12 United States Patent

US008151061B2

(10) Patent No.: US 8,151,061 B2

Farrell et al. 45) Date of Patent: Apr. 3, 2012
(54) ENSURING COHERENCE BETWEEN 5,941,968 A * 8/1999 Mergard et al. 710/308
GRAPHICS AND DISPI.AY DOMAINS 6,078,339 A * 6/2000 Meinerthetal. 345/522
6,222,564 B1* 4/2001 Sturgesoeevvvvenennn, 345/531
N .
(75) Inventors: Robert L. Farrell, Granite Bay, CA S819.543 B2 % 112004 Vieweg et dl. oo 3613063
(US); Michael J. Muchnick, Fair Oaks, 6,891,543 B2* 5/2005 WYALt .ooovveererereeeennn. 345/541
CA (US); Altug Koker, El Dorado Hills, 7,719,540 B2* 5/2010 Piazzaetal. 345/557
CA (US); Zeev Offen, Haifa (IL); Ariel 7,796,135 B1* 9/2010 Diard etal. ... 345/502
Berkovits, Yuvalim (IL) 7,814,279 B2* 10/2010 Clarketal. 711/141
* cited by examiner
(73) Assignee: Intel Corporation, Santa Clara, CA
(US) . :
Primary Examiner — Hung Le
(*) Notice: Subject to any disclaimer, the term of this (74) Attorney, Agent, or I'irm — Blakely, Sokoloft, Taylor &
patent 1s extended or adjusted under 35 Zatman LLP
U.S.C. 154(b) by 371 days.
(21) Appl. No.: 12/401,499 (57) ABSTRACT
(22) Filed: Mar. 10. 2009 A platform may comprise a core coherency domain, graphics
' ’ coherency domain and a non-coherent domain. A graphics
(65) Prior Publication Data acceleration umt (GAU) of the graphics coherency domain
may generate data units from an application and the data units
US 2010/0235320 Al Sep. 16, 2010 may comprise display data units. The GAU may annotate the
display data units with an annotation value before flushing the
(51) Imt. CL display data units to an on-die cache. The GAU may identify
Goor 15/00 (2006.01) modified display data units among the display data units
(52) US.CL ... 711/143; 711/1; 711/117; 365/49.1 stored in the on-die cache and issue flush commands to cause
(58) Field of Classification Search None flushing of the modified display data units from the on-die
See application file for complete search history. cache to a main memory. The display engine of the non-
coherent domain may use the modified display data units
(56) References Cited stored in the main memory to render a display on a display

) device.
U.S. PATENT DOCUMENTS
5,297,269 A * 3/1994 Donaldsonetal. 711/145
5,886,706 A * 3/1999 Alcormetal. 345/582 22 Claims, 5 Drawing Sheets
{ START)
e ‘ _
v 10
Generate data units in a graphics acceleration unit
(GAU)
¢ 220
Annotate first set of the data units (display data units
DDU} with a first annotation value (FAV) and second _/
set of data units {other data units, ODU) with a second
annotation value {SAV)
230 l * 240

NO

a last laval cache

K_ Flush the DDUs and ODUs to 4)<”Qﬂushing ‘“‘“>_/
ompl

ta?
mpleta?

YESI

250

Store DDUs and ODUs while maintaining the FAV and J

SAV, respectively, associated with the DDUs and ODUs

l 260

ldentify modified display data units (MDDUs) -/
l 270

Flush MDDUSs to the main memory H
280

A J _/

Use MDDUSs for displaying

!

P

(END)

US 8,151,061 B2

Sheet 1 of S

Apr. 3, 2012

4l
0ZT ANIDN3 AV1dSIA
1L MD019 SNOILVYDI1ddV
g-0c1 (O1N) ¥¥I AHOVD vl (NVY9)LINN
061 A¥OWan € > JHovD (17) 13ATT €< NOILYHI DOV
NIVIN 13AIT-AIN 15414 SOIHAVHD
o€l
(D77) IHOVYD
13A3T LSV
v-021 (OTN) GLT JHOVD o
<«—> <«—» JHOVYD <«—> (17)13NT1 <—> 11T 3H0D
13AIT-AIN 1S4

U.S. Patent

ﬂlco_‘

US 8,151,061 B2

Sheet 2 of S

Apr. 3, 2012

U.S. Patent

C o%) ¢ "9l

-

BuiAe|dsip JO} SNAAQWN @SN

08¢

q

Alowsaw ulew ay} 0} sSNaaw ysn4

-

04C

q

-

(SNAAw) siun ejep Ae|dsip paijipow Ajjuepj

09¢

q

-

SNAO PUB SNAQd U} Yum pajeloosse ‘Ajsaljoadsal ‘AYS
pue Av4 a8y} bujuiejuiew ajiym sngo pue snaqg eJois

05¢

)74

8ayoed |9A9| Ise| B

0} SNAO PUe sNAd 8y} c%_“_.J

-~

(AVYS) enjeA uoiejouue
puooss e Uim (Ao ‘sjiun ejep Jayjo) spun ejep Jo 18s
puooes pue (AY4d) enjeA uojejouue jsii e yim (NAg
sjun ejep Agidsip) sjun ejep ayj Jo 18S)Sll} 8)ejouuy

0¢c

1

(NVO)
Jjun uoljels|sadde mo_cn_m._m e Ul S]iun elep sjelausar)

4

f
(1uvis)

0tc

US 8,151,061 B2

Sheet 3 of 5

Apr. 3, 2012

U.S. Patent

OF

¥ Old

Ol JOVddd1NI

JIO0 T 10d1INOD JHOVO

0¥ ¥0O10313S 097 HOLVHVdNOD

ANI'T AHOVO NOILVLONNY

L& AOV4ddd1NI

0vE€ H3TIOHINOD SOIHAVHED

0L€ MD014 09€ MD019
ONITANYH NOILVHdNIO
ASNOdSdd AHdNO

0S€ MD019
NOILV1ONNY

US 8,151,061 B2

Sheet 4 of S

Apr. 3, 2012

U.S. Patent

asuodsay

asuodsal
a]elauan)
pue
‘Aieny (U-0LS NAAp!
L SS@00Id ‘AY) - (2-0LS naae!
095 'AY) (L-0LS NAAP! ‘AVY)}
0GG bmjo

c;mmﬁQ (AV4=AV) ‘U-0L5 NAQ

AV4=AV) ¢-01S Ndd

%

(AVS=AY) ‘2-02¢ NAO

0

el

AVS=AY) 1-02G NAO
CleY

AV4=AY) |-01S NAd

.

L-LES

061 0€l crl

asuodsal

buisn ejep
Aeldsip
PBUIPOIA

Anuspy

US 8,151,061 B2

Sheet 5 of 5

Apr. 3, 2012

U.S. Patent

£-099
8vlA8(] O/

09
AJONIN

0F9
AV 1dSIQ

019

ANIDONS
AV 1dSIC

Ol

¢-099
80IAe(] O/

=099

80Ine(] O/

Gc9 NNIA3N
dOVHOLS
1 19vVAV3s

ANIHOVIN

00 8yoeD [9A97 Ise]

909 8ayoe)

09 NdO

¢09 1055300dd

009

US 8,151,061 B2

1

ENSURING COHERENCE BETWEEN
GRAPHICS AND DISPLAY DOMAINS

BACKGROUND

Progress 1n the silicon process technology has enabled
provisioning of significantly large on-die caches causing a
close proximity of the cache to the processing devices. Cur-
rent processing devices such as graphics devices may ensure
coherency by flushing the contents of the on-die caches to a
main memory before the display engine uses the contents of
the main memory to render a display on a display device. The
display engine may retrieve the contents (display data units)
from the main memory and may, 1sochronously, provide the
display data units to the display device without snooping into
the on-die caches. Flushing such large on-die caches to ensure
coherency may consume resources such as processor cycles,
bus bandwidth, memory bandwidth, and such other similar
resources. Also, much of the non display data units stored in
the on-die cache may also be flushed to the main memory and
such non display data units may not be required by the display
engine for rendering display on the display device.

BRIEF DESCRIPTION OF THE DRAWINGS

The mvention described herein 1s illustrated by way of
example and not by way of limitation 1n the accompanying
figures. For simplicity and clarity of illustration, elements
illustrated 1n the figures are not necessarily drawn to scale.
For example, the dimensions of some elements may be exag-
gerated relative to other elements for clarity. Further, where
considered appropriate, reference labels have been repeated
among the figures to indicate corresponding or analogous
clements.

FIG. 1 illustrates a plattorm 100, which includes a tech-
nique to ensure coherency between graphics and display
domain according to one embodiment.

FIG. 2 1s a flow-chart illustrating a technique to ensure
coherency between graphics and display domain according to
one embodiment.

FI1G. 3 1llustrates a graphics acceleration unit (GAU) 142,
which 1s torender display data units according to one embodi-
ment.

FI1G. 4 illustrates a last level cache 130, which 1s to support
identifying display data units that may be transferred to the
main memory according to one embodiment.

FIG. § illustrates a tflow diagram 300, which depicts the
signaling process and transfer of display data between the
components of the platform 100 to ensure coherency between
the graphics and display domain according to one embodi-
ment.

FIG. 6 1llustrates a system 600 to ensure coherency
between the graphics and display domain according to one
embodiment.

DETAILED DESCRIPTION

The following description describes embodiments of a
technique to ensure coherency between the graphics and dis-
play domain. In the following description, numerous specific
details such as logic implementations, resource partitioning,
or sharing, or duplication implementations, types and inter-
relationships of system components, and logic partitioning or
integration choices are set forth 1n order to provide a more
thorough understanding of the present invention. It will be
appreciated, however, by one skilled 1n the art that the mnven-
tion may be practiced without such specific details. In other

10

15

20

25

30

35

40

45

50

55

60

65

2

instances, control structures, gate level circuits, and full soft-
ware 1struction sequences have not been shown 1n detail in
order not to obscure the invention. Those of ordinary skill 1in
the art, with the included descriptions, will be able to 1mple-
ment appropriate functionality without undue experimenta-
tion.

References 1n the specification to “one embodiment™, “an
embodiment”, “an example embodiment™, indicate that the
embodiment described may include a particular feature,
structure, or characteristic, but every embodiment may not
necessarily include the particular feature, structure, or char-
acteristic. Moreover, such phrases are not necessarily refer-
ring to the same embodiment. Further, when a particular
feature, structure, or characteristic 1s described 1n connection
with an embodiment, 1t 1s submitted that it 1s within the
knowledge of one skilled in the art to affect such feature,
structure, or characteristic in connection with other embodi-
ments whether or not explicitly described.

Embodiments of the invention may be implemented 1n
hardware, firmware, software, or any combination thereof.
Embodiments of the imnvention may also be implemented as
instructions stored on a machine-readable medium, which
may be read and executed by one or more processors. A
machine-readable medium may include any mechanism for
storing or transmitting information 1n a form readable by a
machine (e.g., a computing device).

For example, a machine-readable medium may include
read only memory (ROM); random access memory (RAM);
magnetic disk storage media; optical storage media; flash
memory devices; electrical, optical, acoustical or other simi-
lar signals. Further, firmware, software, routines, and instruc-
tions may be described herein as performing certain actions.
However, 1t should be appreciated that such descriptions are
merely for convenience and that such actions in fact result
from computing devices, processors, controllers, and other
devices executing the firmware, soltware, routines, and
instructions.

An embodiment of a platform 100, which may support a
technique to ensure coherency between graphics and display
domain 1s illustrated in FIG. 1. In one embodiment, the plat-
form 100 may comprise a core coherency domain 105, graph-
ics coherency domain 140, and non-coherency domain 160.
In one embodiment, the coherency domain 105 may represent
a core coherency domain, which may comprise one or more
cores 110, a first level cache 115 associated with the core 110,
a mid-level cache (MLC) 120-A and 120-B, and a last level
cache (LLC) 130. In one embodiment, the core 110 may
process data by retrieving instructions and data, which may
be stored 1n the first level cache 115, orthe MLC 120-A, or the
LLC 130, or the main memory 190.

In one embodiment, the core 110 may store the processed
data in the first level cache 115 and thereafter the data may be
flushed to MLC 120-A, LLC 130, and the main memory 190
based on, for example a least recently used (LRU) policy and
such other similar policies. In one embodiment, the core
coherency domain 105 may represent a coherent domain,
which may adopt coherency protocols and ordering rules to
maintain coherency. In one embodiment, the core coherency
domain 105 may use Modified-Exclusive-Shared-Invalid
(MESI) cache coherency techniques and such other similar
techniques and ordering rules such as strong ordering or weak
ordering to maintain coherency.

In one embodiment, the graphics coherency domain 140
may comprise an applications block 141, a graphics accelera-
tion unit (GAU) 142, and a first level cache 144 associated
with the GAU 142. In one embodiment, the GAU 142 may

generate data units after processing one or more applications

US 8,151,061 B2

3

of the applications block 141. In one embodiment, the GAU
142 may annotate some of the data units (referred to as “‘dis-
play data units” hereafter) with a first annotation value (FAV)
that may be used by the display engine 170 for generating
display on a display device. In one embodiment, the GAU 142
may annotate the remaining (other than the display data units)
data units (referred to as ‘other data units’ hereatter) with a
second annotation value (SAV) to differentiate the other data
units (ODUs) from the display data units (DDUs). In one
embodiment, the other data units ODUs may not be used by
the display engine 170 while generating display on a display
device. In other embodiment, the GAU 142 may annotate
some data units with an annotation value and may not anno-
tate the remaining data units.

In one embodiment, the GAU 142 may flush the display
data units DDUs along with the first annotation value (FAV)
and the other data units ODUSs along with the second anno-
tation value (SAV) to the last level cache (LLC) 130. In one
embodiment, the GAU 142 may generate a query, which may
be used to identily the display data units that are modified and
stored in the LLLC 130. In one embodiment, the GAU 142 may
generate a query, which may comprise 1dentifiers of the dis-
play data units and annotation value associated with the dis-
play data units. In one embodiment, the GAU 142 may
receive a response comprising status information, which may
identify the display data units that are modified (*‘modified
display data units’ hereatiter). In one embodiment, the GAU
142 may issue flush commands to the LLC 130, which may
cause the modified display data units (MDDUSs) to be flushed
to the main memory 190. In one embodiment, the graphics
coherence domain 140 may use a buffer coherency protocol
in which memory buller 1s coherent at specific time points
such as end of execution.

Such an approach may allow the modified display data
units to be flushed to the main memory 190 compared to
flushing the entire or substantially entire contents of the on-
die caches suchas the FLC 144 and MLLC 120-B and LLC 130
without identifying the type of the data units. In one embodi-
ment, 1dentifying the display data units and flushing such
identified display umits to the main memory 190 may con-
serve the processor resources, bus bandwidth, and memory
bandwidth as well. In one embodiment, conserving the pro-
cessor resources and memory bandwidth may also conserve
power consumed by the platform 100.

In one embodiment, the last level cache 130 may store the
display data units (DDUSs) flushed from the first level cache
144 and mid-level cache 120-B. In one embodiment, the last
level cache 130 may maintain the first annotation value asso-
ciated with the display data units while storing the DDUs. In
one embodiment, the last level cache 130 may also store the
(ODUs) flushed from the first level cache 144 and mid-level
cache 120-B. In one embodiment, the last level cache 130
may maintain the second annotation value associated with the
ODUs while storing the ODUs. In one embodiment, the LLC
130 may receive ODUs associated with second annotation
value 11 the GAU 142 chooses to annotate the remaining data
units. In one embodiment, the LLC 130 may store the DDUs s
and the associated first annotation value (FAV) 1in the ways of
one or more cache lines. In one embodiment, the last level
cache 130 may determine a state of the DDUs and mark the
DDUs with an appropriate state such as a Modified state (M),
or Extended state (E), or Shared state (S), or Invalid state (I)
using a MESI protocol.

In one embodiment, the last level cache 130 may generate
a response after recerving a query from the GAU 142. In one
embodiment, the response may indicate the state of the cache
line that stores the DDUSs indicated in the query. In one

10

15

20

25

30

35

40

45

50

55

60

65

4

embodiment, the last level cache 130 may check the state of
the ways comprising the DDUs 1dentified by the DDU 1den-
tifiers 1n the query before generating the response. In one
embodiment, the LLC 130 may generate a response, which
may comprise status information for each DDU identifier
indicated 1n the query. In one embodiment, the status infor-
mation may indicate whether the DDU 1s a modified DDU
(MDDU). In one embodiment, last level cache 130 may sup-
port atomic transactions to handle processing of a query and
generating of a response. In one embodiment, the atomic
transactions may either occur completely or may nothave any
elfect.

In one embodiment, the last level cache 130 may receive
flush commands from the GAU 142 and may flush the display
data units indicated by the flush commands. In one embodi-
ment, the flush command may be an atomic transaction as
well. In one embodiment, the last level cache 130 may receive
flush commands for the modified display data units (MDDU)
and the last level cache 130 may flush the modified display
data units (MDDU) to the main memory 190.

In one embodiment, the display engine 170 may operate 1n

a non-coherent domain and may not snoop the on-die caches
such as the first level caches (LL1) 115 and 144, the mid-level

caches (MLC) 120-A and 120-B, and the LLC 130. In one
embodiment, the display engine 170 may retrieve data units
stored 1n, for example, a display area of the main memory 190
and may display the data units on a display unit such as a
liquid crystal display (LCD).

An embodiment of the operation of the platform 100 to
ensure coherency between the graphics domain 140 and the
display domain 160 1s 1llustrated in flow-chart of FIG. 2. In
block 210, the GAU 142 may generate one or more data units,
for example, 1n response to processing the application 141.

In block 220, the GAU 142 may annotate a first set of data
units (display data units, DDU) with a first annotation value
(FAV). In one embodiment, the GAU 142 may choose to
annotate the remaining data units (other data units, ODUs)
with a second annotation value (SAV). In one embodiment,
the GAU 142 may annotate the ODUs with a SAV to differ-
entiate the DDUs from the ODUs.

In block 230, the GAU 142 may flush the DDUs to the last
level cache 130. In one embodiment, the GAU 142 may also
flush ODUs to the LLC 130 1f the remaining data units are
annotated. In block 240, the GAU 142 may check 1if the
flushing of DDUs and ODUs are completed and control
passes to block 250 11 the flushing 1s complete and to block
230 11 the flushing 1s not complete.

In block 250, the last level cache 130 may store the DDUSs
in ways of cache lines while maintaining the FAV associated
with DDUSs. Also, the last level cache 130 may store the
ODUs 1 ways of cache lines while maintaining the SAV
associated with ODUs.

In block 260, the GAU 142 may i1dentily the modified
display data units (MDDUs). In one embodiment, the GAU
142 may send a query comprising identifiers of the DDUs and
the annotation values associated with DDUSs. In one embodi-
ment, the GAU 142 may receive response from the LLC 130
aiter sending the query. In one embodiment, the response may
comprise the status information for each of the DDUs 1den-
tified by the DDU 1dentifiers of the query. In one embodiment,
the GAU 142 may identily the DDUs that are modified (IMD-
DUs) based on the status information embedded in the
response.

In block 270, the GAU 142 may cause the MDDUSs to be
flushed to the main memory 190. In one embodiment, the
GAU 142 may issue flush commands that may comprise

identifiers of the MDDUSs that may be flushed. In one embodi-

US 8,151,061 B2

S

ment, the flush commands may be used by the LLC 130 to
flush the MDDU s to the main memory 190.

In block 280, the display engine 170 may retrieve the
MDDUSs stored 1n the main memory 190 and use the MDDUs
for rendering a display on a display device.

An embodiment of the graphics acceleration unit (GAU
142), which may perform tasks to ensure coherency between
the graphics coherent domain 140 and the display domain 160
1s 1llustrated 1n FI1G. 3. In one embodiment, the GAU 142 may
comprise a graphics iterface 310, a graphics controller 340,
an annotation block 350, a query generation block 360, and a
response handling block 370.

In one embodiment, the graphics interface 310 may couple
the GAU 142 to the first level cache 144 and the applications
block 141. In one embodiment, the graphics interface 310
may provide electrical, physical, and protocol interface
between the GAU 142 and the first level cache 144 and the
applications block 141.

In one embodiment, the graphics controller 340 may gen-
crate a start execution signal to mitiate the applications of the
applications block 141. In one embodiment, the graphics
controller 340 may store the data units, which may be gener-
ated by the applications block 141 1n the first level cache 144.
In one embodiment, the graphics controller 340 may receive
an execution complete signal from the applications block 141
that may indicate the completion of the execution of the
application.

After receiving the execution complete signal, in one
embodiment, the graphics controller 340 may send a first
control signal to the annotation block 350 after the applica-
tions block 141 completes generating data units. In other
embodiment, the graphics controller may send a first control
signal to the annotation block 350 after generation of each
data unit or a group of data units. In one embodiment, the first
control signal generated by the graphics controller 340 may
also indicate the type of data units generated by the applica-
tion block 141. In one embodiment, the first control signal
may comprise a type field, which may be configured as a first
type or a second type based on the type of data units. For
example, the type field for the data units, which may be used
by the graphics engine 170 for generating display, may be
configured as first type and that of the remaining data units
may be configured as second type.

In one embodiment, the graphics controller 340 may
retrieve the data units from the first level cache 144 after
receiving a ready signal from the annotation block 350 and
may pass the data units to the annotation block 350. In one
embodiment, the GAU 142 may recetrve an annotation coms-
plete signal after sending the data units. In one embodiment,
the graphics controller 340 may receive the annotated data
units and store the annotated data units (DDUs and ODUs)
into the first level cache 144. In one embodiment, the graphics
controller 340 may receive the annotation complete signal
from the annotation block 350 that may indicate completion
ol the annotation process.

After the annotation process 1s complete, in one embodi-
ment, the graphics controller 340 may flush the display data
units from the first level cache 144 to the last level cache 130.
After flushing the contents of the first level cache 144, the
graphics controller 340 may send a second control signal to
the query generation block 360. In one embodiment, the
graphics controller 340 may recetve one or more queries 1n
response to sending the second control signal and may for-
ward the queries to the last level cache 130. In one embodi-
ment, the graphics controller 340 may receive one or more
responses to the queries from the last level cache 130 and may
route the response to the response handling block 370. In one

10

15

20

25

30

35

40

45

50

55

60

65

6

embodiment, the graphics controller 340 may maintain a
table to ensure that responses are recerved for each of the
queries sent.

In one embodiment, the graphics controller 340 may gen-
erate flush commands based on the input values received from
the response handling block 370. In one embodiment, the
input values may provide the i1dentifiers of the display data
units, which may be flushed from the last level cache 130 to
the main memory 190. In one embodiment, the flush com-
mands may be sent to the last level cache 130.

In one embodiment, the annotation block 350 may send the
ready signal to the graphics controller 340 to start the anno-
tation process and may receive the data units stored in the first
level cache 144 . In one embodiment, the annotation block 350
may annotate the data units with a first annotation value or a
second annotation value based on the type value of the type
field of the first control signal. In one embodiment, the anno-
tation block 350 may annotate the data units with the first
annotation value if the type value of the type field equals a first
logic value and with the second annotation value if the type
value of the type field equals a second logic value. In one
embodiment, the annotation block 350 may annotate the data
units either with a first or a second annotation value in
response to recerving the first control signal. In other embodi-
ment, the annotation block 350 may examine the contents of
the data units and determine whether the data unit 1s of first
type or second type.

In one embodiment, the annotation block 350 may annotate
the data units (ol first type), which may be used by the display
engine 170 with the first annotation value and store the dis-
play data units DDUSs 1n the first level cache 144. In one
embodiment, the annotation block 350 may annotate the data
units (of second type), which may not be used by the display
engine 170 with the second annotation value and store the
other data units ODUs 1n the first level cache 144. In one
embodiment, the annotation block 350 may send the annota-
tion complete signal to the graphics controller 340 to indicate
the completion of annotation process.

In one embodiment, the query generation block 360 may
generate one or more queries after recerving the second con-
trol signal. In one embodiment, the queries may comprise an
annotation value field and a data unit identifier field. In one
embodiment, the annotation field value may be configured
either with a first annotation value or a second annotation
value and the data unit identifier field may comprise identifi-
ers that identily the data umits, which may be checked to
determine 11 the data units represent modified display data
units.

In one embodiment, the response handling block 370 may
receive responses and may 1dentily the data units, which may
be modified display data units. In one embodiment, the
response may comprise status information for each data unit
identifier in the query that may indicate whether the data unit
1s a modified display data unit. In one embodiment, the status
information may comprise a bit, which may equal a first logic
value 1f the data unit 1s a modified display data unit and may
equal a second logic value if the data unit 1s not a modified
display data unit. In one embodiment, the response handling
block 370 may provide the identifiers of the modified display
data units as the input values to the graphics controller 340.

In one embodiment, the last level cache LLC 130 may
comprise an LLC interface 410, a cache control logic 440, an
annotation comparator 460, a cache line selector 470, and a
memory 480. In one embodiment, the LLC interface 410 may
couple the LLC 130 to the GAU 142 and the main memory

190. In one embodiment, the LLC interface 410 may provide

US 8,151,061 B2

7

clectrical, physical, and protocol mtertface between the LLC
130 and the GAU 142 and the main memory 190.

In one embodiment, the cache control logic 440 may
receive annotated data units (DDUs and ODUs) and store the
DDUs and ODUs 1n the memory 480. In one embodiment, the
cache control logic 440 may maintain the annotation values
associated with the data units. In one embodiment, the cache
control logic 440 may determine the status of the data units
and may store the status of the data units. In one embodiment,
the status of the data units may be determined based on MESI
protocol and the status of the data units may equal on one of
Modified (M), Extended (E), Shared (S), or Invalid (I) state.
In one embodiment, if the display data unit stored in the
memory 480 may be referred to as MDDU 1 the status of that
DDU equals M (modified) state.

In one embodiment, the cache control logic 440 may
receive a query, which may comprise the annotation value and
the data unit 1dentifier stored, respectively, 1n the annotation
value field and the data unit identifier field. In one embodi-
ment, the cache control logic 440 may send the annotation
value to the annotation comparator 460 and the data umit
identifier to the cache line selector 470, which may be used to
select a cache line comprising the data unit identified by the
data unit identifier. In one embodiment, the cache control
logic 440 may receive a true signal from the annotation com-
parator 460 1f the annotation value provided by the cache
control logic 440 matches with the annotation value of the
selected cache line. In one embodiment, the cache control
logic 440 may retrieve the status information stored in the
status field of the selected cache line. In one embodiment, the
cache control logic 440 may generate a response using the
status information retrieved from the selected cache line and
send the response to the GAU 142.

After sending the response, 1n one embodiment, the cache
control logic 440 may receive flush commands from the GAU
142, which may comprise the i1dentifiers of the display data
units. In one embodiment, the cache control logic 440 may
use the identifiers of the display data units embedded 1n the
flush commands to flush such DDUSs to the main memory 190.

In one embodiment, the cache line selector 470 may
receive the data unmit identifier from the cache control logic
440 and may select the cache line comprising the data unit
identified by the data unit identifier. In one embodiment, the
cache line selector 470 may compare the data umit identifier
provided by the cache control logic 440 and the content of the
data identifier ficld of the memory 480. In one embodiment,
the cache line selector 470 may, simultaneously, perform the
comparison of the contents of the data unit identifier fields
with the data umt identifier provided by the cache control
logic 440. In one embodiment, the cache line selector 470
may select a cache line comprising a data umit identifier that
matches with the data umt identifier provided by the cache
control logic 440. In one embodiment, the query may com-
prise a plurality of 1dentifiers and the cache line selector 470
may select one or more cache lines, which may match the data
unit identifiers in the query.

In one embodiment, the annotation comparator 460 may
use the cache line selection event to identity the cache line
from which the annotation value 1s to be retrieved for com-
parison. In one embodiment, the annotation comparator 460
may compare the annotation value recerved from the cache
control logic 440 with the annotation value retrieved from the
selected cache line of the memory 480. In one embodiment,
the annotation comparator 460 may generate a true signal 11
the two annotation values are equal and may generate a false
signal if the two annotation values are not equal. In one
embodiment, the annotation comparator may compare the

5

10

15

20

25

30

35

40

45

50

55

60

65

8

annotation value of the one or more selected cache lines with
the annotation value received from the cache control logic

440

A line diagram depicting the operation of the GAU 142,
LLC 130, and the main memory 190 to ensure coherency
between the graphics domain 140 and the display domain 160
1s 1llustrated in FIG. 5.

In one embodiment, the GAU 142, as indicated 1n block
230 of FIG. 2, may flush data units DDU 510-1, 510-2, and
510-7 and ODU 520-1 and 520-2 to the LLC 130 after anno-
tating the data units. In one embodiment, as indicated 1n block
220 of FIG. 2, the annotation value associated with DDUs
510-1to 510-» may equal first annotation value (FAV) and the
annotation value associated with ODUSs 520-1 and 520-2 may
equal second annotation value (SAV). In one embodiment,
the FAV may equal a first two bit value (01) and the SAV may
equal a second two bit value (10) as depicted 1in the annotation
value field of the memory 480. In one embodiment, the LLC
130, as indicated 1n block 250, may store the DDUSs 510-1 to
520-» 1n the ways of the cache lines of the memory 480. In one
embodiment, the event of storing the DDUs 510-1 to 510-7
may be indicated by 531-1, 531-4, and 531-%. In one embodi-
ment, the LLC 130 may store the ODUs 520-1 to 520-2 in the
ways ol the cache lines of the memory 480. In one embodi-
ment, the event of storing the ODUs 520-1 to 520-» may be
indicated by 531-2, and 531-3.

In one embodiment, the GAU 142 may generate a query
5350 and send the query to the LLC 130. In one embodiment,
the query 550 may comprise data unit identifiers 1d510-1,
1d510-2, and 1d510-#, 1d520-1, and 1d520-2 associated with
annotation value (AV) FAV, FAV, FAV, FAV, and FAV, respec-

tively. In one embodiment, the LLC 130 may process the
Query 350 and generate a response 370 and the event i1s
indicated by event 560. In one embodiment, the response 570
may comprise status information for each of the data umt
identifiers in the query. In one embodiment, the response 570
may comprise SI-510-1, SI-510-2, SI-510-7, SI-520-1, and
S1-520-2, which may indicate the status of the data unit 1den-
tified by the data unit identifier of the query. In one embodi-
ment, the status information may comprise a single bit value

(logic O or 1) as depicted 1n status field of the memory 480 of
FIG. 4. In one embodiment, the data unit may represent a
modified data unit 11 the status information bit equals logic 1
and may represent an unmodified data unit 11 the status 1nfor-
mation bit equals logic 0. In one embodiment, the response
status may comprise a single bit value (logic 0 or 1), which
may be set to logic 1 i1 the identified data units annotation
value matches the annotation value of the query indicating
that the cache line 1s modified and the bit value may be set to
logic 0 otherwise

In one embodiment, the GAU 142 may recerve the response
570 and 1dentify the MDDUSs 1n an event 580. In one embodi-
ment, the GAU 142 may generate flush commands 590-1 and
590-2 that may be 1ssued to the LLC 130 and the LLC 130
may flush the MDDUSs 1dentified by the flush commands to
the main memory 190. In one embodiment, the flushing of
MDDUs by flush commands 590-1 and 590-2 are represented
by 595-1 and 595-2, respectively.

Referring to FIG. 6, a computer system 600 may include a
general purpose processor 602 including a single istruction
multiple data (SIMD) processor and a graphics processor unit
(GPU) 6035. The processor 602, in one embodiment, may
perform enhancement operations 1n addition to performing
various other tasks or store a sequence of instructions, to
provide enhancement operations in a machine readable stor-

US 8,151,061 B2

9

age medium 625. However, the sequence of instructions may
also be stored in the memory 620 or in any other suitable
storage medium.

While a separate graphics processor unit 6035 1s depicted in
FIG. 6, 1n some embodiments, the graphics processor unit 605
may be used to perform enhancement operations, as another
example. The processor 602 that operates the computer sys-
tem 600 may be one or more processor cores coupled to logic
630. The logic 630 may be coupled to one or more I/O devices
660, which may provide interface the computer system 600.
The logic 630, for example, could be chipset logic in one
embodiment. The logic 630 1s coupled to the memory 620,
which can be any kind of storage, including optical, magnetic,
or semiconductor storage. The graphics processor unit 603 1s
coupled through a frame butfer to a display 640.

In one embodiment, the graphics processor unit 605 may
generate data units after processing an application and the
data units may be annotated to generate display data units. In
one embodiment, the graphics processor unit 605 may flush
the annotated data units to a last level cache 608, which may
maintain the annotation values associated with the annotated
data units while storing the annotated data values. In one
embodiment, the graphics processor 6035 may send a query to
the last level cache 608 to identily the annotated data units,
which are also modified. In one embodiment, the last level
cache 608 may respond to the query by sending a response,
which may comprise status information to indicate it the
annotated data unit 1s modified. In one embodiment, the
graphics processor 605 may cause such modified annotated
data units to be be flushed from the last level cache 608 to the
memory 620.

In one embodiment, the display engine 610 may retrieve
the data units from the memory 620 and may cause the data
units to be rendered on the display 640. In one embodiment,
the display engine 610 may not snoop the on-die caches such
as the cache 606 and the last level cache 608. However, the
graphics processor 605 may tlush the data units, which may
be required for display compared to flushing the entire con-
tents of the on-die caches. An approach to 1dentity the type of
the data units and discriminately flushing such data units may
conserve resources such as the processing cycles, bus band-
width, memory bandwidth, and power consumed 1n perform-
ing such tasks.

The coherency processing techniques described herein
may be implemented 1n various hardware architectures. For
example, graphics functionality may be integrated within a
chupset. Alternatively, a discrete graphics processor may be
used. As still another embodiment, the graphics functions
may be implemented by a general purpose processor, includ-
ing a multi-core processor or as a set of software instructions
stored 1n the machine readable storage medium 625. The
coherency processing techniques described herein may be
used 1n various systems such as the mobile phone, personal
digital assistants, mobile internet devices, and such other
systems.

Certain features of the invention have been described with
reference to example embodiments. However, the description
1s not mtended to be construed in a limiting sense. Various
modifications of the example embodiments, as well as other
embodiments of the invention, which are apparent to persons
skilled 1n the art to which the invention pertains are deemed to
lie within the spirit and scope of the mvention.

What is claimed 1s:
1. A method to ensure coherency 1n a computing system
comprising;

5

10

15

20

25

30

35

40

45

50

55

60

65

10

generating a plurality of data units from an application,
wherein the plurality of data units comprise display data
units and other data unaits,

annotating the display data units with a first annotation
value before flushing the display data units to an on-die
cache,

annotating the other data units with a second annotation
value before flushing the other data units to the on-die
cache,

identifying modified display data units among the data
units stored in the on-die cache,

flushing the modified display data units from the on-die
cache to a main memory, and

generating a display on a display device using the modified
display data units stored 1n the main memory.

2. The method of claim 1, storing the display data units 1n

the on-die cache turther comprise,

maintaining the annotation value of the display data unaits,
and

associating the display data units with status information,
wherein the status information 1s to indicate whether the
display data units are modified.

3. The method of claim 1 identifying the modified display

data units further comprise,

sending a query to the on-die cache, wherein the query
includes 1dentifiers of the data units that 1s to be checked
and annotation values that 1s to be checked for, and

receving a response to the query, wherein the response
includes the status information for the display data units
identified by the identifiers and the annotation values
that are included 1n the query.

4. The method of claim 3 further comprises,

selecting cache lines comprising the display data units
identified by the 1dentifiers and matching the annotation
value of the query,

retrieving the status information of the display data units of
the cache lines, and

embedding the status information 1n the response before
sending the response.

5. The method of claim 4 further comprises,

retrieving the status information from the response, and

determiming that a display data unit of the display data units
1s a modified display data unit 11 the status information
indicates that the display data unit 1s modified.

6. The method of claim 5, wherein the flush command
comprises 1dentifiers of the modified display data units.

7. The method of claim 1, wherein the flushing of modified
display data units 1s performed based on the identifiers 1n the
flush command.

8. A processor comprising,

an mterface, wherein the iterface 1s to couple the graphics
acceleration unit to an on-die cache,

a graphics controller coupled to the interface, wherein the
graphics controller 1s to generate a plurality of data units
from an application, wherein the plurality of data units
comprise display data units and other data unats,

an annotation block coupled to the graphics controller,
wherein the annotation block 1s to annotate the display
data umits with a first annotation value before the graph-
ics controller 1s to flush the display data units to the
on-die cache and annotate the other data units with a
second annotation value,

wherein the graphics controller 1s to 1dentily modified dis-
play data units among the data units stored 1n the on-die
cache, and

US 8,151,061 B2

11

wherein the graphics controller 1s to flush the modified
display data units from the on-die cache to a main
memory.

9. The processor of claim 8 further comprises a query
generation block coupled to the graphics controller, wherein
the query generation block 1s to generate a query, wherein the
query includes 1dentifiers of the display data units that 1s to be
checked and annotation values to be checked {for.

10. The processor of claim 9 further comprises a response
handling block coupled to the graphics controller, wherein
the response handling block 1s to,

receive a response to the query,

identify the display data units that are modified based on

status information for the data umts included i the
response, and

generate input values comprising the identifiers of the dis-

play data units that are modified.

11. The processor of claim 10, wherein the graphics con-
troller 1s to generate flush commands using the input values,
wherein the flush commands comprise 1dentifiers of the dis-
play data units that are modified.

12. An on-die cache comprising,

an interface, wherein the interface 1s to couple the on-die

cache to a graphics acceleration unit and a main
memory,

a cache control logic coupled to the interface, wherein the

cache control logic 1s to,

maintain annotation value of the data units while storing
the data units in a memory,

associate the data units with status information, wherein
the status information 1s to indicate whether the data
units are modified,

generate a response to a query, wherein the response 1s to
comprise status information of the display data units
queried for 1n the query, and

flush the display data units to the main memory, wherein
the flush operation 1s performed 1n response to receiv-
ing flush commands, wherein the display data units
are 1dentified by the identifiers of the flush commands,

a cache line selector coupled to the cache control logic,
wherein the cache line selector 1s to select cache lines
that comprise data units identified by 1dentifiers of the
query, and

an annotation block coupled to the cache control logic,
wherein the annotation block 1s to, retrieve a first
annotation values from the selected cache lines, com-
pare the first annotation values with second annota-
tion values included 1n the query, and send a true
signal to the cache control logic if the first annotation
values are equal to second annotation values and a
false signal 11 the first annotation values are not equal
to second annotation values.

13. The on-die cache of claim 12,

wherein the cache control logic 1s to retrieve the status
information associated with the display data units of the
selected cache lines 1n response to recerving the true
signal.

14. The on-die cache of claim 13, wherein the cache control
logic 1s to generate the response, wherein the response 1s to
comprise the status information of the selected cache lines.

15. A system to ensure coherency comprising:

a graphics processor, wherein the graphics processor 1s to,

10

15

20

25

30

35

40

45

50

55

60

12

annotate the display data units with an annotation value
before flushing the display data units to an on-die
cache, wherein the graphics processor 1s to generate a
plurality of data units from an application, wherein
the plurality of data units comprise the display data
units and other data unaits,

identily modified display data units among the data units
stored 1n the on-die cache, and

1ssue tlush commands to flush the modified display data
units from the on-die cache to the main memory,

the on-die cache coupled to the graphics processor,
wherein the on-die cache 1s to,
generate a response, wherein the response 1s to identily

the modified display data units, and
flush the modified display data units from the on-die
cache to a main memory,

a display engine coupled to the main memory, wherein the
display engine 1s to generate display on a display device
using the modified display data units stored in the main
memory.

16. The system of claim 15 wherein the on-die cache 1s to

maintain the annotation value of the data units while stor-
ing the data units 1n the on-die cache, and

associate the data units with status information, wherein
the status information 1s to indicate whether the data
units are modified.

17. The system of claim 15 the graphics processor further
comprises a graphics controller, wherein the graphics con-
troller 1s to,

send a query to the on-die cache, wherein the query
includes 1dentifiers of the data units that are to be
checked and annotation values to be checked for, and

recerve a response to the query, wherein the response
includes the status information for the data units 1denti-
fied by the 1dentifiers that are included in the query.

18. The system of claim 17 the graphics processor further
comprises a query generation block coupled to the graphics
controller, wherein the query generation block 1s to generate
the query, wherein the query 1s to include 1dentifiers of the
data units that are to be checked and the annotation values to
be checked {for.

19. The system of claim 17 the on-die cache further com-
prises a cache control logic, wherein the cache control logic 1s
{o,

select cache lines comprising the display data units identi-
fied by the identifiers and annotation values of the query,

retrieve the status information of the display data units of
the cache lines, and

embed the status information 1n the response before send-
ing the response.

20. The system of claim 19 the graphics processor further
comprises a response handling block, wherein the response
handling block 1s to,

retrieve the status information from the response, and

determine that a display data unit of the display data units
1s a modified display data unit 11 the status information
indicates that the display data unit 1s modified.

21. The system of claim 20, wherein the graphics controller
1s to generate flush commands that comprise 1dentifiers of the
modified display data unaits.

22. The system of claim 21, wherein the on-die cache 1s to
flush the modified display data units using the identifiers 1n

the flush command.

	Front Page
	Drawings
	Specification
	Claims

