12 United States Patent

Bakke et al.

US008156230B2

US 8,156,230 B2
*Apr. 10, 2012

(10) Patent No.:
45) Date of Patent:

(54)

(75)

(73)

(%)

(21)
(22)
(65)

(63)

(60)

(1)

(52)
(58)

OFFLOAD STACK FOR NETWORK, BLOCK
AND FILE INPUT AND OUTPUT

Inventors: Mark Bakke, Maple Grove, MN (US);
Timothy Kuik, Lino Lakes, MN (US);
David Thompson, Rogers, MN (US);
Paul Gleichauf, Saratoga, CA (US);
Xiaoxue Ma, Sunnyvale, CA (US)

Assignee: Cisco Technology, Inc., San Jose, CA
(US)
Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent 1s subject to a terminal dis-
claimer.

Appl. No.: 13/069,304

Filed: Mar. 22, 2011
Prior Publication Data
US 2011/0173295 Al Jul. 14, 2011

Related U.S. Application Data

Continuation of application No. 11/472,678, filed on
Jun. 21, 2006, now Pat. No. 7,949,766.

Provisional application No. 60/693,133, filed on Jun.

22, 2005,

Int. Cl.

GO6Ll 15/16 (2006.01)

US.CL 709/228; 709/250

Field of Classification Search 709/228,
709/250

See application file for complete search history.

2044 —_

Guest 0S
CSI FE

222A 1

— 2048

2228

(56) References Cited
U.S. PATENT DOCUMENTS
6,967,954 B2* 11/2005 Sugiyama 370/395.52
7,305,681 B2* 12/2007 Khartabil 719/328
7,373,646 B1* 5/2008 Smuth ...l 718/108
2001/0005381 Al* 6/2001 Sugiyama 370/466
2002/0143962 Al* 10/2002 Carteroooevvvvvvvennnn, 709/229
2004/0039672 Al1* 2/2004 Zwvicetal. 705/36
(Continued)

FOREIGN PATENT DOCUMENTS

EP 1460805 A2 11/2004
OTHER PUBLICATIONS
EP Office Communication, application serial No. EPO 06 785 699.7

dated Aug. 22, 2011 (6 pgs).

(Continued)

Primary Examiner — Patrice Winder
Assistant Examiner — Ebrahim Golabbakhsh

(74) Attorney, Agent, or Firm — Hickman Palermo
Truong & Becker LLP

(57) ABSTRACT

An apparatus for oftloading network, block and file functions

from an operating system comprises a network interface
coupled to a network for receiving packet flows; one or more
processors each having one or more processor cores; a com-
puter-readable medium carrying one or more operating sys-
tems and an input/output networking stack which are hosted
in one or more of the processor cores. The networking stack 1s
shared among the operating systems. The networking stack
comprises instructions which when executed cause receiving
a request for data transier from one of the operating systems
at mternal network, block and file system interfaces, and
permitting data to be transierred between the mternal inter-
faces and a plurality of external interfaces by preventing the
operating systems from performing the data transfer and per-
forming the data transier on behalf of the operating systems.

20 Claims, 12 Drawing Sheets

204C —_

Guest 05 Guest 05

CSI FE

CSI FE

504 — cos
234 || Net | Block | Fie Net | Block | File 2348
110A —}— isco S¥qck Cised Stack - 108
1184 -—1 GE | Fi DCB(IB 118D 616 GE/| FC CE/IB
616 L Locg)/Nets/Degfices
608A ~- 6088
610 — Infiniband or DCE Switch
612—_| Cisco IB/DCE Gateway
234C - Net | Block ‘ File |~—110C
Cisco Stack
8E~I o | Fo | ocesrs

US 8,156,230 B2
Page 2

U.S. PATENT DOCUMENTS

2004/0230794 Al* 11/2004 England etal. 713/164

2004/0250253 Al* 12/2004 Khartabil 719/310

2006/0104295 Al 5/2006 Worley et al.

2007/0260920 Al* 11/2007 Turneretal. 714/17
OTHER PUBLICATIONS

Current claims for application serial No. EPO 06 785 699.7, 4 pages,

dated Aug. 2011.

Microsoft TechNet, The Cable Guy—Sep. 2005—Next Generation
TCP/IP Stack in Windows Vista and Windows Server “Longhorn™,
Published Aug. 29, 2005, Updated May 23, 2005, pp. 1-4.
Microsoit Windows Hardware Developer Central, WinHEC 2006
Conference Sessions, “System Fundamentals—Virtualization”,
htpp://www.microsoft.com/whdc/winhee-/trackdetail 06.
mspx?track=3, printed Sep. 20, 2006, pp. 1-3.

M. Neil, “Hypervisor, Virtualization Stack, and Device Virtualization
Architectures™ Microsoft Corporation, 2006, printed Sep. 20, 2006,
pp. 1-6.

VMware Infrastructure 3 Transform IT Infrastructure with Enter-
prise-Class Virtualization, 2006, http://www.vmware.com/products/
vl/ printed Sep. 20, 2006, pp. 1-5.

Knowles, Mike, “Survey of the Storage Evolution,” Proceedings of
the 2003 User Group Conference, Jun. 9, 2003, XP010674984, pp.
362-367.

Rangarajan, Murali, “TCP Servers: Offloading TCP Processing 1n
Internet Servers, Design, Implementation, and Performance,” Mar.
2002, http://discolab.rutgers.edu/split-os/dcs-tr-481.pdf, Jun. 29,
2004, XP002286342, pp. 1-14.

International Searching Authority, “Notification of Transmittal of the

International Search Report and the Written Opinion of the Interna-
titonal Searching Authority, or the Declaration,” PCT/US2006/

025078, dated Nov. 24, 2006, 14 pages.
Current Claims, PCT/US2006/025078, 6 pages.

“TCP Servers: Offloading TCP Processing 1n Internet Servers.
Design, Implementation, and Performance”, dated Mar. 15, 2002, 23
pages.

State Intellectual Property Office of the People’S Republic of China,
“The First Office Action”, filing No. 200680014763.5, Issued Oct.
24, 2008, 13 pages (with translation).

Claims, filing No. 200680014763.5, 3 pages.

Regnier, G. etal., “ETA: experience with an Intel® Xeon™ processor

as a packet processing engine”, Proceedings of the 11” Symposium
on High Performance Interconnects, IEEE, Aug. 20, 2003, 7 pages.
VMware, Inc. “VMware Virtual SMP”, Product Datasheet, Copy-
right 2004, 1 page.

IBM Corporation, “Logical Partition Security in the IBM (@server
pSeries 6907, dated Feb. 15, 2002, 13 pages.

Microsoft Corporation, “Windows Network Task Offload”, Device
Fundamentals/Networking and Communications, dated Dec. 4,
2001, 4 pages.

State Intellectual Property Office of the People’S Republic of China,
“The Second Office Action”, filing No. 200680014763.5, Issued Apr.
24, 2009, 7 pages (with translation).
Current Claims, Chinese patent
200680014763.5, 4 pages.

EP Office Action, application serial No. EPO 06 785 699.7 dated Mar.
29, 2010 (pp. 1-3).

Current claims for application serial No. EPO 06 785 699.7 (pp. 1-4).
Microsoft Corporation, “Microsoft Windows Scalable Networking

Initiative”, http://www.microsoit.com/whdc/device/network/scale.
mspx, WInHEC 2004 Version, Apr. 13, 2004, 11 pages.

Curnid, A., “TCP Offload to the Rescue”, ACM Queue, May 2004, pp.
58-65.

EP Communication Pursuant to Art. 94(3), application serial No.
EPO 06 785 699.7 dated Jan. 18, 2011 (pp. 1-3).

application filing No.

* cited by examiner

US 8,156,230 B2

Sheet 1 of 12

Apr. 10, 2012

U.S. Patent

J811

S900/49)UT
JOUIO)IXT A 1II

0]] —| §58200 8jlf ¥o0/q YiOM)BU U10) SO

$2000)i91U
o3 u%% i A0l [~ HOMISN _
911 bl Al

I8

YOD}S 09S))

SIGAIID 7B [QUIM S()

901

ebowir
Wa)sAg uonoiadp

gr0l

Al

811 V&Ll

R e

A11unoes ‘bunnoy s/pJoydlio
[DO0OT

0!

SIPALIP 7§ [PUI) SO V90!

sbowir
WalsAS uonoiedp

Vv0!

Vi Oid

fpuupby”) 8.ql4 tpupqIuiur ‘ssafediy 1euddsyl 3

US 8,156,230 B2

61 ord! N
- S
4
du
2q
— !
M S0DJIBQUT YIOMIBN XHoD)S 0ISI)
>0l
g5l
H.,m,.,. 2opji9pur (328/q0 % X4o0jg) ISOS %2D}S 09SI)
=

200449)U] 8[l{ ¥oD)S 09ISI)

~
-
L
~
e
- Y,
<)
-

cCl

90DJI9]UT X2D)}S 0ISI9)

A

US 8,156,230 B2

Sheet 3 of 12

Apr. 10, 2012

U.S. Patent

.o .U uoqiungur ...m..mﬁ\m.\.__ u.w ouloy}

14

buiyojimsg pussiur

$/02030.4 oc

buronod pup burdbys—jopuod 214jpi) —SOH

juswsboupy 03siH

amol 96|
1ioddns NV A
 dwo s
S19/995dI

| | buipiomioy H1 |pusIuy

2SO0y SniiAnuy 061
I S
POOII0 1SS
_

_ 9% |
; : POOYIO Il
Sanpow [opuondp

14

vl
YAJY
/

A4

90DJJ9JUT YIOMIBN YODIS 00SI9)

4

900JJ9)UT X4OD)S 00819

\. Il ‘Ol et

US 8,156,230 B2

Sheet 4 of 12

Apr. 10, 2012

U.S. Patent

Ve Ol

.

7

7y

U811 JEL 4811 g811 2577

abpiois 8(l] ‘abp.i01s X20/q ‘PDOJJO 42
AOD]S 09510

il —p0jg_}-{DHoMIBN |-150- L
9l 47 Cll

WA

90¢c

Hr0c

444

U.S. Patent Apr. 10, 2012 Sheet 5 of 12 US 8,156,230 B2

FIG. 2B

214A 2148

2168

216/ | 2225
2224 csz I I - oST I

206 Cowv
- —

294 CPU/Memory Ethernet 118

220

U.S. Patent Apr. 10, 2012 Sheet 6 of 12 US 8,156,230 B2

FilG. 2C

Z204A Z216A 2048

‘User Apps i ‘User Apps ! 2168

Socket
CSI Front CSI Front
End End 2228

Ring buffer interface 252

110

256
236
240

Ethernet /18A

US 8,156,230 B2

Sheet 7 of 12

Apr. 10, 2012

U.S. Patent

041 <

&8¢

0ve
8/¢

8¢'C
9¢'c

14%X4

434

4eAl[J 00014 JSE#°9N

ISIS USH#SN

dl/dol asgieN

5194005 [PUIS) (SHIN

gv9¢
g91C

gvoc

vLC

dcce

pu4 Juoid [SO

5/[PD

sddy ussp
SO 159Ny

JOALI(T
A90/d

Hc9¢

asgieN|[TSoen.— 942
ar8Z 0v8Z Gv8Z V¥8Z

S So
ALA

24 I 304 eudey}3
/7 08¢

o
169G dl/d2l dSgieN

pu4 #obg SO

90D J)UT 49)4ng bury

08¢ | a1/d01 asgisN 4

8LC >0l 1

9/2
ISOS
aSgq1oN ISOS! ;

0LC

veece
puq juoild [SO

/|09 JBALI(T

4414
4°174

444

sddy Jas
sddy esn) b o
SO }sang

dc Ol

US 8,156,230 B2

Sheet 8 of 12

Apr. 10, 2012

U.S. Patent

433

7%

[E

9IDMPIDL

125014y ;
e et | oz 9%

UOISINIBAAH UBY

90D)I8)UT SIDMPIDH 8)DS

818

i
#1404 [SD
19205

900ds [8U19)]
8oDds 1S

sddy 159

Xnui7
7 uiowoq

| 10SS820.

0l& f

AP [SI

4o01S buniiomaN 0/T

443

oALI(T
I EIEINE AL

' EIEINE,
XNuIT

433
20Dds [5U.13)

8oDds 19S

sddy jwbw

80Dds [8U19)
20Dds 19SN

JSE19N
| uIbwo(j

XNui7
0 uIbwo(j

O J105S820.

05 433 90¢

£ Ol

U.S. Patent Apr. 10, 2012 Sheet 9 of 12 US 8,156,230 B2

FIG. 4

7 2044 216A 2048

| User Apps i | User Apps ! 2168

Socket Socket
CSI Front CSI Front
End End 2228

252A 2328
Ring buffer Ring buffer
|| interface || interface
110

235

k Ethernet 118A

US 8,156,230 B2

Sheet 10 of 12

Apr. 10, 2012

U.S. Patent

dccc
[04}U0H MO|{—
uoioafes bury DID(—
[013UOY) UOISSILIPY —
pud juoid JSJ

AAAA
[01}U0) MO[{—
uoiosjes buly DIo(—
[04JU0Y) UOISSILLUPY —
pug puoid SO

Buty

D107

[DUly D]O(

0 buiy jo5u0
0 buy j0s3u0)

A%

' A

c—Vecee

0 buly jo5uo)

494
[013U0) MO|{—
J01)UOY) UOISSILIDY —
pug oog [SO

JoA4

yoois gou| |12

42277

$90IA9(]/SJ8N PoIDYS

#19 9 Did
I

.‘.‘. Aomap9 300/4GI 09510 Z1l9

US 8,156,230 B2

a youms 30 40 pubquuyur

= !""

= ’ ~|—— ¥809

s S80IN8(]/S)ON D207

7 S shw 909 ' / 919

| 919 as! ,‘EE.| Z

u .ﬁbr‘ >

S go11 - x. E“ o

= VHEZ

“ ‘\’A 709
a0z W0z GH0Z V502

Hc089 LA,

U.S. Patent

US 8,156,230 B2

Sheet 12 of 12

Apr. 10, 2012

U.S. Patent

vs/ v/ 0S/ Ava
&INYTFS HAOMLAN ENILE
714 1 SOH JIOVHOLS JOVYHOLS

Oc/ 007

9i/

cel
AHOMLIN
ool

ANIT
YSOML IN FIOVAYILNI

NOLLVIINIIANWOD

108LINOD
HOSHND

H0S554204d

9z/
c0L 517
SNE FOIAFd
1NdNI
82/
0sL 017 207 7 —
ESVEL, oW
dINGTS JOVHOLS WO NIVA AVIdSIa

Z OIS

US 8,156,230 B2

1

OFFLOAD STACK FOR NETWORK, BLOCK
AND FILE INPUT AND OUTPUT

PRIORITY CLAIM; CROSS-REFERENC.
RELATED APPLICATIONS

T

1O

This application claims benefit and priority under 35
U.S.C. §120 as a Continuation of U.S. patent application Ser.
No. 11/4°72,678, which 1s entitled “OFFLOAD STACK FOR
NETWORK, BLOCK AND FILE INPUT AND OUTPUT”™
and was filed by Mark Bakke et al. on Jun. 21, 2006 now U.S.
Pat. No. 7,949,766, the entire contents of Wth_J 1s hereby
incorporated by reference as 1f fully set forth herein, and
which claims priority and benefit under 35 U.S.C. §119(¢e) of
U.S. Provisional Application No. 60/693,133, filed on Jun.
22, 2003, the entire contents of which 1s hereby incorporated
by reference as 11 tully set forth herein. The applicants hereby
rescind any disclaimer of claim scope 1n the parent applica-
tion(s) or the prosecution history thereof and advise the
USPTO that the claims 1n this application may be broader
than any claim in the parent application(s).

FIELD OF THE INVENTION

The present invention generally relates to interfacing com-
puter systems to networks. The mvention relates more spe-
cifically to approaches for offloading certain network, block
and file mterfacing tasks from endpoint hosts.

BACKGROUND

The approaches described in this section could be pursued,
but are not necessarily approaches that have been previously
conceived or pursued. Therefore, unless otherwise indicated
herein, the approaches described in this section are not prior
art to the claims in this application and are not admitted to be
prior art by inclusion 1n this section.

Developers of computer systems that are intended for use
in arbitrary locations 1n a network, such as servers, worksta-
tions, printers and other endpoint hosts, face at least three
significant systems-level requirements for external commu-
nications: security, performance and management. These
requirements are addressed 1n a set of software components
termed a “networking stack™ on the endpoint hosts. Rela-
tively secure high-performance open source implementations
of networking stacks are provided in BSD-based implemen-
tations of the UNIX operating system, such as FreeBSD,

OpenBSD, NetBSD. Other implementations of networking
stacks are also known and include Linux, HPUX, Microsoft
Windows, Sun Solaris and IBM AIX.

Security solutions need to monitor the behavior of network
traffic. The evolution of security attacks and countermeasures
requires a flexible platform that can be easily extended and
even replaced to enable countermeasures to attacks. Achiev-
ing both performance and security 1s practical only with a
unified system ol network management of the interfaces and
their security properties. Network gear vendors and operating,
system providers are struggling to provide security for bridg-
ing behavior 1n which packets are snooped from one interface
and broadcast out another. Vendors also are challenged to
control the ability of platforms running multiple operating
system (OS) images when one OS 1mage seeks to modily
another.

The security applications that rely on access to the net-
working stack includes virtual private networking, antivirus,
inline encryption and message integrity, network discovery,
and 1dentity protocols. Each of these applications requires

10

15

20

25

30

35

40

45

50

55

60

65

2

management, especially where they cross boundaries. A uni-
fied management interface 1s practically necessary for these
systems to work together.

Concurrently, the growth of communications between
computing platforms has led to commensurate growth in the
amount of available bandwidth that endpoints need to have,
especially in the TCP/IP stack. For example, 1n recent times
endpoints have evolved from needing less than 10 Mbps, to
100 Mbps, to 1 Gbps, and on some endpoint platforms avail-
able bandwidth has moved up to 10 Gbps the trend 1s likely to
continue. Such bandwidth growth has led to rapidly increas-
ing burdens on the central processing unit (CPU). Present

estimates are that processing communications may involve as
much as 70% of total CPU load for TCP/IP at 1 Gbps.

The 1ncrease 1n CPU burden in turn has contributed to the
rapid proliferation of dual-processor server machines, which
have been developed both to provide enough processor cycles
to service application requirements and to provide suificient
cycles for stack-related processing. Although these servers
are powertul, they can be complicated to manage because
they implement so many computing functions in a single
plattorm. Admimstrators would benefit from a way to sepa-
rately manage I/O-networking aspects of high-power servers.

While the problems specifically created by TCP/IP stack
processing requirements are noted above, similar problems
exi1st for software stacks that manage other types of interfaces,
including peripheral stacks for Fibre Channel, Infiniband,
Firewire (IEEE 1394), USB, Bluetooth, wireless 802.11, and
other interfaces. The amount of bandwidth utilization for
cach of these interfaces i1s increasing. Further, security
requirements for mspecting tratfic flows and protection over
such interfaces are becoming especially significant especially
for traffic that bridges from one interface to another.

Past approaches have addressed some of the foregoing
problems, either in an incomplete manner or with significant
disadvantages. For example, 1n one approach the growth 1n
bandwidth 1s accommodated using oif-load processors. Off-
load processors are special-purpose processors that assume
the load that was burdening the main CPU. As an example,
off-load processors can be used in TCP ofiload cards that
offload TCP stack processing functions from a set of CPUs for
a given interface. Fibre Channel host bus adapter (HBA) cards
can oifload storage functionality.

However, off-load processors are purpose-specific non-
commodity parts, and have had very slow market penetration
because of their relatively high cost. Off-load processors are
not shared between multiple guest operating systems 1n a
virtualized environment. Off-load processors are not man-
aged from the network.

Simpler stacks such as those implementing Firewire and
USB have appeared on custom chips at relatively low cost
because these interfaces have become ubiquitously present in
endpoint devices. However, the growth in speed of such chips
has been relatively slow, the chips function more or less
independently of one another, and when the chips are coupled
in a device that uses both types of interfaces, performance
noticeably degrades.

Offload capabil ity for file system functions 1s not presently
available, and requires both network oftfload and block stor-
age oltload to work, which cannot be achieved in a single-
purpose network, TCP, or HBA card.

Programmable network interface cards such as the Alteon
Tigon are known. Such programmable NICs typically have a
fixed modest amount of shared memory and a small number
of dedicated RISC processors performing DMA operations
on the buffers. The firmware was designed to be replaceable,

US 8,156,230 B2

3

and may be regarded as programmable to a limited extent.
These too, like offload cards, are relatively high cost and have
not been widely adopted.

Recent trends in CPU chip design provide multiple CPU
cores on the same die. The cores may share a common com-
munications bus and main memory, but typically have sepa-
rate caches. The use of shared memory allocation techniques
that can draw memory from a large shared pool has been used
in some data processing approaches but 1s not known for
offload applications. Some approaches have used buifer pools
at configuration time. Both multi-core CPUs and shared
memory allocation techniques are now used on high-perior-
mance Servers.

An 1ssue associated with high-power servers 1s that the
large amount of CPU power they provide may, in some cases,
be under-utilized. Therelore, server users have begun deploy-
ing virtualization software that permits running multiple
operating system instances on a single server. Virtualization
soltware 1s commercially provided in Jaluna’s OSware for
Linux, VMWare, Microsolit’s Virtual Server for multiple
operating systems, IBM Hypervisor, and Xen. Xen 1s an
open-source virtualization engine that currently includes sup-
port for some variants of Microsoft Windows, Linux, Net-
BSD, and FreeBSD. Virtualization soitware supports limited
storage virtualization and can provide some networking func-
tions such as virtual bridging. However, the use of virtualiza-
tion does not reduce the complexity of managing a high-
performance server 1n which the guest operating systems all
independently implement complex I/O-networking func-
tions. Nor does 1t escape performance and security concerns,
which are being addressed directly with hardware support for
virtualization including Intel’s VT, Vanderpol, AMD’s Paci-
fica, (V1), AMD’s Pacifica and IBM’s Hypervisor technolo-
g1es.

Nevertheless, some network administrators are deploying
general-purpose servers, with virtual bridging enabled, as
edge network devices. When such servers are integrated into
a packet-switched network that also includes traditional rout-
ers and switches, managing the servers and their bridging
functions becomes challenging because such management
typically requires using different management tools for the
routers and switches as compared to the servers.

A further problem 1n the field mvolves operating system
proliferation. Developers of networking client applications
face a lack of control of the varying interfaces on some pro-
prictary platforms that inlibits access to the full suite of
features necessary to port clients. Further, developers face a
large number of operating systems, each of which requires a
different client, often with features that are not simple to port
from one to another. This problem exists with Microsoit
Windows, Linux, Solaris, AIX, HPUX, Mac OSX, Symbian,
PalmOS, and other operating systems. In addition, some ver-
s1ons of applications or security policies may be specific to a
particular version or patch level of an operating system. Cur-
rent virtualized systems reimage the operating systems along
with the network stacks, requiring subsequent configurations
of the network interfaces every time a new and sometimes
even a modified OS 1s needed.

Intel’s ETA technology offloads network functions to a
processor, but does not allow sharing the stack across hosts.

Related literature in the field includes: A. Currid, “TCP Ofl-
load to the Rescue,” ACM Queue, http://acmqueue.comy/
modules.php?name=Content& pa=showpage&pid=154;
Microsoit Corporation, “Microsoit Scaleable Networking
Initiative,” http://www.microsoit.com/whdc/device/net-
work/scale.mspx; and others.

10

15

20

25

30

35

40

45

50

55

60

65

4
BRIEF DESCRIPTION OF THE DRAWINGS

The present invention 1s illustrated by way of example, and
not by way of limitation, in the figures of the accompanying
drawings and in which like reference numerals refer to similar
clements and 1n which:

FIG. 1A 1s a block diagram of an example network end-
point showing software architecture for an example embodi-
ment.

FIG. 1B 1s a block diagram of an example implementation
of an I/O-networking stack.

FIG. 1C 1s a block diagram providing a detailed view of
functional elements providing networking services in the
stack arrangement of FIG. 1B.

FIG. 2A 15 a block diagram showing another embodiment
of an oftload I/O-networking stack.

FIG. 2B 1s a block diagram showing interface elements that

may be used 1n the embodiment of FIG. 2A.

FIG. 2C 1s a block diagram of the embodiment of FIG. 2B
showing further details of an example software architecture,
focusing on software elements used to perform network com-
munication via Ethernet.

FIG. 2D 1s a block diagram showing an embodiment of an
I/O-networking stack for block, file system and network ofl-
loading.

FIG. 3 1s a block diagram of an example implementation
using two processors and three virtual machines.

FIG. 4 1s a block diagram of the system of FIG. 2C 1n an
arrangement that uses a plurality of ring butler interfaces.

FIG. 5 1s a block diagram of the system of FIG. 4 showing
the flow of transmitted data 1n one embodiment.

FIG. 6 1s a block diagram showing a hierarchical 1/O-
networking stack system.

FIG. 7 1s a block diagram that illustrates a computer system
upon which an embodiment may be implemented.

DETAILED DESCRIPTION

Methods and apparatus providing network stack oftloading
approaches are described. In the following description, for the
purposes of explanation, numerous specific details are set
forth 1n order to provide a thorough understanding of the
present invention. It will be apparent, however, to one skilled
in the art that the present invention may be practiced without
these specific details. In other instances, well-known struc-
tures and devices are shown 1n block diagram form 1n order to
avold unnecessarily obscuring the present invention.

A. General Overview

The approaches proposed here take into account all of the
needs 1dentified in the background to provide a solution that
meets security, performance, and management requirements,
while maintaining compatibility with standard processors. In
one respect, opportunities provided by virtualization, real
time monitor operating systems, and multi-core CPU chipsets
are combined and improved to produce a flexible open plat-
form for I/O control and protection along with a common
management interface as a beneficial side ettect.

1. Specialization of CPU Cores for Networking

In one embodiment, one or more processors of an endpoint
device may be dedicated as a network core to route all I/O
interfaces. The endpoint device may be a server, workstation,
mobile client or other endpoint device, and embodiments are
not limited to any particular endpoint device. For example, an
endpoint device may be a server running VM Ware and host-
ing a virtual bridge and serving as a network edge device in an
enterprise network. The processor may be a physical CPU. In
an alternative embodiment, which 1s appropriate for manag-

US 8,156,230 B2

S

ing a single lower-bandwidth interface and when software
protection 1s sufficient to 1solate one virtual processor from
another, the processor may be a virtualized processor, effec-
tively a logical fraction of a physical core.

In another alternative embodiment, the processor may be
one or more of the cores 1n a multi-core CPU. An advantage
of amulti-core CPU 1s that physical elements 1solate one core
from another core. The discussion below assumes that a net-
work stack 1s hosted on one or more cores of a multi-core
processor. The core that hosts the network stack 1s termed
“I/O-networking core.”

In one embodiment, the I/O-networking processor core
runs an operating system dedicated and optimized to perform
platiorm I/O requirements for all the other operating systems
and their applications running on other processor cores. The
I/O-networking processor core may feed data to other pro-
cessor cores or CPUs that have access to shared memory. The
I/O-networking core can be programmed to adapt to new or
evolving protocols, while benefiting from 1mprovements 1n
processor performance that may occur according to the more
rapid improvements 1 commodity CPU design observed
under Moore’s Law. The I/O-networking core may run a
specialized I/O-networking stack as an operating system. The
I/O-networking stack pertorms all I/O-networking functions
tor all other cores or processors 1n a host server, so that such
functions are offloaded from the other cores or processors to
the I/O-networking core and stack. In an embodiment, the
I/O-networking stack performs all networking, security, VPN
functions, and all bridging and routing among processors or
cores 1n the host. Guest operating systems running on other
cores or processors under virtualization appear to have hard-
ware for performing all such functions, which in fact are
handled by the I/O-networking core and stack. The supple-
mentary services, and even select I/O-related services, may
be run 1n their own sandboxed virtual machines to assure
resiliency (service failures are 1solated from 1mpact on other
running services and can even run 1n distinct types ol operat-
ing systems and under different licensing regimes).

In one embodiment, the I/O-networking core has access to
the physical layers of all system interfaces, such as Ethernet
or Fibre Channel, and can manage other stack elements that
implement other interfaces, even as such interfaces evolve or
are enhanced.

In one embodiment, the I/O-networking core facilitates
direct memory access techniques over the network, such as
RDMA over Infiniband or TCP/IP, based on pointers to the
butler area used by the interfaces. In an embodiment 1n which
processor cores share main memory, data copy operations
directed through the kernel from the NIC can preclude the
need to use kernel copy operations, and can be shared as
intersection memory across operating systems with a tlexible
butler space that 1s shared by the resident operating systems.
Thus, an embodiment may implement a form of zero-copy
technique across operating systems.

In one embodiment, the I/O-networking core may be
coupled to one or more hardware acceleration units for
addressing one or more computationally intensive tasks. For
example, a hardware acceleration unit coupled to the 1/0-
networking core may perform block encryption or other
repetitive, computationally intensive tasks.

2. I/O-Networking Core OS

In one embodiment, the I/O-networking stack software that
runs on the I/O-networking processor core 1s implemented
based on network stack software from one of the BSD oper-
ating system variants, such as FreeBSD or NetBSD. The
network stack implementations in these operating systems
have high quality and a high degree of security against attack.

10

15

20

25

30

35

40

45

50

55

60

65

6

The BSD network stack implementations also allow insertion
of shims and bypasses for endpoint client applications such as
antivirus, virtual private networking (VPN), discovery proto-
cols (such as Cisco Discovery Protocol CDP), network
admission control (such as Cisco’s NAC), Cisco Security
Agent (CSA) Cisco Trusted Security (CTS), wireless client
utilities, and future developments including those from Cisco
Systems, Inc., San Jose, Calif.

A benefit of using FreeBSD or NetBSD 1s that under the

present software licensing arrangements applicable to those
systems, developers can write kernel drivers without having
to release source code, which 1s a requirement for the use of
Linux and other OS software to which the GNU General
Public License (GPL) applies. Other operating systems,
including proprietary licensed systems, or those licensed
under the GPL such as Linux, may also be used.

In other embodiments, other network stack software may
form a foundation for an I/O-networking stack having the
functions and architecture described herein.

3. Virtualization

In one embodiment, the I/O-networking processor core 1s
hosted on one or more virtual processors of a CPU that sup-
ports processor virtualization.

Even with dedicated resources 1n the I/O-networking core,
a need remains for real-time coordination between the 1/0-
networking core and other operating systems that are running
on the same hardware platform. One embodiment provides a
hypervisor that runs below the operating systems that can
manage memory for sharing data across operating systems,
and validate the insertion of software shims 1nto the I/0-
networking core, vet still insulate i1t from the other operating
systems that are running on other cores or virtualizations of
the CPU.

In one embodiment, CPU wvirtualization engines are
extended to individual processor cores. Example CPU virtu-
alization engines may be based on or use VMWare, IBM
Hypervisor, Xen, Microsoft Virtual Server or Jaluna’s
OSware. In various embodiments, the 1/O-networking pro-
cessor core may be hosted on one of a plurality of processor
cores, or virtual machines are used to split a CPU into one or

more virtual environments. In one embodiment, the OS ker-
nel 1s modified to support virtualization. In another embodi-
ment, all instructions are sandboxed 1n a virtual machine. The
virtual machines may be established and managed by a virtual
machine monitor (VMM).

In one embodiment, a real time operating system (RTOS)
serves as a system monitor to control the number, type and
traffic between multiple simultaneously available operating,
systems. Further, the I/O-networking software of the 1/O-
networking core runs on the RTOS. The RTOS runs logically
below the operating systems on the CPU, or on a special
off-CPU processor. An example of a suitable RTOS 1s
Jaluna’s Chorus real time kernel.

In this approach, the RTOS can sense system state across
operating systems that are running applications on other
cores, including physical cores or virtual cores, and can opti-
mally allocate necessary resources irom the large local
memory pool necessary to support the networking functions
required by the combination of interface types, protocols,
applications and reliability of network connections. The
RTOS can register problems with these operating systems
betore they boot, or if they refuse to boot. The RTOS can
sense security vulnerabilities based on an archaic version of
software and firmware that need to be updated before the
system can return to secure running modes. In short, the

US 8,156,230 B2

7

RTOS gives the design an additional layer of security protec-
tion and control not usually available to a non-secure OS
design.

In an embodiment, the RTOS can manage shared or “inter-
section” memory to discriminate but allow approprniate data 5
sharing between multiple operating systems. In combination
with an OS virtualization approach, either physical OS virtu-
alization or logical OS virtualization, the RTOS can isolate
the operating systems from one another except for access to
the shared memory area. 10

In contrast, conventional virtualization systems manage
memory by totally locking out one operating system instance
from another to avoid interference. Examples of the conven-
tional virtualization approach include IBM LPAR and Hyper-
visor. Unlike such approaches, 1n an embodiment, a common 15
memory 1s provided to which one operating system, as
opposed to multiple processes or multiple applications, can
write while another operating system reads, or the converse.
The RTOS acting as system monitor can configure the shared
intersection memory area and also can selectively control 20
access to minimize builer sizes, icluding avoiding over-
flows, and dynamically resize buffers to suit interface stack
requirements and tratfic properties.

Buiffering the intersection memory can eliminate the mul-
tiple memory copy operations for transierring data between 25
an application, kernel, and network. For example, a TCP stack
and an Infiniband stack can be configured as part of the
network I/O processor, with a shared memory area large
enough to perform packet reordering for jumbo frames 1n the
TCP stack. Conversion or gateway software may perform 30
translating frames back and forth to or from the Infiniband
protocol using the single shared memory area that holds the
data for applications to read or write 1nto.

In one embodiment, as part of system monitoring, the
RTOS also can protect against illicit bridging of data across 35
interfaces. An example of such improper bridging 1s the trans-
port of protected CTS (Cisco Trusted Security link layer
encrypted) tratfic on a wired link across an unprotected wire-
less link to an eavesdropper. The RTOS monitor can also
provide ancillary benefits, such as inhibiting the ability ofone 40
OS to illicitly modity another. For example, the RTOS moni-
tor can look across operating systems to prohibit using Linux
to edit the Microsoit Windows registry. This 1s an extension of
what Cisco’s CSA can do to monitor behavior within a single
operating system across multiple virtualized systems. 45
4. Unified Client

An embodiment 1 which a single OS manages all I/O
interfaces also allows preparing other software, for the man-
agement of such interfaces and the security solutions that
depend upon them, just once and provides simplified provi- 50
sioning and maintenance. The use of a single OS for the I/O
component, plus an RTOS monitor, allows developers to
innovate more rapidly and openly on a common platform,
climinating the problem of operating system proliferation.

A further benefit of using a single OS for monitoring and 55
management of the I/0 stack and its network services 1s that
a graphical user interface (GUI) for administration and other
functions can be prepared for the single shared OS. Therelore,

a unified extensible client interface 1s practical for the first
time. 60
In one embodiment, a security service used with the I/O-

networking core instantiates the minimum presence required
to assure that the network can trust the information on the
host, and bilaterally enables the applications to trust the net-
work through 1ts local presence on the host. Consequently, a 65
composite 1dentity exists on the host, consisting of applica-
tion software and supporting operating systems 1n combina-

8

tion with the I/O-networking operating system. Both 1dentity
components may be anchored in secure hardware. These
include the Trusted Computing Group’s (TCG) Trusted Plat-
form Module (TPM) and 1ts virtualized form (VIPM) inside
which the signatures of the software components (ranging
from OS through application components) down through the
VMM, RTOS, I/O plus its related modules, and the crypto-
graphic processing for their verification and authorntative
attestation can be accomplished. Security for the 1I/O-net-
working core 1s achieved in part from isolation of the I/O-
networking core from applications, in part from the use of
monitoring by a centralized RTOS that has fewer security
vulnerabilities, and 1n part from 1ts open implementation.

Network management services are provided, in an embodi-
ment. Because the network 1s more clearly bound on the host,
the network can be provisioned and maintained by a network
administrator without interfering with server managers. The
network administrator manages only the I/O-networking core
OS, and not the applications or the guest operating systems
that host the applications. In an embodiment, the I/O-net-
working core and I/O-networking stack are managed with the
same management tools that are used to manage conventional
routers and switches 1n the same network.

5. Benefits of Various Embodiments

Guest operating systems and their management may be
greatly simplified as all I/O-networking functions across mul-
tiple guest operating systems can be are handled by a single
separate 1/0O-networking stack that 1s independently man-
aged. For example, a guest operating system may have a
single device driver for storage, a single device driver for
networking, and a single device driver for accessing files.
Such device drivers interface to the I/O-networking stack,
which handles transformation of guest OS requests to par-
ticular services, protocols, and hardware devices.

In an embodiment, behavior and requirements of applica-
tions relating to the network are better defined because well-
defined boundaries are atforded by the operating system vir-
tualization approach. Traffic flows can be monitored in or
signaled to the I/O networking core, butlers can be adjusted
and the changes signaled to applications by the RTOS. Appli-
cations can reach into the intersection memory area as needed
based upon policy-based control granted by the monitor.

Embodiments facilitate increased tratfic volume because
gigabit Ethernet interfaces can function as 1t they are using
custom hardware acceleration units. The increased traffic vol-
ume 1s likely to increase the need for higher-performance
switches and routers, starting with servers in data centers.
These machines will be more secure, and therefore less
expensive to maintain. Servers running multiple operating
systems on demand will be simpler to provision for on-de-
mand purposes, since the I/O-networking core and stack can
remain static while the applications and operating systems
move from machine to machine and platform to platform over
the network, thereby more judiciously moving traffic, and
optimizing resource use.

Networking products that run on an endpoint benefit
because they are no longer tied to multiple operating systems,
especially closed-source implementations such as Microsofit
Windows and AIX that inhibit external innovation.

A single operating system that can support many client
functions, including a common management user interface, 1s
beneficial. For example, while a GUI for the single OS could
be implemented 1n a high-level language such as Java®,
low-level management and shim integration functions are
best implemented using the same language as used to 1mple-
ment the OS. Since there 1s one OS, such implementation 1s
simplified.

US 8,156,230 B2

9

B. Example I/O-Networking Core Implementations
1. A Combined Offload Stack for Network, Block and File I/O

An I/O-networking stack 1s provided that, 1n one embodi-
ment, runs on a separate logical processor core of amulti-core
endpoint computer system such as a multi-processor server.
The I/O-networking stack controls all network and block
storage interfaces of the endpoint, and can be shared between
multiple guest operating systems that run on other cores of the
endpoint. The I/O-networking stack includes software ele-
ments for performing all network processing that is necessary
or appropriate, such as RDMA and IPSec. Applications
access networking functions through socket and/or packet
interfaces, and therefore TCP applications and UDP applica-
tions and packet-level applications can interoperate with the
I/O-networking stack.

The I/O-networking stack also provides block storage and
file system functions, and therefore offloads these computa-
tion-intensive functions from each processor that 1s executing,
an operating system or applications. The file system functions
are coupled to a virtual file system of the endpoint. The block
storage functions of the I/O-networking stack are coupled to
a block interface driver of the endpoint. For example, the
block interface driver may provide a SCSI block and object
interface to the I/O-networking stack. In such an embodi-
ment, SCSI devices may be attached using any approprate
storage 1nterface, such as Fibre Channel, SCSI bus, or 1SCSI.

The I/O-networking stack can function as an intermediate
embedded network device that can perform bridging, switch-
Ing or even routing between hosts on a server or hosts located
outside a server on which the I/O-networking stack runs. The
I/O-networking stack can oftload all I/O operations from a
processor core and can share any number of processors, pro-
cessor core, and operating system 1mages, including different
operating system types.

FIG. 1A 1s a block diagram of an example network end-
point showing soltware architecture for an example embodi-
ment. Endpoint 102 1s a general-purpose data processing,
system that has one or more processors each having one or
more processor cores. For purposes of illustrating a clear
example, endpoint 102 may be considered to have two pro-
cessor cores. One or more operating system 1mages 104 A,
104B run on a first processor core. Each OS 1mage 104A,
104B 1ncludes a respective OS kernel and driver software
106A, 106B. Operating system images 104A, 104B may
relate to completely different operating systems. For
example, operating system 1mage 104A may be Microsoit
Windows and image 104B may be IBM AIX.

Endpoint 102 may include one or more local peripherals
108 such as interfaces for a keyboard, pointing device, moni-
tor, sound, etc.

In one embodiment, a second processor core hosts or con-
tains an I/O-networking stack 110. Generally, the I/O-net-
working stack 110 implements all input, output, and network-
ing functions that a conventional endpoint operating system
would provide, such as packet routing, security protocols, and
quality of service operations or protocols for network, block,
and file access. Examples of functions provided in I/O-net-
working stack 110 include TCP/IP networking, networking
under other protocols such as AppleTalk, peripheral commu-
nications through USB and conventional serial interfaces,
block data transtiers to SCSI devices, file reading from and
writing to mass storage devices, etc.

I/O-networking stack 110 may be implemented as one or
more software elements that are hosted by an operating sys-
tem on one or more cores or CPUs. Alternatively, I/O-net-
working stack 110 may be implemented as a dedicated hard-
ware element, such as a special-purpose CPU core that

10

15

20

25

30

35

40

45

50

55

60

65

10

provides all functions described herein. In addition some
network interface cards (NICs) may include a subset of hard-
ware or software acceleration technologies and the I/O-net-
working stack may then implement the remainder, optimally
leveraging capabilities across components.

The I/O-networking stack 110 comprises a plurality of
internal interfaces including, for example, a network interface
112, block storage interface 114, and {file system interface
116. The internal interfaces provide a means of communicat-
ing data and control information between operating system
images 104A, 104B and the I/O-networking stack 110. For
example, mstead of internally implementing TCP/IP, operat-
ing system image 104 A can call the network interface 112 of
I/O-networking stack 110 whenever a TCP/IP function 1s
needed. Similarly, operating system 104A can make use of
storage devices and file access services provided by the I/O
networking stack using interfaces 114 and 116, respectively.

Drivers in OS kernel and driver software 106 A, 106B may
include a simplified set of device drivers that interface to the
network interface 112, block storage interface 114, and file
system interface 116. Further, OS 104A, 1048 may have a
single device driver among driver software 106A, 1068 for
storage, a single device driver for networking, and a single
device driver for accessing files. Such device drivers interface
to the I/O-networking stack 110, which handles transforma-
tion of guest OS requests to particular services, protocols, and
hardware devices and communication through external inter-
faces. As further discussed below, a guest OS may establish
communication to files, storage and network devices using
sockets.

Therefore, OS 104A, 1048 are greatly simplified as all
I/O-networking functions are handled by a separate 1/O-net-
working stack that 1s independently managed. An OS 104 A,
104B need not have a separate device driver for every type of
network device that the OS may need to communicate with or
for every version of the OS. Each OS 104 A, 104B need not
maintain security codes associated with devices or interfaces.
This approach promotes stability for OS 104A, 1048 and
improves security of OS 104A, 104B. All I/O networking
functions are offloaded from each of OS 104A, 104B to the
I/O-networking stack 110, and the I/O-networking functions
of the stack are effectively amortized across multiple operat-
ing systems. According to an embodiment, some I/O net-
working functions may not be offloaded; for example, some
IO networking functions may be required to remain coupled
to 1ts respective OS, or there may be some 1/O networking
functions that have been implemented 1n high performance
hardware.

The I/O-networking stack 110 further comprises a plurality
of external interfaces 118A, 118B, 118C, 118D, such as Eth-
ernet interface 118 A, wireless interface 118B, Fibre Channel
interface 118C, and Infiniband interface 118D. The external
interfaces are communicatively coupled to other networks or
network devices. The I/O-networking stack 110 1s respon-
sible for transforming all calls from the operating system
images 104A, 104B that request networking services and
require external communications to appropriate packet trans-
mission or reception on the external interfaces.

FIG. 1B 1s a block diagram of an example implementation
of an I/O-networking stack. For example, I/O-networking
stack 110 may comprise elements shown 1n FIG. 1B.

A stack mterface 120 1s logically situated at a highest layer
of I/O-networking stack 110 and interfaces processor and
processor core hardware elements to other parts of the I/O-
networking stack. Operating system drivers that need to
obtain I/O-networking services use the stack iterface 120 to
obtain such services. Principal functional layers of I/O-net-

US 8,156,230 B2

11

working stack 110 include a stack file interface 122, stack
network interface 140, and stack storage interface 134, each
of which 1s now described.

The stack network intertace 140 couples stack intertace
120 to lower-level networking functional elements such as an
RDMA module 142, TCP module 144, IP module 146, and
one or more physical protocol modules 148. RDMA module
142, TCP module 144, IP module 146, and the physical pro-
tocol modules 148 comprise software elements that imple-
ment the protocols specified by their names. For example,
TCP module 144 can perform TCP three-way handshaking
and maintain and manage TCP connections.

The stack file interface 122 mediates calls to functional
clements that provide file mampulation functions. Stack file
interface 122 provides file-level access to external resources.
Stack file interface 122 determines what resource has been
requested and what form of access method 1s required, and
passes requests to the correct functional module. Some {ile
manipulation functions require network services that are
obtained through stack network interface 140, and some file
functions use storage services that are obtained through stack
storage interface 134.

For example, stack file interface 122 1s coupled to CIFS
module 124 and NFS module 126, which provides network
file system (NFS) protocol services. Stack file interface 122
also may be coupled to one or more object file system mod-
ules 128 that provide object-based file services as defined by
Lustre and other vendors.

Stack file interface 122 also may be coupled to one or more
cluster file system modules 130 and to a local file system
module 132. One of the cluster file system modules 130 may
provide GFS functions, for example.

Object file systems modules 128, cluster file system mod-
ules 130, and local file system module 132 may be coupled to
stack storage interface 134, which mediates calls to external
storage systems that use data transter operations that conform
to SCSI or similar block data transfer protocols. The stack
storage interface 134 determines what type of storage request
has been made and interfaces the request to the correct func-
tional module. For example, stack storage intertace 134 may
forward storage requests that address 1ISCSI devices to 1ISCSI
module 136, which passes network requests to stack network
interface 140. Further, stack storage interface 134 may for-
ward requests to access Fibre Channel devices to FCP module
138, which 1s coupled to one or more Fibre Channel interfaces
139.

In an embodiment, stack storage interface 134 may com-
prise a plurality of iterfaces including, for example, an
object interface and a separate block interface. Further, CIFS
module 124 may interface to a WAFS client module that also
forms a part of I/O-networking stack 110.

In another embodiment, stack storage interface 134 1s
coupled to a BIOS interface that enables a processor to obtain
disk access for purposes of performing bootstrap loading. In
still another embodiment, I/O-networking stack 110 com-
prises non-volatile memory that is accessible by the I/0 net-
working core and by a configuration tool. The non-volatile
memory may hold boot parameters, security parameters such
as IPSec or CTS setup values.

In this configuration, the I/O-networking stack provides a
complete set of file, storage, and networking services and can
clfectively offload processing requirements for such services
from an operating system.

FIG. 1C 1s a block diagram providing a detailed view of
functional elements providing networking services in the
stack arrangement of FIG. 1B. In particular, FIG. 1C indicates
that stack network interface 140 may provide access to any of

10

15

20

25

30

35

40

45

50

55

60

65

12

a plurality of networking services that are provided by corre-
sponding functional modules. Examples of functional mod-
ules include: mternal IP forwarding module 150; IPSec/CTS
module 152; VLAN support module 154; QoS module 156,
which 1s responsible for traffic control, shaping and policing;
and internal switching module 158.

Additionally or alternatively, stack network interface 140
may provide access to functional modules that perform SSL
processing, firewall functions, connections to anti-virus scan-
ners, discovery protocols such as CDP, control protocols such
as ICMP, and management protocols.

2. Sharing a Single Oftload Stack Between Multiple Operat-
Ing Systems

According to an embodiment, an I/O-networking stack as
previously described runs in an offload virtual machine/do-
main that has been created by a virtual machine monaitor.
Accordingly, the size of domains that host guest operating
systems 1s reduced, because an I/O-networking stack resides
only in the offload domain and not in the other domains.
Further, the offload domain hosts an operating system that 1s
highly customized for I/O-networking features and functions.
Network quality of service ((QoS) processing 1s handled uni-
tformly even when disparate operating systems are running in
the other domains.

Running the I/O-networking stack as a guest operating
system, rather than as a software element that requires a
dedicated processor core, allows the I/O-networking stack to
be hosted on only a portion of a core, an entire core, or a
plurality of cores. The allocation of resources can be dynami-
cally arbitrated by the management subsystem working 1n
conjunction with the VMM to take into account signaling
from the external core network about incoming tratfic prop-
erties, or from local applications regarding outgoing traffic
properties. These are used to optimize how much memory,
how many cores or logical processors, and other local
resources are devoted to networking versus computation.
Accordingly, a plurality of other guest operating systems
running on other cores, CPUs, or virtualized domains can
share networking, block, and file services provided by the
I/O-networking stack. Thus, multiple OSs can offload net-
working, block and file services to one separately hosted
I/O-networking stack.

FIG. 2A 1s a block diagram showing another embodiment
of an offload I/O-networking stack. In FIG. 2A, guest oper-
ating systems 204 A, 204B run 1n two separate domains estab-
lished by virtual machine momtor 206, and I/O-networking
stack 110 runs in a third domain. In this configuration, 1/O-
networking stack 110 runs on top of an operating system
under the VMM 206.

Each of the domains, and therefore each guest OS 204A,
204B, may run on the same processor as the I/O-networking
stack 110. Alternatively, the guest operating systems and
I/O-networking stack 110 may run on virtual domains on one
processor core. Domains hosting the guest operating systems
204 A, 204B and I/O-networking stack 110 also may extend
across multiple processors. Thus, the I/O-networking stack
110 may run on a CPU core, on a plurality of cores of a CPU
including all cores of the CPU, or utilize multiple CPUs.
Further, the I/O-networking stack may run within a hyper
thread on a CPU.

The I/O-networking stack 110 has the structures and func-
tions described above with respect to FIG. 1A.

FIG. 2B 1s a block diagram showing interface elements that
may be used 1n the embodiment of FIG. 2A. In the embodi-
ment of FIG. 2B, one or more processor cores host Linux
guest operating systems 214A, 214B, each of which hosts a
respective Linux application 216A, 216B. Linux 1s merely

US 8,156,230 B2

13

one example of an operating system that may be hosted on the
one or more processor cores, and the applications 216A,
2168 may be of any variant capable of being executed by the
operating systems. Application 216A, 216B may be com-
pletely unrelated and perform different functions or provide
different services.

A NetBSD operating system 220 hosts the I/O-networking
stack 110. All the foregoing elements are hosted on a CPU
224 having associated memory. NetBSD 1s merely one
example of an operating system 220 that can host the I/O-
networking stack 110. However, an advantage offered by the
present architecture i1s that operating system 220 may be
simplified with fewer functions than a typical general-pur-
pose OS and therefore may be structured with greater secu-
rity. Further, in an alternative embodiment, the functionality
provided by operating system 220 and I/O-networking stack
110 may be implemented in optimized hardware such as in a
special-purpose CPU core.

The Linux guest operating systems 214 A, 214B each host
a stack mterface (CSI) 222A, 222B, which provide a secure
interface to I/O-networking stack 110. Applications 216 A,
216B obtain network functions from the I/O-networking
stack 110 by establishing socket interfaces to the I/O-net-
working stack 110. According to an embodiment, applica-
tions 216 A, 216B access block and file functions by an exten-
s10n of the block driver and VNODE/VES layer. According to
an embodiment, access of the layer 2 networking capabilities
may also be utilized by a simple packet interface rather than
the socket interface.

In certain embodiments, functional elements of operating
system 220 can supplement the functions of I/O-networking
stack 110. For example, 1n one embodiment in which OS 220
1s NetBSD, I/O-networking stack 110 communicates to one
or more network interfaces, such as Ethernet interface 118 A,
using the NetBSD TCP stack rather than a TCP functional
module contained within the I/O-networking stack.

FI1G. 2C 1s a block diagram of the embodiment of FIG. 2B
showing further details of an example software architecture,
focusing on software elements used to perform network com-
munication via Ethernet.

A guest operating system such as guest OS 204B hosts one
or more user applications 216B. The guest OS 204B obtains
I/O-networking services by making socket calls 230 to I/0-
networkmg stack 110 through stack interface front-end 222B.
A ring builer interface 232 1s interposed between guest OS
204A, 2048 and I/O-networking stack 110. The ring buifer
interface 232 enables I/O-networking stack 110 to mediate
concurrent calls from guest OS 204 A, 204B that seek to use
the same resource 1n the same way at the same time, and
therefore are mutually exclusive calls.

Calls mediated through the ring buffer interface 232 arrive
at stack interface back end 234. In an embodiment in which
the NetBSD operating system hosts the I/O-networking stack
110, socket calls 230 terminate at NetBSD kernel sockets
236. For socket calls that request TCP/IP networking ser-
vices, the socket calls are serviced by NetBSD TCP/IP
adapter 238. For TCP/IP communications over Ethemnet, a
NetBSD E1000 driver 240 drives Ethernet interface 118A.
The E1000 driver 240 1s merely an example that 1s appropriate
for certain Intel Ethernet chipsets; in other embodiments that
use other chip sets, different drivers may be used.

FI1G. 2D 1s a block diagram showing an embodiment of an
I/O-networking stack for block, file system and network off
loading. A guest operating system such as guest OS 204A
204B hosts one or more user applications 216 A, 216B. Each
guest OS 204A, 204B has a block driver interface 260A,

10

15

20

25

30

35

40

45

50

55

60

65

14

2608, a VES interface 262 A, 262B and a socket call interface
264 A, 264B. Each guest OS has a stack interface front-end

222A, 2228.

In one embodiment, the guest operating systems 204A,
204B share a ring bufler interface 232 and a stack interface
back end 234. The rnng buller interface 232 and stack inter-
face back end 234 are also shared by the I/O-networking stack
110, which performs block stack oftfload 270, file system
stack oftload 272 and network stack oftload 274.

Block stack calls mediated through the rnng butler interface
232 arrive at stack interface back end 234. The block storage
functions of the I/O-networking stack are coupled to a block
interface driver of the endpoint. For example, the block inter-
face driver may provide a SCSI block and object interface to
the I/O-networking stack such as 1SCSI adapter 276 and
NetBSD SCSI adapter 278. The 1SCSI adapter 276 then uti-
lizes the NetBSD TCP/IP adapter 280 to communicate with
remote 1ISCSI storage devices. The I/O-networking core may
also facilitate direct memory access techniques over the net-
work, such as by using RDMA over the NetBSD TCP/IP
adapter 280.

File system stack calls mediated through the ring buffer
interface 232 arrive at stack interface back end 234. The stack
file intertace 272 1s coupled to CIFS module 284A and NFS
module 2848, which provides network file system (NFS)

protocol services. Stack file interface 272 also may be
coupled to one or more distributed file system modules 284C
and to a local file system module 284D. Data may be sent

through the NetBSD TCP/IP adapter 280 or via SCSI using
Fibre Channel or another local interface. The NetBSD TCP/
IP adapter may utilize the 1SCSI protocol 276. A NetBSD
SCSI adapter 278 may be provided.

Network stack calls mediated through the ring butiler inter-
face 232 arrive at stack interface back end 234. In an embodi-
ment 1n which the NetBSD operating system hosts the I/O-

networking stack 110, socket calls 264A and 264B are
processed by NetBSD kernel sockets 236. For socket calls

that request TCP/IP networking services, the socket calls are

serviced by NetBSD TCP/IP adapter 238. For TCP/IP com-
munications over Ethernet, a NetBSD E1000 driver 240

drives Ethernet over interface 288.

Components of the stack 1in the host systems are connected
through an 1nterface 288 that may be comprised of an Infini-
band network or a data center Ethernet (DCE) network to
stack components that are resident 1n one or more gateway
devices. Network, block and file functions use this network to
create an 1nterface for communicating data and control infor-
mation between the host and gateway stacks. Infiniband and
DCE are merely two examples ol communications protocols
that may be used for communications in the hierarchical stack
architecture. Alternatively, gigabit Ethernet or Fibre Channel
could be used.

FIG. 4 1s a block diagram of the system of FIG. 2C 1n an
arrangement that uses a plurality of ring buifer interfaces. For
example, a first set ol ring buffer interfaces 232 A 1s associated
with a first guest OS 204 A, and a second set of ring butler
interfaces 2328 1s associated with a second guest OS 204B.

One embodiment provides multiple ring buffer interfaces
based upon QoS levels. In this embodiment, socket calls 230
are associated with QoS values, and socket calls having a first
QoS value are mediated 1n a first ring buller interface 1n a set,
such as set 232A, and calls with a second QoS value go to a
second ring buliler interface. This approach provides uniform
handling for the QoS levels between all guest operating sys-
tems running on the cores.

US 8,156,230 B2

15

Further, 1n an embodiment, a given connection operates at
a single QoS level. In another embodiment, a protocol may be
defined to operate at a single QoS level.

In an embodiment, the highest priority ring interface 1s
reserved and used to send all control traflic between the guest
operating systems 204 A, 204B and the I/O-networking stack
110 so that control traffic 1s not stalled behind lower-priority
application data.

In another embodiment, one ring bufler interface 1s pro-
vided, to which multiple queues feed data. In this embodi-
ment, each queue 1s associated with one QoS level.

FIG. 5 1s a block diagram of the system of FIG. 4 showing
the flow of transmitted data in one embodiment. A plurality of
socket calls 502 A may arrive from a first guest OS asynchro-
nously at stack interface front-end 222 A. The socket calls 502
are separated and sent to individual ring butlers 232A-1,
232A-2, 232A-3 for communication to stack interface back
end 234. A first ring buffer 232A-1 1s designated a control
builer and carries a highest QoS level to ensure delivery of
control information. The remaining ring builers carry data
associated with transmission or receiving. Stack interface
back end 234, in this embodiment, performs admission con-
trol for data arriving on the ring buflers and performs tlow
control for connections.

TCP connections are either individually assigned to a QoS
level or a protocol 1S assigned to a QoS level. The network-
oltload service domain receives the requested QoS level from
the guest OS but it can be changed based upon provisioning.
Interfaces may extend beyond Ethernet based L2. Thus, Eth-
ernet interface 118A 1s shown merely as an example.

The shared network stack may also incorporate virtual
switch and networking functions common to switches, rout-
ers, and/or NAT devices.

FIG. 3 1s a block diagram of an example implementation
using two processors and three virtual domains, domains in
FIG. 3 being names given to the virtual machines executing
on the processors 302, 304. A first processor 302 hosts two
domains 306, 308 that respectively host the Linux operating
system and NetBSD operating system. A second processor
304 hosts a second domain 310 that runs Linux. Processors
302, 304 also broadly represent a plurality of processor cores
ol a single processor chip.

The Linux OS 1n first domain 306 runs one or more man-
agement applications 312 in user space, and runs a Linux
Ethernet driver 314 in kernel space. The driver 314 1s coupled
to an Ethernet port 320 denoted “eth0” 1n a hardware layer
321 through a sate hardware interface 318. The safe hardware
interface 318 provides protections i the Xen Hypervisor
layer 316 which prevents guest domains from accessing
devices they have not been authorized to use.

The NetBSD OS 1n second domain 308 runs an I/O-net-
working stack 324 1n kernel space. The I/O-networking stack
324 1s coupled to an Ethernet driver 326 and to a CSI TCP
back end driver 328. The Ethernet driver 326 communicates
Ethernet frames to and from an Ethernet port provided by
Intel chipset 322 through the interface 318. The Intel inter-
face, 1n this example, 1s assigned to the I/O-Networking stack
domain so that 1t can directly access the hardware without
involvement from any other domain.

The CSI TCP back end driver 328 1s communicatively
coupled through the Xen Hypervisor layer 316 to a CSI TCP
front end driver 332 in kernel space of the third domain 310
running on the second processor 304. Test applications 311
hosted under Linux 1n the third domain access TCP services
through socket calls 330 that communicate with the CSI
front-end driver 332. TCP shim code 330 may implement a
standard TCP socket interface. In this configuration, the

10

15

20

25

30

35

40

45

50

55

60

65

16

Linux OS running in third domain 310 need not natively
provide TCP/IP services, and all processing load associated
with such services 1s offloaded to second domain 308 on a
different processor or processor core.

As a result, utilizing a domain, created by a VMM, {for
network service oitload provides a scalable solution that can
uniformly provide network QoS for disparate operating sys-
tems. The approach herein will scale as more cores are
embedded into processors. This approach also will allow a
single-core processor to operate with hyper threading as 11 it
had multiple cores.

3. Hierarchical Network Stack Oftload

According to an embodiment, an I/O-networking stack
runs on one core of a multi-core processor and offloads net-
work, block, and file functions from one or more guest oper-
ating systems running 1n a virtual machine environment on
that system. The I/O-networking stack 1s extended to allow
multiple systems, which are running the I/O-networking
stack 1n a cluster, the ability to further share oftfload functions
for a set of network and devices presented in the network.

In an embodiment, a hierarchical stack architecture 1s pro-
vided 1n which components of the stack in the host systems
are connected through an Infiniband network or a data center
Ethernet (DCE) network to stack components that are resi-
dent in one or more gateway devices. Network, block and file
functions use this network to create an interface for commu-
nicating data and control information between the host and
gateway stacks. Infiniband and DCE are merely two examples
of communications protocols that may be used for commu-
nications in the hierarchical stack architecture. Alternatively,
gigabit Ethernet or Fibre Channel could be used.

The I/O-networking stack components 1n the host systems
handle offload for all locally connected networks and devices.
For example, a TCP stream utilizing a local gigabit Ethernet
port on the host 1s offloaded solely by the I/O-networking
stack residing on that host. Similarly, block devices that are
accessible through a Fibre Channel port on the host are ofl-
loaded solely by the I/O-networking stack on that host.

FIG. 6 1s a block diagram showing a hierarchical 1/O-
networking stack system. One or more hosts 602A, 6028
cach host one or more guest operating systems 204 A, 204B,
204C, 204D and respective I/O-networking stacks 110A,
110B. The internal arrangement of elements in hosts 602A,
602B 1s comparable to the arrangement shown in FIG. 2B.
Thus, each of the hosts 602A, 6028 provides links between
stack interface front ends and stack interfaces of the 1/O-
networking stack. For example, referring to host 602A, links
604 connect stack interface front ends 222 A, 222B and stack
interfaces 234 of the I/O-networking stack 110A. The I/0O-
networking stack 110A provides a plurality of external inter-
faces to networking and storage elements, such as gigabit
Ethernet interface 118 A. Such interfaces ot hosts 602 A, 602B
may connect to networks or devices 616 that are local to the
hosts 602A, 602B.

In addition, each of the hosts 602A, 602B provides the
option of at least one 1ntertace 118D, such as an Infiniband or
DCE interface, which connects on links 608A to a separate
host that runs an entirely separate I/O-networking stack at a
separate hierarchical layer. For example, links 608A couple a
DCE or Infiniband interface 118D of host 602 A to an Infini-
band or DCE switch 610 that hosts a gateway 612. The gate-
way 612 hosts an I/O-networking stack 110C that is generally
identical 1n internal arrangement to I/O-networking stacks
110A, 110B. The I/O-networking stack 110C of the gateway
has one or more interfaces 118E that are coupled to networks
or devices 614 that may be shared across all the hosts 602A,
602B.

US 8,156,230 B2

17

Further, 1n this arrangement, stack interface 234 A of I/O-
networking stack 110A forms a logical connection indicated
by links 606 to a similarly structured stack interface 234C of
the I/O-networking stack 110C of the gateway. Individual
interfaces within stack interface 234A, such as network,
block, and file interfaces, are logically coupled to correspond-
ing individual interfaces i1n stack interface 234C. Concur-
rently, other links 606 couple stack interface 234B of I/O-
networking stack 110B 1n a logical connection to the stack
interface 234C of the I/O-networking stack 110C of the gate-
way.

Links 606 represent an oftloading of the functions of I/O-
networking stacks 110A, 110B to corresponding functions in
[/O-networking stack 110C. Thus, in this arrangement, a
higher-layer stack such as I/O-networking stack 110A
handles local devices and local functions among the resident
Guest OSes, but passes requests for shared network, block
and file accesses directly to the gateway 612, where such
requests are processed by I/O-networking stack 110C. Such
requests and other interface functions may be passed directly
over Infiniband or DCE connections. The I/O-networking
stack 110C handles all shared networks and devices on behalt
of an entire group or cluster of hosts. The shared networks and
devices 614 may include, for example, distributed file sys-
tems, file caching, block caching, NAPT, VPN processing,
etc.

In an embodiment, other networks and devices may be
connected to an endpoint that 1s acting as a gateway device. In
such an embodiment, the I/O-networking stack hosted on the
gateway provides oltloaded functions for the remotely con-
nected host systems. For example, a TCP stream utilizing a
gigabit Ethernet port on a gateway 1s offloaded by the 1/0-
networking stack on that gateway. The 1nterface between the
guest OS on the host and the local I/O-networking stack 1s
extended across the Infiniband/DCE network to the 1/O-net-
working stack on the gateway. Likewise, devices accessible to
the gateway over a Fibre Channel port on that gateway are
available to the remote hosts by extending the block interface
between the guest OS and the I/O-networking stack on that
host to the stack components on the gateway.

Other functions that could be provided by the I/O-network-
ing stack hosted at a gateway include distributed file systems,
file and block caching, NAPT, and VPN. Further, switch 610
and gateway 612 are 1dentified merely as examples of devices
separate from hosts 602A, 6028 that could host the 1/O-
networking stack 110C. In other embodiments, any other
suitable data processing device could host the I/O-network-
ing stack 110C and form a hierarchical network offload sys-
tem.

Thus, an apparatus provides hierarchical stack oftloading
for network, file, and block functions, using Infiniband or
DCE to extend the interfaces between guest operating sys-
tems and the I/O-networking stack to reach stack components
that are placed in gateway systems in a network. This
approach may be useful, for example, when data processing
resources consumed by either of the local I/O-networking
stacks 110A, 110B 1s sufliciently high that there 1s a need or
preference to move the associated computational burden to a
separate device. Similar to how many guest OS’s could share
amortize a shared stack on a single host, in a lierarchical
model this 1s repeated on a gateway, including dynamically
balancing processing back and forth between the gateway and
endpoints.

In prior approaches, oftloads typically are implemented
using specialized network interface cards. In contrast, the
approach herein extends the oftload capability to utilize mul-
tiple CPUs or processor cores 1n the network. In addition,

10

15

20

25

30

35

40

45

50

55

60

65

18

oltloading I/O-networking functions from host operating sys-
tems to the specialized I/O-networking stack provides more
control within the I/O-networking stack over endpoint
switching and networking behavior, provides visibility into
application traffic, and provides more flexibility 1n 1mple-
menting endpoint-driven intelligent networking features.

4. Additional Offload Services

In one embodiment, I/O-networking stack 110 also
includes a cluster faillover module that can detect failures or
unavailability of network devices, storage systems, and file
systems. Further, from the foregoing description it1s apparent
that I/O-networking stack 110 maintains information indicat-
ing all network, block and file connectivity to such resources.
The cluster failover module provides failover services to
guest OS systems that are running in virtualized domains.
Thus, each guest OS need not provide a native failover service
and can rely on I/O-networking stack 110 to detect, for
example, a failure of one storage system 1n a cluster and fail
over to a standby or backup storage system. Further, the
cluster failover services can manage failover to a standby
CPU or standby CPU core 11 a failure occurs 1n an active CPU
or active CPU core that 1s running the guest OS.

Because the I/O-networking stack 110 runs under a virtu-
alization engine such as Xen, VM Ware, etc., the I/O-network-
ing stack can acquire information about the memory require-
ments for each guest OS. The I/O-networking stack 110 may
use such information to manage cluster failover services, for
example, to select a standby CPU or standby CPU core from
among a pool of available CPU resources and having enough
memory to properly service the guest OS and 1ts applications.
Thus, 1n response to a failure of a CPU or core that 1s hosting
a guest OS, the I/O-networking stack 110 may move the guest
OS to other hardware that 1s best configured to support the
guest OS.

In an embodiment, cluster failure services are provided by
running NuSpeed’s HA or Veritas Cluster Server as part of
I/O-networking stack 110.

In another embodiment, I/O-networking stack 110
includes a backup module that oftloads file backup services
from guest operating systems. Because the I/O-networking
stack 110 processes all file and block requests of a guest OS,
the I/O-networking stack maintains information about open
files and the state of caches that are used to satisty file and
block requests. Using this information, the I/O-networking
stack 110 can perform scheduled file and block backups to
backup storage devices, or perform continuous backup to a
standby storage device.

C. Implementation Mechamsms—Hardware Overview

FIG. 7 1s a block diagram that illustrates a computer system
700 upon which an embodiment of the invention may be
implemented, subject to the arrangements shown 1n the pre-
ceding drawing figures. Thus, computer system 700 broadly
represents a general-purpose data processing host that may be
used as a basis for any of the foregoing embodiments.

Computer system 700 includes a bus 702 or other commu-
nication mechanism for communicating information, and a
processor 704 coupled with bus 702 for processing informa-
tion. Computer system 700 also includes a main memory 706,
such as a random access memory (“RAM”) or other dynamic
storage device, coupled to bus 702 for storing information and
instructions to be executed by processor 704. Main memory
706 also may be used for storing temporary variables or other
intermediate information during execution of mstructions to
be executed by processor 704. Computer system 700 further
includes a read only memory (“ROM”) 708 or other static
storage device coupled to bus 702 for storing static informa-
tion and 1nstructions for processor 704. A storage device 710,

US 8,156,230 B2

19

such as a magnetic disk or optical disk, 1s provided and
coupled to bus 702 for storing information and 1nstructions.

In various embodiments, processor 704 may comprise a
plurality of processors, as 1n a multi-processor server com-
puter. Further, each processor may have one or more separate
processor cores that are capable of independently runming
operating systems and applications. Thus, processor 704 1n
FIG. 7 broadly represents a central processing element that
may comprise multiple processors and cores in various
embodiments.

Computer system 700 may be coupled via bus 702 to a
display 712, such as a cathode ray tube (“CR1”), for display-
ing information to a computer user. An input device 714,
including alphanumeric and other keys, 1s coupled to bus 702
for communicating information and command selections to
processor 704. Another type of user input device 1s cursor
control 716, such as a mouse, trackball, stylus, or cursor
direction keys for communicating direction information and
command selections to processor 704 and for controlling
cursor movement on display 712. This mnput device typically
has two degrees of freedom 1n two axes, a first axis (e.g., X)
and a second axis (e.g., v), that allows the device to specily
positions 1n a plane.

The mvention is related to the use of computer system 700
for network stack offloading approaches. According to one
embodiment of the invention, network stack offloading
approaches are provided by computer system 700 1in response
to processor 704 executing one or more sequences of one or
more 1instructions contained i main memory 706. Such
instructions may be read into main memory 706 from another
computer-readable medium, such as storage device 710.
Execution of the sequences of istructions contained in main
memory 706 causes processor 704 to perform the process
steps described herein. In alternative embodiments, hard-
wired circuitry may be used in place of or in combination with
software 1nstructions to 1mplement the mnvention. Thus,
embodiments of the mvention are not limited to any specific
combination of hardware circuitry and software.

The term “computer-readable medium” as used herein
refers to any medium that participates 1n providing instruc-
tions to processor 704 for execution. Such amedium may take
many forms, including but not limited to, non-volatile media,
volatile media, and transmission media. Non-volatile media
includes, for example, optical or magnetic disks, such as
storage device 710. Volatile media includes dynamic
memory, such as main memory 706. Transmission media
includes coaxial cables, copper wire and fiber optics, includ-
ing the wires that comprise bus 702. Transmission media can
also take the form of acoustic or light waves, such as those
generated during radio wave and infrared data communica-
tions.

Common forms of computer-readable media include, for
example, a tloppy disk, a flexible disk, hard disk, magnetic
tape, or any other magnetic medium, a CD-ROM, any other

optical medium, punch cards, paper tape, any other physical
medium with patterns of holes, a RAM, a PROM, and

EPROM, a FLASH-EPROM, any other memory chip or car-
tridge, a carrier wave as described hereinafter, or any other
medium from which a computer can read.

Various forms ol computer readable media may be
involved 1n carrying one or more sequences of one or more
instructions to processor 704 for execution. For example, the
instructions may initially be carried on a magnetic disk of a
remote computer. The remote computer can load the mnstruc-
tions 1nto 1ts dynamic memory and send the istructions over
a telephone line using a modem. A modem local to computer
system 700 can recerve the data on the telephone line and use

10

15

20

25

30

35

40

45

50

55

60

65

20

an inirared transmitter to convert the data to an infrared sig-
nal. An infrared detector can receive the data carried in the
inirared signal and appropriate circuitry can place the data on
bus 702. Bus 702 carries the data to main memory 706, from
which processor 704 retrieves and executes the instructions.
The 1nstructions recerved by main memory 706 may option-
ally be stored on storage device 710 either before or after
execution by processor 704.

Computer system 700 also includes a communication
interface 718 coupled to bus 702. Communication interface
718 provides a two-way data communication coupling to a
network link 720 that 1s connected to a local network 722. For
example, communication interface 718 may be an integrated
services digital network (“ISDN”) card or a modem to pro-
vide a data communication connection to a corresponding
type of telephone line. As another example, communication
interface 718 may be a local area network (“LAN") card to
provide a data communication connection to a compatible
LAN. Wireless links may also be implemented. In any such
implementation, communication interface 718 sends and
receives electrical, electromagnetic or optical signals that
carry digital data streams representing various types ol infor-
mation.

Network link 720 typically provides data communication
through one or more networks to other data devices. For
example, network link 720 may provide a connection through
local network 722 to a host computer 724, an external file
server 734, or to data equipment operated by an Internet

Service Provider (“ISP”) 726. File server 734 holds any form

of data files, electronic documents, graphics, or other content
and resources. ISP 726 1n turn provides data communication
services through the worldwide packet data communication
network now commonly referred to as the “Internet” 728.
[Local network 722 and Internet 728 both use electrical, elec-
tromagnetic or optical signals that carry digital data streams.
The signals through the various networks and the signals on
network link 720 and through communication interface 718,
which carry the digital data to and from computer system 700,
are exemplary forms of carrier waves transporting the infor-
mation.

Communication interface 718 also 1s coupled to a storage
network 730 that includes one or more storage devices 732.
Storage network 730 may use SCSI, Fibre Channel, or other
protocols for communication storage devices and communi-
cation interface 718, and may also use other storage area
network (SAN) protocols and standards.

Computer system 700 can send messages and receive data,
including program code, through the network(s), network
link 720 and communication interface 718. In the Internet
example, a server 730 might transmit a requested code for an
application program through Internet 728, ISP 726, local
network 722 and communication interface 718. In accor-
dance with the invention, one such downloaded application
provides for network stack offloading approaches as
described herein.

The recerved code may be executed by processor 704 as it
1s recerved, and/or stored in storage device 710, or other
non-volatile storage for later execution. In this manner, com-
puter system 700 may obtain application code 1n the form of
a carrier wave.

D. Extensions and Alternatives

In the foregoing specification, the invention has been
described with reference to specific embodiments thereof. It
will, however, be evident that various modifications and
changes may be made thereto without departing from the

US 8,156,230 B2

21

broader spirit and scope of the imvention. The specification
and drawings are, accordingly, to be regarded 1n an 1llustrative
rather than a restrictive sense.

What 1s claimed 1s:

1. An apparatus comprising:

one or more external network interfaces that are configured

for coupling to one or more networks for recetving and
sending packet flows;
ONe Or MOre Processors;
one or more non-transitory computer-readable media stor-
ing an input/output networking stack that 1s shared with
two or more operating systems hosted by two or more
remote hosts, wherein the mnput/output networking stack
comprises one or more sequences of mstructions which,
when executed by the one or more processors, cause:

receiving, at a plurality of internal interfaces, requests for
data transiers from two or more input/output networking
stacks that are respectively configured on the two or
more remote hosts, wherein the plurality of internal
interfaces comprises a network interface, a block storage
interface, and a file system interface; wherein the block
storage interface mediates calls from the two or more
operating systems; and

permitting the data transters between the plurality of inter-

nal interfaces and at least one external network interface
by preventing the two or more mput/output networking
stacks on the two or more remote hosts from performing,
the data transfers and performing the data transiers on
behalf of the two or more mput/output networking
stacks on the two or more remote hosts.

2. The apparatus of claim 1, wherein the one or more
processors each comprise one or more processor Cores;
wherein the one or more non-transitory computer-readable
media further comprise mstructions which, when executed,
cause executing the input/output networking stack on at least
one virtual machine hosted on a processor core of the one or
more processors cores.

3. The apparatus of claim 1, wherein the one or more
processors each comprise one or more processor Cores;
wherein the one or more non-transitory computer-readable
media turther comprise mstructions which, when executed,
cause executing the input/output networking stack on a sepa-
rate operating system hosted on a processor core of the one or
MOre processors cores.

4. The apparatus of claim 1, wherein the mput/output net-
working stack further comprises instructions which, when
executed by the one or more processors, cause: preventing the
two or more mput/output networking stacks on the two or
more remote hosts from performing bridging, switching and
routing of data between the two or more remote hosts; and
bridging, switching and routing data between the two or more
remote hosts on behalf of the two or more input/output net-
working stacks on the two or more remote hosts.

5. The apparatus of claim 1, further comprising instruction
which when executed cause the two or more operating sys-
tems, on a particular host of the two or more remote hosts, to
use operating system drivers to share a particular input/output
networking stack, of the two or more input/output networking,
stacks, that 1s configured on the particular host.

6. The apparatus of claim 1, wherein the mput/output net-
working stack further comprises instructions which, when
executed by the one or more processors, cause:

analyzing data in the data transiers prior to transferring the

data between said at least one external network interface
and the two or more input/output networking stacks on

5

10

15

20

25

30

35

40

45

50

55

60

65

22

the two or more remote hosts, wherein analyzing the
data comprises comparing properties of the data against
security policies, and

preventing transfers of data that does not satisiy the secu-

rity policies.
7. The apparatus of claim 1, wherein the apparatus 1s con-
figured as a gateway device that uses the mput/output net-
working stack to provide oflloading of network functions,
block storage functions, and file system functions to the two
or more operating systems that are configured on the two or
more remote hosts.
8. The apparatus of claim 1, wherein the two or more
input/output networking stacks on the two or more remote
hosts are configured 1n a cluster.
9. The apparatus of claim 1, wherein the mput/output net-
working stack 1s communicatively connected to the two or
more mput/output networking stacks on the two or more
remote hosts over an internal network that 1s one of an Infini-
band network and a data center ethernet (DCE) network.
10. The apparatus of claim 1, wherein the apparatus 1s one
of a router and a switch.
11. A non-transitory computer-readable storage medium
storing one or more sequences of instructions wherein the one
or more sequences of instructions comprise instructions
which, when executed by a computing device, cause the com-
puting device to perform:
recerving, at a plurality of internal interfaces, requests for
data transfers from two or more input/output networking,
stacks that are shared with two or more operating sys-
tems hosted by two or more remote hosts, and that are
respectively configured on the two or more remote hosts,
wherein the plurality of internal interfaces comprises a
network interface, a block storage interface, and a file
system 1nterface; wherein the block storage interface
mediates calls from the two or more operating systems;

permitting the data transiers between the plurality of inter-
nal interfaces and at least one external network interface
by preventing the two or more input/output networking
stacks on the two or more remote hosts from performing,
the data transfers and performing the data transfers on
behalf of the two or more input/output networking
stacks on the two or more remote hosts.

12. The non-transitory computer-readable storage medium
of claim 11, wherein the one or more sequences of instruc-
tions further comprise instructions which, when executed,
cause executing the input/output networking stack on at least
one virtual machine hosted on a processor core of a processor
on the computing device.

13. The non-transitory computer-readable storage medium
of claim 11, wherein the one or more sequences of nstruc-
tions further comprise instructions which, when executed,
cause executing the input/output networking stack on a sepa-
rate operating system hosted on a processor core of a proces-
sor on the computing device.

14. The non-transitory computer-readable storage medium
of claim 11, wherein the one or more sequences of instruc-
tions for the mput/output networking stack further comprise
instructions which, when executed, cause: preventing the two
or more mput/output networking stacks on the two or more
remote hosts from performing bridging, switching and rout-
ing of data between the two or more remote hosts; and bridg-
ing, switching and routing data between the two or more
remote hosts on behalf of the two or more 1mput/output net-
working stacks on the two or more remote hosts.

15. The non-transitory computer-readable storage medium
of claim 11, wherein the two or more operating systems, on a
particular host of the two or more remote hosts, use operating

US 8,156,230 B2

23

system drivers to share a particular input/output networking
stack, of the two or more mput/output networking stacks, that
1s configured on the particular host.

16. The non-transitory computer-readable storage medium
of claim 11, wherein the one or more sequences of 1nstruc-
tions for the mput/output networking stack further comprise
instructions which, when executed, cause:

analyzing data in the data transiers prior to transferring the

data between said at least one external network interface

and the two or more input/output networking stacks on 10

the two or more remote hosts, wherein analyzing the
data comprises comparing properties of the data against
security policies,

preventing transiers of data that does not satisiy the secu-

rity policies.

17. The non-transitory computer-readable storage medium
of claim 11, wherein the computing device 1s configured as a
gateway device that uses the input/output networking stack to
provide offloading of network functions, block storage func-

15

24

tions, and file system functions to the two or more operating
systems that are configured on the two or more remote hosts.

18. The non-transitory computer-readable storage medium
of claim 11, wherein the two or more mput/output networking
stacks on the two or more remote hosts are configured 1n a
cluster.

19. The non-transitory computer-readable storage medium
of claim 11, wherein the one or more sequences of nstruc-
tions for the mput/output networking stack further comprise
instructions which, when executed by the one or more pro-
cessors, cause the imput/output networking stack to connectto
the two or more input/output networking stacks on the two or
more remote hosts over an internal network that 1s one of an
Infiniband network and a data center ethernet (DCE) network.

20. The non-transitory computer-readable storage medium
of claim 11, wherein the computing device 1s one of a router
and a switch.

	Front Page
	Drawings
	Specification
	Claims

