12 United States Patent

Busaba et al.

US008140951B2

US 8,140,951 B2
Mar. 20, 2012

(10) Patent No.:
45) Date of Patent:

(54) METHOD AND SYSTEM FOR INSTRUCTION
ADDRESS PARITY COMPARISON

(56) References Cited

U.S. PATENT DOCUMENTS

(75) Inventors: FadiY. Busaba, Poughkeepsie, NY 4,074,229 A * 2/1978 Prey ..., 714/52
(US): Brian R. Prasky, Wappingers 5.241,547 A % /1993 Kiffl oo 714/53
Falls, NY (US); Chung-Lung Kevin 5,701,315 A 12/1997 Pitotetal.cceeveinini 714/805
Shum, Wappingers Falls, NY (US) OTHER PUBLICATIONS
_ z/ Architecture, Principles of Operation, Sixth Edition, Apr. 2007,
(73) Assignee: International Business Machines Publication No. SA22-7832-05, copyright IBM Corp. 1990-2007,
Corporation, Armonk, NY (US) pp. 1-1218.
. .
(*) Notice: Subject to any disclaimer, the term of this cited by examiner
patent 1s extended or adjusted under 35 Primary Examiner — Sam Rizk
U.S.C. 154(b) by 1070 days. (74) Attorney, Agent, or Firm — Cantor Colburn LLP; John
Campbell
(21) Appl. No.: 12/031,732
(37) ABSTRACT
(22) Filed: Feb. 15, 2008 A method and system for instruction address parity compari-
son are provided. The method includes calculating an instruc-
(65) Prior Publication Data tioq addresrs parity value f:OI' an 1nstruction, and distribgting
the instruction address parity value to one or more functional
US 2009/0210775 Al Aug. 20, 2009 units 1n processing circuitry. The method also includes receiv-
ing the distributed instruction address parity value from the
(51) Int. CL. one or more functional units, and calculating a completing
GOo6l’ 11/00 (2006.01) instruction address (CIA) parity value associated with com-
HO3M 13/00 (2006.01) pleting the 1nstruction. The method further includes generat-
(52) U.S.CL oo, 714/803; 814/800; 814/805 g an error indicator in response to a mismatch between the
(58) Field of Classification Search 714/200 recetved 1nstruction address parity value and the CIA parity
.................. : e
714/803,805 *°
See application file for complete search history. 20 Claims, 3 Drawing Sheets
300
e
CALCULATE AN INSTRUCTION ADDRESS 5
PARITY VALUE FOR AN INSTRUCTION ~—30
IFUJ
28 BHAlW 1oz l —
R | PREDICTION LOGIC DISTRIBUTE THE INSTRUCTION ADDRESS PARITY
A 26 VALUETO ONE OR MORE FUNCTIONAL UNITS ——304
IN PROCE
Y 218 L — —
INSTRUCTION INSTRUCTION INFO~
REDIREGT FETCH ADDRESS 1
ADDRESS *| MANAGEMENT [* NSTRUCTION | 222 [o cTion —
o0 202 — CACHE "| " BUFFER RECEIVE THE DISTRIBUTED INSTRUCTION ADDRESS "
FT—s14 24 ITEXT o0t PARITY VALUE FROM THEONEORMORE 30
T o — FUNCTIONAL UNITS
ERRCR
10 s 1. ADDRESS ITEXT L
““25/ MANAGEMENT = QUELE o —
1 2 i L v CALCULATE ACOMPLETING INSTRUCTION ADDRESS |
Tt PR (CIA) PARITY VALUE ASSOCIATED WITH s
/-1 |_\1 ” ” — COMPLETING THE INSTRUCTION
T 112 — —_ ——
124 ACTUAL BRANCH IFA PARITY 1
PAH[AIT‘(INTEHI%IGFT.’PSW ADDRESS + PARITY TO DV ' _ — _
RONPN o, MR GENERATE AN ERROR INDICATOR IN RESPONSE

TO AMISMATCH BETWEEN THE REGEIVED —310

INSTRUCTION ADDRESS PARITY VALUE AND
THE CIA PARITY VALUE

A
— L DI
S
- 911 1Xd1| — ALIHYd + §534aQY
7 il ALIHYd VI ij) HONYHE TYNLOY
= nd

ap | DAl

ALIHYd V1 oH
IX3li P

. ALIHYd V|
S 10dn —
g MSd/LdNHHIINI ._ 701
7 J1l Ikl
. 2k o
S ALIEYd Y
5 Dt (3103130 HOHH3 |
3 10dN MSd _

LdNHHAINI | 801 o

\[E Y
001
d055390ta

U.S. Patent

US 8,140,951 B2

Sheet 2 of 3

Mar. 20, 2012

U.S. Patent

Nal oL
ALIHYd V4l
oLl 13l
ALlHVd VAl
972 012
A
34N3N0

Vel $S3Haay

802

Vel W02
H34HNg 1Y)

777 |_NOLLONHLSN

NOILLINHLSNI

QNI NOLLONHLSNI

812
902
01907 NOILOIOTH
o HONVHS
N4

¢ 9l

NQl NOKA o~ M
o ALY
ALlbvd +5s34QQy MSdILdNEEAINI -y
HONVHE TVNLOV J1 4!
Pl ol

_
1

7 ocl

INFNFOVYNYIA Y

5534ddy OL
NOILF1dNOD HOHH

vl NOILONHLSNI
ke

a0¢
INANFOVNYIN

5534dayv
5o340dv HI.L34 103HIq3
NOILOMNHLSNI
5534aay
HONVHE (3L0|034d
91l¢

U.S. Patent Mar. 20, 2012 Sheet 3 of 3 US 8,140,951 B2

300

CALCULATE AN INSTRUCTION ADDRESS
PARITY VALUE FOR AN INSTRUCTION 302

DISTRIBUTE THE INSTRUCTION ADDRESS PARITY
VALUE TO ONE OR MORE FUNCTIONAL UNITS 304
IN PROCESSING CIRCUITRY

RECEIVE THE DISTRIBUTED INSTRUCTION ADDRESS
PARITY VALUE FROM THE ONE OR MORE 306
FUNCTIONAL UNITS

CALCULATE A COMPLETING INSTRUCTION ADDRESS

(CIA) PARITY VALUE ASSOCIATED WITH 308
COMPLETING THE INSTRUCTION

GENERATE AN ERROR INDICATOR IN RESPONSE
TO AMISMATCH BETWEEN THE RECEIVED 310
INSTRUCTION ADDRESS PARITY VALUE AND
THE CIA PARITY VALUE

FIG. 3

US 8,140,951 B2

1

METHOD AND SYSTEM FOR INSTRUCTION
ADDRESS PARITY COMPARISON

BACKGROUND OF THE INVENTION

This mvention relates generally to error detection 1n pro-
cessing circuitry, and more particularly to enhancing error
detection 1n processing circuitry using instruction address
parity comparison.

As digital designs with processing circuitry, such as micro-
processors, become more complex, demand for improved
error detection 1s also 1increasing. In a microprocessor or any
complex design that provides best of breed error detection,
various approaches may be devised to check for possible
errors caused by design flaws or single event upsets. A single
event upset (SEU) 1s a change of state caused by a high-
energy particle strike to a sensitive node 1n a micro-electronic
device that may result from environmental efiects, such as
alphaparticles. SEUs, as well as design tlaws, can result in the
unexpected changes 1n state. Error checking techniques in
processing systems are typically localized physically, either
in specific data flows, state machines, or interfaces, and there-
fore limited 1n scope of coverage. In processing circuitry with
deep pipelines, better schemes to cover a wide scope of the
design are desirable. As pipelined instructions advance
through pipeline stages, multiple functional units within the
processing circuitry may be involved 1n performing various
tasks to determine address values for the current instruction
and next imstruction. These instructions addresses may be
sequentially generated, or from performing a branch to its
targets, or from new program start up, or interrupt conditions.
Since many of the states used to perform the actual execution
of a program are used to also determine the instruction
address, detecting an errant address value will also indirectly
capture any incorrect state that exists for other duties. An error
could occur at any stage 1n the pipeline 1n any of the units and
lead to further problems downstream, as future address values
are modified based on an errant address value.

It would be beneficial to develop an approach to quickly
identily error conditions 1n resulting incorrect instruction
address values after instructions are passed through various
functional units 1n processing circuitry. Accordingly, there 1s
a need 1n the art for enhancing error detection in processing
circuitry using instruction address parity comparison.

BRIEF SUMMARY OF THE INVENTION

An exemplary embodiment includes a method for instruc-
tion address parity comparison. The method includes calcu-
lating an 1nstruction address parity value for an instruction,
and distributing the instruction address parity value to one or
more functional units 1 processing circuitry. The method
also 1ncludes recewving the distributed instruction address
parity value from the one or more functional units, and cal-
culating a completing instruction address (CIA) parity value
associated with completing the instruction. The method fur-
ther includes generating an error indicator in response to a
mismatch between the received instruction address parity
value and the CIA parity value.

Another exemplary embodiment includes a system for
instruction address parity comparison in processing circuitry.
The system includes one or more functional units to process
an 1nstruction in the processing circuitry. The system addi-
tionally mcludes an instruction fetching unit (IFU) 1n com-
munication with the one of more functional units 1n the pro-
cessing circuitry. The IFU performs a method that includes
calculating an instruction address parity value for the mstruc-

10

15

20

25

30

35

40

45

50

55

60

65

2

tion, and distributing the instruction address parity value to
the one or more functional units in the processing circuitry.
Themethod also includes receiving the distributed instruction
address parity value from the one or more functional units,
and calculating a CIA parity value associated with complet-
ing the mstruction. The method further includes generating an
error indicator in response to a mismatch between the
received 1nstruction address parity value and the CIA parity
value.

A further exemplary embodiment includes a system for
instruction address parity comparison in processing circuitry.
The system 1ncludes an instruction dispatching unit (IDU) to
dispatch an instruction, one or more execution units (FXUs)
to execute the instruction, and a completion unit (FIN) to
complete the instruction. The system also includes a recovery
unit (RU) to recover from an error associated with the mnstruc-
tion via an error recovery sequence, and an IFU to fetch the
instruction. The IFU performs a method that includes calcu-
lating an instruction address parity value for the instruction,
and distributing the instruction address parity value to the
IDU. The method also includes receiwving the distributed
instruction address parity value from one or more of: the IDU,
the one or more FXUs, and the FIN. The method additionally
includes generating an error indicator 1n response to a mis-
match between the recerved instruction address parity value
and a CIA parity value associated with completing the
instruction, and outputting the error indicator to the RU.

BRIEF DESCRIPTION OF THE DRAWINGS

Referring now to the drawings wherein like elements are
numbered alike 1n the several FIGURES:

FIG. 1 depicts a block diagram of a processor in accor-
dance with exemplary embodiments;

FIG. 2 depicts a block diagram of an 1nstruction fetch unit
in accordance with exemplary embodiments; and

FIG. 3 depicts an exemplary process for instruction address
parity comparison in accordance with exemplary embodi-
ments.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

An exemplary embodiment of the present invention pro-
vides instruction address parity comparison. In an exemplary
embodiment, a checking scheme 1s provided that globally
covers logic that controls fetching of instructions and advanc-
ing of the instructions 1n processing circuitry containing a
pipeline until instruction completion. It employs a continuous
flow of istruction address parity through the pipeline with
cach instruction. By comparing parity of an initial instruction
address to parity of a completion instruction address for a
common nstruction, an error indicator can be generated upon
a mismatch. Since the two instruction addresses and their
respective parity bits are generated at different stages in the
pipeline, the comparison covers various control state
machines starting from instruction fetching at the front end of
the pipeline all the way through to the back end of the pipeline
on instruction completion. Any incorrect handling 1n the pro-
cessing circuitry pipeline due to design errors or single event
upsets (SEUs) may be caught and completion halted. In pro-
cessing circuitry that supports a recovery scheme, the errant
instruction can be retried. Furthermore, the use of instruction
address parity comparison provides extra coverage on
instruction decoding logic that implements variable-length
instructions 1n the pipeline, since sequential instruction
addresses are dependent on the nstruction being decoded.

US 8,140,951 B2

3

Turning now to FIG. 1, a processor 100 1s depicted that
includes multiple functional units to support pipelining of
instructions in processing circuitry. Pipelining can increase
instruction execution throughput by performing stages such
as fetching, decoding, execution and completion 1n parallel
for multiple instructions 1n a sequence. The processor 100
includes processing circuitry forming a system for instruction
address parity comparison. In an exemplary embodiment,
functional units 1 the processor 100 include: instruction
tetch unit (IFU) 102, instruction decode unit (IDU) 104,
execution umt (FXU) 106, completion unit (FIN) 108, and
recovery umt (RU) 110. Multiple communication paths can
be used to communicate between each of the functional units
102-110. It will be understood that multiple functional units
102-110 can be implemented within the processor 100 as a
superscalar architecture, e.g., multiple FXUs 106. The com-
munication paths may vary in bus width (single-bit to multi-
bit) and can be unidirectional or bidirectional. For example,
path 112 provides communication from the IFU 102 to the
IDU 104, while path 114 provides communication from the
IDU 104 to the IFU 102. Communication paths can also be
merged or subdivided for routing purposes. For example, path
116 1s output from the IDU 116 to the FIN 108 and may be
turther subdivided as path 118 to communicate with the FXU
106. The FXU 106 can communicate with the FIN 108 via
path 120 and with the IFU 102 via path 122. The FIN 108 can
communicate with the IFU 102 viapath 124. The IFU 102 can
send information, such as an error signal to the RU 110 using
path 126. It will be understood that the arrangement of func-
tional units 102-110 and paths 112-126 represents an embodi-
ment of the mvention and does not limit the scope of the
invention.

Turning now to FIG. 2, a block diagram of the IFU 102 1s
depicted in accordance with an exemplary embodiment as
part of an instruction pipeline in the processor 100 of FIG. 1.
In an exemplary embodiment, the IFU 102 includes an
instruction fetch address (IFA) management block 202, an
instruction cache 204, branch prediction logic (BPL) 206, an
instruction buffer 208, an address queue 210, and an 1nstruc-
tion completion address management block 212. The IFA
management block 202 communicates with the instruction
cache 204 and the address queue 210 using path 214. The IFA
management block 202 also receives iputs from BPL 206 via
path 216, instruction butler 208 via path 218, and instruction
completion address management block 212 via path 220. Path
220 also allows the 1nstruction completion address manage-
ment block 212 to communicate with the BPL 206.

The IFA management block 202 determines an IFA as an
instruction address to fetch from the instruction cache 204.
Data received from the instruction cache 204 contains the
instruction to be decoded and executed. The IFA management
block 202 can calculate the IFA using various sources, includ-
ing but not limited to, branch target prediction, sequential
tetching, relative branch calculation and pipeline redirection.
Branch target prediction comes from prior encountered
branch target addresses predicted from a branch butfer table
(BTB) 1n accordance with a branch history table (BHT) inside
BPL 206. Sequential fetching increments the IFA according
to an instruction length code (ILC) of the last instruction
tetched. ILCs may vary for different instructions 11 the archi-
tecture of the processor 100 of FIG. 1 supports variable-
length 1nstructions. Relative branch redirection can be calcu-
lated using a relative change to current mstruction address
based on the last mstruction text (ITEXT) fetched together
some static or dynamic branch direction prediction scheme.
Pipeline redirection can come from incorrectly predicted
branches or processor pipeline interrupts, such as a program

10

15

20

25

30

35

40

45

50

55

60

65

4

interrupt. Thus, the IFA determination 1s based of various
states ol branch prediction, pipeline decode, execution and
branch resolution. Handling of all these inputs that atfect the
IFA 1nvolves a high degree of complexity.

Once the IFA management block 202 determines the IFA,
it 1s sent to the istruction cache 204, which passes corre-
sponding instruction text (ITEXT) via path 222 to the instruc-
tion buffer 208. The ITEXT 1s then output from the 1nstruc-
tion buifer 208 via path 224. In an exemplary embodiment,
the address queue 210 generates IFA parity, which 1s output
on path 226 and merged with path 224 as path 112 for pipe-

lining the ITEXT and IFA parnty to the IDU 104 of FIG. 1.

Theretfore, when an 1nstruction 1s sent from the IFU 102 to the
IDU 104, the corresponding parity of the IFA used for that
mstruction 1s also sent. It should be clear to those skilled in the

art that various design choices can be used to synchronize the
IFA panty and the ITEXT delivery from IFU 102 to IDU 104.

Continuing with FIG. 1, as the IDU 104 decodes and dis-

patches the 1nstruction, 1t maintains the IFA parity with the
ITEXT. In this particular design, the IDU 104 also determines
the actual branch address during execution, and calculates
parity of the address. The IFU 102 recerves the branch target
address and its parity from IDU 104 through interface 114.
Upon detecting a wrong branch prediction, the processor
pipeline 1s flushed, and the IFA management unit 202 1s
restarted using the branch target address received from IDU
104 as its 1nitial IFA.

When an instruction i1s dispatched, the corresponding
ITEXT 1s sent from the IDU 104 to the FXU 106, while the
IFA parity and ITEXT are also sent to the FIN 108. When the
FXU 106 completes execution, 1t sends the ILC of the mstruc-
tion to the IFU 102, while the FIN 108 forwards the corre-
sponding IA parity to the IFU 102. Note that at this part of the
processor pipeline, or sometimes earlier, the ITEXT represent
any information generated using the raw I'TEXT 1tself or any
other information generated based on the raw ITEX'T and 1ts
relationship to the pipeline design. If a pipeline redirect hap-
pens for an interrupt or a program status word (PSW) update,
the FXU 106 can notity the IFU 102 and the FIN 108. In those
cases, either there 1s a predetermined address to restart
instruction fetching, or it will be communicated from FXU
106 to IFU 102.

In an exemplary embodiment, the IFU 102 calculates a
completing 1instruction address (CIA) in the instruction
completion address management block 212 of FIG. 2. The
next CIA may be based on the current completing imstruction
address CIA plus the ILC from the FXU 106 recerved via path
122 during completion, if no pipeline redirection 1s encoun-
tered. If a branch 1s executed, the next CIA 1s updated using
the branch address from IDU 104, recerved on path 114. The
IA parity 124 forwarded from the FIN 108, representing the
parity of the instruction address calculated during 1nstruction
fetching time for the current instruction, 1s compared to the
parity of the current CIA. If they differ, an error 1s 1dentified
and the instruction completion address management block
212 notifies the RU 110. The RU 110 maintains a copy of
architected and machine states for the processor 100, which
may be protected using an error-correcting code (ECC). The
RU 110 collects errors detected from functional units in the
processor 100 and may 1nitiate an error recovery sequence,
including a reset and an instruction retry sequence. The
instruction retry sequence involves restoring states from the
RU 110 and resuming execution of instructions when an error
occurs. In an alternate exemplary embodiment, the CIA gen-
eration and error detection are performed 1n the FIN 108, or
any logic that 1s responsible for instruction completion.

US 8,140,951 B2

S

Since the IA parity 1s transierred between multiple func-
tional units 1n the processor 100 as an instruction progresses
through the pipeline over a period of time, verifying that the
IFA parity matches the CIA parity provides a simple error
detection mechanism that can reveal a design flaw or SEU 1n
the functional units upon a mismatch. In alternate exemplary
embodiments, multiple byte-based instruction address parity
values are passed through the pipeline, improving error 1so-
lation at the expense of additional signals. Using a single 1A
parity bit with the information tflow may reduce design com-
plexity and expense, as compared to sending multiple bits for
checking purposes, €.g., the full instruction address value.

Turning now to FIG. 3, a process 300 for instruction
address parity comparison will now be described 1n reference
to the processor 100 of FIG. 1 and 1n accordance with exem-
plary embodiments. At block 302, the IFU 102 calculates an
IA parity value for an instruction. The IA for fetching the
instruction may be calculated by the IFA management block
202 of FIG. 2 as an IFA 214, making adjustments for pre-

dicted branches, actual branches, redirection, or sequential
instruction advancement. Adjustments can be based on 1nter-
nal logic blocks 1n the IFU 102 or from external logic blocks
to the IFU 102, such as an actual branch address value 114
from the IDU 104.

Atblock 304, the IFU 102 distributes the IA parity value to
one or more functional units 1n the processing circuitry, e.g.,
the IDU 104, FXU 106, and the FIN 108. The IA parity value
may be distributed ei1ther directly or indirectly by the IFU 102
to pass the IA parity value through pipeline stages. The IA
parity value can be sent along with ITEX'T or any other related
istruction information of the corresponding instruction,
although the IA parity value and the ITEXT (or any other
corresponding instruction processing information) may be
passed to different functional units 1n the processor 100.

At block 306, the IFU 102 or the FIN 108 may receive the
distributed IA parity value from the one or more functional
units depending upon where address mismatch error detec-
tion 1s implemented. For example, the instruction completion
address management block 212 of FIG. 2 receives 1A parity
from the FIN 108 and generates an error indicator to output to
the RU 110.

At block 308, the IFU 102 or the FIN 108 can calculate a
current CIA panty value associated with completing the
instruction. The current CIA parity could also have been
generated with the generation on CIA itself. Again, in the
example depicted in FIG. 2, the instruction completion
address management block 212 calculates the CIA parity

value and determines the CIA upon which the CIA parity
value 1s calculated. The CIA can be determined as a function
of information provided from the various functional units. For
example, the next CIA and CIA parity value aiter a taken
branch may be determined as a function of an actual branch
address and parity value from the IDU 104. The CIA and CIA
parity value may also be determined as a function of one or
more of: an instruction length code, an interrupt, and a pro-
gram status word update from the FXU 106.

Atblock 310, the IFU 102 or the FIN 108 generates an error
indicator 1n response to a mismatch between the received 1A
parity value and the current CIA parity value. In an exemplary
embodiment, the imstruction completion address manage-
ment block 212 of FI1G. 2 outputs the error indicator to the RU
110, where the RU 110 supports an error recovery sequence.
Since the IA parity value tlows through multiple functional
units as the associated instruction 1s fetched, dispatched,
executed, and completed, a design tlaw or SEU event may be
detected as a mismatch of the IA parity value and the CIA
parity value, which are generated by different logic that

10

15

20

25

30

35

40

45

50

55

60

65

6

should be working coherently, but with differing dependen-
cies and at different points 1n time.

While the process 300 1s described in reference to the
processor 100 of FIG. 1, 1t will be understood that the process
300 can be applied to any processing circuitry that incorpo-
rates instruction flows which requires 1nstruction address cal-
culations. For example, process 300 can be applied to other
digital designs, such as an application specific integrated
circuit (ASIC), a programmable logic device (PLD), or other
such digital devices capable of processing instructions.
Theretore, the processor 100 of FIG. 1 can represent a variety
of digital designs that incorporate processing circuitry.

Technical effects and benefits include enhancing error
detection 1n processing circuitry using instruction address
parity comparison. By using an instruction address parity
comparison, overall susceptibility of a digital design to unex-
pected address changes 1n an instruction pipeline 1s improved.
Should an SEU, such as an alpha particle, causes a change 1n
state that affect the generation of an 1instruction address value
in the pipeline, the event can be detected and an appropriate
response performed. Further benefits include mitigating the
elfects of SEU events by actively monitoring and reacting to
errors during normal processing. In a modern processor,
much of the mstruction tlow logic 1n an IDU/FXU/FIN can be
just as complex as the instruction address calculation 1 an
IFU; therefore, providing a simple approach to detect unex-
pected changes to instruction addresses 1n the pipeline can
reduce itegration and debugging time for the design. Further
advantages may include identification of design problems 1f
processing circuitry selection logic has a design tlaw, and thus
does not behave consistently.

While the invention has been described with reference to
exemplary embodiments, 1t will be understood by those
skilled 1n the art that various changes may be made and
equivalents may be substituted for elements thereof without
departing from the scope of the invention. In addition, many
modifications may be made to adapt a particular situation or
material to the teachings of the invention without departing
from the essential scope thereol. Theretfore, 1t 1s intended that
the mvention not be limited to the particular embodiment
disclosed as the best mode contemplated for carrying out this
invention, but that the invention will include all embodiments
falling within the scope of the appended claims. Moreover,
the use of the terms first, second, etc. do not denote any order
or importance, but rather the terms first, second, etc. are used
to distinguish one element from another.

The invention claimed 1s:
1. A method for mstruction address parity comparison, the
method comprising:

calculating an instruction address parity value for an
instruction, the calculating an instruction address parity
value responsive to an instruction address for fetching
the instruction;

distributing the instruction address parity value to one or
more functional units 1n processing circuitry;

recerving the distributed instruction address parity value
from the one or more functional units;

calculating a completing instruction address (CIA) parity
value associated with completing the instruction, the
calculating a CIA parity value responsive to a comple-
tion address for the instruction that 1s generated subse-
quent to execution of the instruction; and

generating an error indicator 1n response to a mismatch
between the recerved instruction address parity value
and the CIA parity value.

US 8,140,951 B2

7

2. The method of claim 1 further comprising;:
outputting the error indicator to a recovery unit (RU),
wherein the RU supports an error recovery sequence.
3. The method of claim 1 wherein the one or more func-
tional units are part of a pipeline in the processing circuitry,
the pipeline including an 1nstruction fetching unit (IFU), an

instruction dispatching unit (IDU), one or more execution
units (FXUs), and a completion unit (FIN).

4. The method of claim 3 wherein the IFU calculates the
instruction address parity value upon determining the mstruc-
tion address for fetching the instruction.

5. The method of claim 4 wherein the IFU adjusts the
instruction address for fetching the instruction as a function
of an actual branch address provided by the IDU.

6. The method of claim 3 wherein the IFU calculates the
CIA panty value associated with completing the instruction.

7. The method of claim 3 wherein the FIN calculates the
CIA panty value associated with completing the instruction.

8. The method of claim 3 wherein a CIA 1s determined for
calculating the CIA parity value as a function of an actual
branch address and parity value from the IDU.

9. The method of claim 3 wherein a CIA 1s determined for
calculating the CIA parity value as a function of one or more
of: an mstruction length code, an interrupt, and a program
status word update from the one or more FXUs.

10. The method of claim 1 further comprising:

passing 1nstruction text or other instruction processing

information corresponding to the instruction with the
instruction address parity value to the one or more func-
tional units 1n the processing circuitry.

11. A system for instruction address parity comparison 1n
processing circuitry, the system comprising:

an mstruction fetching unit (IFU) configured to communi-

cate with one or more functional units 1n the processing

circuitry, the IFU configured to perform a method com-

prising:

calculating an instruction address parity value for the
instruction, the calculating an instruction address par-
ity value responsive to an instruction address for
fetching the 1nstruction;

distributing the instruction address parity value to the
one or more functional units 1n the processing cir-
cuitry;

receiving the distributed instruction address parity value
from the one or more functional unaits;

calculating a completing mstruction address (CIA) par-
ity value associated with completing the nstruction,
the calculating a CIA parity value responsive to a
completion address for the instruction that 1s gener-
ated subsequent to execution of the instruction; and

generating an error indicator in response to a mismatch
between the recerved instruction address parity value
and the CIA parity value.

12. The system of claim 11 wherein the method further
COmMprises:

10

15

20

25

30

35

40

45

50

55

8

outputting the error indicator to a recovery umt (RU),
wherein the RU supports an error recovery sequence.

13. The system of claim 11 wherein the one or more func-
tional units are part of a pipeline in the processing circuitry,
the pipeline including the IFU, an instruction dispatching unit
(IDU), one or more execution units (FXUs), and a completion
unit (FIN).

14. The system of claim 13 wherein the IFU calculates the

instruction address parity value upon determining the mstruc-
tion address for fetching the instruction.

15. The system of claim 14 wherein the IFU adjusts the
istruction address for fetching the instruction as a function
of an actual branch address provided by the IDU.

16. The system of claim 13 wherein a CIA 1s determined for
calculating the CIA parity value as a function of an actual
branch address and parity value from the IDU.

17. The system of claim 13 wherein a CIA 1s determined for
calculating the CIA parity value as a function of one or more
of: an instruction length code, an interrupt, and a program
status word update from the one or more FXUs.

18. The system of claim 11 wherein the IFU further per-
forms:

passing instruction text or other instruction processing

information corresponding to the instruction with the
instruction address parity value to the one or more func-
tional units 1n the processing circuitry.

19. A system for instruction address parity comparison in
processing circuitry, the system comprising:

an instruction dispatching unit (IDU);

at least one execution unit (FXU);

a completion unit (FIN);

a recovery unit (RU); and

an mstruction fetching unit (IFU), the system configured to

perform a method comprising:

calculating an instruction address parity value for the
instruction, the calculating an instruction address par-
ity value for the instruction responsive to an instruc-
tion address for fetching the instruction;

distributing the instruction address parity value to the
IDU;

receiving the distributed instruction address parity value
from one or more of: the IDU, the one or more FXUs,
and the FIN:

calculating a completing instruction address (CIA) par-
ity value associated with completing the instruction,
the calculating a CIA parity value responsive to a
completion address for the instruction that 1s gener-
ated subsequent to execution of the instruction;

generating an error indicator 1n response to a mismatch
between the received instruction address parity value
and the (CIA) parity value associated with completing
the 1nstruction; and

outputting the error indicator to the RU.

20. The system of claim 19 wherein the FIN calculates the
CIA panty value associated with completing the instruction.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

