12 United States Patent

Petrocelli et al.

US008156126B2

US 8,156,126 B2
Apr. 10, 2012

(10) Patent No.:
45) Date of Patent:

(54)

(75)
(73)

(%)

(21)
(22)

(65)

(60)

(1)

(52)
(58)

METHOD FOR THE ALLOCATION OF DATA
ON PHYSICAL MEDIA BY A FILE SYSTEM
THAT ELIMINATES DUPLICATE DATA

Inventors: Robert R. Petrocelli, Westerly, RI (US);
Jill Duff, East Greenwich, RI (US)

Assignee: GreenBytes, Inc., Ashaway, RI (US)

Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35

U.S.C. 1534(b) by 466 days.

Notice:

Appl. No.: 12/501,802

Filed: Jul. 13, 2009
Prior Publication Data
US 2010/0010996 Al Jan. 14, 2010

Related U.S. Application Data

Provisional application No. 61/080,350, filed on Jul.
14, 2008.

Int. CI.

GOo6l 17720 (2006.01)

GO6F 15/16 (2006.01)

US.CL 707/747;, 707/687
Field of Classification Search 707/687,

7077747
See application file for complete search history.

Insert Leaf
Element

Insert DLOG
Entry

' User Data

In Search ™~
Table? -~

(56) References Cited
U.S. PATENT DOCUMENTS
5,202,982 A * 4/1993 Gramlichetal. 1/1
5,241,638 A * 8/1993 Morketal. 711/207
5475826 A * 12/1995 Fischercc.coocovvieiinanin, 707/695
5,608,801 A * 3/1997 Atelloetal. 380/46
5,694,569 A * 12/1997 Fischercccoovviiinn, 711/216
5,973,692 A * 10/1999 Knowltonetal. 715/835
2008/0320271 A1* 12/2008 Cooke .ooovvvviviviiiniinininnn, 711/219

* cited by examiner

Primary Examiner — John E Breene
Assistant Examiner — Alex Golman

(74) Attorney, Agent, or Firm — Barlow, Josephs & Holmes,
Ltd.

(57) ABSTRACT

The present invention 1s a method for the allocation of data on
physical media by a file system that eliminates duplicate data.
Efficient searches are employed using a unique algorithm
when a compare on hash 1s used to achieve realtime operation
of the file system. The in memory feature of the ivention
allows the search to be performed in constant time. Also, the
on disk representation of search structures enables the present
invention to maintain these critical search structures 1n a
highly efficient, seli-consistent and resilient manner.

4 Claims, 2 Drawing Sheets

«_YES | Update Leaf
- i Element

Update DLOG
Entry

US 8,156,126 B2

Sheet 1 of 2

Apr. 10, 2012

U.S. Patent

| "B

W

.ﬁmmI_@mﬂm&vﬂﬁﬁcw
1

e e e e P e e e T e e e P P P e e e s e P e e e e e R
[} = [. . |
' . b i - . | “
[} - (I . .
[. “

| v9 HSVH find 'SINAg
Yoieos-p g [SOIAg 216

i) 5T

.

U.S. Patent Apr. 10, 2012 Sheet 2 of 2 US 8,156,126 B2

User Data

insert Leaf
Element

YES | Update Leaf
- Element

insert DLOG

Update DLOG
| Entry

g5 Rl " —

Entry

Fig. 2

US 8,156,126 B2

1

METHOD FOR THE ALLOCATION OF DATA
ON PHYSICAL MEDIA BY A FILE SYSTEM
THAT ELIMINATES DUPLICATE DATA

CROSS REFERENCE TO RELATED
APPLICATION

This application 1s related to and claims priority from ear-
lier filed provisional patent application Ser. No. 61/080,350
filed Jul. 14, 2008, the entire contents thereot 1s incorporated
herein by reference.

BACKGROUND OF THE INVENTION

The present invention relates generally to a method for the
allocation of data on physical media by a file system that
climinates duplicate data. The present invention relates to
such a method that 1s implemented in computer software code
running on computer hardware.

The operation of computers are very well known 1n the art.
Such a file system exists on a computer or across multiple
computers, where each computer typically includes data stor-
age, such as a hard disk or disk(s), random access memory
(RAM) and an operating system for executing software code.
Software code 1s typically executed to carry out the purpose
of the computer. As part of the execution of the computer
code, storage space on the hard disk or disks and RAM are
commonly used. Also, data can be stored, either permanently
or temporarily on the hard disk or disks and in RAM. The
structure and operation of computers are so well known 1n the
art that they need not be discussed in further detail herein.

In the field of computers and computing, file systems are
also very well known 1n the art to enable the storage of such
data as part of the use of the computer. A computer file system
1s a method for storing and organizing computer files and the
data they contain to make 1t easy to find and access them. File
systems may use data storage devices such as a hard disks or
CD-ROMs and involve maintaining the physical location of
the files, and they might provide access to data by the com-
puter operating system or on a file server by acting as clients
for a network protocol (e.g., NFS, SMB, or 9P clients). Also,
they may be virtual and exist only as an access method for
virtual data.

More formally, a file system 1s a special-purpose database
for the storage, organization, manipulation, and retrieval of
data. This database or table which centralizes the information
about which areas belong to files, are free or possibly unus-
able, and where each file 1s stored on the disk. To limit the size
of the table, disk space 1s allocated to files in contiguous
groups of hardware sectors called clusters. As disk drives
have evolved, the maximum number of clusters has dramati-
cally increased, and so the number of bits used to 1dentily
cach cluster has grown. For example, FAT, and the successive
major versions thereol are named after the number of table
element bits: 12, 16, and 32. The FAT standard has also been
expanded 1n other ways while preserving backward compat-
ibility with existing software.

File systems are specialized databases which manage
information on digital storage media such as magnetic hard
drives. Data 1s organized using an abstraction called a file
which consists of related data and information about that data
(here after referred to as metadata). Metadata commonly con-
s1sts of information like date of creation, file type, owner, and
the like.

The file system provides a name space (or a system) for the
unique naming of files. File systems also frequently provide a
directory or folder abstraction so that files can be organized 1n

10

15

20

25

30

35

40

45

50

55

60

65

2

a hierarchical fashion. The abstraction notion of file and fold-
ers does not represent the actual physical organization of data
on the hard disk only 1ts logical relationships.

Hard disks consist of a contiguous linear array of units of
storage referred to as blocks. Blocks are all typically the same
s1ze and each has a unique address used by the disk controller
to access the contents of the block for reading or writing. File
systems translate their logical organization into the physical
layer by designating certain address as special or reserved.
These blocks, often referred to as super-blocks, contain
important information about the file system such as file sys-
tem version, amount of free space, etc. They also contain or
point to other blocks that contain structures which describe
directory and file objects.

One of the most important activities performed by the file
system 1s the allocation of these physical blocks to file and
directory objects. Typically each file consists of one or more
data blocks. If files are stored on the file-system which con-
tains 1dentical data blocks, no provision 1s made to 1dentify
that these blocks are duplicates and avoid the allocation of
(wasted) space for these duplicate blocks. The present inven-
tion relates to a method, using an algorithm implemented in
soltware processing steps 1n a computer, for determining it a
new block of data 1s a duplicate.

In the prior art, there 1s a well known method that 1s used to
determine 11 two data blocks are 1dentical without the exhaus-
tive comparison of each bit 1n the data block. This 1s com-
monly referred to as “compare on hash”. A hash 1s a math-
ematical function that produces a fixed length bit sequence
that uniquely 1dentifies any variable length input data. Hash
functions are commonly used in cryptography to generate
digital signatures that change if a data butfer differs by even
one bit from the original butier used to generate the hash. The
s1ze of the hash code, 1n bits, 1s called the digest size. The
larger the digest size, the more resistant the hash algorithm 1s

to random collision, which 1s the creation of matching hashes
from data blocks which do not match.

The present invention relates to a method that requires a
cryptographic quality hash with a digest size of at least 192
bits. There 1s a need to compute the hash for each data block
written to the file system so that hash values can be compared
to determine 11 data blocks, such as ones that are very large in
s1Ze, are equivalent.

The prior art suffers from the disadvantage that 1t mush
compare the full hash code to determine whether a new data
block 1s a duplicate block or not. As can be understood, this 1s
particularly problematic with large digest sizes, such as those
that are 192 bits 1n length.

To address these problems associated with file systems of
non-trivial (1.e. very large) size, highly optimal search struc-
tures are needed. As can be understood, inetficient search
structures will cause significant degradation of file system
performance as more blocks, and hence more searches, are
managed by the system. The prior art fails to provide such an
optimized search structure and method. Therefore, there 1s a
need for a more etlicient search algorithm and better way for
the hash data to be stored to enable more efficient searching
to, 1n turn, realize faster and more eflicient determination of
whether a new data block 1s duplicate data.

In view of the foregoing, there 1s aneed to provide amethod
for the allocation of data on physical media by a file system
that eliminates duplicate data.

There 1s a need for a more efficient and optimized search
structure.

There 1s a need for a more efficient search algorithm to
reduce I/0 load on a system.

US 8,156,126 B2

3

There 1s also a need for method of determining whether a
new data block 1s a duplicate that can better handle large hash

files.

There 1s a further need to provide a method that can better
store hash values for more efficient searching.

Yet another need 1s to provide a method that can reduce the
number of search operations when determining whether a
new data block 1s a duplicate.

There 1s also a need to reduce the time for determinming,
whether a new data block 1s a duplicate.

SUMMARY OF THE INVENTION

The present invention preserves the advantages of prior art
methods, devices and systems of allocating of data on physi-
cal media by a file system that eliminates duplicate data. In
addition, 1t provides new advantages not found in currently
available methods, devices and systems therefor and over-
comes many disadvantages of such currently available meth-
ods, devices and systems.

The method includes allocating data on physical media by
a file system that eliminates duplicate data. First, user data 1s
provided on a storage device. The user data 1s inputting the
user data mto a hash algorithm to create a hash value output
having a hash bit length. The hash value output 1s distributed
across an enfire range of an output digest. A static array of
elements that has a length of 2" with N<D, where N is the first
partial bits of a hash value output and D 1s the number of bits
in the hash value output 1s created. A dynamic search node
array having at least one search node therein is created. Fle-
ments 1n the static array point to corresponding search nodes.
In the search nodes, an integer index I and a primary cache
hint of a length 2% is created where the size of a search node
clement equals (I1)+H with H being the next portion of bits to
be compared. The iteger index contains an address 1n per-
sistent storage of a computer. A full hash value and reference
count 1s stored in the address. The first N bits of a hash value
output in the static array are search for a match therewith. If
no matches are found, a new search node in the dynamic
search array 1s inserted and referenced by its respective
address. IT a match 1s found, each search node in the dynamic
array 1s mspected for a matches with a secondary cache hint
consisting of the next H bits of the hash value. If there 1s a
match with the secondary cache hint, a match with the entire
hash value 1s searched.

The hash value output i1s preferably stored on a device
separate from where the user data 1s stored. The hash value
data stored on the dedicated cache device includes a header
with version information with continuous blocks containing a
plurality of search nodes, each containing a full hash value
and reference count. It 1s preferred that an entire block of
search nodes are written 1n a single atomic I/O process to
perform an update to the dedicated cache.

It 1s therefore an object of the present invention to provide
a method for the allocation of data on physical media by afile
system that eliminates duplicate data.

Another object of the invention 1s to provide a more elli-
cient and optimized search structure.

A Turther object of the present mvention 1s to provide a
more efficient search algorithm to reduce 1/0O load on a sys-
tem.

Another object of the present mvention 1s to provide a
method of can better handle large hash files when determining,
whether a new data block 1s a duplicate.

Yet another object of the present invention 1s to provide a
method that can better store hash values for more efficient
searching.

10

15

20

25

30

35

40

45

50

55

60

65

4

Still turther, another object of the present invention 1s to
provide a method that can reduce the number of search opera-
tions when determining whether a new data block 1s a dupli-
cate.

Another object of the present invention 1s to reduce the time
for determining whether a new data block 1s a duplicate.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features which are characteristic of the present
invention are set forth 1n the appended claims. However, the
invention’s preferred embodiments, together with further
objects and attendant advantages, will be best understood by
reference to the following detailed description taken 1n con-
nection with the accompanying drawings in which:

FIG. 1 1s a chart 1llustrating the steps of the search method
and use of a separate cache device of the present invention;
and

FI1G. 2 1s a flow chart illustrating search logical tlow of the
present invention to eliminate duplicate data.

DETAILED DESCRIPTION OF THE
EMBODIMENT

PR

1]
=T

ERRED

As seen 1n the attached drawing figures, details of the
preferred embodiment of the method of the present invention
are shown. The present invention provides a method for the
allocation of data on physical media by a file system that
climinates duplicate data. In general, the present invention
provides a more eificient and faster search method for deter-
mining whether a new data block 1s duplicate data. The
method employs the hash code created from an input data
block to make this comparison.

As 1s well known 1n the art, a hash 1s a mathematical
function that produces a fixed length bit sequence that
unmiquely 1dentifies any variable length input data. Hash func-
tions are commonly used in cryptography to generate digital
signatures that change if a data buifer differs by even one bit
from the original buffer used to generate the hash. The size of
the hash code, 1n bits, 1s called the digest size. The larger the
digest size, the more resistant the hash algorithm 1s to random
collision, which 1s the creation of matching hashes from data
blocks which do not match.

To carry out the present invention, a cryptographic quality
hash with a digest size of at least 192 bits 1s preferred. By
computing the hash for each data block written to the file
system, hash values can be compared and 1t can be determined
if (much larger) data blocks are equivalent. To achieve this
with a file system that 1s non-trivial (i.e. very large) 1n size
requires highly optimal search structures. Inetlicient search
structures will cause significant degradation of file system
performance as more blocks, and hence more searches, are
managed by the system. The present mvention provides a
search method and algorithm and a method and system how
the hash data 1s stored for efficient searching thereof.

A first important element of the present invention 1s a
succinct searching approach that minimizes the number of
operations needed to determine 1f a hash value has already
been computed and stored 1n a file-system. Common search
techniques make use of binary search trees. These approaches
requires log(N) operations to complete a search (where N 1s
the number of elements being searched). The new approach of
the present invention exploits properties of any cryptographic
hash algorithm to complete a search operation in constant
time, generally in <3 comparisons. This 1s much less than
traditional logarithmically bounded algorithms.

US 8,156,126 B2

S

The search method and algorithm of the present invention
executes 1 RAM memory of a computer. The in-memory
representation makes use of a property of hash algorithms that
causes their outputs to be informally distributed across the
entire address range of the output digest. Specifically, the
probability given a random input block of any one 256 bit
hash value is 1/2%°°. In the present method, a seenin FIG. 1 a
static array B, referenced as 10, of length 2 where N<D
(where D=number of bits in the hash digest) 1s created. Each
clement 12 1n B 1s a pointer to a dynamic array 14 of search
nodes 16. Each search node 16 contains an integer index I and
a cache hint of length 2%, where size of (I)+H=size of (search
node element). The index I contains an address 1n the persis-
tent storage of the computer. This address holds a structure
that contains the full hash value and a reference count.

To perform a search, the algorithm looks up the first N bits
of the incoming hash value 1n the static array 10. The likel:-
hood of a match at this level of search is exactly 1/(2%). If
no match 1s found a new node 16 1s inserted into the dynamic
array 14 referenced by this address 1n the static array 10 1n
corresponding element 12. If a match 1s found at this level
then each element 16 in the dynamic array 14 must be
inspected for a match. Rather than simply comparing the full
hash value at this point, a secondary cache hint 1s compared.
This avoids expensive I/0 (1.e. input/output computer cycles)
to a persistent storage device. The cache hint consists of the
next H bits in the hash values being compared. Matches at this
level will now necessitate disk I/0 to compare the full hash.
The cache hint 1s critical to the performance of the algorithm
of the present invention.

The following example illustrates the usefulness of the
present invention and the advantages 1t has over prior art
methods. In this example, reference 1s made to a 90 TB
storage system that uses a block size of 32 KB and 1s full of
unique blocks. This generates a worst case scenario because a
24 bat static array 10 will populate each of its dynamic arrays
14 containing 20 elements 16. Without the cache hint com-
pare 1n the present invention, at most 20 disk I/Os would be
required to compare each hash value on the disk, which 1s
comparable to a log(N) search tree. When a hint of only 10
bits 1n length, provided by the present invention, the average
number of disk I/Os would be reduced to (20*1/(2%*))=1
I/0/search. Therefore the lower-bound on the search method
ol the present invention 1s 2 comparisons, the average 1s 3 and
the worst case upper bound 1s log(IN). It should be understood
that as a storage system becomes large, the probabilistic
search approach of the present invention remains 10 to 20
times faster than tree-based searches found 1n the prior art.

The location and nature of the system for storing hash
values can be further optimized, in accordance with the
present invention, to further optimize performance. By way
of background, the search algorithm stores hash values in the
persistent portion of computer memory (e.g. hard disk).
These hash values, to be searched, must be stored perma-
nently so that search can resume after a power failure or
system restart. In the approach of the present invention, hash
values are preferably stored in two locations: 1) Close to the
actual data 1n the storage pool and 2) on a cache device(s)
dedicated to fast hash searches. The hash value retained 1n the
storage pool 1s used only as a reference to rebuild the cache
device 1n the event of a catastrophic hardware failure.

Using the search method as described above and shown 1n
FIG. 1, to traverse the main storage pool, there would be
competition with the file-system’s use of this pool for primary
data storage and performance would be significantly
degraded as a result. A separate cache device 1s preferred to
isure consistent high performance searches. The present

10

15

20

25

30

35

40

45

50

55

60

65

6

invention also provided management of the cache device. The
logical tlow of this 1s shown 1n FIG. 2. Each time a new data
20 1s stored 1ts hash value 1s stored on the cache device, such
as 18 1n FIG. 1. The new hash value will either create a new
entry on the cache device at 22, or in the case of duplicate
data, a duplicate hash will increment an existing hash entries
reference count for an update at 24. This update or insert must
take place atomically. In other words it cannot be interrupted
and will return either success or failure. This 1s commonly
called a transaction.

In the present invention, the cache device(s) 18, called the
Dcache (de-duplication cache), 1s a block addressable device,
as seen 1 FIG. 2. The organization of data on the device 1s as
follows: a header with version information with continuous
blocks B (12 1n array 10) each containing N search nodes (16
in array 14). The search nodes 14 each contain the full hash
and reference count. When inserting new hash values a new
block containing the previous search nodes and the new hash
value will always append the Dcache. The last block will be
continually overwritten until N search nodes have been
inserted. Once a block 1s full, a new block will be allocated
from the end of this list. Updates occur 1n place with the entire
block of search nodes being written 1n a single atomic I/O.
The foregoing, allows the Dcache of the present invention to
be free of meta-data, self-describing and always 1n an inter-
nally consistent state.

Deletion of a search node 1s achieved using 2 write opera-
tions. The first operation overwrites the block containing the
search node 16 to be deleted with the same block except for
the deleted search node. This node 1s replaced using the last
search node on the Dcache. The second write updates the last
block on the Dcache to reflect the removal of the last search
node which was used to “plug the hole” 1n the deleted search
node’s block. In this way the Dcache 1s always continuous
and 1s self defragmenting. The delete 1s still atomic because
the second write 1s optional 1n the sense that 11 a system crash
interrupts the second write 1t will be corrected when the
Dcache 1s scanned to build the static search table on system
restart.

It should be understood that the present invention may be
employed 1n any type of operating system. The present mnven-
tion may be implemented 1n any type of software code using
any language and can run on any type of computer hardware.
This unique method may also be employed for data stored 1n
any type of storage device, such as arrays of storage devices
and any type of device, such as magnetic, solid state (such as
flash) and optical media.

In view of the foregoing, a new and unique method for the
allocation of data on physical media by a file system that
climinates duplicate data. Ellicient searches are employed
using a unique algorithm when a compare on hash 1s used to
achieve realtime operation of the file system. Comparisons of
portions of the hash value, 1n the form of a cache hint, sub-
stantially improves efficiency of the search for duplicate data.
Moreover, the 1n memory aspect of the invention allows the
search to be performed 1n constant time. Also, the on disk
representation of search structures enables the present inven-
tion to maintain these critical search structures 1n a highly
efficient, self-consistent and resilient manner.

It would be appreciated by those skilled 1n the art that
various changes and modifications can be made to the illus-
trated embodiments without departing from the spirit of the
present mvention. All such modifications and changes are
intended to be covered by the appended claims.

What 1s claimed 1s:

1. A method of allocating data on physical media by a file
system that eliminates duplicate data, comprising the steps of:

US 8,156,126 B2

7

providing user data stored on a storage device;
inputting the user data into a hash algorithm to create a hash

value output having a hash bit length;
distributing the hash value output across an entire range of

an output digest; 5
creating a static array of elements that has a length of 2%
with N<D, where N 1s the first partial bits of a hash value
output and D 1s the number of bits in the hash value
output;
creating a dynamic search node array having at least one

search node therein;
pointing each element 1n the static array to a corresponding

at least one search node;

creating an integer index I and a primary cache hint of a
length 2% in the at least one search node where the size of
a search node element equals (I)+H with H being the 1°
next portion of bits to be compared; the integer mndex
containing an address 1n persistent storage of a com-
puter; storing a full hash value and reference count 1n the
address:

searching the first N bits of a hash value output in the static 2Y
array for a match therewith; 11 no matches are found,

10

8

inserting a new search node 1n the dynamic search array
and referenced by its respective address; 1 a match 1s
found, inspecting each search node in the dynamic array
for a matches with a secondary cache hint consisting of
the next H bits of the hash value;

searching for match with the entire hash value 11 there 1s a

match with the secondary cache hint.

2. The method of claim 1, further comprising the step of:

storing the hash value output on a device separate from

where the user data 1s stored.

3. The method of claim 2, wherein the hash value data
stored on the dedicated cache device includes a header with
version information with continuous blocks containing a plu-
rality of search nodes, each containing a full hash value and
reference count.

4. The method of claim 3, further comprising the steps of:

writing an entire block of search nodes 1n a single atomic

I/O process to perform an update to the dedicated cache.

	Front Page
	Drawings
	Specification
	Claims

