US008141088B2
12 United States Patent (10) Patent No.: US 8,141,088 B2
Morishita et al. 45) Date of Patent: Mar. 20, 2012
(54) MULTITHREADED PROCESSOR Jp 10 124316 5/1998
_ _ o o JP 10-124316 5/1998
(75) Inventors: Hiroyuki Morishita, Osaka (JP); Shinji TP 10124316 A * 5/1998%
Ozaki, Osaka (JP); Takao Yamamoto, JP 11-212809 8/1999
Osaka (JP); Masaitsu Nakajima, Osaka JP 2004-326486 11/2004
(JP) JP 2004 326766 11/2004
JP 2004326486 A * 11/2004
(73) Assignee: Panasonic Corporation, Osaka (IP) JP 2005-209105 8/2005
| | o | TP 2005209105 A * 8/2005
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.8.C. 154(b) by 1146 days. English Language Abstract of JP 10-124316.
(21) Appl. No.: 11/936,296 English Language Abstract of JP 2004-326766.
Nishimura, “A Multithreaded Processor Architecture With Simulta-
(22) Filed: Nov. 7, 2007 neous Instruction Issuing”, SUPERCOMPUTER 49, vol. IX, No. 3,
pp. 23-39 (May 1992).
(65) Prior Publication Data Japan Office action, mail date is May 17, 2011.
US 2008/0109809 Al May 3, 2008 * c1ted by examiner
(30) Foreign Application Priority Data Primary Examiner — Meng An
Assistant Examiner — Kevin X Lu
Nov. 8, 2006 (IP) .cooeeeiiiiee e 2006-303115 (74) Attorney, Agent. or Firm — Greenblum & Bernstein,
(51) Int. CL P.L.C.
GO6F 9/46 (2006.01)
GOGF 9/38 (2006.01) (57) ABSTRACT
(52) US.Cl .., 718/103; 712/215 Provided 1s a multithreaded processor that can accurately
(58) Field of Classification Search 718/103; estimate processing time necessary for each thread, and a

712/215
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,430,851 A * 7/1995 Hirataetal. 712/212

5,987,492 A * 11/1999 Yueococveeiiiiiinniiinnnns, 718/102

6,272,517 Bl 8/2001 Yue et al.

7,082,519 B2* 7/2006 Kelseyetal. 712/228
2004/0216105 Al1* 10/2004 Burkyetal. 718/100
2004/0216106 A1 10/2004 Kalla et al.

2005/0076337 Al* 4/2005 Mangancee 718/100
2005/0149936 Al1* 7/2005 Pilkington 718/102
2006/0179281 Al 8/2006 Jensen et al.

FOREIGN PATENT DOCUMENTS

JP 7-200315 8/1995
JP 07200315 A * 8/1995

multithreaded processor that simultaneously executes
instruction streams, the multithreaded processor including: a
computing unit group that executes 1nstructions; an mstruc-
tion scheduler that groups the instructions mto groups for
cach of the instruction streams, the instructions being

included 1n the each of instruction streams, and each of the
groups being made up of instructions among the 1nstructions
to be simultaneously issued to the computing units; an
instruction butier which holds the instructions for each of the
groups grouped by the 1mstruction scheduler, the mstructions
being included in the each of instruction streams; and an
1ssued nstruction determining unit that reads the istructions
for each of the groups from the 1nstruction buifer 1n each of
execution cycles of the multithreaded processor, and that
1ssues the read instructions to the computing unit group.

19 Claims, 15 Drawing Sheets

1301

1303 1305

Guarantead
performance

1307
3ﬂ5emnd highest
-bo-lowest {
measLring pricrity
Lnlt 1308 Letg

Priority determining
unit

5

1
First highast\Guarantaed
-to-lowest performance
priority determining
quaue unit
1304 .,

7

End

O RE S LR Wl
(W) . R LN

i rd]

Basic period
determining —Reset
| unit signal
generating
Execution cycle e LI I
counting unit

1310 1 I

Reset signal

First instruction buffer information

Sacond instruction buffer Infurmatic}n}

Third instruction buffer information

M-th instruction buffer information .

Issued instruction
determining unit

Issued instruction
selectlon slgnal
{Signal for salecting
yirtual processor)

1314

dnoab Jiun

ZTT

US 8,141,088 B2

— 2|1} 19]s1ba 2114 493s169.4 9|1} 4931S1624
M ” UI-N t U DUO0DDG 15414
E 60T — 80T — /0T
=
= _
IEINgTe IETgle 12)Jnq
uoi3onJisul .« - UOI1DNIISU] U01oNJISU]
~ Ui-N puooas 15414
o
: 1 90T SOT T o
M. yun bujuiwialap 19|Npayds
> TTT UOIONIISUl PaNSS] UOI3ONJISU]
> B cOT
Hun bujuiwiialap 19p0Dap
Ajliold
OTT 201 U0oI11ONJISUT
?.oEmE.
T O 10T U0[1oNJISuUT

U.S. Patent

U.S. Patent Mar. 20, 2012 Sheet 2 of 15 US 8,141,088 B2

FIG. 2
101
Instruction memory
201 202 203

First Second N-th

instruction
stream

instruction Instruction
stream stream

103

Instruction scheduler

. 102
Instruction decoder

104 105 106

First Second N-th
Instruction Instruction §° " " | instruction
buffer buffer buffer

US 8,141,088 B2

-

- G0€
2

9 9.

=

Q coe

=

> Z0€

U.S. Patent

Q UOI3INJIISU]

14813

£ UOIRDNJISU]
| 7 UOI}DNJISU] T UOIDNJISUT

/. UO110NAISUT

Q UOIPNIISU]

¢ UOIDNJISUT

de Ol

Q U0I3oNI3SU]

/ U0I1DNJIISU]

Q UO0I1DNJISU]

C U0I110oN43suf

£ U011DNIISUT

€ UO0IIDNJISU]

Z uoionaisu

T UOoIIDNISUT

10€
Ve DId

US 8,141,088 B2

Sheet 4 of 15

Mar. 20, 2012

U.S. Patent

ENLIA 151 aobels Moeqg-a3lipA
\\l\\
0TV E%hﬂmﬂﬂﬂﬂx@ obels buiindwod yyi4
60+ E:h.ﬂwmﬂ%mm\@ abeys Buizndwiod yno4
80+ _m_\w_m_m\,mw_ww‘__mxw_.lw abe3s Buindwod puaiyy
P
LOT _mﬂmw_m\,mwm_g_m__ 9bels bunnndwos puodsg
90+ 1055320.d

|IENIJIA PUODSS abe3s Buiandwod 3sui4

e1ep/Uoi1oNJIsu]

POT
{ 19),NQg uoIPNASUT 3514

TTT

Hun m,p_:_E._m_um_u 2|1 483S1b8aJ 3s.14

Auoud | 60T

OTT .. T3

eye(

US 8,141,088 B2

Sheet 5 of 15

Mar. 20, 2012

U.S. Patent

(dossa204d |eNIA BUl3D3}as J0) |eubis)
~/ |eubis uoD3|9s UOIIINIISUI PaNSS]

L0S
uoljeudlojul 1a4jng uolonasul yi-N
Jiun butuiwielap
< ——.
HOLPNASUL panss] uoijewojul Jayng uoildnaisul pliy|
e S ——
uojjeuwLiojul 1a4Nng uoi3oniisui puodas
TTT uoljewdolul Jajjng uoljdonasut 1844
G0S —— uoneuwuoyul AjLiopd \
pu3_ 05
N
€
cos—1_C
T b0S
2nanb Ajliond
1S9MO|-031-1S2ybiH
._ 1un buiuiwiialap AjloLid
OTT

G DI

U.S. Patent Mar. 20, 2012 Sheet 6 of 15 US 8,141,088 B2

FIG. 6
605

Each-cycle virtual
processor operation

o7 % >
R R
7 L 7

601 /\
e A
s B
Second virtual processor 1/N
s |
Third virtual processor . 1/N

604
T ot [
\/

1/N of all operation cycles

US 8,141,088 B2

(40ssao04d |enyiA Bul3o3|as J0j [eubis)
~/ 1eubls uo1309|9S U0|IDNIISUl PBaNSS]
L0S |

Uoljeliojul J=23jng Uuoljonaisul yi-N

Jiun bujuwaalsp _ :
UoRONAIsuUl panssy UOIjRLLIOUI 19)JNQ UOIIPNIISUI pAIY |
UOI3euLIOU] J9JNG UOIDNIISUl PUOIDS

0L uoilewiiojul 1aljng uonodnaisul 3sii4

Sheet 7 of 15

Mar. 20, 2012

U.S. Patent

{0/ —— uopijew.ojul Ajlolid

O
N C
Ll
e,
: l
LL

co/ 90L cO/ v0L
ananb Ajuond ananb Ajllolud
}S9MO|-0]- 1S9M0]-01-153yb1y 315414
1soybiy puolag
un buuiwislap Ajiiond
10L

/

908§

[9OId

U.S. Patent Mar. 20, 2012 Sheet 8 of 15 US 8,141,088 B2

FIG. 3
808

Each-cycle virtual
processor operation

Highest priority 5
allocation cycle | ¢/

Actual
{ allocation cycle

801 A
 rmsvaprocessor || /s
D
o] | e
DR
| rdvisiprocessor | | |15
|
| Founthvinualprocessor] | |13
s |
| Atnvisiocessor || s
V _—3806 -
|xth virtual Processo

/
I
eventh virtual processo

z..

1/5 of all operation cycles

U.S. Patent Mar. 20, 2012 Sheet 9 of 15 US 8,141,088 B2

FIG. S
908

Each-cycle virtual
processor operation

Highest priority 1 “

allocation cycle

Non-highest
priority allocation
cycle

901 /\
e
[

Second virtual processor . 1/5
s |
Third virtual processor . 1/5
D
Fourth virtual processor . 1/5
s |
Fifth virtual processor .. 1/5

T

w1
Seventh virtual processo //’%%

1/5 of all operation cycles

Non-guaranteed
performance

Non-guaranteed
performance

US 8,141,088 B2

Sheet 10 of 15

Mar. 20, 2012

U.S. Patent

y 10SS370.d _
ITOT LI 25114 \@ 36135 deg-33Mm
" 108s350.d 10SSsa20.d
O10T IBNAIA UIXIS \$ IenIA Ucoumm\® obe3s bunndwod yyid
o0t~ e e dummaues s
10ssao0.4d
800T eNLIA ULINO- \H@ abeys Bunnndwoo paiyy
" 105s5970.d 10SSa70.4d
£00T 1IENIIA UIUDADS \$ lendA yuig \@ obels bunndwod puodas
O00T _mw_mw_m\/www_‘__m__ \@ abeis buindwod 3s4i4

elep/uoijonJisul

LOIPNIISUI DONSST]]

POl

GOT
SO0T 90T | .o. | JoJNQ UOONIISUT 38414
o 3|14 49151624 1.1
Anioud| 60T
HOZ . . cTT
OF DI

e1eq

U.S. Patent Mar. 20, 2012 Sheet 11 of 15 US 8,141,088 B2

FIG. 11
1108

Each-cycle virtual
processor operation

Highest priority 5 3

allocation cycle

Actual
allocation cycle

1101

First virtual processor l 1/5

1102 .
 seondvimlprocesr | ||

1103 -
Third virtual processor . 1/5

B
Fourth virtual processor . 1/5

B
Fifth virtual processor . 1/5

LD
_l

1107

1/5 of all operation cycles

Non -guaranteed
performance

Non-—guaranteed
performa nce

U.S. Patent Mar. 20, 2012 Sheet 12 of 15 US 8,141,088 B2

FIG. 12
1208

Each-cycle virtual
processor operation

Highest priority 112

allocation cycle

Actual
allocation cycle

1201
First virtual processor l 1/5

1202 |
Second virtual processor .. 1/5
ll

Third virtual processor

o || us
1205 .

e | | |
= |

lxth virtual processo gggoggnaarggéeed

1207
'

Non-quaranteed
performance

eventh ﬁft/fgl/ processor

1/5 of all operation cycles

U.S. Patent Mar. 20, 2012 Sheet 13 of 15 US 8,141,088 B2

FIG. 13

1301

Priority determining

1303 1305 13Q6 unit

130/
First highest\Guaranteed | Guaranteed Second highest

-to-lowest |performance| performance) -to-lowest
priority determining | measuring priority
unit unit

1309

Basic period
determining

unit signal
generating
Execution cycle unit

counting unit

1310
Reset signal

Priority e
/-”506 ' information 1312

First instruction buffer information
Second instruction buffer information

Third instruction buffer information Issued instruction

determining unit

N-th instruction buffer information

Issued instruction
1302 selection signal

(Signal for selecting

virtual processor)

\1314

U.S. Patent Mar. 20, 2012 Sheet 14 of 15 US 8,141,088 B2

FIG. 14

First guaranteed performance
1401 —

First virtual processor 1/5

Second guaranteed performance

Second virtual processor 1/5

Third guaranteed performance
40>

Third virtual processor 1/5

1402

Fourth guaranteed performance

1404
Fourth virtual processor 1/5
Fifth guaranteed performance
1405 —J=
Fifth virtual processor 1/5
1406

Byt e

—
eventh virtual processo ///////

1408 —

Basic cycle

1407

Non-guaranteed
performance

U.S. Patent Mar. 20, 2012 Sheet 15 of 15 US 8,141,088 B2

FIG. 15

1505 1506 1507/

Video

processing
program

Audio General
processing processing
program program

Virtual Virtual
Processor Drocessor

Virtual
processor

1502 1503 1504

Multithreaded processor

1501

US 8,141,088 B2

1
MULITITTHREADED PROCESSOR

BACKGROUND OF THE INVENTION

(1) Field of the Invention

The present invention relates to a multithreaded processor
which efficiently uses computing units by 1ssuing instructions
ol 1nstruction streams in parallel.

(2) Description of the Related Art

When media processing including compression and
decompression of digitized video data and audio data 1s per-
formed, the computation amount becomes very large. Thus,
for performing such media processing, special-purpose hard-
ware, high-performance Digital Signal Processor (DSP), and
the like are becoming widely available.

In the media processing, many kinds of standards, such as
Moving Picture Experts Group (MPEG) 2, MPEG4, H.263,
and H.264 are in practical use. Thus, digital Audio-Visual
(AV) devices need to support requirements in diverse media
processing of different standards. Furthermore, complexity
of each media processing 1s increasing, and a size of an 1mage,
the number of channels of audio, and the like are increasing,
which further increase the computation amount.

Under these circumstances, a method for installing special-
purpose hardware for performing the aforementioned media
processing, and a method for realizing flexible processing
depending on soltware are used.

Although 1t 1s possible to realize high-performance pro-
cessing using the method for installing special-purpose hard-
ware, there 1s a problem that a circuit scale 1s increased when
the number of functions to be realized 1s many. Furthermore,
there 1s also a problem that it 1s necessary to install new
hardware when adding an additional function.

On the other hand, according to the method for realizing
the media processing using software, it 1s possible to realize
multi-functions and to add a function easily. However, com-
pared to the method for installing special-purpose hardware,
the method using software poses a problem in performance.

For this problem, performance 1s being improved using a
high-performance multithreaded processor having the
improved computation efliciency by executing programs 1n
parallel (for example, refer to “A Multithreaded Processor
Architecture with Simultaneous Instruction Issuing,” In
SUPERCOMPUTER, 49, volume IX, number 3, May 1992).

However, in the method for realizing the media processing,
using such multithreaded processor, there exists a problem of
allocating performance to plural programs.

More specifically, since time allocated to a thread for video
processing and to a thread for audio processing becomes
short, the video processing and the audio processing are not
performed 1n time. Thus, there exists a problem of frame
dropping ifrom video and sound skipping from audio.

Thus, 1t 1s necessary to guarantee that processing on a
thread requiring real-time performance 1s completed within a
certain period of time. For this, 1t 1s necessary to accurately
estimate processing time required in each thread.

SUMMARY OF THE INVENTION

The present invention 1s concerved 1n view of these circum-
stances, and the object 1s to provide a multithreaded processor
that can accurately estimate processing time required 1n each
thread.

Furthermore, another object 1s to provide a multithreaded
processor that can guarantee that processing on a thread
requiring real-time performance 1s completed within a certain
period of time.

10

15

20

25

30

35

40

45

50

55

60

65

2

In order to obtain the aforementioned object, the multi-
threaded processor according to the present invention 1s a
multithreaded processor that executes instruction streams
simultaneously and includes: computing units that execute
instructions; a grouping unit that groups the instructions nto
groups for each of the instruction streams, the instructions
being included in the each of instruction streams, and each of
the groups being made up of instructions to be simultaneously
issued to the computing units; an instruction buifer which
holds the instructions for each of the groups obtained by the
grouping umt, the mnstructions being included 1n the each of
instruction streams; and an instruction 1ssuing unit that reads
the 1nstructions for each of the groups from the instruction
buifer 1n each of execution cycles of the multithreaded pro-
cessor, and that 1ssues the read instructions to the computing
units.

The mstructions included in the instruction stream are
grouped 1n each group. Thus, 1t 15 possible to count the num-
ber of groups for each mstruction stream. Accordingly, it 1s
possible to accurately estimate processing time required in
each nstruction stream, in other words, each thread.

It 1s preferable that the multithreaded processor further
includes: a first priority queue which stores identifiers for the
cach of the instruction streams; and a priority determining
unit that selects at least one of the identifiers from the first
priority queue by prioritizing the identifiers and switching
priorities of the identifiers 1n each of the execution cycles of
the multithreaded processor, and that determines at least one
of the selected 1dentifiers as priority information, wherein the
instruction 1ssuing unit, 1in each of the execution cycles of the
multithreaded processor: determines an instruction stream
based on the priority information determined by the priority
determining unit; (1) reads, from the instruction buifer, a
group of 1nstructions included 1n the determined nstruction
stream; and (111) 1ssues the read instructions to the computing
units.

The priority determining unit changes the priority infor-
mation in each of the execution cycles. Furthermore, the
instruction 1ssuing unit determines an instruction stream
based on the priority information that 1s changed 1n each of
the execution cycles, and 1ssues an mstruction of the mstruc-
tion stream. With this, it 1s possible to allocate predetermined
performance to the instruction stream 1dentified by the prior-
ity information, and to guarantee that processing on a thread
(1nstruction stream) requiring real-time performance 1s com-
pleted within a certain period of time.

According to the present invention, 1t 1s possible to provide
the multithreaded processor that can accurately estimate pro-
cessing time required 1n each thread.

Furthermore, 1t 1s possible to provide the multithreaded
processor that can guarantee that processing on a thread
requiring real-time performance 1s completed within a certain
period of time.

FURTHER INFORMATION ABOUT TECHNICAL
BACKGROUND TO THIS APPLICATION

The disclosure of Japanese Patent Application No. 2006-
303115 filed on Nov. 8, 2006 including specification, draw-
ings and claims 1s mcorporated herein by reference in 1ts
entirety.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other objects, advantages and features of the
invention will become apparent from the following descrip-

US 8,141,088 B2

3

tion thereof taken in conjunction with the accompanying
drawings which illustrate a specific embodiment of the mnven-
tion. In the Drawings:

FIG. 1 1s a block diagram showing hardware configuration
of a multithreaded processor according to the first embodi-
ment of the present invention.

FIG. 2 1s a diagram for describing operations of an instruc-
tion memory, an instruction decoder, an instruction scheduler,
and the first instruction buifer to the N-th mstruction buifer
according to the first embodiment.

FIGS. 3A and 3B are diagrams for describing scheduling
processing on instructions for a single instruction stream
using the mstruction scheduler according to the first embodi-
ment.

FI1G. 4 1s a diagram describing fine-grained multithreaded
processing using the first instruction bufler to the N-th
instruction buffer, the first register file to the N-th register file,
the computing unit group, and the write-back bus according,
to the first embodiment.

FIG. 5 1s a diagram for operations of the priority determin-
ing unit and the 1ssued instruction determining unit according
to the first embodiment.

FIG. 6 1s a diagram showing performance allocated for
cach virtual processor, in the multithreaded processor accord-
ing to the first embodiment.

FI1G. 7 1s a diagram for describing configuration and opera-
tions of the priority determining unit and the 1ssued 1nstruc-
tion determining unit according to the second embodiment.

FIG. 8 1s a diagram showing performance allocated for
cach virtual processor, in the multithreaded processor accord-
ing to the second embodiment.

FIG. 9 1s a diagram showing performance allocated for
cach virtual processor, 1n the multithreaded processor accord-
ing to the third embodiment.

FIG. 10 1s a diagram describing fine-grained multithreaded
processing using the first instruction bufler to the N-th
instruction butfer, the first register file to the N-th register file,
the computing unit group, and the write-back bus according,
to the fourth embodiment.

FIG. 11 1s a diagram showing performance allocated for
cach virtual processor, in the multithreaded processor accord-
ing to the fourth embodiment.

FIG. 12 1s a diagram showing performance allocated for
cach virtual processor, in the multithreaded processor accord-
ing to the fifth embodiment.

FIG. 13 1s a diagram for describing configuration and
operations of the priority determining unit and the issued
instruction determining unit according to the sixth embodi-
ment.

FIG. 14 1s a diagram showing performance allocated for
cach virtual processor, in the multithreaded processor accord-
ing to the sixth embodiment.

FIG. 15 1s a block diagram showing configuration of a

real-time processing system according to the seventh embodi-
ment.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The embodiments of the present invention are to be
described with reference to the diagrams hereinafter.

First Embodiment

FI1G. 1 1s a block diagram showing hardware configuration
of a multithreaded processor according to the first embodi-
ment of the present invention.

10

15

20

25

30

35

40

45

50

55

60

65

4

The multithreaded processor 1s a processor that indepen-
dently executes N number of instruction streams (N number
of threads), where N 1s an integer equal to or larger than 2. The
multithreaded processor includes an mstruction memory 101,
an instruction decoder 102, an instruction scheduler 103, N
number of mstruction butlers (a first instruction buifer 104, a
second 1nstruction butfer 105, . . ., an N-th instruction buiter
106), N number of register files (a first register file 107, a
second register file 108, . . . , an N-th register file 109), a
priority determining unit 110, an 1ssued instruction determin-
ing unit 111, a computing unit group 112, and a write-back
bus 113.

The instruction memory 101 1s a memory that holds
instructions executed 1n a multithreaded processor, and holds
N numbers of 1nstruction streams each of which 1s executed
independently.

The mstruction decoder 102 1s a processing unit that reads,
from the 1mstruction memory 101, an instruction included 1n
an 1nstruction stream and that decodes the istruction. The
detailed operations of the mstruction decoder 102 are to be
described later.

The 1nstruction scheduler 103 1s a processing unit that
reads an instruction from the instruction decoder 102 and
performs instruction scheduling. The detailed operations of
the mnstruction scheduler 103 are to be described later.

The first instruction buffer 104 1s a storing unit that
recetves, from the instruction scheduler 103, an instruction
included 1n the scheduled first instruction stream and that
holds the 1nstruction.

The second instruction buffer 105 1s a storing unit that
recelves, from the instruction scheduler 103, an instruction
included 1n the scheduled second instruction stream and that
holds the instruction.

The N-th instruction buifer 106 1s a storing unit that
recerves, from the instruction scheduler 103, an instruction
included 1n the scheduled N-th instruction stream and that
holds the instruction.

The first register file 107 1s a register group that holds data
to be read and written by executing the first instruction stream
held 1n the first instruction butfer 104.

The second register file 108 1s a register group that holds
data to be read and written by executing the second instruc-
tion stream held 1n the second 1nstruction butfer 105.

The N-th register file 109 1s a register group that holds data
to be read and written by executing the N-th instruction
stream held in the N-th 1nstruction butter 106.

The prionty determining unit 110 1s a processing unit that
determines a priority of the N number of instruction streams.
The detailed operations of the priority determining unit 110
are to be described later.

The 1ssued instruction determining unit 111 1s a processing,
unit that implements a virtual processor. In other words, the
issued nstruction determining unit 111 receives a priority
from the priority determining unit 110 and receives instruc-
tion buffer information indicating whether or not an instruc-
tion can be executed from each of the first instruction butfer to
the N-th instruction buffer 106. Furthermore, the 1ssued
instruction determining unit 111 selects an instruction butfer
in which an instruction of an instruction stream to be 1ssued
and a register file that 1s necessary for the mstruction stream
are held, based on the priority and the instruction buifer
information recerved from the priority determining umt 110.

The computing unit group 112 is a processing unit includ-
ing computing units, such as an adder and a multiplier. The
write-back bus 113 1s a bus for writing output data from the
computing unit group 112 back to the first register file 107 to

the N-th register file 109.

US 8,141,088 B2

S

Next, operations of the instruction memory 101, the
istruction decoder 102, the instruction scheduler 103, and
the first instruction buifer 104 to the N-th instruction buffer
106 are described 1n details hereinatter.

FIG. 2 1s a diagram for describing the operations of the
instruction memory 101, the instruction decoder 102, the
instruction scheduler 103, and the first imnstruction buffer 104
to the N-th mstruction buffer 106.

In the mstruction memory 101, N number of instruction
streams 1ncluding from the first instruction stream 201 to the
N-th instruction stream 203 are stored.

The 1nstruction decoder 102 selects an nstruction stream
cach from the first instruction stream 201 to the N-th mstruc-
tion stream 203 which are stored 1n the nstruction memory
101, and decodes instructions of the selected instruction
streams. Note that the instruction decoder 102 may monitor
an accumulating status of istructions 1n each of the first
instruction buffer 104 to the N-th instruction butfer 106,
select instruction streams 1n ascending order of accumulated
instructions 1n the streams, and decode the instructions
included 1n the selected instruction streams.

The instruction scheduler 103 receives the decoded
instructions from the mstruction decoder 102, and groups the
instructions capable of being 1ssued simultaneously 1nto a
group. In other words, the instruction scheduler 103 groups
the 1nstructions capable of being 1ssued at one cycle into a
group for each of the instruction streams read from the
instruction memory 101. The instruction scheduler 103 stores
the grouped 1instructions in one of the instruction builers
corresponding to the mstruction stream 1ncluding the mstruc-
tions, among the first instruction buifer 104 to the N-th
instruction buffer 106.

In each of the first instruction butter 104 to the N-th instruc-
tion bufler 106, an instruction decoded by the instruction
decoder 102 and grouped by the instruction scheduler 103 1s
held. Here, as a method for indicating a group of an mnstruc-
tion, a distinct identifier may be given to each group, or an
identifier indicating a boundary between groups may be given
to an instruction located 1n a boundary between the groups.

FIGS. 3A and 3B are diagrams for describing scheduling
processing of instructions for a single instruction stream
using the mstruction scheduler 103.

For example, as shown in FI1G. 3A, scheduling for arbitrary
successive 8 instructions included 1n an instruction stream
301 1s considered.

The instruction scheduler 103 schedules instructions by
integrating instructions capable of being executed simulta-
neously mto an identical group, based on data dependencies
present between the instructions.

As aresult, for example, as shown 1n FI1G. 3B, the first two
instructions, Instructions 1 and 2 are grouped 1nto a first group
302 from the instruction stream 301. Next three instructions,
Instructions 3 to 5, are grouped 1nto a second group 303. Next
Instruction 6 1s grouped 1nto a third group 304. Next Instruc-
tions 7 and 8 are grouped nto a fourth group 305.

Instructions 1 and 2 included 1n the first group 302 can be
issued 1n the first cycle. Instructions 3 to 3 included in the
second group 303 can be 1ssued 1n the second cycle. Instruc-
tion 6 included in the third group 304 can be 1ssued 1n the third
cycle. Instructions 7 and 8 included 1n the fourth group 3035
can be 1ssued in the fourth cycle. Note that each group indi-
cates a group of instructions capable of being 1ssued 1n a
cycle. Thus, there 1s no need to 1ssue instructions 1n succes-
stve cycles 1n an order from the first group 302 to the fourth
group 305, and the instructions may be issued 1n 1rregular
cycles, and the groups of the instructions to be 1ssued need not
be arranged in the aforementioned order.

10

15

20

25

30

35

40

45

50

55

60

65

6

Note that various methods are conceived in grouping

instructions capable of being 1ssued simultaneously 1n a mul-
tithreaded processor having computing units. For example,
there are methods for creating groups including instructions
capable of being 1ssued simultaneously, based on the number
of 1nstructions capable of being 1ssued simultaneously and
the number of computing resources, while the order for 1ssu-
ing the nstructions remains the same. Furthermore, 1t 1s pos-
sible to perform the aforementioned processes in advance
using a complier or the like. In such a case, the mstruction
scheduler 103 recognizes a boundary between groups and
performs grouping, based on a predetermined identifier
included 1n each of the instructions of an instruction stream
and the number of structions.
The present invention 1s characterized in that instructions
including instructions of plural instruction streams are not
optimized for achieving performance predicted, 1n advance,
by the software developer. This 1s for preventing execution of
an struction of a target instruction stream from being
alfected by appearance of mstructions from other instruction
streams. As a result, by counting the number of groups for
cach instruction stream, the software developer can easily
calculate performance necessary for each instruction stream,
in other words, time to be allocated for each of the instruction
streams for executing a virtual processor.

FIG. 4 1s a diagram describing fine-grained multithreaded
processing using the first instruction buffer 104 to the N-th
instruction builer 106, the first register file 107 to the N-th
register file 109, the computing unit group 112, and the write-
back bus 113.

As described above, the 1ssued 1nstruction determining unit
111 implements a virtual processor by selecting an instruc-
tion builer 1n which an 1nstruction of an 1nstruction stream to
be 1ssued are stored and a register file necessary for the
instruction stream, based on priority information recerved
from the priority determiming unit 110 and instruction buifer
information received from each of the instruction buifers.

Here, the multithreaded processor executes pipeline pro-
cessing using the computing unit group 112. The number of
stages 1s, for example, six including a first computing stage
406, a second computing stage 407, a third computing stage
408, a fourth computing stage 409, a fifth computing stage
410, and a write-back stage 411.

In each of the stages from the first computing stage 406 to
the fifth computing stage 410 executes an instruction included
in one of the instruction streams from among the N-th number
ol 1nstruction streams.

Furthermore, processing for writing computing results per-
formed 1n the first computing stage 406 to the fifth computing
stage 410, back to one of the first register file 107 to the N-th
register file 109 1s executed in the write-back stage 411.

As such, when the 1ssued instruction determining unit 111
switches 1nstruction streams and 1ssues the instruction
streams successively in each of the pipelined computing
stages, 1t becomes possible to implement virtual processors.
For example, the second virtual processor that executes the
second 1nstruction stream 1s allocated to the first computing
stage 400.

Using such a multithreaded pipeline, 1t 1s possible to sub-
stantially reduce limitations for 1ssuing an istruction that are
caused by data dependencies.

Next, a method for determining priorities 1s to be
described. FIG. 5 1s a diagram for describing operations of the
priority determining unit 110 and the 1ssued instruction deter-
mining unit 111.

The prionty determining umt 110 includes a highest-to-
lowest priority queue 503 in which the number of virtual

US 8,141,088 B2

7

processors 1ndicating priorities for issuing each of instruc-
tions (the number of threads and instruction streams) 1s reg-
istered. A highest priority pointer 504 1s a pointer indicating

an entry to be a priority in the highest-to-lowest priority queue
503.

The priority determining unit 110 obtains priority informa-
tion 505 indicating a priority of a virtual processor 1n an
operation cycle based on the highest-to-lowest priority queue
503 and the entry indicated by the highest priority pointer
504, and outputs the information.

The specific examples of obtaining the priority information
505 are to be described hereinafter. The priority determining
unit 110 determines priorities for every cycle based on a
virtual processor number registered 1n the highest-to-lowest
priority queue 503. For example, the virtual processor num-
bers are registered in the highest-to-lowest priority queue 503
in ascending order of 1, 2,3 ... N, End”. Here, “END” 1s an
identifier indicating a last entry of the highest-to-lowest pri-
ority queue 503.

When the highest priority pointer 504 points the second
entry of the highest-to-lowest priority queue 503, the priority
information 305 1n the cycle becomes “2,3 ... N, 1”. In other
words, the priority of the virtual processor number 1s deter-
mined in an order from the entry pointed by the highest
priority pointer 504 of the highest-to-lowest priority queue
503 to the one entry prior to the last entry, and “2,3 ... N7 as
the first half of the priority information 505 1s obtained.
Furthermore, virtual processor numbers each indicating a
priority are determined 1n an order from a top entry of the
highest-to-lowest priority queue 503 to the one entry prior to
the last entry pointed by the highest priority pointer 504, and
1 as the second half of the priority information 5035 is
obtained. By combiming the first half and the second half of
the priority mformation 505, it 1s possible to obtain the pri-
ority information 5035 “2, 3 .. . N, 1”. In other words, 1n this
cycle, instructions are 1ssued in an order from the second
virtual processor, the third virtual processor, . . . , the N-th
virtual processor, to the first virtual processor by priority.

In the next cycle, the highest priority pointer 504 advances
one entry, pointing the third entry of the highest-to-lowest
priority queue 503. Note that although the transition of the
highest priority pointer 504 does not depend on whether or
not an instruction 1s 1ssued to a target virtual processor having
the highest priority, the highest priority pointer 504 1s transi-
tioned always 1n every cycle. Thus, the priority information
505 1n this cycle becomes “3, ..., N, 1, 2”.

The same processing 1s repeated, and when the highest
priority pointer 504 points the last entry in which the identifier
“END” 1s stored, the highest priority pointer 504 is transi-
tioned to the first entry. In the present embodiment, although
it 1s assumed that the virtual processor numbers of N number
of virtual processors are respectively registered in the high-
est-to-lowest priority queue 503, a plurality of the same vir-
tual processor numbers may be registered.

The 1ssued nstruction determining unit 111 recerves the
instruction buffer information 306 respectively outputted
from each of the first instruction bufiler 104 to the N-th
instruction buffer 106. The instruction buifer information 506
1s information whether or not an 1ssuable instruction 1is
present in the cycle, among grouped instructions held 1n each
of the instruction buffers. For example, regardless of whether
or not each of the mstruction builers 1s empty, there 1s data
dependencies between instructions previously 1ssued. When
there 1s any factor that prevents an instruction from being
1ssued due to incompletion of computation of the instruction
and the like, the instruction buffer information 506 includes a

10

15

20

25

30

35

40

45

50

55

60

65

8

signal indicating that there 1s no 1ssuable grouped 1nstruction
in the corresponding instruction butfer.

The 1ssued instruction determining unit 111 outputs an
1ssued 1nstruction selection signal 307 for selecting a virtual
processor that 1ssues an instruction 1n an operation cycle.

In other words, the 1ssued instruction determining unit 111
checks the instruction buffer information 506 according to the
priority information 505, and confirms whether or not there 1s
a grouped instruction capable of being 1ssued to the virtual
processor having the highest priority. When an 1ssuable
grouped 1nstruction 1s present, the 1ssued instruction deter-
mining unit 111 outputs, as the 1ssued instruction selection
signal 507, a signal that selects the virtual processor having,
the highest priority.

When an 1ssuable grouped instruction 1s not present, the
1ssued mstruction determining unit 111 outputs, as the 1ssued
istruction selection signal 507, a signal indicating that there
1s no 1nstruction to be 1ssued. Here, in the present embodi-
ment, when there 1s no 1nstruction to be 1ssued to the virtual
processor having the highest priority, the 1ssued mstruction
determining unit 111 does not issue an mstruction, regardless
of whether or not having an instruction to be issued for
another virtual processor. However, the 1ssued instruction
determining unit 111 may 1ssue an 1nstruction, when having
an 1struction capable of being 1ssued to another virtual pro-
cessor. Note that 1n such a case, there 1s no change 1n the
transition rule of the highest priority pointer 504.

FIG. 6 1s a diagram showing the performance allocated for
cach virtual processor, 1n the multithreaded processor accord-
ing to the present embodiment.

As shown 1n FIG. 6, each of the following performance 1s
for 1/N of all operation cycles: performance 601 allocated for
the first virtual processor; performance 602 allocated for the
second virtual processor; performance 603 allocated for the
third virtual processor; . . . , and performance 604 allocated
for the N-th virtual processor.

Note that an each-cycle virtual processor operation 605
indicates virtual processor numbers allocated for each cycle,
and indicates the determined highest priority for each cycle in
an order from the first virtual processor to the N-th virtual
processor. Note that the second, the fifth, and the first virtual
processors that are represented by broken lines indicate that
no struction is issued due to areason, for example, that there
1S no 1nstruction to be 1ssued as described above, when an
instruction 1s to be 1ssued to the second, the fifth, and the first
virtual processors.

As described above, according to the present embodiment,
it 15 possible to allocate the uniform performances 601 to 604
to all o the first virtual processor to the N-th virtual processor.
Note that although an instruction 1s not 1ssued 1n the cycles
represented by the broken lines from among the cycles indi-
cated 1n the each-cycle virtual processor operation 605, 1t 1s
assumed that performance has been allocated to a target pro-
cessor 1n a cycle 1n which an mstruction 1s not 1ssued.

Furthermore, the mstruction scheduler 103 groups 1nstruc-
tions for each of the instruction streams. Thus, 1t 1s possible to
count the number of instruction groups capable of being
executed simultaneously for each of the instruction streams
(each of the threads). With this, 1t 1s possible to accurately
estimate the number of cycles for each thread, in other words,
the processing time necessary for each of the thread.

With this, it 1s possible to allocate threads requiring real-
time performance, by varying the virtual processor numbers
registered 1n the highest-to-lowest priority queue 303 accord-
ing to a ratio ol processing time necessary for each of the
thread, thereby completing a certain amount of processing
within a predetermined period of time.

US 8,141,088 B2

9

Second Embodiment

Next, the multithreaded processor according to the second
embodiment of the present invention 1s to be described.

Although the multithreaded processor according to the
second embodiment has the same configuration as the multi-
threaded processor according to the first embodiment shown
in FI1G. 1, 1t differs 1n the prionty determining unit 110 and the
issued nstruction determining umt 111. The multithreaded
processor according to the second embodiment 1s to be
described hereinatter, focusing on the priority determining
unit and the 1ssued 1nstruction determining unit.

FI1G. 7 1s a diagram for describing configuration and opera-
tions of a priority determining unit 701 and an 1ssued 1nstruc-
tion determining unit 702.

The priority determining umt 701 1s provided, instead of
the priority determining unit 110 1n the multithreaded proces-
sor shown 1n FIG. 1, and 1s a processing unit that determines
priorities for the N number of instruction streams for each of
the operation cycles and that outputs priority information 707
indicating priorities for each virtual processor.

The 1ssued 1nstruction determining unit 702 1s provided,
instead of the 1ssued 1nstruction determining unit 111 in the
multithreaded processor shown 1n FI1G. 1, and 1s a processing,
unit that implements a virtual processor. In other words, the
issued 1nstruction determiming unit 702 receitves priority
information 707 from the priority determining unit 701, and
receives 1nstruction buffer information 506 1indicating
whether or not an 1instruction can be executed from each of the
first mstruction butler 104 to the N-th instruction buffer 106.
Furthermore, the 1ssued instruction determining unit 702
selects an instruction buifer 1n which an instruction of an
instruction stream to be issued 1s held and a register file that 1s
necessary for the instruction stream, based on the received
priority information 707 and the instruction builer informa-
tion 506.

The priority determining unit 701 includes: a first highest-
to-lowest priority queue 703 in which the number of virtual
processors indicating priorities for issuing each of mnstruc-
tions (the number of threads and instruction streams) are
registered; and a second highest-to-lowest priority queue 705
in which the number of virtual processors that i1s not to be
1ssued by priority and that has the second highest priority 1s
registered.

A first highest priority pointer 704 1s a pointer indicating an
entry to be the highest priority 1n the first highest-to-lowest
priority queue 703. A second highest priority pointer 706 1s a
pointer indicating an entry that stores the number of virtual
processor in which an instruction to be 1ssued 1s included, in
the highest-to-lowest priority queue 705.

The specific examples of obtaining the priority information
707 are to be described hereinafter. The priority determining
unit 701 determines priorities for every cycle based on the
virtual processor numbers registered 1n the first highest-to-
lowest priority queue 703 and virtual processor numbers reg-
istered 1n the second highest-to-lowest priority queue 705.
For example, the virtual processor numbers are registered 1n
the first highest-to-lowest priority queue 703 1n an order of “1,
2,3, 4,35, End”. Furthermore, the virtual processor numbers
are registered 1n the second highest-to-lowest priority queue
705 1n an order of “6,7, End”. Here, “END” 1s an 1dentifier
indicating the last entry of the first highest-to-lowest priority
queue 703 and the second highest-to-lowest priority queue
705.

In a cycle, the first highest priority pointer 704 points the
second entry of the first highest-to-lowest priority queue 703,
and the second highest priority pointer 706 points the second

10

15

20

25

30

35

40

45

50

55

60

65

10

entry of the second highest-to-lowest priority queue 705.
Here, the priority information 707 in this cycle becomes
“2,3,4,5,1,7,6”. In other words, the priority determining unit
701 obtains the first half of the prionty information 707,
“2,3,4,5,1” based on the first highest-to-lowest priority queue
703 and the first highest priority pointer 704. Furthermore,
the priority determining unit 701 obtains the second half of
the priority information 707, *7,6” based on the second high-
est-to-lowest priority queue 705 and the second highest pri-
ority pointer 706. The first half and second half of the priority
information 707 are obtained in the same manner as the
method for obtaining the priority information 503 using the
priority determining unit 110 described with reference to
FIG. 5. Thus, the detailed description 1s not repeated herein.

In the next cycle, the first highest priority pointer 704
advances one entry, pointing the third entry of the first. high-
est-to-lowest priority queue 703, and the second highest pri-
ority pointer 706 advances one entry, pointing the first entry
of the second highest-to-lowest priority queue 705. Note that
although the transition of the first highest priority pointer 704
does not depend on whether or not an mstruction 1s 1ssued to
a target virtual processor having the highest priority, the first
highest priority pointer 704 1s transitioned always 1n every
cycle. On the other hand, although the transition of the second
highest priority pointer 706 does not depend on whether or
not an instruction 1s 1ssued to a virtual processor having the
non-highest priority, 1t 1s possible to cause the second highest
priority pointer 706 to be transitioned always 1n every cycle
and 1t may be transitioned only when an instruction is 1ssued.
Thus, the prionty information 707 1n this cycle becomes
“3,4,5,1,2,6,7”. The same processing 1s repeated, and when
the first highest priority pointer 704 points the last entry in
which the identifier “END” 1s stored, the first highest priority
pointer 704 1s transitioned to the first entry. When the second
highest priority pointer 706 points the last entry 1n which the
identifier “END” 1s stored, the second highest priority pointer
706 1s transitioned to the first entry. In the present embodi-
ment, although 1t 1s assumed that the virtual processor num-
bers of five virtual processors from the first virtual processor
to the fitth virtual processor are respectively registered 1n the
first highest-to-lowest priority queue 703, a plurality of the
same virtual processor numbers may be registered. Further-
more, although 1t 1s assumed that the virtual processor num-
bers of the sixth virtual processor and the seventh virtual
processor, which are not registered in the first highest-to-
lowest priority queue 703, are registered in the non-priority
determining umt 703, a plurality of the same virtual processor
numbers may be registered.

The 1ssued instruction determining unit 702 outputs an
1ssued struction selection signal 307 for selecting a virtual
processor that 1ssues an instruction 1n an operation cycle.

In other words, the 1ssued instruction determining unit 702
checks the instruction butier information 506 according to a
priority of the priority information 707, and confirms whether
or not there 1s a grouped instruction capable of being 1ssued to
the virtual processor having the highest priority. When an
1ssuable grouped 1nstruction is present, the 1ssued mnstruction
determining unit 702 outputs, as the 1ssued nstruction selec-
tion signal 507, a signal that selects the virtual processor
having the highest priority.

When the 1ssuable grouped nstruction 1s not present, the
1ssued mstruction determining umt 702 confirms whether or
not there 1s a grouped 1nstruction capable of being 1ssued to
the virtual processor and having the second highest priority.
When there 1s such an instruction, the i1ssued instruction
determining unit 702 outputs, as the 1ssued mstruction selec-
tion signal 507, a signal indicating the corresponding virtual

US 8,141,088 B2

11

processor. The 1ssued instruction determining unit 702
repeats the aforementioned operations, and finally when there

1s no instruction group capable of being 1ssued, it outputs a
signal indicating the state as the 1ssued instruction selection
signal 507.

FIG. 8 1s a diagram showing the performance allocated for
cach virtual processor, 1n the multithreaded processor accord-
ing to the present embodiment.

As shown 1n FI1G. 8, uniform and guaranteed performances
801 to 803 are allocated to each of the first virtual processor
to the fifth virtual processor, while non-guaranteed perior-
mances 806 and 807 are allocated respectively to the sixth
virtual processor and the seventh virtual processor.

Note that an each-cycle virtual processor operation 808
indicates virtual processor numbers allocated for each cycle,
and determines the highest priority for each cycle 1in the order
from the first virtual processor to the fifth virtual processor
cach corresponding to the virtual processor numbers regis-
tered 1n the first highest-to-lowest priority queue 703. Note
that the second, the fifth, and the third virtual processors that
are represented by broken lines indicate that no instruction 1s
1ssued due to areason, for example, that there 1s no 1instruction
to be 1ssued as described above, when an instruction 1s to be
1ssued to the second, the fifth, and the third virtual processors.
Thus, from among the virtual processors having issuable
istructions, the virtual processor having the highest priority
1s allocated 1n the execution cycle. For example, instead of the
second, the fifth, and the third virtual processors that are
represented by broken lines, the third, the seventh, and the
fifth virtual processors are allocated. Note that even when
another virtual processor (for example, a virtual processor
other than the third, seventh, and fifth virtual processors) 1s
allocated, 1n the next cycle, a virtual processor having the
highest priority 1n the cycle 1s selected. Accordingly, 1t 1s
possible to guarantee execution of an mstruction 1n a worst
cycle 1n consideration of the latency of the instruction
intended, 1n advance, by the software developer.

Third Embodiment

Next, the multithreaded processor according to the third
embodiment of the present invention 1s to be described.

Although the multithreaded processor according to the
third embodiment has the same configuration as the multi-
threaded processor according to the second embodiment, it
differs in the operations of the priority determining unit 701.
Thus, the following mainly describes the different points
from the second embodiment.

The operations of the prionty determining unit 701 and the
issued instruction determining unit 702 are described using
FIG. 7.

The specific examples of obtaining the priority information
701 using the priority determining umt 701 are to be
described hereinatter.

The priority determining unit 701 determines priorities for
every cycle based on the virtual processor numbers registered
in the first highest-to-lowest priority queue 703 and virtual
processor numbers registered in the second highest-to-lowest
priority queue 703. The virtual processor numbers registered
in the priority determining unit 703 and the second highest-
to-lowest priority queue 705 are the same as those of the
second embodiment.

In a cycle, the first highest priority pointer 704 points the
second entry of the first highest-to-lowest priority queue 703,
and the second highest priority pointer 706 points the second
entry of the second highest-to-lowest priority queue 705.
Here, the priority mformation 707 in this cycle becomes

10

15

20

25

30

35

40

45

50

55

60

65

12

“2,7,6”. In other words, the priority determining unit 701
obtains the first half of priority information 707 as “2” based
on the first highest-to-lowest priority queue 703 and the first
highest priority pointer 704. Furthermore, the priority deter-
mining unit 701 obtains the second half of priority informa-
tion 707 as 7,6 based on the second highest-to-lowest pri-
ority queue 7035 and the second highest priority pointer 706.
Although the second half of the priority mnformation 707 1s
obtained 1n the same manner as that of the second embodi-
ment, the first half of the information 1s obtained 1n a different
manner. In other words, only the virtual processor numbers
stored 1n the entry of the second highest-to-lowest priority
queue 705 1ndicated by the first highest priority pointer 704
are allocated for the first half of the priority information 707.

In the next cycle, the first highest priority pointer 704
advances one entry, pointing the third entry of the first high-
est-to-lowest priority queue 703, and the second highest pri-
ority pointer 706 advances one entry, pointing the first entry
of the second highest-to-lowest priority queue 705. Note that
although the transition of the first highest priority pointer 704
does not depend on whether or not an mstruction 1s 1ssued to
a target virtual processor having the highest priority, the first
highest priority pointer 704 1s transitioned always 1n every
cycle. On the other hand, the transition of the second highest
priority pointer 706 does not depend on whether or not an
instruction 1s 1ssued to a virtual processor having the non-
highest priority. Rather, the second highest priority pointer
706 may be transitioned always 1n every cycle, and 1t may be
transitioned only when an 1nstruction 1s 1ssued. Furthermore,
the priority information 707 1n this cycle becomes “3,6,7”. As
such, a virtual processor number based on the first highest-
to-lowest priority queue 703 1s set as the number having the
highest priority, and the next priority 1s set based on the
second highest-to-lowest priority queue 705. The same pro-
cessing 1s repeated, and when the first highest priority pointer
704 points the last entry 1n which the identifier “END” 1s
stored, the first highest priority pointer 704 1s transitioned to
the first entry. When the second highest priority pointer 706
points the last entry 1n which the 1dentifier “END” 1s stored,
the second highest priority pointer 706 is transitioned to the
first entry. In the present embodiment, although 1t 1s assumed
that the virtual processor numbers of five virtual processors
from the first virtual processor to the fifth virtual processor are
respectively registered 1n the first highest-to-lowest priority
queue 703, the same virtual processor numbers may be reg-
istered. Although 1t 1s assumed that the virtual processor
numbers of the sixth virtual processor and the seventh virtual
processor, which are not registered in the first highest-to-
lowest priority queue 703, are respectively registered 1n the
non-priority determining unit 7035, the same virtual processor
numbers may be registered.

The 1ssued instruction determining unit 702 outputs an
1ssued 1struction selection signal 307 for selecting a virtual
processor that 1ssues an instruction in an operation cycle.
Since the operations performed in the issued instruction
determining unit 702 are the same as those of the second
embodiment, the detailed description 1s not repeated herein.

FIG. 9 1s a diagram showing the performance allocated for
cach virtual processor, in the multithreaded processor accord-
ing to the third embodiment.

As shown in FIG. 9, uniform and guaranteed performances
901 to 905 are allocated to each of the first virtual processor
to the fifth virtual processor, while non-guaranteed perfor-
mances 906 and 907 are allocated respectively to the sixth
virtual processor and the seventh virtual processor.

Note that an each-cycle virtual processor operation 908
indicates virtual processor numbers allocated for each cycle.

US 8,141,088 B2

13

Furthermore, the each-cycle virtual processor operation 908
indicates the determined highest priority for each cycle in the
order from the first virtual processor to the fifth virtual pro-
cessor each corresponding to the virtual processor numbers
registered in the first highest-to-lowest priority queue 703.
Note that when an instruction 1s to be 1ssued to the second, the
fifth, and the third virtual processors that are represented by
broken lines, 1t 1s not possible to 1ssue an 1struction due to a
reason, for example, that there 1s no mstruction to be 1ssued as
described above. Thus, among the virtual processor numbers
registered 1n the second highest-to-lowest priority queue 703,
the virtual processor having the highest priority 1s allocated in
the execution cycle. For example, mstead of the second, the
fifth, and the third virtual processors that are represented by
broken lines, the sixth, the seventh, and the sixth virtual
processors are allocated respectively. As such, even when the
1ssued instruction determining unit 702 selects another virtual
processor, 1n the next cycle, the 1ssued 1nstruction determin-
ing unit 702 selects a virtual processor having the second
highest priority. Accordingly, 1t 1s possible to guarantee
execution of an instruction 1n a worst cycle 1n consideration of
the latency of the instruction intended, 1n advance, by the
soltware developer.

With the aforementioned operations, it 1s possible to pro-
vide sulficient performance intended by the software devel-
oper for the virtual processors registered 1n the first highest-
to-lowest priority queue 703, and to positively allocate the
performance to the virtual processor that provides non-guar-

anteed performance registered in the second highest-to-low-
est priority queue 705.

Fourth Embodiment

Next, the multithreaded processor according to the fourth
embodiment of the present invention 1s to be described.

The multithreaded processor according to the fourth
embodiment differs from the multithreaded processor
according to the first embodiment 1n having the prionty deter-
mimng unit 701 used 1n the second and third embodiments
instead of the priority determining unit 110, and 1n having an
1ssued 1nstruction determining unit 1005 instead of the 1ssued
instruction determining umt 111. Furthermore, 1t differs 1n
the fine-grained multithreaded processing from that of the
first to third embodiments. The fourth embodiment 1s to be
described hereinafter, focusing on the different points from
the aforementioned first to third embodiments.

FIG. 10 1s a diagram describing the fine-grained multi-
threaded processing using the first istruction builer 104 to
the N-th instruction buifer 106, the first register file 107 to the
N-th register file 109, the computing unit group 112, and the
write-back bus 113.

The prionty determining unit 701 1s a processing unit that
determines a priority of the N number of instruction streams,
and outputs priority information. The configuration and
operations of the priority determining unit 701 are the same as
those described 1n the second and third embodiments, and any
the configuration and operations may be used. Thus, the
detailed description 1s not repeated herein.

The 1ssued instruction determining unit 1005 implements
virtual processors by selecting an instruction buffer in which
an 1nstruction of an 1nstruction stream to be 1ssued 1s held and
a register file necessary for the mstruction stream based on
priority information recerved from the priority determining,
unit 701 and instruction buller information indicating
whether or not an 1nstruction can be 1ssued to the first instruc-

tion butter 104 to the N-th instruction bufter 106.

10

15

20

25

30

35

40

45

50

55

60

65

14

In this case, the 1ssued nstruction determining unit 1005
checks the 1nstruction butfer information 506 according to a
priority of the priority information 707, and confirms whether
or not there 1s a grouped 1instruction capable of being 1ssued to
the virtual processor having the highest priority. When the
1ssuable grouped instruction is present, the 1ssued instruction
determining unit 1003 outputs, as the i1ssued instruction selec-
tion signal 507, a signal that selects the virtual processor
having the highest priority. Furthermore, the issued nstruc-
tion determining unit 1005 confirms whether or not the 1ssu-
able and grouped 1nstruction 1s present, and checks whether
or not grouped 1nstructions that can be 1ssued simultaneously
are present, based on the instruction buifer information 506 1n
an order from the information having the higher priority.
When the grouped 1nstructions that can be 1ssued simulta-
neously are present, the 1ssued instruction determining unit
1005 simultaneously issues the grouped instructions. The
alorementioned checking 1s, for example, performed as fol-
lows. In other words, it 1s checked whether or not the total
number of instructions in threads to be 1ssued simultaneously
1s equal to or less than the number of computing resources,
and when this condition 1s satisfied, 1t 1s judged that the
instructions can be 1ssued simultaneously.

When a grouped nstruction capable of being 1ssued to the
virtual processor having the highest priority 1s not present, the
1ssued 1nstruction determining unit 1005 confirms whether or
not a grouped instruction capable of being 1ssued to the virtual
processor having the second highest priority 1s present. When
the 1ssuable grouped instruction i1s not present, the 1ssued
instruction determining unit 1005 outputs, as the 1ssued
instruction selection signal 507, a signal that selects the vir-
tual processor having the second highest priority. In this case,
similarly, the 1ssued instruction determining unit 1005 con-
firms whether or not the 1ssuable and grouped instruction 1s
present, and checks whether or not grouped 1nstructions that
can be 1ssued simultancously are present, based on the
instruction buifer information 506 in an order from the 1nfor-
mation having the higher priority. When the grouped nstruc-
tions that can be 1ssued simultaneously are present, the 1ssued
instruction determimng unit 1005 simultaneously 1ssues the
grouped 1nstructions.

The 1ssued nstruction determining unit 1005 repeats the
alforementioned operations, and when there 1s no 1nstruction
group finally capable of being 1ssued, and the 1ssued instruc-
tion determining unit 1005 1ssues a signal indicating the state
as the 1ssued instruction selection signal 507.

Here, the multithreaded processor executes pipeline pro-
cessing using the computing unit group 112. The number of
stages 1s, Tor example, six including a first computing stage
1006, a second computing stage 1007, a third computing
stage 1008, a fourth computing stage 1009, a fifth computing
stage 1010, and a write-back stage 1011.

In each of the first computing stage 1006 to the fifth com-
puting stage 1010, instructions included 1n the N number of
instruction streams are executed.

Furthermore, processing for writing computing results per-
formed 1n the first computing stage 1006 to the fifth comput-
ing stage 1010, back to one of the first register file 107 to the
N-th register file 109 1s executed 1n the write-back stage 1011
via the write-back bus 113.

As such, when the 1ssued 1nstruction determining unit 1005
switches 1nstruction streams and issues the instruction
streams successively 1n each of the pipelined computing
stages, 1t becomes possible to implement virtual processors.
For example, the first virtual processor that executes the first
istruction stream 1s allocated to the first computing stage
1006. Furthermore, the fifth virtual processor that executes

US 8,141,088 B2

15

the fifth instruction stream and the seventh virtual processor
that executes the seventh instruction stream are allocated to
the second computing stage 1007.

Using such a multithreaded pipeline, it 1s possible to sub-
stantially reduce limitations for 1ssuing an instruction that are
caused by data dependencies.

Note that a difference between the fourth embodiment and
the first to third embodiments 1s that instructions of virtual
processors are present in an identical stage, such as the second
and fifth computing stages. This occurs as a result of instruc-
tions of virtual processors being 1ssued by the 1ssued nstruc-
tion determining unit 1005. This technmique 1s generally
referred to as Simultaneous Mult1 Threading (SMT), and the
patent 1s characterized 1n that mstructions are 1ssued simul-
taneously for each grouped instruction.

FIG. 11 1s a diagram showing the performance allocated
for each virtual processor, 1n the multithreaded processor
according to the present embodiment.

As shown in FIG. 11, uniform and guaranteed perior-
mances 1101 to 1105 are allocated to each of the first virtual
processor to the fifth virtual processor, while non-guaranteed
performances 1106 and 1107 are allocated respectively to the
sixth virtual processor and the seventh virtual processor.

Note that an each-cycle virtual processor operation 1108
indicates virtual processor numbers allocated for each cycle,
and indicates the determined highest priority for each cycle in
the order from the first virtual processor to the fifth virtual
processor each corresponding to the virtual processor num-
bers registered in the first highest-to-lowest priority queue
703. Note that mstructions are simultaneously issued to the
third and seventh virtual processors. Note that instructions are
also simultaneously 1ssued to the fourth and fifth virtual pro-
cessors. Furthermore, when instructions are issued to the
second, the fifth, and the third virtual processors that are
represented by broken lines, no 1struction 1s 1ssued due to a
reason, for example, that there 1s no mstruction to be 1ssued as
described 1n the atorementioined embodiments. Thus, from
among the virtual processors having 1ssuable instructions, the
virtual processor having the highest priority 1s allocated in the
execution cycle. For example, instead of the second, the fifth,
and the third virtual processors that are represented by broken
lines, the third, the sixth, and the seventh virtual processors
are allocated.

Note that even when another virtual processor (for
example, a virtual processor other than the third, the sixth,
and the seventh virtual processors) 1s allocated, in the next
cycle, a virtual processor having the highest priority 1in the
cycle 1s selected. Accordingly, 1t 1s possible to guarantee
execution of an instruction in a worst cycle 1n consideration of
the latency of the instruction intended, 1n advance, by the
software developer.

With the aforementioned operations, it 1s possible to pro-
vide sufficient performance intended by the software devel-
oper for the virtual processor registered in the first highest-
to-lowest priority queue 703, and to positively allocate the
performance to a virtual processor that provides non-guaran-
teed performance registered 1n the second highest-to-lowest
priority queue 703.

Note that although instructions of the largest two virtual
processors are simultaneously 1ssued in each computing
stage, the 1ssuing method 1s not limited to this. As long as
computing resources are available, it 1s possible to 1ssue
instructions of equal to or more than three virtual processors

are simultaneously 1ssued to a computing stage.

Fitth Embodiment

Next, the multithreaded processor according to the fifth
embodiment of the present invention 1s to be described.

10

15

20

25

30

35

40

45

50

55

60

65

16

The multithreaded processor according to the fifth embodi-
ment has the same configuration as that of the multithreaded
processor according to the fourth embodiment shown i FIG.
10. Note that it differs in the operation of the 1ssued 1nstruc-
tion determining unit 1005.

When a grouped instruction capable of being 1ssued to a
virtual processor having the highest priority is not present in
cach execution cycle, the 1ssued 1nstruction determining unit
1005 according to the fourth embodiment 1ssues the grouped
istruction to the virtual processor, as long as the grouped
instruction capable of being 1ssued to another virtual proces-
SOr 1s present.

Even when the grouped instruction capable of being 1ssued
to a virtual processor having the highest priority 1s not present
in each execution cycle and grouped instruction capable of
being 1ssued to another virtual processor are present, the
issued struction determining umt 1005 according to the
present embodiment never issues an instruction. In other
words, the 1ssued instruction determining unit 10035 outputs,
as the 1ssued 1nstruction selection signal 507, a signal 1ndi-
cating that there 1s no instruction to be 1ssued.

With such an operation, 1n an execution cycle in which an
instruction 1s not i1ssued, operations of the computing stages
corresponding to the execution cycles of the first instruction
buifer 104 to the N-th instruction buffer 106 and the first
register file 107 to the N-th register file 109 are completely
suspended. With this, 1t 1s possible to reduce electric power
used 1n the multithreaded processor.

FIG. 12 1s a diagram showing the performance allocated
for each virtual processor, 1n the multithreaded processor
according to the present embodiment.

As shown 1 FIG. 12, uniform and guaranteed perfor-
mances 1201 to 1205 are allocated to each of the first virtual
processor to the fifth virtual processor, while non-guaranteed
performances 1206 and 1207 are allocated respectively to the
sixth virtual processor and the seventh virtual processor.

The each-cycle virtual processor operation 1208 indicates
virtual processor numbers allocated for each cycle. Further-
more, the each-cycle virtual processor operation 1208 1ndi-
cates the determined highest priority for each cycle in the
order from the first virtual processor to the fitth virtual pro-
cessor each corresponding to the virtual processor numbers
registered 1n the first highest-to-lowest priority queue 703.
Note that mstructions are simultaneously 1ssued to the third
and seventh virtual processors. Similarly, instructions are
1ssued simultaneously to the fourth and the fifth virtual pro-
cessors, and to the first and sixth virtual processors.

Furthermore, when instructions are 1ssued to the second,
fifth, and third virtual processors that are represented by
broken lines, no instruction 1s i1ssued due to a reason, for
example, that there 1s no 1nstruction to be 1ssued as described
in the previous embodiments and the like. Thus, an instruc-
tion 1s not 1ssued.

Note that even when another wvirtual processor (for
example, a virtual processor other than the second, fifth, and
third virtual processors) 1s allocated and when a virtual pro-
cessor 1s not allocated, 1n the next cycle, a virtual processor
having the highest priority in the cycle 1s selected. Accord-
ingly, 1t 1s possible to guarantee execution of an instruction 1n
a worst cycle in consideration of the latency of the instruction
intended, 1n advance, by the software developer.

With the aforementioned operations, 1t 1s possible to pro-
vide sufficient performance intended by the software devel-
oper for the virtual processor registered 1n the first highest-
to-lowest priority queue 703, and to positively allocate the

US 8,141,088 B2

17

performance to the virtual processor that provides non-guar-
anteed performance registered in the second highest-to-low-
est priority queue 705.

Sixth Embodiment

Next, the multithreaded processor according to the sixth
embodiment of the present invention 1s to be described.

Although the multithreaded processor according to the
sixth embodiment differs from the multithreaded processor
according to the first embodiment shown 1n FIG. 1 in having
a priority determining unit 1301 instead of the priority deter-
mimng unit 110 and an 1ssued 1nstruction determining unit
1302 instead of the 1ssued instruction determining unit 111.
The sixth embodiment 1s to be described hereinaiter, focusing
on the different points from the aforementioned first to fifth
embodiments.

FIG. 13 1s a diagram for describing configuration and
operations of the priority determining unit 1301 and the
1ssued 1nstruction determining unit 1302.

The priority determining unit 1301 1ts a processing unit
that determines a priority for the N number of instruction
streams 1n each operation cycle, and outputs priority infor-
mation 1312 idicating a priority of each virtual processor.

The 1ssued 1nstruction determining unit 1302 1s provided,
instead of the 1ssued 1nstruction determining unit 111 1n the
multithreaded processor shown 1n FIG. 1, and 1s a processing,
unit that implements a virtual processor. In other words, the
1ssued nstruction determiming unit 1302 recerves the priority
information 1312 from the priority determining unit 1301,
and receives instruction buffer mformation 506 indicating
whether or not an instruction can be executed from each of the
first mstruction builer 104 to the N-th instruction bufier 106.
Furthermore, the 1ssued instruction determining unit 1302
selects an instruction buifer 1n which an instruction of an
instruction stream to be issued 1s held and a register file that 1s
necessary for the instruction stream, based on the received
priority information 1312 and the instruction buifer informa-
tion 506.

The prionty determining unit 1301 includes a first highest-
to-lowest priority queue 1303, a guaranteed performance
determining unit 1305, a guaranteed performance measuring
unit 1306, a second highest-to-lowest priority queue 1307, a
basic period determining unit 1309, an execution cycle count-
ing unit 1310, and a reset signal generating unit 1311.

The first highest-to-lowest priority queue 1303 i1s a storing,
unit in which the number of virtual processors indicating,
priorities for 1ssuing each of instructions (the number of
threads and instruction streams) 1s stored. A first highest
priority pointer 1304 points an entry to be a priority in the first
highest-to-lowest priority queue 1303.

The guaranteed performance determining unit 1305 1s a
storing unit indicating how much performance 1s to be
executed for each virtual processor with the first highest-to-
lowest priority queue 1303.

The guaranteed performance measuring unit 1306 1s a stor-
ing unit indicating how much performance has been imple-
mented for each virtual processor with the first highest-to-
lowest priority queue 1303.

The second highest-to-lowest priority queue 1307 1s a stor-
ing unit in which the number of virtual processors where an
instruction 1s not 1ssued by priority 1s stored. The second
highest priority pointer 1308 points an entry that stores the
number of virtual processors in which an istruction to be
issued 1s mcluded, 1n the second highest-to-lowest priority
queue 1307.

10

15

20

25

30

35

40

45

50

55

60

65

18

The basic period determining unit 1309 1s a processing unit
that determines a predetermined period for measuring perfor-
mance.

The execution cycle counting unit 1310 1s a processing unit
that counts the number of execution cycles that 1s a predeter-
mined period for measuring performance.

The reset signal generating unit 1311 1s a processing unit
that notifies the guaranteed performance measuring unmit 1306
and the execution cycle counting unit 1310 of a reset signal,
when the number of execution cycle that 1s counted 1n the
execution cycle counting unit 1310 reaches basic cycles set 1n
the basic period determining unit 1309. The guaranteed per-
formance measuring unit 1306 and the execution cycle count-
ing unit 1310 which have received the reset signal resets, to 0,
the execution cycle held by itself.

The following describes operations 1n each processing unit
in details. The guaranteed performance determiming unit
1305 1s a register capable of being set by software, has entries
for each virtual processor, and sets, as an entry corresponding
to the virtual processor, the number of operation cycles that
are expected by each virtual processor. The guaranteed per-
formance determining unit 1305 1s set, in advance, with the
virtual processor when the virtual processor starts to operate
in a system status.

The guaranteed performance measuring unit 1306 has
entries for each virtual processor, and counts up the entries
when a cycle having the highest priority 1s allocated to the
corresponding virtual processor, assuming that O 1s set as the
initial state in each entry. The value 1n each entry 1s compared
with the number of corresponding operation cycles stored in
the guaranteed performance determining unit 1303, each time
the number of each entry 1s counted up. When the numbers do
not match, the same operation 1s continued. When the num-
bers match, the guaranteed performance measuring unit 1306
suspends the succeeding counting operation, and outputs a
signal indicating that expected performance of the virtual
processor corresponding to the entry having the matched
value has been achieved.

The signal becomes a control signal for 1ssuing an instruc-
tion of the corresponding virtual processor, and 1t 1s used 1n
the following controls (1 to 3).

1. The virtual processor 1s excluded as a virtual processor
that determines a priority using the first highest-to-lowest
priority queue 1303, and 1s not regarded as a candidate to
which an 1nstruction 1s 1ssued. In other words, information of
the virtual processor 1s not included 1n the priority informa-
tion 1312.

2. Among the priorities determined by the first highest-to-
lowest priority queue 1303 and the second highest-to-lowest
priority queue 1307, the lowest priority of the virtual proces-
sor 1s outputted as the priority information 1312.

3. Although the control signal 1s not used for controlling
priorities, it 1s outputted to the 1ssued 1nstruction determining
umt 1302 as a part of the priority information 1312. The
1ssued 1nstruction determining unit 1302 that receives the
signal outputs an 1ssued instruction selection signal 1314,
assuming that the corresponding virtual processor does not
hold an 1nstruction.

The basic period determining unit 1309 1s a register
capable of being set by software, and sets a value indicating
how much performance to be guaranteed, which 1s set by the
guaranteed performance determining unit 1303 and the guar-
anteed performance measuring umt 1306, 1s expected 1n a
cycle. The value 1s set, in advance, when the virtual processor
starts to operate 1n a system status.

The execution cycle counting unit 1310 counts up the
entries 1 each operation cycle, assuming that 0 1s set as an

US 8,141,088 B2

19

initial state. Furthermore, the reset signal generating unit
1311 compares the value held 1n the execution cycle counting

unit 1310 with the value stored in the basic period determin-
ing unit 1309, and when the values do not match, the same
operation 1s continued. When the values match, the reset
signal generating unit 1311 suspends the following counting
operation, while outputting a signal indicating that a basic
period determined by the basic period determining unit 1309
1s achieved.

This signal indicating the completion of the basic period
serves as 1nitializing the guaranteed performance measuring
unit 1306 and the execution cycle counting unit 1310. In other
words, the signal serves as resuming measuring ol perfor-
mance to be guaranteed and counting of the execution cycles
after the mitialized state.

In addition to the aforementioned control, the method for
determining the priority information 1312 1s the same as one
ol the methods described in the second to fifth embodiments.

Furthermore, the method for determining the 1ssued
instruction selection signal 1314 using the issued instruction
determining unit 1302 1s the same as one of the methods
described in the aforementioned embodiments. Thus, the
detailed description 1s not repeated herein.

FIG. 14 1s a diagram showing the performance allocated
for each virtual processor, 1n the multithreaded processor
according to the present embodiment.

As shown i FIG. 14, performances 1401 to 1405 are
allocated to each of the first virtual processor to the fifth
virtual processor, and the performances 1401 to 1405 are
respectively equivalent to the first guaranteed performance to
the fifth guaranteed performance that are set by the guaran-
teed performance determining unit 1305. On the other hand,
non-guaranteed performances 1406 and 1407 are allocated
respectively to the sixth virtual processor and the seventh
virtual processor.

As described, the present embodiment 1s characterized 1n
that the guaranteed performance determining unit 1305
defines performances to be guaranteed for the virtual proces-
sors 1401 to 1405, and allocates uneven guaranteed perfor-
mances to the virtual processors 1401 to 14035. Thus, it 1s
possible to provide suflicient performance intended by the
soltware developer for the virtual processor registered 1n the
first highest-to-lowest priority queue 1303, and to positively
allocate the performance to the virtual processor that provides
non-guaranteed performance registered in the second high-
est-to-lowest priority queue 1307.

Seventh Embodiment

Next, a real-time processing system according to the sev-
enth embodiment of the present invention 1s to be described.

FI1G. 151s ablock diagram showing the configuration of the
real-time processing system. The real-time processing sys-
tem according to the present embodiment 1s, for example, a
system for reproducing a motion picture and audio, and a
system using the multithreaded processor described 1n one of
the first to sixth embodiments.

A multithreaded processor 1501 includes virtual proces-
sors 1502, 1503, and 1504. Each of the virtual processors
1502 and 1503 1s a virtual processor that guarantees suificient
performance intended by the software developer, and the
virtual processor 1504 1s a virtual processor that 1s not guar-
anteed and 1n which non-guaranteed performance 1s given.

In each of the virtual processor 1502 and 1503 1n which
performance 1s guaranteed, time constraint processing 1s
respectively executed, that 1s, a video processing program
15035 that decodes a moving image and an audio processing

10

15

20

25

30

35

40

45

50

55

60

65

20

program 1506 that decodes audio. Furthermore, a general
processing program 1507 other than the atlorementioned time
constraint processing 1s executed in the virtual processor
1504 1n which non-guaranteed performance 1s given.

For example, the processing implemented by the general
processing program 1507 includes On Screen Display
(OSD), and channel switching processing, and the like, 1n the
case where the multithreaded processor 1501 1s, for example,
applied to a digital television and a DVD recorder.

With the aforementioned configuration, it 1s possible to
realize high speed and flexible processing by allocating nec-
essary performance to a program in which performance
should be guaranteed while allocating other performance as
much as possible to a program in which performance need not
be guaranteed, thereby improving the entire throughput of the
multithreaded processor.

Although only some exemplary embodiments of this
invention have been described 1n detail above, those skilled in
the art will readily appreciate that many modifications are
possible 1n the exemplary embodiments without materially
departing from the novel teachings and advantages of this
invention. Accordingly, all such modifications are intended to
be included within the scope of this invention.

INDUSTRIAL APPLICABILITY

Since the multithreaded processor according to the present
invention has a function that implements flexible and high-
performance computing processing, 1t can be used as a mul-
tithreaded processor and the like that performs media pro-
cessing on video and audio 1n a DVD recorder, digital
television, and the like.

What 1s claimed 1s:

1. A multithreaded processor that executes instruction
streams simultaneously, said multithreaded processor com-
prising:

a computing unit group comprising computing units oper-

able to execute instructions;

a grouping unit operable to group the instruction streams
into groups for each of the instruction streams, the
instructions being included in each of the istruction
streams, and each of the groups being made up of
instructions to be simultaneously 1ssued to the comput-
ing units 1n said computing unit group 1n each of execu-
tion cycles of said multithreaded processor;

an 1nstruction buifer which holds the mstructions for each
of the groups obtained by said grouping unait;

an mstruction 1ssuing unit operable to read the mstructions
for each of the groups from said instruction buffer 1n
cach of the execution cycles of said multithreaded pro-
cessor, and to 1ssue the read 1nstructions to said comput-
ing unit group;

a first priority queue which stores first identifiers for each
of the 1nstruction streams; and

a priority determining unit operable to select at least one of
the first 1dentifiers from said first priority queue by pri-
oritizing the first 1dentifiers and switching priorities of
the first identifiers in each of the execution cycles of said
multithreaded processor, and to determine at least one of
the selected first identifiers as priority information,

wherein said instruction 1ssuing unit 1s operable in each of
the execution cycles of said multithreaded processor:

(1) to determine an 1nstruction stream based on the priority
information determined by said priority determining
unit;

(1) to read, from said instruction butfer, a group of mnstruc-
tions 1ncluded 1n the determined 1nstruction stream; and

US 8,141,088 B2

21

(111) to 1ssue the read instructions to said computing unit
group.

2. The multithreaded processor according to claim 1,

wherein said istruction 1ssuing unit 1s operable to read,
from said instruction buffer, a group of instructions
included 1n an istruction stream that has the highest
priority among the instruction streams held n said
instruction buifer that holds 1nstructions to be 1ssued to
said computing unit group, for each of the execution
cycles of said multithreaded processor based on the pri-
ority information determined by said priority determin-
ing unit, and to 1ssue the read structions to said com-
puting unit group.

3. The multithreaded processor according to claim 1, fur-

ther comprising

a second priority queue which stores second 1dentifiers for
each of the instruction streams; and

wherein said priority determining unit 1s operable:

(1) to set apriority of a first identifier included 1n said first
priority queue to be higher than a priority of a second
identifier included 1n said second priority queue;

(11) to select at least one of the second 1dentifiers from
said first priority queue and said second priority queue
by prioritizing the second identifiers and switching
priorities of the second identifiers in each of the
execution cycles of said multithreaded processor; and

(111) to determine at least one of the selected second
identifiers as the priority information.

4. The multithreaded processor according to claim 3,
wherein said priority determining unit 1s operable:

(1) to set the priority of the first identifier included in said
first priority queue to be higher than the priority of the
second 1dentifier included in said second priority
queue;

(11) to select all of the first and second 1dentifiers respec-
tively included in said first priority queue and
included 1n said second priority queue by prioritizing
the 1dentifiers and switching priorities of the first and
second 1dentifiers 1n each of the execution cycles of
said multithreaded processor; and

(1) to determine the selected first and second 1dentifiers
as the priority information, and

said instruction 1ssuing unit 1s operable to read, from
said 1nstruction bufler, a group ol 1nstructions
included in an 1nstruction stream that has the highest
priority among the instruction streams held i said
instruction builer that holds 1nstructions to be 1ssued
to said computing unit group, for each of the execu-
tion cycles of said multithreaded processor based on
the priority mnformation determined by said priority
determining unit, and to 1ssue the read instructions to
said computing unit group.

5. The multithreaded processor according to claim 3,
wherein said priority determining unit 1s operable:

(1) to set the priority of the first identifier included 1n said
first priority queue to be higher than the priority of the
second 1dentifier included in said second priority
queue;

(11) to select one of the first identifiers included 1n said
first priority queue and all of the second identifiers
included 1n said second priority queue by prioritizing
the first and second 1dentifiers and switching priorities
of the first and second 1dentifiers 1n each of the execu-
tion cycles of said multithreaded processor; and

(1) to determine the selected first and second 1dentifiers
as the priority information,

10

15

20

25

30

35

40

45

50

55

60

65

22

wherein said mstruction 1ssuing unit 1s operable to read,
from said instruction bufler, a group of instructions
included in an 1nstruction stream that has the highest
priority among the instruction streams held in said
instruction buifer that holds 1nstructions to be 1ssued
to said computing unit group, for each of the execu-
tion cycles of said multithreaded processor based on
the priority information determined by said priority
determining unit, and to 1ssue the read instructions to
said computing unit group.
6. The multithreaded processor according to claim 3,
wherein said instruction 1ssuing unit 1s operable, 1n each of
the execution cycles of said multithreaded processor: to
1ssue a first group of 1nstructions based on the priority
information determined by said priority determining
unit, when the first group of instructions to be 1ssued to
said computing unit group 1s held in said instruction
butfer, the first group of instructions being included 1n an
instruction stream having the highest priority among the
instruction streams; and simultaneously to 1ssue a sec-
ond group of instructions included in an instruction
stream having the highest priority among the instruction
streams other than the mstruction stream including the
first group of imstructions to be 1ssued, the second group
of instructions being 1ssued to said computing unit group
simultaneously with the first group of instructions.
7. The multithreaded processor according to claim 6,
wherein said instruction 1ssuing unit 1s operable, 1n each of
the execution cycles of said multithreaded processor: to
read a third group of 1nstructions from said nstruction
butfer based on the priority information determined by
said priority determining unit, when the first group of
istructions to be 1ssued to said computing unit group 1s
not held 1n said instruction buifer, the third group of
istructions mcluded 1n the mnstruction stream having
the highest priority among the instruction streams held
in said instruction buffer in which an instruction to be
issued to said computing unit group 1s stored, the
instruction streams excluding the instruction stream that
includes the first group of instructions; and to issue the
read third group of instructions to said computing unit
group.
8. The multithreaded processor according to claim 6,
wherein said instruction issuing unit 1s operable to stop
1ssuing a group of instructions in each of the execution
cycles of said multithreaded processor, based on the
priority information determined by said priority deter-
mining unit, when the first group of instructions to be

1ssued to said computing unit group 1s not held 1 said
instruction butfer.

9. The multithreaded processor according to claim 1, fur-

ther comprising;:

a guaranteed performance determining unit operable to
indicate performance to be guaranteed for the instruc-
tion streams; and

a performance measuring unit operable to measure perfor-
mance with which the instruction streams have been
executed,

wherein said priority determining unit or said instruction
1ssuing unit 1s operable to change a method for 1ssuing
istructions to said computing unit group, when the
performance measured by said performance measuring
unit achieves the performance to be guaranteed that 1s
indicated by said guaranteed performance determining
unit.

US 8,141,088 B2

23

10. The multithreaded processor according to claim 9,

wherein said priority determining unit 1s operable to
change the priority information when the performance
measured by said performance measuring unit achieves
the performance to be guaranteed that 1s indicated by
said guaranteed performance determining unit.

11. The multithreaded processor according to claim 10,

wherein said priornity determining unit 1s operable, when
the performance measured by said performance measur-
ing unit achieves the performance to be guaranteed that
1s indicated by said guaranteed performance determin-
ing unit, to eliminate a first identifier of an instruction
stream 1n which the measured performance achieves the
performance to be guaranteed, and to determine the pri-
ority information from the next execution cycle.

12. The multithreaded processor according to claim 10,

wherein said priority determining unit 1s operable, when
the performance measured by said performance measur-
ing unit achieves the performance to be guaranteed that
1s indicated by said guaranteed performance determin-
ing unit, to set, to be the lowest, a priority of the mstruc-
tion stream 1n which the measured performance achieves
the performance to be guaranteed, and to determine the
priority information from the next execution cycle.

13. The multithreaded processor according to claim 9,

wherein said instruction 1ssuing unit 1s operable, when the
performance measured by said performance measuring
umt achieves the performance to be guaranteed that 1s
indicated by said guaranteed performance determining
unit, to 1ssue an instruction of another instruction stream
to said computing unit group, assuming that an nstruc-
tion of an instruction stream in which the measured
performance achieves the performance to be guaranteed
1s not present.

14. The multithreaded processor according to claim 9,

wherein said performance measuring unit 1s operable to
count the number of times an istruction of the mstruc-
tion stream 1s 1ssued from said imstruction 1ssuing unit so
as to measure performance that has been executed to the
istruction stream.

15. The multithreaded processor according to claim 9,

turther comprising:

a basic period determining unit operable to determine a
predetermined basic period;

a execution cycle counting unit operable to count the num-
ber of the execution cycles:

a reset unit operable to reset, to an 1nitial state, the number
of the execution cycles counted by said execution cycle
counting unit and the performance measured by said
performance measuring unit, when the number of the
execution cycles reaches the basic period determined by
said basic period determining unit.

16. A real-time processing system which mcludes a multi-

threaded processor that executes 1nstruction streams simulta-
neously, said system comprising:

a computing unit group comprising computing units oper-
able to execute 1nstructions;

a grouping unit operable to group the instruction streams
into groups for each of the instruction streams, the
istructions being included 1n each of the instruction
streams, and each of the groups being made up of
istructions to be simultaneously 1ssued to the comput-
ing units 1n said computing unit group 1n each of execu-
tion cycles of said multithreaded processor;

an 1nstruction butier which holds the mstructions for each
of the groups obtained by said grouping unit, the imstruc-
tions being included 1n one of the 1nstruction streams;

10

15

20

25

30

35

40

45

50

55

60

65

24

an instruction 1ssuing unit operable, 1n each of the execu-
tion cycles of said multithreaded processor, to read the
instructions for each of the groups from said instruction
butfer, and to 1ssue the read instructions to said comput-
ing unit group;

a first priority queue which stores respective first identifiers
of the mstruction streams in each of which real-time
processing 1s necessary; and

a second priority queue which stores respective second
identifiers of the instruction streams 1n each of which the
real-time processing 1s not necessary,

wherein said priority determiming unit 1s operable:

(1) to set a priority of a first identifier included 1n said first
priority queue to be higher than a priornty of a second
1dentifier included 1n said second priority queue;

(11) to select at least one of the first and second 1dentifiers
respectively from said first priority queue and said
second priority queue by prioritizing the first and
second 1dentifiers and switching priorities of the first
and second 1dentifiers 1n each of the execution cycles

of said multithreaded processor; and

(111) to determine at least one of the selected first and
second 1dentifiers as priority information, and

said instruction 1ssuing unit 1s operable, 1n each of the
execution cycles of said multithreaded processor:

(1) to determine an struction stream based on the pri-
ority information determined by said priority deter-
mining unit;

(11) to read, from said instruction bufifer, a group of
instructions included in the determined instruction
stream; and

(111) to 1ssue the read 1nstructions to said computing unit
group.

17. The real-time processing system according to claim 16,
wherein the 1nstruction stream 1n which the real-time pro-
cessing 1s necessary 1s an nstruction stream for decod-
ing or encoding one of a video signal and an audio

signal.
18. A method for 1ssuing an 1nstruction for use 1n a proces-

sor that executes instruction streams simultaneously, said
method comprising:

grouping instruction streams into groups for each of the
instruction streams, the instructions being included 1n
cach of the mnstruction streams, and each of the groups
being made up of instructions to be simultancously
issued to the computing units 1n the computing unit
group 1n each of execution cycles of the processor;

storing, 1n an istruction buifer, the istructions for each of
the groups obtained 1n said grouping;

reading the instructions for each of the groups from the
instruction butfer, and 1ssuing the read instructions to the
computing unit group, 1n each of the execution cycles of
the processor;

storing {irst identifiers for each of the instruction streams in
a first priority queue; and

selecting at least one of the first identifiers from the priority
queue by prioritizing the first 1dentifiers and switching
priorities of the first identifiers in each of the execution
cycles of the processor, and determining at least one of
the first identifiers as priority information,

wherein, in each of the execution cycles of the processor,
said reading the 1nstructions for each of the groups from
the instruction buffer comprises:
(1) determining an nstruction stream based on the pri-

ority information determined by said selecting at least
one of the first identifiers from the priority queue;

reading the istructions for each of the groups from the

US 8,141,088 B2

25

(11) reading, from the nstruction buffer, a group of
instructions included in the determined instruction
stream; and

(1) 1ssuing the read istructions to the computing unit

group.

19. A program product having memory that stores instruc-
tions which, when loaded into a multithreaded processor,
allows the multithreaded processor to execute a method for
executing instruction streams simultaneously, the method
which includes:

grouping instruction streams into groups for each of the

istruction streams, the instructions being included 1n
cach of the instruction streams, and each of the groups
being made up of instructions to be simultaneously
issued to the computing units 1n the computing unit
group 1n each of execution cycles of said multithreaded
ProCessor;

storing, 1n an mstruction butfer, the istructions for each of

the groups obtained in said grouping;

instruction buifer, and 1ssuing the read instructions to the
computing unit group, in each of execution cycles of the
multithreaded processor;

10

15

20

26

storing first identifiers for each of the 1instruction streams in

a first priority queue; and

selecting at least one of the first identifiers from the priority

queue by prioritizing the first 1dentifiers and switching
priorities of the first identifiers in each of the execution
cycles of the multithreaded processor, and determining
at least one of the selected first 1identifiers as priority
information,

wherein, 1n each of the execution cycles of the multi-

threaded processor, said reading the instructions for

cach of the groups from the mstruction buifer comprises:

(1) determining an instruction stream based on the pri-
ority information determined by said selecting at least
one of the first identifiers from the priority queue;

(11) reading, from the nstruction bufler, a group of
instructions included 1n the determined instruction
stream; and

(1) 1ssuing the read nstructions to the computing unit

group.

	Front Page
	Drawings
	Specification
	Claims

