140 1s an on-board chip, 1.e., an 1O
advanced programmable interrupt controller (I0-APIC) for
collectively managing interrupts for various hardware con-
nected to the system. The mterrupt controller 140 manages
interrupts of a variety of devices, such as a mouse, an ISA, and
a PCI, as well as the keyboard, using a redirection table
(having a total of 24 entries, each consisting of 64 bits).

Respective interrupt-handling configurations for a variety
of devices managed by the 10-APIC are stored in the redirec-
tion table. The value of the keyboard-interrupt-vector number
to be delivered when the keyboard interrupt 1s generated to the
CPU 150 1s also stored 1n the redirection table.

The redirection table may be accessed via two registers,
1.e., an IOREGSEL register (having physical address
OxFECOxy00; a basic address OxFEC00000) and an IOWIN
register (having physical address OxFECOxyl10; a basic
address OxFEC00010).

Meanwhile, the physical addresses of the IOREGSEL and
IOWIN registers should be mapped to corresponding virtual
addresses 1n order to access the registers. Functions as shown
in FIG. 3 are used to map the physical address to the virtual
address.

FIG. 3 illustrates functions for mapping the physical
address of the register to the virtual address 1n order to access
the redirection table of the interrupt controller. FIG. 3a illus-
trates a function used upon mapping and FIG. 35 illustrates a
function used upon unmapping.

The IOREGSEL (I/0 register select) register serves as an
indicator for designating an index of an interrupt device to be
accessed among a variety of interrupt devices. Accordingly,
information on an interrupt device selected by the indicator
can be accessed via the IOWIN register.

For example, when an index of the keyboard hardware 110
1s set through the IOREGSEL register, an entry of the redi-
rection table for the keyboard may be referred to through the
IOWIN register. FIG. 4 1llustrates an entry structure of the
redirection table that 1s accessed through the IOWIN register.
Each entry consists of 64 bits, and the lower 32 bits of the
entry are shown 1n FIG. 4.

As shown 1 FIG. 4, the value of the keyboard-interrupt-
vector number 1s stored 1n lower bits 0 to 7. This value of the
keyboard-interrupt-vector number may be changed to a pre-

US 8,156,346 B2

9

viously set value to change the value of the keyboard-inter-
rupt-vector number that the interrupt controller 140 delivers

to the CPU 150.

When an interrupt i1s generated by the keyboard-input
device 100 (S120), the operating system drives the data
receiver 310 of the secure imnput-device driver 300 by referring,
to the address of the data recerver 310 previously registered in
the interrupt-descriptor table 200 based on the changed value
(S130).

That 1s, when the interrupt 1s generated by the keyboard-
iput device 100, the operating system executes the data
receiver 310, which 1s the security interrupt-service routine,
instead of executing an 1nterrupt-service routine of a typical
operating-system input-device driver, and recerves data input
via the keyboard-input device 100.

The data encoder 320 then encodes the data received from
the datareceiver 310 (S140) and transmits the encoded data to
the secure-input unit 400. The secure-input unit 400 decodes
the encoded data from the secure input-device driver 300 into
original data and delivers the original data to the application
program 500 (S150).

FIG. 35 15 a data-flow diagram for explaining a method for
protecting data input via the keyboard-input device according,
to an exemplary embodiment of the present invention. The
data input from the keyboard-input device 100 is processed
directly by the secure input interrupt-service routine for data
security, not by the operating-system input interrupt-service
routine.

In other words, 1n the keyboard-input information-security
apparatus according to an exemplary embodiment of the
present invention, a data-protection system first operates ear-
lier than an operating-system processing module. This makes
it possible to prevent hacking programs from 1llegally acquir-
ing the data mput via the keyboard-input device 100 even
when a number of such hacking programs are installed on an
upper level.

A role of the monitor 340 (see FIG. 1) 1n the keyboard-
input mnformation-security apparatus according to an exems-
plary embodiment of the present immvention will now be
described 1n greater detail. The monitor 340 1s an optional
component for reinforcing security. The monitor 340 moni-
tors a change 1n the address of the data receiver 310 that 1s
previously registered in the interrupt-descriptor table 200,
and examines integrity ol the security interrupt-service rou-
tine.

FI1G. 6 1s a flowchart 1llustrating a monitoring operation of
the monitor according to an exemplary embodiment of the
present invention. In FIG. 1, a method by which the monitor
340 monitors a change 1n the address of the data recerver 310
previously registered 1n the interrupt-descriptor table 200
method 1s illustrated.

Referring to FIGS. 1 and 6, the monitor 340 stores the
address value of the data recerver 310 1n advance (5200) and
reads the address value from the input interrupt-service rou-
tine area of the interrupt-descriptor table 200 (S210).

The momitor 340 then compares the previously stored
address value of the data recerver 310 with the mmput interrupt-
service-routine address value (S220). When the two address
values are the same, the monitor 340 repeatedly performs
steps S210 and S220. However, when the two address values
difter, which means that the address value of the data recerver
310 registered 1n the interrupt-descriptor table 200 1s 1llegally
changed, for example, by a hacking program, the monitor 340
replaces the changed address in the input iterrupt-service-
routine area of the imterrupt-descriptor table 200 with the

address value of the data receiver 310 (S230).

10

15

20

25

30

35

40

45

50

55

60

65

10

The monitor 340 notifies the controller 330 of the fact. The
controller 330 then displays a predetermined alert message on
a screen of a user terminal to imform the user of the fact
(5240).

In addition, the monitor 340 may monitor a change in the
keyboard-interrupt-vector information stored 1n the interrupt
controller 140 of the keyboard-input device 100, and may
monitor access to the keyboard mput/output port 130 1n the
manner of FIG. 6.

A method for further reinforcing security in addition to
changing the value of the keyboard-interrupt-vector number
and registering the security interrupt-service routine in the
address area of the interrupt-descriptor table corresponding to
the changed keyboard-interrupt-vector number, as described
above, will now be described 1n detail.

FIG. 7 1s a conceptual diagram for explaining security
deteriorated by port scanning the keyboard input/output port.
A security solution to data acquisition using port scanning,
which 1s a method for confirming mnput data by iteratively
reading a port 60/ for input/output (I/O) of a keyboard or a
mouse through a port-polling attack, e.g., port scanning, 1s
required.

FIG. 8 1s a conceptual diagram for explaining security
deteriorated by changing a set value 1n the debug register. The
value of the debug register set to defend against a PS/2 port-
polling attack may be easily changed by anyone. Accordingly,
a security solution for preventing anyone from accessing and
changing the debug register with the keyboard security being
active 1s required.

The debug register will first be described in detail. “Debug
exception” refers to an error generated during program execu-
tion. Processing such an error and preventing abnormal pro-
gram termination 1s called exception handling.

For debug-exception handling, a determination 1s made as
to whether debug-exception handling 1s performed, and an
object and scope of debug-exception handling are defined.
The determination as to whether debug-exception handling 1s
performed 1s made and the object and scope of debug-excep-
tion handling are defined by adjusting field values of specific
control and debug registers.

The control registers include fields (e.g., a tlag or a data
field) for controlling operation on a system level. The control
registers determine the nature of an ongoing task or an opera-
tional environment and include control registers CR0 to CR4.
The determination as to whether debug-exception handling 1s
performed may be made by setting “CR4 BIT 3=SET"".

Meanwhile, the object and scope of debug-exception han-
dling are defined by adjusting field values of debug registers
for setting a debug-exception-occurrence breakpoint and a
debug-exception-occurrence condition, such as debug regis-
ters DR0 to DR7. In general, the debug-exception-occurrence
breakpoint refers to a location where a system developer
desires to halt an ongoing program and recognize a state of a
memory or an input/output port.

FIG. 9 1s a table showing purposes of the debug registers,
and FIG. 10 illustrates configurations of the debug registers.
The debug-exception-handling object 1s set in the debug reg-
1sters DRO to DR4, and the debug-exception-handling condi-
tion 1s set by adjusting a read/write field and a length field in
DR7. The read/write field defines an action condition for
exception-handling occurrence, and the length field 1s used to
set a monitoring scope 1n an exception-handling-occurrence
location.

FIG. 11 illustrates the read/write field defined 1n the debug,
register DR7, and FIG. 12 1llustrates the length field defined
in the debug register DR7. In order to define the debug-
exception-handling object and scope in the keyboard mput/

US 8,156,346 B2

11

output port 130 (see FIG. 1), the debug registers are set as
tollows: “DR0=00000060h (the debug-exception-handling

object 1s set to the keyboard port 60/)”, “DR1=00000064h
(the debug-exception-handling object 1s set to keyboard port
64/2)”, and “DR7=220007F0h (Read/Wnite2=3, Length2=0,
and read/write access to an object specified 1n DRO 1s con-

firmed from 2 bytes::Read/Wrnite3=3, Length3=0, and read/
write access to an object specified in DR1 1s confirmed from
2 bytes).” (Note that hexadecimal numbers are sometimes
denoted with a prefix of 0x and other times with a suffix of
h—tor example an 8-digit hexadecimal zero can be written

either Ox00000000 or 00000000h.)

Since the debug register set to defend against a PS/2 port-
polling attack as shown in FIGS. 7 and 8 may be accessed and
changed by anyone, 1n some embodiments functionality for
maintaining and protecting a set configuration is required. In
an exemplary embodiment of the present invention, a GD
(thirteenth) bit of the register DR7 1s used.

When the GD bit 1s set as a specific value (preferably, “17),
an exception occurs upon accessing the debug register DRO to
DR7, and a security-exception handler previously registered
in a specific vector number (preferably, vector 1) correspond-
ing to the specific value of the interrupt-descriptor table 200 1s
invoked.

The 1nvoked security-exception handler determines
whether an accessing program 1s an authorized program.
When the accessing program 1s an authorized program, the
invoked security-exception handler permits the access, and
otherwise, the security-exception handler blocks the access.

Meanwhile, when the security-exception handler regis-
tered previously 1n the specific vector number of the interrupt-
descriptor table 200 1s mnvoked, association with the GD bat
may be recognized based on information set in the debug
register DR6.

I1 bit BD (the thirteenth bit) of the debug register DR6 has
been set to a specific value (preferably, “17) as a result of
reading the debug register DR 6 when the function registered
previously 1n the specific vector number of the interrupt-
descriptor table 200, 1.e., the security-exception handler 1s
invoked, 1t means that someone has accessed the debug reg-
ister after the GD bit of the register DR7 has been set.

That 1s, when the GD bit of the register DR7 has been set to
“1” and the debug register 1s accessed through a MOV
instruction, bit BD of the debug register DR6 1s set to “1” and
an exception occurs.

On the other hand, if bit BO (b1t zero) of the debug register
DR6 has been set as a specific value (preferably, “17), 1t
means exception occurs due to the address set 1n the register
DRO. DRO to DR3 match with bits B0 to B3 (bit zero to bit
three) of the debug register DR6 1n one-to-one correspon-
dence, respectively.

That 1s, bits B0 to B3 of the debug register DR 6 indicate
whether a break 1s generated while which of linear addresses
set 1n the registers DR to DR3 1s being accessed. If a break
1s generated while the linear address set 1n the register DR0 1s
being accessed, bit B0 of the debug register DR6 1s set to “1.”

Meanwhile, since the port 60/ of the keyboard input/output
port 130 1s designated 1n the register DRO in an exemplary
embodiment of the present invention, the security-exception
handler registered 1n vector 1 of the interrupt-descriptor table
200 at a state 1n which bit BO (b1t zero) of the debug register
DR6 1s set 1s invoked when anyone accesses the port 60/,

FIG. 13 1s a flowchart 1llustrating a process of solving a
problem of security deterioration due to a polling attack 1n a
keyboard-input information-security apparatus according to
an exemplary embodiment of the present invention.

10

15

20

25

30

35

40

45

50

55

60

65

12

Reterring to FIG. 13, when the keyboard-mput informa-
tion-security apparatus according to an exemplary embodi-
ment of the present invention has been activated, the security-
exception handler 1s registered 1 a specific vector number
(preferably, vector 1) of the mterrupt-descriptor table 200
(5300), the ports 60/ and 64/ of the keyboard input/output
port 130 are set 1n any one of the debug registers DR0 to DR3
(5305), and the GD (thirteenth) bit of the register DR7 among,
the debug register DRO to DR7 1s set to a specific value
(preferably, “17) (58310) 1n order to defend against a port-
polling attack or block an action trying to change a setting in
the debug register.

When the keyboard iput/output port 130 or the debug
register 1s accessed by a polling-attack program or any other
program as shown in FIGS. 7 and 8 (S315), an exception
occurs and the secunity-exception handler registered previ-
ously 1n step S300 1s mnvoked (8320).

The security-exception handler invoked 1n step S320 ana-
lyzes the debug register DR6 among the debug registers
(S325) to determine whether the debug register DR6 15 asso-
ciated with the GD bit of the register DR7 (S330).

When 1t 1s determined in step S330 that the debug register
DR 6 1s associated with the GD bit of the register DR7, 1.e., bit
BD (the thirteenth bit) of the debug register DR6 1s set to a
specific value (preferably, “17), the security-exception han-
dler traces the program accessing the debug register back
(S335) and determines whether the accessing program 1s an
authorized program or an unauthorized program (S340).
When the accessing program 1s an unauthorized program, the
security-exception handler blocks access to the debug register
(S345) and otherwise, the security-exception handler returns
to step S300.

In this case, the determination as to whether the accessing,
program 1s an authorized program or an unauthorized pro-
gram 1s made through a comparison of an address at which a
fault 1s generated. For example, when the address 1s not 1n
18042prt.sys (PS/2 port driver) or the security area according
to the present invention, 1t 1s determined that the accessing
program 1s an unauthorized program.

Here, the program that had accessed the debug register may
be traced back as follows: The CPU 150 has EAX, EBX,
EDX, and FIP registers, as well as the debug and control
registers. The EIP register 1s an instruction pointer for point-
ing a location of program-instruction code currently executed
by the CPU 150. The FEIP register 1s pushed into the stack at a
point 1n time when the security-exception handler 1s invoked
and popped from the stack at a point in time when the secu-
rity-exception handler 1s terminated.

For example, 11 an mstruction “mov dr0, 0x60” to access
the debug register exists 1n a process “ABCD” and 1s located
at “Ox80000000” 1in the memory, an EIP value when the
instruction 1s processed by the CPU 150 1s “0x80000000” and
the exception occurs at this mstant, such that the EIP value
“0x80000000” 1s pushed 1nto the stack.

After the exception 1s handled by the security-exception
handler, the EIP value 1s popped from the stack to have
“0x80000000” and an instruction that was to be processed
prior to the exception occurrence 1s normally processed. The
security-exception handler may obtain the location of the
program-execution code being executed by the CPU 135
directly before the security-exception handler i1s invoked, by
checking the EIP value pushed into the stack.

For example, when an area of 18042ptr.sys (PS/2 port
driver) process ranges from 0xt75¢7000 to Ox17512100 and
the EIP value pushed into the stack obtained by the security-
exception handler ranges from 0x175¢7000 to Ox17512100, 1t

may be considered an exception occurring due to the

US 8,156,346 B2

13

1804 2prt.sys process. If the area 1s not a permitted-process
area, the access to the debug register may be blocked by
changing the EIP value, which has been pushed into the stack,
to skip to a next instruction.

On the other hand, when 1t 1s determined 1n step S330 that
the debug register DR 6 1s not associated with the GD bit of the
register DR7, 1.e., when at least one of bit B0 to B3 (bit zero
to bit three) of the debug register DR 6 1s set to a specific value
(preferably, “17), the security-exception handler traces a pro-
gram accessing the keyboard iput/output port back (S350)
and determines whether the accessing program 1s an autho-
rized program or an unauthorized program (S3535). When the
accessing program 1s an unauthorized program, the security-
exception handler changes the port access value into another
value (S360), and otherwise, the security-exception handler
returns to step S300.

In this case, the determination as to whether the accessing
program 1s an authorized program or an unauthorized pro-
gram 1s made through a comparison of an address at which a
trap 1s generated. For example, when the address 1s not in
1804 2prt.sys (PS/2 port driver) or the security area according
to the present mnvention, 1t 1s determined that the accessing
program 1s an unauthorized program.

Here, the program accessing the input/output port 1s traced
back using the same method for tracing the program access-
ing the debug register back, and the CPU 150 has EAX, EBX,
EDX, and EIP registers, as well as the above-described debug
and control registers.

The EIP register 1s an instruction pointer for pointing a
location of program-instruction code currently executed by
the CPU 150. The FEIP register 1s pushed into the stack at a
point 1in time when the security-exception handler 1s invoked
and popped from the stack at a point in time when the secu-
rity-exception handler 1s terminated.

For example, 1f an mstruction “in al, 0x60” to access the
keyboard input/output port exists 1n a process “ABCD” and 1s
located at “0x80000000”” 1n the memory, an EIP value when
the mstruction 1s processed by the CPU 150 1s “0x80000000”
and the exception occurs directly after the instruction 1s pro-
cessed, such that the EIP value “0Ox800000XY™ 1s pushed nto
the stack.

Here, XY 1s a length of the instruction. Port access excep-
tion (trap) occurs directly after the instruction has been

executed, unlike the exception (fault) through the GD bit of

the debug register. Accordingly, the EIP value pushed into the
stack points an instruction subsequent to “port access instruc-
tion.”

After the exception 1s handled, the EIP value 1s popped
from the stack to have “0x800000XY”” and an instruction that
was to be processed prior to the exception occurrence 1s
normally processed. Accordingly, the security-exception
handler may obtain a location of program-execution code
being executed by the CPU 150 directly before the security-
exception handler 1s mvoked, by checking the EIP value
pushed into the stack.

For example, when an area of 18042ptr.sys (PS/2 port
driver) process ranges from 0Oxt75¢7000 to Oxt7512100 and
the EIP value pushed 1nto the stack obtained by the security-
exception handler ranges from 0x175¢7000 to Ox17512100, 1t
may be considered an exception occurring due to the
1804 2prt.sys process. 11 the area 1s not a permitted-process
area, the access to the keyboard input/output port may be
blocked by changing a value of the EAX register in which a
currently accessed value 1s stored, into any meaningless data.

Meanwhile, when the keyboard-input information-secu-
rity according to an exemplary embodiment of the present
invention 1s terminated, 1t 1s desirable that the temporally

10

15

20

25

30

35

40

45

50

55

60

65

14

stored interrupt descriptor table 200 and original values set 1n
the debug register of the CPU 150 be restored.

As described above, 1n the present invention, when one
maliciously attempts to access the keyboard input/output port
130 of the keyboard-input device 100, the CPU 150 can
generate a trap. Accordingly, the CPU 150 acquires a control
right directly before a malicious program acquires a value
obtained by accessing the keyboard input/output port 130.

That 1s, the CPU 150 halts the access task upon sensing a
port-access 1nstruction and 1mvokes a trap-handler function
(or a monitoring function) 1.¢., the security-exception han-
dler, set 1n vector 1 of the interrupt-descriptor table 200. The
secure mput-device driver 300 can effectively monitor port
polling, e.g., an action trying to change the value 1n the debug
register, by registering the security-exception handler 1in vec-
tor 1 of the interrupt-descriptor table 200.

Meanwhile, a program for performing the keyboard-input
information-security method according to an exemplary
embodiment of the present mvention may be stored 1n a
recording medium such as a compact disk (CD), a floppy
diskette, or a memory stick, to be sold as goods, and installed
in a computer offline by a user. The present invention may be
applied when any program or a specific program 1s used.
Alternatively, the program for performing the keyboard-input
information-security method according to the present inven-
tion may be downloaded as a file automatically or by a user’s
selection when the user accesses a specific site via the Inter-
net, and installed. The program may be executed when the
user mputs data via the keyboard-input device to send infor-
mation to a web site through a web browser such as Internet
Explorer.

The keyboard-input information-security apparatus and
method according to the present invention as described above
can provide a higher-level security than a conventional key-
board-security scheme, and effectively block keyboard-input
information from being practically taken by hacking with an
information-intrusion tool while the keyboard-input informa-
tion 1s being processed, by changing keyboard-interrupt-vec-
tor information delivered when a keyboard interrupt 1s gen-
erated by a keyboard-input device.

Furthermore, the apparatus and method can effectively
block a port-polling attack or an action trying to change a
setting 1n a debug register of a central processing unit (CPU),
by setting a specific value 1n the debug register and monitor-
ing the specific value for security.

It will be apparent to those skilled in the art that various
modifications can be made to the above-described exemplary
embodiments of the present invention without departing from
the spirit or scope of the invention. Thus, 1t 1s intended that the
present mnvention cover all such modifications provided they
come within the scope of the appended claims and their
equivalents.

What 1s claimed 1s:

1. A keyboard-input information-security apparatus com-

prising;:

an interrupt-descriptor table for storing a list of addresses
of functions for handling interrupts, and storing an
address of a secure mput-interrupt service routine at a
specific location 1n an address area for an operating-
system input interrupt-service routine supported by an
operating system;

a secure 1nput-device driver for changing keyboard-inter-
rupt-vector information to invoke the address of the
secure input interrupt-service routine when a keyboard
interrupt 1s generated by a keyboard-input device, and
receiving and encoding data mput via the keyboard-

US 8,156,346 B2

15

input device based on the address of the secure input
interrupt-service routine; and

a secure 1nput unit for delivering the encoded data from the

secure input-device driver to an application program,

wherein the secure input-device driver sets a GD (thir-

teenth) bit of a debug register DR7 among debug regis-
ters DRO to DR7 to a specific value and sets a keyboard
input/output port 1n at least one of registers DR0 to DR3
in order to defend against a port-polling attack, and
wherein when a security-exception handler 1s registered
in a vector number of the interrupt-descriptor table cor-
responding to the specific value and the debug register 1s
accessed, an exception occurs and the registered secu-
rity-exception handler 1s mnvoked, and

wherein the security-exception handler analyzes the debug
register DR6 among the debug registers, determines
whether an accessing program 1s an authorized program
or an unauthorized program depending on association
with the GD bit, and controls to permit or block the
access depending on the determination result.

2. The apparatus of claim 1, wherein the secure input-

device driver comprises:

a data recerver for receiving the data mput from the key-
board-input device when the keyboard interrupt 1s gen-
erated by the keyboard-input device;

an encoder for encoding the data receirved by the data
recelver:;

a monitor for monitoring a change in the address of the
secure input interrupt-service routine that 1s registered in
the interrupt-descriptor table; and

a controller for changing the keyboard-interrupt-vector
information to mvoke the address of the secure nput
interrupt-service routine when the keyboard interrupt 1s
generated by the keyboard-input device, and controlling
operation of the secure input-device driver.

3. The apparatus of claim 2, wherein the address of the
secure mput iterrupt-service routine 1s an address of the data
receiver.

4. The apparatus of claim 2, wherein the monitor monitors
a change 1n the keyboard-interrupt-vector information and
access to a keyboard input/output port.

5. The apparatus of claim 1, wherein when bit BD (the
thirteenth bit) of the debug register DR6 among the debug
registers has been set to the specific value as a result of
analyzing the register DR6, the security-exception handler
traces a program accessing the debug register back to deter-
mine whether the accessing program i1s an authorized pro-
gram or an unauthorized program, and blocks the access to
the debug register when the accessing program 1s an unau-
thorized program, and

when at least one of bits B0 to B3 (bit zero to bit three) of
the debug register DR 6 has been set to the specific value,
the security-exception handler traces a program access-
ing a keyboard input/output port back to determine
whether the accessing program 1s an authorized program
or an unauthorized program, and controls to change a
port-access value into another value when the accessing
program 1s an unauthorized program.

6. The apparatus of claim 1, wherein the specific value 1s
“1” and the security-exception handler 1s set in vector 1 of the
interrupt-descriptor table.

7. A keyboard-input information-security method com-
prising:

storing an address of a secure mput interrupt-service rou-
tine at a specific location in an address area for an oper-
ating-system input interrupt-service routine supported

10

15

20

25

30

35

40

45

50

55

60

65

16

by an operating system 1n an interrupt-descriptor table
that stores a list of addresses of functions for handling
interrupts;
changing keyboard-interrupt-vector information to invoke
the address of the secure mput interrupt-service routine
when a keyboard interrupt 1s generated by a keyboard-
iput device, and executing the secure mput mterrupt-
service routine based on the address of the secure input
interrupt-service routine previously registered in the
interrupt-descriptor table, wherein the secure input
interrupt-service routine comprises fetching and encod-
ing data mput by the keyboard-input device;
setting a GD (thirteenth) bit of a debug register DR7 among,
debug registers DR to DR7 to a specific value, setting a
keyboard input/output port in at least one of registers
DRO to DR3, and registering a security-exception han-
dler 1n a vector number of the iterrupt-descriptor table
corresponding to the specific value, 1 order to defend
against a port-polling attack, wherein an exception
occurs and the registered security-exception handler 1s
invoked when the debug register 1s accessed; and

analyzing, using the security-exception handler, the debug
register DR6 among the debug registers, to determine
whether an accessing program 1s an authorized program
or an unauthorized program depending on association
with the GD bit, and permitting or blocking the access
depending on the determination result.

8. The method of claim 7, further comprising monitoring a
change 1n the address of the secure mput interrupt-service
routine registered previously 1n the interrupt-descriptor table.

9. The method of claim 7, further comprising decoding the
encoded data and transmitting the decoded data to an appli-
cation program.

10. The method of claim 7, further comprising monitoring
a change 1n the keyboard-interrupt-vector information and
access 1o a keyboard input/output port.

11. The method of claim 7, wherein:

when bit BD (the thirteenth bit) of the debug register DR6

among the debug registers has been set to the specific
value as a result of analyzing the register DR6, tracing,
using the security-exception handler, a program access-
ing the debug register back to determine whether the
accessing program 1s an authorized program or an unau-
thorized program, and blocking the access to the debug
register when the accessing program 1s an unauthorized
program, and

when at least one of bits B0 to B3 (b1t zero to bit three) of

the debug register DR 6 has been set to the specific value,
tracing, using the security-exception handler, a program
accessing a keyboard input/output port back to deter-
mine whether the accessing program 1s an authorized
program or an unauthorized program, and changing a
port-access value into another value when the accessing
program 1s an unauthorized program.

12. The method of claim 7, wherein the specific value1s “1”
and the security-exception handler 1s set 1n vector 1 of the
interrupt-descriptor table.

13. A non-transitory computer-readable recording medium
having a program recorded thereon for causing a suitably
programmed computer to perform a method comprising:

storing an address of a secure mput terrupt-service rou-

tine at a specific location 1n an address area for an oper-
ating-system 1input interrupt-service routine supported
by an operating system in an 1nterrupt-descriptor table
that stores a list of addresses of functions for handling
interrupts;

US 8,156,346 B2

17 18
changing keyboard-interrupt-vector information to invoke decoding the encoded data and transmitting the decoded
the address of the secure input interrupt-service routine data to an application program. | |
when a keyboard interrupt is generated by a keyboard- 15. The computer-readable recording medium of claim 13,

turther comprising istructions stored thereon that cause the

5 method to further include:
monitoring a change in the keyboard-interrupt-vector
information and access to a keyboard input/output port.
16. The computer-readable recording medium of claim 13,

turther comprising istructions stored thereon that cause the

input device, and executing the secure input interrupt-
service routine based on the address of the secure input
interrupt-service routine previously registered in the
interrupt-descriptor table, wherein the secure input
interrupt-service routine comprises fetching and encod-

ing data 111puj[by the ke:yboard-mput dgmce; .o method to further include:

setting a GD (thirteenth) bit of a debug register DR7 among when bit BD (the thirteenth bit) of the debug register DR6
debug registers DR0 to DR7 to a specific value, setting a among the debug registers has been set to the specific
keyboard input/output port in at least one of registers value as a result of analyzing the register DR6:
DRO to DR3, and registering a security-exception han- tracing, using the security-exception handler, a program
dler in a vector number of the iterrupt-descriptor table accessing the debug register back to determine
corresponding to the specific value, 1n order to defend whether the accessing program 1s an authorized pro-
against a port-polling attack, wherein an exception gram or an unauthorized program, and blocking the
occurs and the registered security-exception handler is access to the debug register when the accessing pro-
invoked when the debug register 1s accessed, and gram 1s an unauthorized program, and

analyzing, in the security-exception handler, the debug > when at least one of bits B0 to B3 (b1t zero to bit three) of
register DR6 among the debug registers to determine the debug register DR 6 has been set to the specific value:

tracing, using the security-exception handler, a program
accessing a keyboard input/output port back to deter-
mine whether the accessing program 1s an authorized
program or an unauthorized program, and changing a
port-access value mto another value when the access-
ing program 1s an unauthorized program.

17. The computer-readable recording medium of claim 13,
wherein the specific value 1s “1” and the security-exception

50 handler 1s set in vector 1 of the interrupt-descriptor table.

whether an accessing program 1s an authorized program

or an unauthorized program depending on association

with the GD bait, and permitting or blocking the access

depending on the determination result. 25

14. The computer-readable recording medium of claim 13,

turther comprising mstructions stored thereon that cause the
method to further include:

monitoring a change in the address of the secure input

interrupt-service routine registered previously in the
interrupt-descriptor table; and £ % % k%

	Front Page
	Drawings
	Specification
	Claims

