US008135962B2

12 United States Patent

Strongin et al.

(10) Patent No.:
45) Date of Patent:

US 8,135,962 B2
Mar. 13, 2012

(54)

(75)

(73)

(%)

(21)
(22)

(65)

(1)

(52)

(58)

SYSTEM AND METHOD PROVIDING
REGION-GRANULAR,
HARDWARE-CONTROLLED MEMORY
ENCRYPTION

Inventors: Geoffrey S. Strongin, Austin, TX (US);
Brian C. Barnes, Round Rock, TX
(US); Rodney Schmidt, Dripping
Springs, TX (US)

Assignee: GLOBALFOUNDRIES Inc., Grand
Cayman (KY)
Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 2855 days.
Appl. No.: 10/108,253
Filed: Mar. 27, 2002
Prior Publication Data
US 2003/0188178 Al Oct. 2, 2003
Int. CI.
Gool’ 11/30 (2006.01)
US.CL ... 713/190;°713/189; 711/163;°711/164;
726/1;726/2;726/22; 726/26

Field of Classification Search 711/163,
711/164; 713/160, 189, 190; 709/232; 710/4;
726/1, 2, 22, 26

See application file for complete search history.

CPU
SCU

46 |

(56)

4,975,952
5,757,919
5,784,459
5,915,025
6,003,117
0,199,181
0,408,384
0,523,118
6,704,768
0,854,039

2002/0056047
2002/0118206
2002/0129245
2003/0046256
2003/0177354

* cited by examiner

References Cited

A F 12/1990
5/1998
7/1998
6/1999

12/1999
3/2001
6/2002
2/2003
3/2004
2/2005
5/2002
8/2002
9/2002
3/2003
9/2003

AN AR

A - - -

U.S. PATENT DOCUMENTS

Mabey etal. 713/160
Herbert etal. 380/25
Devarakonda et al. 380/4
Taguchietal. 380/44
Bueretal.c....0. 711/163
Rechefetal. 714/38.13
Adamsooiiivinininn, 712/227
Buercoocoovviiiviininnnn, 713/189
Zombek etal. 709/201
Strongin etal. 711/163
Lehmancooovvvvvinn, 713/200
Knitteloooovviivinnn, 345/557
Cassagnol etal. 713/168
Hugosson et al. 707/1
Carteroocovviiiviiniinnnns 713/164

Primary Examiner — Christian Laforgia
Assistant Examiner — Roderick Tolentino
(74) Attorney, Agent, or Firm — Willlams, Morgan &

Amerson, P.C.
(57)

HOST
BRIDGE
SCU

ABSTRACT

A memory, system, and method for providing security for
data stored within a memory and arranged within a plurality
of memory regions. The method includes receiving an
address within a selected memory region and using the
address to access an encryption indicator. The encryption
indicator indicates whether data stored 1n the selected
memory page are encrypted. The method also includes
receiving a block of data from the selected memory region
and the encryption indicator and decrypting the block of data
dependent upon the encryption indicator.

400
CPU ¥
402

|
HOST | | | MEMORY
BRIDGE | 408

DEVICE
’ BRIDGE ﬂﬁ.&
| ue || Ta || e
< DEVICE BUS 412 >
DEVICE DEVICE
HDW. HDW.
414C 414D

41 Claims, 15 Drawing Sheets

US 8,135,962 B2

Sheet 1 of 15

Mar. 13, 2012

U.S. Patent

(LYV HOIHd)
WRIE

9l'l NOILVYOOT
AHONEIN

801
JNVYd 9OVd

145440

A

001L

VLT AHLNZT
d1149v1 d0vd

90l
319V.1 49Vvd

XddNI 318V1L

d31ISDdYd ASVvV4E

AdOL10341d 39OVd
0Ll €40

Cll AYLIN3
AdO104dId 49Vd

y0l
Ad0.103did 39Vvd

XdAdNI Ad0103d1d

.c0l SS34dAV aV3NI1

U.S. Patent Mar. 13, 2012 Sheet 2 of 15 US 8,135,962 B2

PAGE DIRECTORY ENTRY FORMAT 200:

PAGE TABLE L/J 'f
BASE ADDRESS < | w

FIG. 2

(PRIOR ART)

PAGE TABLE ENTRY FORMAT 300:

PAGE FRAME l/J - F}
BASE ADDRESS S W

FIG. 3
(PRIOR ART)

U.S. Patent Mar. 13, 2012 Sheet 3 of 15 US 8,135,962 B2

400

r'4

MEMORY
406

DEVICE BUS 408

DEVICE DE\L’J'SE DEVICE
HDW. HDW.

BRIDGE
414A 410 4148

DEVICE BUS 412

DEVICE
HDW.

DEVICE
HDW.

414C 414D

U.S. Patent Mar. 13, 2012 Sheet 4 of 15 US 8,135,962 B2

APPLICATION
PROGRAMS

500

OPERATING
SYSTEM
202

MEMORY
406

SECURITY
KERNEL
504

DEVICE DEVICE
DRIVER DRIVER

DEVICE DEVICE

DRIVER DRIVER
506A 506D | 5068 506C

DEVICE DEVICE CPU DEVICE DEVICE
HDW. HDW. SCU HDW. HDW.
414A 414D 416 414B 414C

HOST
BRIDGE
SCU FIG. 5

418

U.S. Patent Mar. 13, 2012 Sheet 5 of 15 US 8,135,962 B2

CONTROL EXECUTION
UNIT

REGS.

608 600

SEGMENTED
ADDRESSES

MEMORY
MGMT.
UNIT
602

PHYSICAL
ADDRESSES

PHYSICAL
ADDRESSES

CPU

402 BUS

INTERFACE

UNIT
606

FIG. 6 TO HOST BRIDGE 404

U.S. Patent

MEMORY
MGMT.
UNIT

602

PAGING

Mar. 13, 2012 Sheet 6 of 15

TO CPU 402

SEGMENTED
ADDRESS

SEGMENTATION
UNIT

700

LINEAR
ADDRESS

CPU PAGING

SCU UNIT
416 702

PHYSICAL
ADDRESS

l PHYSICAL

ADDRESS

TO CACHE
UNIT 604

US 8,135,962 B2

U.S. Patent

T0
SEM
REGS.
610

Mar. 13, 2012 Sheet 7 of 15

CPU SCU 41

SECURITY

CHECK
LOGIC
80Q

SAT
ENTRY

BUFFER
802

US 8,135,962 B2

COMM.
BUS

PHYSICAL
ADDRESS

CPL

PDE U/S

PDE R/W
PTE U/S

PTE RIW

GPF

SEM
SECURITY
EXCEPTION

SS34AAayv 4svd
AHOLO3did LVS

806 441S519dd SSJ4AAY ISVY LVS
019 'SO3Y INTS

US 8,135,962 B2
(@)
O
L

\f,
Yo
S
&
* o) —
= 16 AYINT LVS
2 —
7 016 AYLN3
90¥ AJOLO3HIa 1VS
- AHOWIN 505
< 318vL —
i 3LNGIYLLY 706
- ALINADES AYOLO3NIA 1VS
2
>
NOILYOd ¥3MOT NOILYOd 37aaliN NOILHOd ¥3ddn

\4 .06 SS34AdAVY MVIOISAHd
006

U.S. Patent

U.S. Patent Mar. 13, 2012 Sheet 9 of 15 US 8,135,962 B2

SEM REGS. 610

SAT DEFAULT REGISTER 1000:

T W

FIG. 10
SAT DIRECTORY ENTRY FORMAT 1100:
SAT
BASE ADDRESS
FIG. 11

SAT ENTRY FORMAT 1200:

S
—I

FIG. 12

U.S. Patent Mar. 13, 2012 Sheet 10 of 15 US 8,135,962 B2

TO CPU
402

HOST BRIDGE 404

HOST INTERFACE
1300

HOST

BRIDGE TO
LOGIC Bg’gSE MEMORY
1302 406

418

DEVICE BUS
INTERFACE

1306

TO
DEVICE

BUS 408 FIG. 13

U.S. Patent Mar. 13, 2012 Sheet 11 of 15 US 8,135,962 B2

HOST
BRIDGE
SCU
418
PHYSICAL PHYSICAL
ADDRESS ADDRESS
0 DATA DATA 0
BRIDGE SECURITY MEMORY
LOGIC CHECK CONT.
1309 LOGIC 204
CONTROL 1400 CONTROL

SEM SAT
REGS. ENTRY
1402 BUFFER
1404

FIG. 14

U.S. Patent

FIG. 15

PRODUCE PHYSICAL ADDRESS 1508

Mar. 13, 2012 Sheet 12 of 15

1502

RECEIVE LINEAR ADDRESS

AND
INSTRUCTION SECURITY ATTRIBUTE

USE LINEAR ADDRESS
TO ACCESS PAGED MEMORY
DATA STRUCTURES
TO OBTAIN SECURITY ATTRIBUTES

OF SELECTED MEMORY PAGE

ACCESS
AUTHORIZED?

1506

YES

USE PHYSICAL ADDRESS 1512
TO ACCESS SEM DATA STRUCTURES
TO OBTAIN ADDITIONAL
SECURITY ATTRIBUTE
OF INSTRUCTION MEMORY PAGE

AND SELECTED MEMORY PAGE

GENERATE FAULT SIGNAL 1514
DEPENDENT UPON
INSTRUCTION SECURITY ATTRIBUTE,
ADDITIONAL SECURITY ATTRIBUTE OF
INSTRUCTION MEMORY PAGE,
SECURITY ATTRIBUTES OF
SELECTED MEMORY PAGE,
AND ADDITIONAL SECURITY ATTRIBUTE
OF SELECTED MEMORY PAGE

US 8,135,962 B2

1500

1510

NO GENERATE
FAULT SIGNAL

U.S. Patent Mar. 13, 2012 Sheet 13 of 15 US 8,135,962 B2

1600

1602

RECEIVE MEMORY ACCESS SIGNALS
CONVEYING PHYSICAL ADDRESS

WITHIN TARGET MEMORY PAGE

1604

USE PHYSICAL ADDRESS
TO ACCESS SEM DATA STRUCTURES
TO OBTAIN SECURITY ATTRIBUTE

OF TARGET MEMORY PAGE

1606
ACCESS THE MEMORY
USING THE MEMORY ACCESS SIGNALS
DEPENDENT UPON
SECURITY ATTRIBUTE
OF TARGET MEMORY PAGE

FIG. 16

U.S. Patent Mar. 13, 2012 Sheet 14 of 15 US 8,135,962 B2

PHYSICAL ADDRESS 1700:

BYTE
ADDRESS TAG SET ADDRESS ADDRESS

PORTION PORTION PORTION
1702 1704 1706

FIG. 1/
CACHE ENTRY 1800:
BYTE BYTE BYTE
FIG. 18

CACHE DIRECTORY ENTRY 1900:

ADDRESS PORTION

W

CONTROL PORTION 1904

FiG. 19

U.S. Patent Mar. 13, 2012 Sheet 15 of 15 US 8,135,962 B2

RECEIVE PHYSICAL ADDRESS
WITHIN SELECTED MEMORY PAGE

2004
USE PHYSICAL ADDRESS

TO ACCESS SEM DATA STRUCTURES
TO OBTAIN ENCRYPTION INDICATOR
OF SELECTED MEMORY PAGE

RECEIVE BLOCK OF DATA

FROM SELECTED MEMORY PAGE
AND ENCRYPTION INDICATOR
OF SELECTED MEMORY PAGE

DECRYPT BLOCK OF DATA
DEPENDENT UPON

ENCRYPTION INDICATOR
OF SELECTED MEMORY PAGE

STORE BLOCK OF DATA
FIG. 20

US 8,135,962 B2

1

SYSTEM AND METHOD PROVIDING
REGION-GRANULAR,

HARDWARE-CONTROLLED MEMORY
ENCRYPTION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This patent application 1s related to co-pending patent
application Ser. No. 10/011,131, entitled *“System and
Method for Handling Device Accesses to a Memory Provid-
ing Increased Memory Access Security and co-pending
patent application Ser. No. 10/005,271, entitled “Memory
Management System and Method Providing Increased
Memory Access Security”, both filed on Dec. 5, 2001, and
co-pending patent application Ser. No. 10/107,776 entitled
“System and Method for Controlling Device-To-Device
Accesses Within a Computer System”, filed on the same day
as the present patent application.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates generally to computer systems, and,
more particularly, to systems and methods for protecting con-
fidential data from discovery via external monitoring of sig-
nals during transfers of the confidential data within computer
systems.

2. Description of the Related Art

A typical computer system includes a memory hierarchy 1n
order to obtain a relatively high level of performance at rela-
tively low cost. Instructions of several different software pro-
grams are typically stored on a relatively large but slow non-
volatile storage unit (e.g., a disk drive unit). When a user
selects one of the programs for execution, the instructions of
the selected program are copied into a main memory unit, and
a central processing umit (CPU) obtains the imnstructions of the
selected program from the main memory unit. The well-
known virtual memory management technique allows the
CPU to access data structures larger in size than that of the
main memory unit by storing only a portion of the data struc-
tures within the main memory unit at any given time. Remain-
ders of the data structures are stored within the relatively large
but slow non-volatile storage unit, and are copied into the
main memory unit only when needed.

Virtual memory 1s typically implemented by dividing an
address space of the CPU into multiple blocks called page
frames or “pages.” Only data corresponding to a portion of the
pages 1s stored within the main memory unit at any given
time. When the CPU generates an address within a given
page, and a copy of that page 1s not located within the main
memory unit, the required page of data 1s copied from the
relatively large but slow non-volatile storage unit mto the
main memory unit. In the process, another page of data may
be copied from the main memory unit to the non-volatile
storage unit to make room for the required page.

The popular 80x86 (x86) processor architecture icludes
specialized hardware elements to support a protected virtual
address mode (1.¢., a protected mode). FIGS. 1-3 will now be
used to describe how an x86 processor implements both vir-
tual memory and memory protection features. FIG. 1 1s a
diagram of a well-known linear-to-physical address transla-
tion mechamsm 100 of the x86 processor architecture.
Address translation mechanism 100 1s embodied within an
x86 processor, and 1nvolves a linear address 102 produced
within the x86 processor, a page table directory (1.e., a page
directory) 104, multiple page tables including a page table

10

15

20

25

30

35

40

45

50

55

60

65

2

106, multiple page frames including a page frame 108, and a
control register 3 (CR3) 110. Page directory 104 and the
multiple page tables are paged memory data structures cre-
ated and maintained by operating system software (1.e., an
operating system). Page directory 104 1s always located
within a memory (e.g., a main memory unit). For simplicity,
page table 106 and page frame 108 will also be assumed to
reside 1n the memory.

As indicated 1in FIG. 1, linear address 102 1s divided into

three portions 1n order to accomplish the linear-to-physical
address translation. The highest ordered bits of CR3 110 are

used to store a page directory base register. The page directory
base register 1s a base address of a memory page containing
page directory 104. Page directory 104 includes multiple
page directory entries, including a page directory entry 112.
An upper “directory index” portion of linear address 102,
including the highest ordered or most significant bits of linear
address 102, 1s used as an index nto page directory 104. Page
directory entry 112 1s selected from within page directory 104
using the page directory base register of CR3 110 and the
upper “directory index” portion of linear address 102.

FIG. 2 1s a diagram of a page directory entry format 200 of
the x86 processor architecture. As indicated in FIG. 2, the
highest ordered (i.e., most significant) bits of a given page
directory entry contain a page table base address, where the
page table base address 1s a base address of a memory page
containing a corresponding page table. The page table base
address of page directory entry 112 1s used to select the
corresponding page table 106.

Referring back to FIG. 1, page table 106 includes multiple
page table entries, including a page table entry 114. A middle
“table index” portion of linear address 102 1s used as an index
into page table 106, thereby selecting page table entry 114.
FIG. 3 1s a diagram of a page table entry format 300 of the x86
processor architecture. As indicated 1in FIG. 3, the highest
ordered (1.e., most significant) bits of a given page table entry
contain a page frame base address, where the page frame base
address 1s a base address of a corresponding page frame.

Referring back to FIG. 1, the page frame base address of
page table entry 114 1s used to select corresponding page
frame 108. Page frame 108 includes multiple memory loca-
tions. A lower or “offset” portion of linear address 102 1s used
as an index 1nto page frame 108. When combined, the page
frame base address of page table entry 114 and the offset
portion of linear address 102 produce the physical address
corresponding to linear address 102, and indicate a memory
location 116 within page frame 108. Memory location 116
has the physical address resulting from the linear-to-physical
address translation.

Regarding the memory protection features, page directory
entry format 200 of FIG. 2 and page table entry format 300 of
FIG. 3 include a user/supervisor (U/S) bit and a read/write
(R/W) bit. The contents of the U/S and R/W bits are used by
the operating system to protect corresponding page frames
(1.e., memory pages) from unauthorized access. U/S=0 1s
used to denote operating system memory pages, and corre-
sponds to a “supervisor’ level of the operating system. The
supervisor level of the operating system corresponds to cur-
rent privilege level O (CPLO) of software programs and rou-
tines executed by the x86 processor. (The supervisor level
may also correspond to CPL1 and/or CPL2 of the x86 pro-
cessor.) U/S=1 1s used to indicate user memory pages, and
corresponds to a “user” level of the operating system. The
user level of the operating system corresponds to CPL3 of the
x86 processor. (The user level may also correspond to CPL

and/or CPL2 of the x86 processor.)

US 8,135,962 B2

3

The R/W bit1s used to indicate types of accesses allowed to
the corresponding memory page. R/W=0 indicates the only
read accesses are allowed to the corresponding memory page
(1.e., the corresponding memory page 1s “read-only”). R/W=1
indicates that both read and write accesses are allowed to the
corresponding memory page (1.€., the corresponding memory
page 1s “read-write”).

During the linear-to-physical address translation operation
of FIG. 1, the contents of the U/S bits of page directory entry
112 and page table entry 114, corresponding to page frame
108, are logically ANDed determine i the access to page
frame 108 1s authorized. Similarly, the contents of the R/W
bits of page directory entry 112 and page table entry 114 are
logically ANDed to determine 11 the access to page frame 108
1s authorized. If the logical combinations of the U/S and R/'W
bits indicate the access to page frame 108 1s authorized,
memory location 116 1s accessed using the physical address.
On the other hand, if the logical combinations of the U/S and
R/W bits indicate the access to page frame 108 1s not autho-
rized, memory location 116 1s not accessed, and a protection
fault indication 1s signaled.

Unfortunately, the above described memory protection
mechanisms of the x86 processor architecture are not sudfi-
cient to protect data stored 1n the memory. For example, any
soltware program or routine executing at the supervisor level
(e.g., having a CPL of 0) can access any portion of the
memory, and can modily (1.e., write to) any portion of the
memory thatis not marked “read-only” (R/W=0). In addition,
by virtue of executing at the supervisor level, the software
program or routine can change the attributes (i.e., the U/S and
R/W bits) of any portion of the memory. The software pro-
gram or routine can thus change any portion of the memory
marked “read-only” to “read-write” (R/W=1), and then pro-
ceed to modily that portion of the memory.

The protection mechanisms of the x86 processor architec-
ture are also i1nadequate to prevent errant or malicious
accesses to the memory by hardware devices operably
coupled to the memory. It 1s true that portions of the memory
marked “read-only” cannot be modified by write accesses
initiated by hardware devices (without the attributes of those
portions of the memory first being changed as described
above). It 1s also true that software programs or routines (e.g.,
device drivers) handling data transiers between hardware
devices and the memory typically execute at the user level
(e.g., CPL3), and are not permitted access to portions of the
memory marked as supervisor level (U/S=0). However, the
protection mechamsms of the x86 processor architecture
cover only device accesses to the memory performed as a
result of 1nstruction execution (1.e., programmed nput/out-
put). A device driver can program a hardware device having,
bus mastering or DMA capability to transfer data from the
device into any portion of the memory accessible by the
hardware device. For example, it 1s relatively easy to program
a floppy disk controller to transfer data from a tloppy disk
directly 1nto a portion of the memory used to store the oper-
ating system.

Further, the CPU communicates with other computer sys-
tem components (e.g., the memory) via signals conveyed
upon signal lines. Such signals are subject to monitoring (e.g.,
by external equipment). Analysis of such signals may reveal
not only confidential data being transferred, but also methods
embodied within the computer system (e.g., software pro-
grams) used to process the confidential data.

It would thus be beneficial to have a system and method for
providing increased access security for the memory. The
desired system and method would also include the capability
to encrypt all data (including 1nstructions) transferred in and

10

15

20

25

30

35

40

45

50

55

60

65

4

out of the CPU 1n order to mask both confidential data and the
methods used to process the confidential data.

SUMMARY OF THE INVENTION

In one aspect of the present mvention, a memory 1S pro-
vided. The memory includes at least one storage location and
an encryption/decryption unit for encrypting and decrypting
data. The storage location 1s coupled to receive a block of data
and a corresponding encryption indicator for the block of
data. The block of data corresponds to a selected memory
region. The encryption indicator indicates whether the data
corresponding to the selected memory region 1s encrypted.
The encryption/decryption unit 1s configured to decrypt the
block of data dependent upon the encryption indicator before
the block of data 1s stored 1n the storage location.

In another aspect of the present invention, a system 1s
provided. The system 1ncludes a memory management unit
(MMU) operably coupled to a memory and configured to
manage the memory, a security check unit coupled to receive
a physical address within a selected memory region, and a
cache unit coupled to receive a block of data obtained from
the selected memory region and to recerve an encryption
indicator. The MMU 1is configurable to manage the memory
such that the memory stores data arranged within a plurality
of memory regions. The security check unit 1s configured to
use the physical address to access at least one security
attribute data structure located 1n the memory to obtain the
encryption indicator. The encryption indicator indicates
whether data stored i1n the selected memory region 1s
encrypted. The security check unit 1s configured to provide
the encryption indicator to an encryption/decryption unit. The
cache unit includes the encryption/decryption unit. The
encryption/decryption unit 1s configured to decrypt the bloc
of data dependent upon the encryption indicator before stor-
ing the block of data.

In still another aspect of the present invention, a method for
providing security for data stored within a memory and
arranged within a plurality of memory regions 1s provided.
The method 1ncludes receiving an address within a selected
memory region and using the address to access an encryption
indicator. The encryption indicator indicates whether data
stored 1n the selected memory page are encrypted. The
method also includes receiving a block of data from the
selected memory region and the encryption indicator and

decrypting the block of data dependent upon the encryption
indicator.

BRIEF DESCRIPTION OF THE DRAWINGS

The mnvention may be understood by reference to the fol-
lowing description taken in conjunction with the accompany-
ing drawings, 1n which like reference numerals 1dentify simi-
lar elements, and 1n which:

FIG. 1 1s a diagram of a well-known linear-to-physical
address translation mechanism of the x86 processor architec-
ture;

FIG. 2 1s a diagram of a page directory entry format of the
x86 processor architecture;

FIG. 3 1s a diagram of a page table entry format of the x86
processor architecture;

FIG. 4 1s a diagram of one embodiment of a computer
system including a CPU and a system or “host” bridge,
wherein the CPU includes a CPU security check unit (SCU),
and wherein the host bridge includes a host bridge SCU;

US 8,135,962 B2

S

FIG. 5 1s a diagram 1llustrating relationships between vari-
ous hardware and software components of the computer sys-

tem of FIG. 4;

FIG. 6 1s a diagram of one embodiment of the CPU of the
computer system ol FIG. 4, wherein the CPU includes a
memory management unit (MMU) and a cache unit, wherein
the cache unit includes and encryption/decryption unit which
performs both a data encryption function and a data decryp-
tion function;

FIG. 7 1s a diagram of one embodiment of the MMU of
FIG. 6, wherein the MMU i1ncludes a paging unit, and
wherein the paging unit includes the CPU SCU;

FIG. 8 1s a diagram of one embodiment of the CPU SCU of
FIG. 7;

FI1G. 9 1s a diagram of one embodiment of a mechanism for
accessing a security attribute table (SAT) entry of a selected
memory page 1n order to obtain additional security informa-
tion of the selected memory page;

FIG. 10 1s a diagram of one embodiment of a SAT default
register;

FI1G. 11 1s a diagram of one embodiment of a SAT directory
entry format;

FIG. 12 1s a diagram of one embodiment of a SAT entry
format;

FIG. 13 1s a diagram of one embodiment of the host bridge
of FIG. 4, wherein the host bridge includes the host bridge
SCU;

FI1G. 14 1s a diagram of one embodiment of the host bridge
SCU of FIG. 13;

FI1G. 1515 a flow chart of one embodiment of a first method
for managing a memory used to store data arranged within
multiple memory pages;

FIG. 16 1s a flow chart of one embodiment of a second
method for providing access security for a memory used to
store data arranged within multiple memory pages;

FIG. 17 1s a diagram of an exemplary physical address
generated by the MMU of FIG. 6 and provided to the cache
unit of FIG. 6;

FIG. 18 1s a diagram of one embodiment of a cache
memory entry of the cache unit of FIG. 6;

FI1G. 19 15 a diagram of one embodiment of a cache direc-
tory entry of the cache unit of FIG. 6; and

FI1G. 20 15 a flow chart of one embodiment of a method for
providing security for data stored within the memory of FIG.
4 and transierred between the CPU of FIG. 4 and the memory.

While the 1invention 1s susceptible to various modifications
and alternative forms, specific embodiments thereol have
been shown by way of example 1n the drawings and are herein
described in detail. It should be understood, however, that the
description herein of specific embodiments 1s not intended to
limit the invention to the particular forms disclosed, but on the
contrary, the intention 1s to cover all modifications, equiva-
lents, and alternatives falling within the spirit and scope of the
invention as defined by the appended claims.

DETAILED DESCRIPTION OF SPECIFIC
EMBODIMENTS

[lustrative embodiments of the invention are described
below. In the interest of clarity, not all features of an actual
implementation are described 1n this specification. It will, of
course, be appreciated that 1in the development of any such
actual embodiment, numerous implementation-specific deci-
s1ions must be made to achieve the developers’ specific goals,
such as compliance with system-related and business-related
constraints, which will vary from one implementation to
another. Moreover, 1t will be appreciated that such a develop-

10

15

20

25

30

35

40

45

50

55

60

65

6

ment effort might be complex and time-consuming, but
would nevertheless be a routine undertaking for those of
ordinary skill in the art having the benefit of this disclosure.

FIG. 4 1s a diagram of one embodiment of a computer
system 400 including a CPU 402, a system or “host” bridge
404, a memory 406, a {irst device bus 408 (¢.g., a peripheral
component interconnect or PCI bus), a device bus bridge 410,

a second device bus 412 (e.g., an industry standard architec-
ture or ISA bus), and four device hardware units 414 A-414D.

Host bridge 404 1s coupled to CPU 402, memory 406, and
device bus 408. Host bridge 404 translates signals between
CPU 402 and device bus 408, and operably couples memory
406 to CPU 402 and to device bus 408. Device bus bridge 410
1s coupled between device bus 408 and device bus 412, and
translates signals between device bus 408 and device bus 412.
In the embodiment of FI1G. 4, device hardware units 414 A and
414B are coupled to device bus 408, and device hardware
units 414C and 414D are coupled to device bus 412. One or
more of the device hardware units 414A-414D may be, for
example, storage devices (e.g., hard disk drives, floppy
drives, and CD-ROM drives), communication devices (e.g.,
modems and network adapters), or input/output devices (e.g.,
video devices, audio devices, and printers).

In the embodiment of FIG. 4, CPU 402 includes a CPU
security check unit (SCU) 416, and host bridge 404 includes
a host bridge SCU 418. As will be described 1n detail below,
CPU SCU 416 protects memory 406 from unauthorized
accesses generated by CPU 402 (1.e., “software-initiated
accesses”), and host bridge SCU 418 protects memory 406
from unauthorized accesses initiated by device hardware
units 414A-414D (1.e., “hardware-initiated accesses™). It 1s
noted that 1n other embodiments, host bridge 404 may be part
of CPU 402 as indicated in FIG. 4.

FIG. 5 1s a diagram 1illustrating relationships between vari-
ous hardware and software components of computer system
400 of FIG. 4. In the embodiment of FIG. 5, multiple appli-
cation programs 300, an operating system 502, a security
kernel 504, and device drivers 506A-506D are stored in
memory 406. Application programs 500, operating system
502, security kernel 504, and device drivers 506A-506D
include 1nstructions executed by CPU 402. Operating system
502 provides a user interface and software “platiorm” on top
of which application programs 500 run. Operating system
502 may also provide, for example, basic support functions
including file system management, process management, and
input/output (1/0) control.

Operating system 502 may also provide basic security
functions. For example, CPU 402 (FIG. 4) may be an x86
processor which executes instructions of the x86 1nstruction
set. In this situation, CPU 402 may include specialized hard-
ware elements to provide both virtual memory and memory
protection features 1n the protected mode as described above.
Operating system 502 may be, for example, one of the Win-
dows® family of operating systems (Microsoit Corp., Red-
mond, Wash.) which operates CPU 402 m the protected
mode, and uses the specialized hardware elements of CPU
402 to provide both virtual memory and memory protection in
the protected mode.

As will be described 1n more detail below, security kernel
504 provides additional security functions above the security
functions provided by operating system 502 in order to pro-
tect data stored in memory 406 from unauthorized access. In
the embodiment of FIG. 5, device drivers S06A-506D are
operationally associated with, and coupled to, respective cor-
responding device hardware units 414 A-414D. Device hard-
ware units 414 A and 414D are “secure” devices, and corre-
sponding device drivers 506 A and 506D are “secure” device

US 8,135,962 B2

7

drivers. Security kernel 504 1s coupled between operating
system 502 and secure device drivers 506A and 506D, and
monitors all accesses by application programs 500 and oper-
ating system 302 to secure device drivers 506 A and 506D and
corresponding secure devices 414A and 414D. Security ker-
nel 504 prevents unauthorized accesses to secure device driv-
ers 506A and 506D and corresponding secure devices 414A
and 414D by application programs 500 and operating system
502.

As idicated 1n FIG. 5, security kernel 504 is coupled to
CPU SCU 416 and host bridge SCU 418 (e.g., via one or more
device drivers). As will be described in detail below, CPU
SCU 416 and host bridge SCU 418 control accesses to
memory 406. CPU SCU 416 monitors all software-initiated
accesses to memory 406, and host bridge SCU 418 monitors
all hardware-mitiated accesses to memory 406. Once config-
ured by security kernel 504, CPU SCU 416 and host bridge
SCU 418 allow only authorized accesses to memory 406.

In the embodiment of FIG. 5, device drivers 506B and

506C are “non-secure” device drivers, and corresponding
device hardware umits 414B and 414C are “non-secure”
device hardware units. Device drivers 5068 and 506C and
corresponding device hardware units 414B and 414C may be,
for example, “legacy” device drivers and device hardware
units.

It 1s noted that 1n other embodiments security kernel 504
may be part of operating system 502. In yet other embodi-
ments, security kernel 504, device drnivers 506 A and 506D,
and/or device drivers 506B and 506C may be part of operating
system 502.

FIG. 6 1s a diagram of one embodiment of CPU 402 of
computer system 400 of FIG. 4. In the embodiment of FI1G. 6,
CPU 402 includes an execution unit 600, a memory manage-
ment umt (MMU) 602, a cache unit 604, a bus interface unit
(BIU) 606, a set of control registers 608, and a set of secure
execution mode (SEM) registers 610. CPU SCU 416 1s
located within MMU 602. As will be described 1n detail
below, the set of SEM registers 610 are used to implement a
secure execution mode (SEM) within computer system 400 of
FIG. 4, and operations of CPU SCU 416 and host bridge SCU
418 are governed by the contents of the set of SEM registers
610. SEM registers 610 are accessed (1.e., written to and/or
read from) by security kernel 504 (FIG. 5). Computer system
400 of FIG. 4 may, for example, operate 1n the SEM when: (1)
CPU 402 1s an x86 processor operating 1n the x86 protected
mode, (1) memory paging 1s enabled, and (111) the contents of
SEM registers 610 specity SEM operation.

In general, the contents of the set of control registers 608
govern operation of CPU 402. Accordingly, the contents of
the set of control registers 608 govern operation of execution
unit 600, MMU 602, cache unit 604, and/or BIU 606. The set
of control registers 608 may include, for example, the mul-
tiple control registers of the x86 processor architecture.

Execution unit 600 of CPU 402 fetches instructions (e.g.,
x86 mstructions) and data, executes the fetched instructions,
and generates signals (e.g., address, data, and control signals)
during instruction execution. Execution unit 600 1s coupled to
cache unit 604, and may receive nstructions from memory
406 (FIG. 4) via cache unit 604 and BIU 606.

Memory 406 (FI1G. 4) of computer system 400 includes
multiple memory locations, each having a unique physical
address. When CPU 402 1s operating in protected mode with
paging enabled, an address space of CPU 402 1s divided 1nto
multiple blocks called page frames or “pages.” As described
above, only data corresponding to a portion of the pages 1s
stored within memory 406 at any given time. In the embodi-
ment of FIG. 6, address signals generated by execution unit

10

15

20

25

30

35

40

45

50

55

60

65

8

600 during instruction execution represent segmented (1.e.,
“logical”) addresses. As described below, MMU 602 trans-
lates the segmented addresses generated by execution unit
600 to corresponding physical addresses of memory 406.
MMU 602 provides the physical addresses to cache unit 604.
Cache unit 604 1s a relatively small storage unit used to store
instructions and data recently fetched by execution unit 600.
BIU 606 1s coupled between cache unit 604 and host bridge
404, and 1s used to fetch 1nstructions and data not present 1n
cache unit 604 from memory 406 via host bridge 404.

As indicated 1in FIG. 6, the cache unit 604 includes an
encryption/decryption unit 612 that performs both a data
encryption function and a data decryption function. When the
CPU 402 15 operating 1n protected mode with paging enabled,
the memory 406 stores data arranged within multiple pages
(1.e., memory pages). As described 1n detail below, the data
(1including 1nstructions) of selected memory pages may be
encrypted for security purposes. The data decryption function
of encryption/decryption unit 612 1s used to decrypt
encrypted data (including instructions) received by cache unit
604 from memory 406 via BIU 606. The data encryption
function of encryption/decryption unit 612 1s used to encrypt
unencrypted (1.e., “plaintext”) data (including structions),
stored within cache unit 604 and available to execution unit
600, betfore the data 1s evicted from cache unit 604 (e.g., to
make room for more recently referenced instructions and/or
data). It 1s noted that the data encryption and decryption
functions performed by encryption/decryption unit 612 do
not atfect the operation of execution unit 600 (1.¢., are trans-
parent to execution unit 600). It 1s also noted that in other
embodiments encryption/decryption unit 612 may be located
within BIU 606.

FIG. 7 1s a diagram of one embodiment of MMU 602 of
FIG. 6. In the embodiment of FIG. 7, MMU 602 1ncludes a
segmentation unit 700, a paging unit 702, and selection logic
704 for selecting between outputs of segmentation unit 700
and paging unit 702 to produce a physical address. As 1ndi-
cated 1n FIG. 7, segmentation unit 700 receives a segmented
address from execution unit 600 and uses a well-know seg-
mented-to-linear address translation mechanism of the x86
processor architecture to produce a corresponding linear
address at an output. As indicated 1n FIG. 7, when enabled by
a “PAGING” signal, paging unit 702 receives the linear
addresses produced by segmentation unit 700 and produces
corresponding physical addresses at an output. The PAGING
signal may mirror the paging flag (PG) bit in a control register
0 (CRO) of the x86 processor architecture and of the set of
control registers 608 (FIG. 6). When the PAGING signal 1s
deasserted, memory paging 1s not enabled, and selection logic
704 produces the linear address recerved from segmentation
unit 700 as the physical address.

When the PAGING signal 1s asserted, memory paging 1s
enabled, and paging unit 702 translates the linear address
received from segmentation unit 700 to a corresponding
physical address using the above described linear-to-physical
address translation mechamsm 100 of the x86 processor
architecture (FIG. 1). As described above, during the linear-
to-physical address translation operation, the contents of the
U/S bits of the selected page directory entry and the selected
page table entry are logically ANDed determine 11 the access
to a page frame 1s authorized. Similarly, the contents of the
R/W bits of the selected page directory entry and the selected
page table entry are logically ANDed to determine 1if the
access to the page frame 1s authorized. I the logical combi-
nations of the U/S and R/W bits indicate the access to the page
frame 1s authorized, paging umt 702 produces the physical
address resulting from the linear-to-physical address transla-

US 8,135,962 B2

9

tion operation. Selection logic 704 receives the physical
address produced by paging umt 702, produces the physical
address recerved from paging unit 702 as the physical
address, and provides the physical address to cache unit 604.

On the other hand, i1 the logical combinations of the U/S
and R/W baits indicate the access to the page frame 108 1s not
authorized, paging unit 702 does not produce a physical
address during the linear-to-physical address translation
operation. Instead, paging unit 702 asserts a general protec-
tion fault (GPF) signal, and MMU 602 forwards the GPF
signal to execution unit 600. In response to the GPF signal,
execution unit 600 may execute an exception handler routine,
and may ultimately halt the execution of one of the applica-
tion programs 500 (FI1G. §5) running when the GPF signal was
asserted.

In the embodiment of FIG. 7, CPU SCU 416 1s located
within paging unit 702 of MMU 602. Paging unit 702 may
also include a translation lookaside butler (TLB) for storing a
relatively small number of recently determined linear-to-

physical address translations.
FI1G. 8 1s a diagram of one embodiment of CPU SCU 416 of

FI1G. 7. In the embodiment of FIG. 8, CPU SCU 416 includes
security check logic 800 coupled to the set of SEM registers
610 (FIG. 6) and a security attribute table (SAT) entry buffer
802. As described below, SAT entries include additional secu-
rity information above the U/S and R/W bits of page directory
and page table entries corresponding to memory pages. Secu-
rity check logic 800 uses the additional security information
stored within a given SAT entry to prevent unauthorized
soltware-initiated accesses to the corresponding memory
page. SAT entry buifer 802 1s used to store a relatively small
number of SAT entries of recently accessed memory pages.

As described above, the set of SEM registers 610 are used
to implement a secure execution mode (SEM) within com-
puter system 400 of FIG. 4. The contents of the set of SEM
registers 610 govern the operation of CPU SCU 416. Seeurlty
check logic 800 receives information to be stored i SAT
entry buifer 802 from MMU 602 via a communication bus
indicated 1n FIG. 8. The security check logic 800 also receives
a physical address produced by paging unit 702.

FIGS. 9-11 will now be used to describe how additional
security information of memory pages selected using address
translation mechanism 100 of FIG. 1 1s obtained within com-
puter system 400 of FIG. 4. FIG. 9 1s a diagram of one
embodiment of a mechanism 900 for accessing a SAT entry of
a selected memory page 1n order to obtain additional security
information of the selected memory page. Mechanism 900 of
FIG. 9 may be embodied within security check logic 800 of
FIG. 8, and may be implemented when computer system 400
of FI1G. 4 1s operating 1in the SEM. Mechanism 900 involves a
physical address 902 produced by paging mechanism 702
(FIG. 7) using address translation mechamism 100 of FIG. 1,
a SAT directory 904, multiple SATs including a SAT 906, and
a SAT base address register 908 of the set of SEM registers
610. SAT directory 104 and the multiple SAT's, including SAT
906, are SEM data structures created and maintained by secu-
rity kernel 504 (FIG. 5). As described below, SAT directory
104 (when present) and any needed SAT 1s copied into
memory 406 before being accessed.

SAT base address register 908 includes a present (P) bit
which 1ndicates the presence of a valid SAT directory base
address within SAT base address register 908. The highest
ordered (1.e., most significant) bits of SAT base address reg-
ister 908 are reserved for the SAT directory base address. The
SAT directory base address 1s a base address of a memory
page containing SAT directory 904. If P=1, the SAT directory
base address 1s valid, and SAT tables specily the security

10

15

20

25

30

35

40

45

50

55

60

65

10

attributes of memory pages. If P=0, the SAT directory base
address 1s not valid, no SAT tables exist, and security
attributes of memory pages are determined by a SAT default
register.

FIG. 10 1s a diagram of one embodiment of the SAT default
register 1000. In the embodiment of FIG. 10, SAT default
register 1000 includes a secure page (SP) bit. The SP bit
indicates whether or not all memory pages are secure pages.
For example, 1 SP=0 all memory pages may not be secure
pages, and 11 SP=1 all memory pages may be secure pages.

Referring back to FIG. 9 and assuming the P bit of SAT
base address register 908 1s a *17°, physical address 902 pro-
duced by paging logic 702 (FIG. 7) 1s divided into three
portions 1n order to access the SAT entry of the selected
memory page. As described above, the SAT directory base
address of SAT base address register 908 1s the base address
of the memory page containing SAT directory 904. SAT
directory 904 includes multiple SAT directory entries, includ-
ing a SAT directory entry 910. Each SAT directory entry may
have a corresponding SAT 1n memory 406. An “upper’” por-
tion of physical address 902, including the highest ordered or
most significant bits of physical address 902, 1s used as an
index mto SAT directory 904. SAT directory entry 910 1s
selected from within SAT directory 904 using the SAT direc-
tory base address of SAT base address register 908 and the
upper portion of physical address 902.

FIG. 11 1s a diagram of one embodiment of a SAT directory
entry format 1100. In accordance with FIG. 11, each SAT
directory entry includes a present (P) bit which indicates the
presence of a valid SAT base address within the SAT directory
entry. In the embodiment of FIG. 11, the highest ordered (i.e.,
the most significant) bits of each SAT directory entry are
reserved for a SAT base address. The SAT base address 1s a
base address of a memory page containing a corresponding
SAT. If P=1, the SAT base address 1s valid, and the corre-
sponding SAT 1s stored in memory 406.

It P=0, the SAT base address 1s not valid, and the corre-
sponding SAT does not exist in memory 406 and must be
copied into memory 406 from a storage device (e.g., a disk
drive). It P=0, security check logic 800 may signal a page
fault to logic within paging unmit 702, and MMU 602 may
torward the page fault signal to execution unit 600 (FIG. 6). In
response to the page fault signal, execution unit 600 may
execute a page fault handler routine which retrieves the
needed SAT from the storage device and stores the needed
SAT 1n memory 406. After the needed SAT 1s stored 1n
memory 406, the P bit of the corresponding SAT directory
entry 1s set to ‘1’7, and mechanism 900 1s continued.

Referring back to FIG. 9, a “middle” portion of physical

address 902 1s used as an index ito SAT 906. SAT entry 906
1s thus selected within SAT 906 using the SAT base address of
SAT directory entry 910 and the middle portion of physical
address 902. FIG. 12 1s a diagram of one embodiment of a
SAT entry format 1200. In the embodiment of FIG. 12, each
SAT entry includes a secure page (SP) bit. The SP bit 1ndi-
cates whether or not the selected memory page 1s a secure
page. For example, 11 SP=0 the selected memory page may
not be a secure page, and 11 SP=1 the selected memory page
may be a secure page.

BIU 606 (FIG. 6) retrieves needed SEM data structure
entries from memory 406, and provides the SEM data struc-
ture entries to MMU 602. Referring back to FIG. 8, security
check logic 800 receives SEM data structure entries from
MMU 602 and paging unit 702 via the communication bus.
As described above, SAT entry buifer 802 1s used to store a
relatively small number of SAT entries of recently accessed
memory pages. Security check logic 800 stores a given SAT

US 8,135,962 B2

11

entry in SAT entry buffer 802, along with a “tag” portion of
the corresponding physical address.

During a subsequent memory page access, security check
logic 800 may compare a “tag” portion of a physical address
produced by paging unit 702 to tag portions of physical
addresses corresponding to SAT entries stored in SAT entry
butiler 802. I the tag portion of the physical address matches
a tag portion of a physical address corresponding to a SAT
entry stored in SAT entry buifer 802, security check logic 800
may access the SAT entry in SAT entry buffer 802, eliminat-
ing the need to perform the process of F1G. 9 1n order to obtain
the SAT entry from memory 406. Security kernel 504 (FIG. 5)
modifies the contents of SAT base address register 908 in
CPU 402 (e.g., during context switches). In response to modi-
fications of SAT base address register 908, security check
logic 800 of CPU SCU 416 may flush SAT entry butler 802.

When computer system 400 of FIG. 4 1s operating in the
SEM, security check logic 800 recerves the current privilege
level (CPL) of the currently executing task (1.e., the currently
executing instruction), along with the page directory entry

(PDE) U/S bit, the PDE R/W bit, the page table entry (PTE)
U/S bit, and the PTE R/W bit of a selected memory page
within which a physical address resides. Security check logic
800 uses the above information, along with the SP bit of the
SAT entry corresponding to the selected memory page, to
determine if memory 406 access 1s authorized.

CPU 402 of FIG. 6 may be an x86 processor, and may
include a code segment (CS) register, one of the 16-bit seg-
ment registers ol the x86 processor architecture. Each seg-
ment register selects a 64 k block of memory, called a seg-
ment. In the protected mode with paging enabled, the CS
register 1s loaded with a segment selector that indicates an
executable segment of memory 406. The highest ordered (1.¢.,
most significant) bits of the segment selector are used to store
information indicating a segment of memory including a next
instruction to be executed by execution unit 600 of CPU 402
(FIG. 6). Aninstruction pointer (IP) register 1s used to store an
offset into the segment indicated by the CS register. The
CS:IP pair indicate a segmented address of the next mstruc-
tion. The two lowest ordered (i.e., least significant) bits of the
CS register are used to store a value indicating a current
privilege level (CPL) of a task currently being executed by
execution unmt 600 (1.e., the CPL of the current task).

Table 1 below 1llustrates exemplary rules for CPU-1nitiated

(1.e., soltware-mnitiated) memory accesses when computer
system 400 of FIG. 4 15 operating 1n the SEM. CPU SCU 416
(FIGS. 4-8) and securnity kernel 504 (F1G. 5) work together to
implement the rules of Table 1 when computer system 400 of
FIG. 4 1s operating 1n the SEM 1n order to provide additional
security for data stored in memory 406 above data security
provided by operating system 3502 (FIG. 5).

TABL.

1

(L]

Exemplary Rules For Software-Initiated Memory Accesses
When Computer System 400 Of FIG. 4 Is Operating In The SEM.

Currently Selected
Executing Memory
Instruction Page Permitted
SP CPL SP U/S R/W Access Remarks
1 0 X X 1(R/'W) R/W Full access granted.

(Typical accessed page
contents: security kernel
and SEM data structures.)

10

15

20

25

30

35

40

45

50

55

60

65

12

TABLE 1-continued

Exemplary Rules For Software-Initiated Memory Accesses
When Computer System 400 Of FIG. 4 Is Operating In The SEM.

Selected

Memory
Page

Currently
Executing

Instruction Permitted

SP CPL. SP U/S R/W Access Remarks

Read
Only

1 0 X X 0 (R) Write attempt causes GPF;
if selected memory page is
a secure page (SP=1),a
SEM Security Exception
is signaled instead of GPF.
Standard protection
mechanisms apply.
(Typical accessed page
contents: high security
applets.)

Access causes (GPF.
(Typical accessed page
contents: security kernel
and SEM data structures.)
Access causes (GPF.
(Typical accessed page
contents: OS kernel and
Ring O device drivers.)
Access causes SEM
security exception.
Standard protection
mechanisms apply.
(Typical accessed page
contents: high security
applets.)

Access causes GPF; if
selected memory page 1s a
secure page (SP=1),a
SEM Security Exception
1s raised instead of GPFL.
Standard protection
mechanisms apply.
(Typical accessed page

contents: applications.)

LU 1

0 (S) X None

None

None

None

In Table 1 above, the SP bit of the currently executing
instruction 1s the SP bit of the SAT entry corresponding to the
memory page containing the currently executing instruction.
The U/S bit of the selected memory page 1s the logical AND
of the PDE U/S bit and the PTE U/S bit of the selected

memory page. The R/W bit of the selected memory page is the
logical AND of the PDE R/W bit and the PTE R/W bit of the
selected memory page. The symbol “X” signifies a “don’t
care”: the logical value may be eithera ‘0’ ora “1°.
Referring back to FIG. 8, security check logic 800 of CPU
SCU 416 produces a general protection fault (“GPF”) signal
and a “SEM SECURITY EXCEPTION” signal, and provides
the GPF and the SEM SECURITY EXCEPTION signals to
logic within paging umt 702. When security check logic 800
asserts the GPF signal, MMU 602 forwards the GPF signal to
execution unit 600 (FIG. 6). In response to the GPF signal,
execution unit 600 may use the well-known interrupt descrip-
tor table (IDT) vectoring mechanism of the x86 processor
architecture to access and execute a GPF handler routine.
When security check logic 800 asserts the SEM SECU-
RITY EXCEPTION signal, MMU 602 forwards the SEM
SECURITY EXCEPTION signal to execution unit 600.
Unlike normal processor exceptions which use the use the
IDT vectoring mechanism of the x86 processor architecture,
a different vectoring method may be used to handle SEM
security exceptions. SEM security exceptions may be dis-

patched through a pair of registers (e.g., model specific reg-
isters or MSRs) similar to the way x86 “SYSENTER” and

“SYSEXIT” instructions operate. The pair of registers may

US 8,135,962 B2

13

be “security exception entry point” registers, and may define

a branch target address for instruction execution when a SEM
security exception occurs. The security exception entry point
registers may define the code segment (CS), then instruction
pointer (IP, or the 64-bit version RIP), stack segment (SS), 3
and the stack pointer (SP, or the 64-bit version RSP) values to

be used on entry to a SEM security exception handler. Under
soltware control, execution unit 600 (FIG. 6) may push the
previous SS, SP/RSP, EFLAGS, CS, and IP/RIP values onto

a new stack to indicate where the exception occurred. In 10
addition, execution unit 600 may push an error code onto the
stack. It 1s noted that a normal return from nterrupt (IRE'T)
instruction may not be used as the previous SS and SP/RSP
values are always saved, and a stack switch 1s always accom-
plished, even 1f a change 1n CPL does not occur. Accordingly, 15
a new 1nstruction may be defined to accomplish a return from
the SEM security exception handler.

FI1G. 13 1s a diagram of one embodiment of host bridge 404
of FIG. 4. In the embodiment of FIG. 13, host bridge 404
includes a host interface 1300, bridge logic 1302, host bridge 20
SCU 418, a memory controller 1304, and a device bus inter-
tace 1306. Host interface 1300 1s coupled to CPU 402, and
device bus interface 1306 1s coupled to device bus 408. Bridge
logic 1302 1s coupled between host interface 1300 and device
bus interface 1306. Memory controller 1304 1s coupled to 25
memory 406, and performs all accesses to memory 406. Host
bridge SCU 418 1s coupled between bridge logic 1302 and
memory controller 1304. As described above, host bridge
SCU 418 controls access to memory 406 via device bus
interface 1306. Host bridge SCU 418 monitors all accesses to 30
memory 406 via device bus mterface 1306, and allows only
authorized accesses to memory 406.

FIG. 14 1s a diagram of one embodiment of host bridge
SCU 418 of FIG. 13. In the embodiment of FIG. 14, host
bridge SCU 418 includes security check logic 1400 coupled 35
to a set of SEM registers 1402 and a SAT entry buifer 1404.
The set of SEM registers 1402 govern the operation of secu-
rity check logic 1400, and includes a second SAT base
address register 908 of F1G. 9. The second SAT base address
register 908 of the set of SEM registers 1402 may be an 40
addressable register. When security kernel 504 (FI1G. 5) modi-
fies the contents of SAT base address register 908 in the set of
SEM registers 610 of CPU 402 (e.g., during a context switch),
security kernel 504 may also write the same value to the
second SAT base address register 908 1n the set of SEM 45
registers 1402 of host bridge SCU 418. In response to modi-
fications of the second SAT base address register 908, secu-
rity check logic 1400 of host bridge SCU 418 may flush SAT
entry buiier 1404.

Security check logic 1400 receives memory access signals 50
of memory accesses mnitiated by hardware device units 414 A -
414D (FIG. 4) via device bus interface 1306 and bridge logic
1302 (FIG. 13). The memory access signals convey physical
addresses from hardware device units 414 A-414D), and asso-
ciated control and/or data signals. Security check logic 1400 55
may embody mechanism 900 (FIG. 9) for obtaining SAT
entries of corresponding memory pages, and may 1mplement
mechanism 900 when computer system 400 of FIG. 4 1s
operating in the SEM. SAT entry buffer 1404 1s similar to SAT
entry buifer 802 of CPU SCU 416 (FIG. 8) described above, 60
and 1s used to store a relatively small number of SAT entries
of recently accessed memory pages.

When computer system 400 of FIG. 4 1s operating in SEM,
security check logic 1400 of FIG. 14 uses additional security
information of a SAT entry associated with a selected 65
memory page to determine 1f a given hardware-initiated
memory access 1s authorized. If the given hardware-initiated

14

memory access 1s authorized, security check logic 1400 pro-
vides the memory access signals (1.e., address signals con-
veying a physical address and the associated control and/or
data signals) of the memory access to memory controller
1304. Memory controller 1304 uses the physical address and
the associated control and/or data signals to access memory
406. It memory 406 access 1s a write access, data conveyed by
the data signals 1s written to memory 406. IT memory 406
access 1s a read access, memory controller 1304 reads data
from memory 406, and provides the resulting read data to
security check logic 1400. Security check logic 1400 for-
wards the read data to bridge logic 1302, and bridge logic
1302 provides the data to device bus interface 1306.

I1, on the other hand, the given hardware-initiated memory
access 1s not authorized, security check logic 1400 does not
provide the physical address and the associated control and/or
data signals of memory 406 accesses to memory controller
1304. It the unauthorized hardware-1nitiated memory access
1s a memory write access, security check logic 1400 may
signal completion of the write access and discard the write
data, leaving memory 406 unchanged. Security check logic
1400 may also create a log entry 1n a log (e.g., set or clear one
or more bits of a status register) in order to document the
security access violation. Security kernel 504 may periodi-
cally access the log to check for such log entries. If the
unauthorized hardware-mitiated memory access 1s a memory
read access, security check logic 1400 may return a false
result (e.g., all “F”’s) to device bus interface 1306 via bridge
logic 1302 as the read data. Security check logic 1400 may
also create a log entry as described above in order to docu-
ment the security access violation.

FIG. 15 1s a tlow chart of one embodiment of a method
1500 for providing access security for a memory used to store
data arranged within multiple memory pages. Method 1500
reflects the exemplary rules of Table 1 for CPU-1mitiated (1.¢.,
soltware-1nitiated) memory accesses when computer system
400 of FIG. 4 1s operating 1n the SEM. Method 1500 may be
embodied within MMU 602 (FIGS. 6-7). During a step 1502
of method 1500, a linear address produced during execution
of an mstruction 1s received, along with a security attribute of
the 1nstruction (e.g., a CPL of a task including the instruc-
tion). The mstruction resides 1n a memory page. During a step
1504, the linear address 1s used to access at least one paged
memory data structure located 1n the memory (e.g., a page
directory and a page table) 1n order to obtain a base address of
a selected memory page and security attributes of the selected
memory page. The security attributes of the selected memory
page may include, for example, a U/S bit and a R/W bit of a
page directory entry and a U/S bit and a R/W bit of a page
table entry.

During a decision step 1506, the security attribute of the
instruction and the security attributes of the selected memory
page are used to determine whether or not the access 1s autho-
rized. If the access 1s authorized, the base address of the
selected memory page and an offset are combined during a
step 1508 to produce a physical address within the selected
memory page. If the access 1s not authorized, a fault signal
(e.g., a general protection fault signal or GPF signal) 1s gen-
erated during a step 1510.

During a step 1512 following step 1508, at least one secu-
rity attribute data structure located in the memory (e.g., SAT
directory 904 of FIG. 9 and a SAT) 1s accessed using the
physical address of the selected memory page 1 order to
obtain an additional security attribute of the first memory
page and an additional security attribute of the selected
memory page. The additional security attribute of the first
memory page may include, for example, a secure page (SP)

US 8,135,962 B2

15

bit as described above, wherein the SP bit indicates whether
or not the first memory page 1s a secure page. Similarly, the
additional security attribute of the selected memory page may
include a secure page (SP) bit, wherein the SP bit indicates
whether or not the selected memory page 1s a secure page.
The fault signal 1s generated during a step 1514 dependent
upon the security attribute of the instruction, the additional
security attribute of the first memory page, the security
attributes of the selected memory page, and the additional
security attribute of the selected memory page. It 1s noted that
steps 1512 and 1514 of method 1500 may be embodied within

CPU SCU 416 (FIGS. 4-8).

Table 2 below 1llustrates exemplary rules for memory page
accesses 1nitiated by device hardware units 414A-414D (1.e.,

hardware-imitiated memory accesses) when computer system
400 of FIG. 4 1s operating 1n the SEM. Such hardware-1niti-

ated memory accesses may be imtiated by bus mastering
circuitry within device hardware units 414A-414D, or by
DMA devices at the request of device hardware units 414 A -
414D. Security check logic 1400 may implement the rules of
Table 2 when computer system 400 of FIG. 4 1s operating 1n
the SEM 1n order to provide additional security for data stored
in memory 406 above data security provided by operating
system 502 (FIG. 5). In Table 2 below, the “target” memory
page 1s the memory page within which a physical address
conveyed by memory access signals of a memory access
resides.

TABLE 2

Exemplary Rules For Hardware-Initiated Memory Accesses
When Computer system 400 Of FIG. 4 Is Operating In The SEM.

Particular
Memory Page Access
SP Type Action
0 R/W The access completes as normal.
1 Read The access 1s completed returning all “F’s
instead of actual memory contents.
The unauthorized access may be logged.
1 Write The access 1s completed but write data 1s

discarded. Memory contents remain
unchanged. The unauthorized access may
be logged.

In Table 2 above, the SP bit of the target memory page 1s
obtained by host bridge SCU 418 using the physical address
of the memory access and the above described mechanism
900 of FIG. 9 for obtaining SAT entries of corresponding
memory pages.

As mdicated in FIG. 2, when SP=1 indicating the target
memory page 1s a secure page, the memory access 1s unau-
thorized. In this situation, security check logic 1400 (FI1G. 14)
does not provide the memory access signals to the memory
controller. A portion of the memory access signals (e.g., the
control signals) indicate a memory access type, and wherein
the memory access type 1s either a read access or a write
access. When SP=1 and the memory access signals indicate
the memory access type 1s a read access, the memory access
1s an unauthorized read access, and security check logic 1400
responds to the unauthorized read access by providing all
“F”’s instead of actual memory contents (1.e., bogus read
data). Security check logic 1400 may also respond to the
unauthorized read access by logging the unauthorized read
access as described above.

When SP=1 and the memory access signals indicate the
memory access type 1s a write access, the memory access 1s an
unauthorized write access. In this situation, security check

10

15

20

25

30

35

40

45

50

55

60

65

16

logic 1400 responds to the unauthorized write access by dis-
carding write data conveyed by the memory access signals.
Security check logic 1400 may also respond to the unautho-
rized write access by logging the unauthorized write access as
described above.

FIG. 16 1s a tlow chart of one embodiment of a method
1600 for providing access security for a memory used to store
data arranged within multiple memory pages. Method 1600
reflects the exemplary rules of Table 2 for hardware-initiated
memory accesses when computer system 400 of FIG. 4 1s
operating 1n the SEM. Method 1600 may be embodied within
host bridge 404 (FIGS. 4 and 13-14). During a step 1602 of
method 1600, memory access signals of a memory access are
received, wherein the memory access signals convey a physi-
cal address within a target memory page. As described above,
the memory access signals may be produced by a device
hardware unit. The physical address 1s used to access at least
one security attribute data structure located 1n the memory 1n
order to obtain a security attribute of the target memory page
during a step 1604. The at least one security attribute data
structure may include, for example, a SAT directory (e.g.,
SAT directory 904 1n FIG. 9) and at least one SAT (e.g., SAT
906 in FIG. 9), and the additional security attribute of the
target memory page may include a secure page (SP) bit as
described above which indicates whether or not the target
memory page 1s a secure page. During a step 1606, the
memory 1s accessed using the memory access signals depen-
dent upon the security attribute of the target memory page.

CPU 402 (FIGS. 4 and 6) communicates with other com-
ponents of computer system 400 (FIG. 4) via signals con-
veyed upon signal lines. As described above, such signals are
subject to monitoring (e.g., by external equipment). Analysis
of such signals may reveal not only confidential data being
transierred, but also methods embodied within the computer
system (e.g., software programs) used to process the confi-
dential data. Computer system 400 has the capability to
encrypt all data (including instructions) transferred 1n and out
of CPU 402 to mask both confidential data and methods used

to process the confidential data.

As described above, cache unit 604 (FIG. 6) includes
encryption/decryption unit 612 that 1s used to perform both a
data encryption function and a data decryption function.
When CPU 402 1s operating 1n protected mode with paging
enabled, memory 406 stores data arranged within multiple
pages (1.e., memory pages) as described above. The data
(including 1nstructions) of selected memory pages may be
encrypted for security purposes. The data decryption function
of encryption/decryption unit 612 1s used to decrypt
encrypted data (including instructions) recerved by cache unit
604 from memory 406 via BIU 606. The data encryption
function of encryption/decryption unit 612 1s used to encrypt
unencrypted (1.e., “plaintext”) data (including instructions),
stored within cache unit 604 and available to execution unit
600, belore the data 1s evicted from cache unit 604 (e.g., to
make room for more recently referenced nstructions and/or
data). Encryption/decryption unit 612 may employ any of
various encryption and decryption algorithms to encrypt and
decrypt data.

Referring back to FIG. 12, SAT entry format 1200 entry
includes an encrypt memory (E) bit 1n addition to the SP bit
described above. The E bit indicates whether or not data
stored 1n memory locations of the corresponding memory
page 1s encrypted. For example, 1f E=0, data in the corre-
sponding memory page may not be encrypted, and 11 E=1,
data in the corresponding memory page may be encrypted.

FIGS. 17-19 will now be used to describe the operation of
an embodiment of cache unit 604 of FIG. 6 where cache unit

US 8,135,962 B2

17

604 1s a set associative cache unit having multiple sets. As a
set associative cache unit, cache unit 604 may be considered
as being arranged as two-dimensional arrays having rows and
columns. Each row represents one of multiple “sets™ of cache
unit 604, and each column represents one of multiple “ways”™
of cache unit 604. Data mapped to a particular row (1.e., set)
of cache unit 604 may be stored 1n any of the multiple col-
umns (1.e., ways) of the set.

FIG. 17 1s a diagram of an exemplary physical address

1700 generated by MMU 602 of F1G. 6 and provided to cache
unit 604 of FIG. 6. Cache unit 604 divides physical address
1700 1nto three portions: an upper “address tag” portion 1702
including the highest ordered (1.e., most significant) bits of
physical address 1700, a middle *“set address™ portion 1704,
and a lower “byte address” portion 1706 including the lowest
ordered (1.e., least significant) bits of physical address 1700.
The bits of set address portion 1704 are used to select one of
the multiple sets of cache unit 604, and the bits of byte address
portion 1706 are used to select a particular byte within a

corresponding cache memory entry present within cache unit
604.

FIG. 18 1s a diagram of one embodiment of a cache
memory entry 1800 of cache unit 604 of FIG. 6. Each cache
memory entry 1s used to store multiple bytes of data (e.g.,
instructions). FIG. 19 1s a diagram of one embodiment of a
cache directory entry 1900 of cache unit 604 of FIG. 6. Each
cache directory entry corresponds to a different cache
memory entry, and 1s used to store data associated with the
corresponding cache memory entry. In the embodiment of
FIG. 19, cache directory entry 1900 1includes an address por-
tion 1902 and a control portion 1904. Address portion 1902
includes multiple bit positions, and 1s used to store an address
tag portion ol a physical address (e.g., address tag portion
1702 of physical address 1700) associated with data stored 1n
the corresponding cache memory entry. Control portion 1904
also 1ncludes multiple bit positions, and 1s used to store data
used to manage the contents of the corresponding cache
memory entry.

In the embodiment of FIG. 19, control portion 1904 of the
cache directory entry 1900 includes a valid (V) bit, a write
protect (W) bit, one or more replacement (R) bits, and an
encrypt data (E) bit. The valid (V) bit specifies whether or not
the contents of the corresponding cache memory entry 1s valid
or not. For example, 11 V=1, the corresponding cache memory
entry may store valid data. On the other hand, if V=0, the
contents of the corresponding cache memory entry may not
be valid. The write protect (W) bit specifies whether or not the
contents of the corresponding cache memory entry 1s write
protected. For example, W=1 may indicate that the contents
ol the corresponding cache memory entry may not be written,
while W=0 may indicate that the contents of the correspond-
ing cache may be written.

The one or more replacement (R) bits are used to imple-
ment a strategy for replacing the contents of the correspond-
ing cache memory entry. The replacement strategy may be,
for example, a least recently used (LRU) replacement strat-
egy. The encrypt data (E) bit specifies whether or not the
contents of the corresponding cache memory entry 1is
encrypted. For example, E=1 may indicate that the contents of
the corresponding cache memory entry 1s encrypted, while
E=0 may indicate that the contents of the corresponding

cache 1s not encrypted.

When cache unit 604 (FI1G. 6) recerves a physical address
(e.g., physical address 1700 of FIG. 17) from MMU 602
(FIG. 6) associated with data required by execution unit 600
(e.g., an 1mstruction), cache unit 604 uses set address portion
1704 of physical address 1700 as an index into rows (1.e., sets)

10

15

20

25

30

35

40

45

50

55

60

65

18

ol the two-dimensional cache structure of cache unit 604.
Used as an index, set address portion 1704 selects a particular
set within cache unit 604. Cache unit 604 then compares
address tag portion 1702 of physical address 1700 to address
portions 1902 of (valid) cache directory entries 1900 of each
column (1.e., way) within the selected row (1.e., set). IT a
match 1s found, a cache “hit” occurs, and cache unit 604 uses
byte address portion 1706 of physical address 1700 to provide
the requested data byte.

I the comparison does not produce a match, a cache “miss”
occurs, signaling a need to obtain the requested data from
memory 406 (FIG. 4). In this situation, cache unit 604 pro-
vides physical address 1700 to BIU 606 (FIG. 6) along with a
“cache miss” signal. In response, BIU 606 uses physical
address 1700 to obtain a block of data (1.e., a cache line)
including the requested data from memory 406, and provides
the block of data including the requested data to cache umit
604.

When a cache miss occurs, cache unit 604 also provides the
cache miss signal to CPU SCU 416 (FIG. 6). Following the
linear-to-physical address translation operation performed by
MMU 602, CPU SCU 416 uses the physical address to obtain
a SAT entry ol a memory page including the physical address
(1.e., a SAT entry of a corresponding memory page) as
described above. In response to the cache miss signal from
cache unit 604, CPU SCU 416 provides the value of the

encrypt data (E) bit in the corresponding SAT entry to cache
unit 604. (See FIG. 12.)

If the encrypt memory (E) bit 1n the corresponding SAT
entry 1s set, the block of data obtained from memory 406 by
BIU 606 1s encrypted. In this situation, cache unit 604 uses
encryption/decryption unit 612 (FIG. 6) to decrypt the block
of data before storing the block of data 1n a cache memory
entry of a way of the selected set. Cache unit 604 also sets the
encrypt data (E) bit of the control portion 1904 of the corre-
sponding cache directory entry 1900. (See FIG. 19.)

I all of the ways of the selected set contain valid data,
cache unit 604 may implement the replacement strategy to
evict a cache line from cache unit 604 1n order to make room
for the block of data obtained from memory 406 by BIU 606.
If the encrypt data (E) bit of a cache directory entry 1900
corresponding to a cache memory entry 1800 (1.e., a cache
line) evicted from cache unit 604 1s set, cache unit 604 uses
encryption/decryption unit 612 to encrypt the block of data
before providing the evicted cache line to BIU 606 to be
written to memory 406.

FIG. 20 1s a tlow chart of one embodiment of a method
2000 for providing security for data stored within memory
406 (FIG. 4) and transierred between CPU 402 (FI1G. 4) and
memory 406. As described above, data stored within memory
406 1s arranged within multiple memory pages. During a step
2002 of method 2000, a physical address within a selected
memory page 1s received. The physical address 1s used during
a step 2004 to access the SEM data structures located 1n
memory 406 1n order to obtain an encryption indicator of the
selected memory page. As described above, the SEM data
structures include SAT directory 904 (FI1G. 9) and at least one
SAT (e.g., SAT906 o1 FIG.9). The encryption indicator of the
selected memory page indicates whether or not data stored 1n
the selected memory page 1s encrypted. The encryption indi-
cator of the selected memory page may be, for example, the
encrypt memory (E) bit of the SAT entry corresponding to the
selected memory page. (See FI1G. 12.)

During a step 2006, a block of data from the selected
memory page and the encryption indicator are recerved. The
block of data may, for example, include multiple data units
(e.g., bytes of data) stored within contiguous locations of

US 8,135,962 B2

19

memory 406. The block of data 1s decrypted during a step
2008 dependent upon the encryption indicator, and the block
of data 1s stored during a step 2010.

It 1s noted that steps 2002 and 2004 of method 2000 may be
embodied within CPU SCU 416 (FIGS. 4 and 6-8), and steps
2006, 2008, and 2010 of method 2000 may be embodied
within cache unit 604 (FIG. 6).

It 1s also noted that the encrypting of select data (e.g.,
confidential data and software programs used to process the
confidential data) within computer system 400 when present
outside of CPU 402 (e.g., when stored within memory 406),
and the transfer of encrypted data between CPU 402 and other
components of computer system 400 (e.g., memory 406)
masks both the confidential data and the software programs
used to process the confidential data. Note also that while the
methods of the present invention have been described using
flowcharts, the methods of the present invention are not lim-
ited to the embodiments shown. In other embodiments, one or
more steps of the method may be performed in different
orders or omitted.

In the 1llustrated embodiments, the memory region used 1s
the memory page. In other embodiments, other granularities
of the memory may be used, including memory segments or
memory address pairs, such as base-band pairs. Memory
address pairs may include an upper and lower address defin-
ing the memory range, or a base memory with an extent, such
as 1n base-band pairs. In one embodiment, the granularity of
the memory region used 1s the granularity used by the oper-
ating system. In another embodiment, the granularity of the
memory region used 1s the granularity used by the hardware.

Some aspects of the mvention as disclosed above may be
implemented 1n hardware or software. Thus, some portions of
the detailed descriptions herein are consequently presented in
terms of a hardware implemented process and some portions
of the detailed descriptions herein are consequently presented
in terms ol a software-implemented process involving sym-
bolic representations of operations on data bits within a
memory of a computing system or computing device. These
descriptions and representations are the means used by those
in the art to convey most effectively the substance of their
work to others skilled 1in the art using both hardware and
software. The process and operation of both require physical
manipulations of physical quantities. In software, usually,
though not necessarily, these quantities take the form of elec-
trical, magnetic, or optical signals capable of being stored,
transierred, combined, compared, and otherwise manipu-
lated. It has proven convenient at times, principally for rea-
sons of common usage, to refer to these signals as bits, values,
clements, symbols, characters, terms, numbers, or the like.

It should be borne 1n mind, however, that all of these and
similar terms are to be associated with the appropnate physi-
cal quantities and are merely convenient labels applied to
these quantifies. Unless specifically stated or otherwise as
may be apparent, throughout the present disclosure, these
descriptions refer to the action and processes of an electronic
device, that manipulates and transforms data represented as
physical (electronic, magnetic, or optical) quantities within
some electronic device’s storage into other data similarly
represented as physical quantities within the storage, or in
transmission or display devices. Exemplary of the terms
denoting such a description are, without limitation, the terms
“processing,” “‘computing,” “calculating,” “determining,”
“displaying,” and the like.

Note also that the software-implemented aspects of the
invention are typically encoded on some form of program
storage medium or implemented over some type of transmis-
sion medium. The program storage medium may be magnetic

2 44

10

15

20

25

30

35

40

45

50

55

60

65

20

(e.g., a floppy disk or a hard drive) or optical (e.g., a compact
diskread only memory, or “CD ROM”), and may be read only
or random access. Similarly, the transmission medium may
be twisted wire pairs, coaxial cable, optical fiber, or some
other suitable transmission medium known to the art. The
invention 1s not limited by these aspects of any given imple-
mentation.

The particular embodiments disclosed above are illustra-
tive only, as the invention may be modified and practiced in
different but equivalent manners apparent to those skilled 1n
the art having the benefit of the teachings herein. Further-
more, no limitations are intended to the details of construction
or design herein shown, other than as described 1n the claims
below. It 1s therefore evident that the particular embodiments
disclosed above may be altered or modified and all such
variations are considered within the scope and spirit of the
ivention. Accordingly, the protection sought herein 1s as set
forth in the claims below.

What 1s claimed 1s:

1. A computing apparatus, comprising:

at least one storage location coupled to receive a block of
data from a memory and a corresponding encryption
indicator for the block of data, wherein the block of data
corresponds to a selected memory region of the memory,
and wherein the encryption indicator indicates whether
the data corresponding to the selected memory region 1s
encrypted 1in the memory; and

an encryption/decryption unit configured to decrypt the
block of data dependent upon the encryption indicator
betfore the block of data 1s stored 1n the storage location.

2. The computing apparatus as recited 1n claim 1, wherein
the block of data comprises a plurality of data units stored
within contiguous locations of the memory.

3. The computing apparatus as recited 1n claim 2, wherein
the selected memory region corresponds to a memory page, a
memory segment, or a base-band patr.

4. The computing apparatus as recited 1n claim 1, wherein
the encryption indicator 1s an encrypt memory bit.

5. The computing apparatus as recited 1n claim 4, wherein
the encrypt memory bit 1s obtained by accessing a security
attribute data structure stored within the memory.

6. The computing apparatus as recited 1n claim 1, wherein
the storage location comprises a cache coupled to receive the
block of data and the corresponding encryption indicator
from the selected memory region 1n the memory.

7. The computing apparatus as recited 1n claim 6, wherein
the cache includes a plurality of cache memory entries for
storing blocks of data and a plurality of cache directory
entries for storing data needed to access the blocks of data,
and wherein each of the cache directory entries corresponds
to a different one of the cache memory entries and includes an
encrypt data bit indicating whether a block of data stored 1n
the corresponding cache memory entry 1s to be encrypted
before being stored 1n the memory.

8. The computing apparatus as recited 1n claim 7, wherein
when a block of data stored 1n a given cache memory entry 1s
to be stored 1n the memory, the cache unit 1s configured to use
the encryption/decryption unit to encrypt the block of data
dependent upon the encrypt data bit in the cache directory
entry corresponding to the given cache memory entry before
storing the block of data in the memory.

9. A system, comprising:

a memory management unit configured to manage a
memory such that the memory stores data arranged
within a plurality of memory regions;

a security check unmit coupled to receive a physical address
within a selected one of the memory regions and con-

US 8,135,962 B2

21

figured to use the physical address to access a security
attribute data structure located in the memory 1n order to
obtain an encryption indicator indicating whether data
stored 1n the selected memory region 1s encrypted in the
memory; and

a cache unit coupled to receive a block of data obtained
from the selected memory region and to receive the
encryption indicator from the security check unit, the
cache unit comprising;

an encryption/decryption unit configured to decrypt the
recerved block of data dependent upon the encryption
indicator before the recerved block of data 1s stored 1n
the cache unat.

10. The system as recited in claim 9, wherein the recerved
block of data comprises a plurality of data units stored within
contiguous locations of the memory.

11. The memory as recited imn claim 10, wherein the
selected memory region corresponds to a memory page, a
memory segment, or a base-band pair.

12. The system as recited 1 claim 9, wherein the security
attribute data structure comprises a security attribute table
directory and a security attribute table, the security attribute
table comprising a security attribute table entry, and wherein
the encryption indicator 1s an encrypt memory bit in the
security attribute table entry.

13. The system as recited 1in claim 9, wherein the cache unit
includes a plurality of cache memory entries for storing
blocks of data and a plurality of cache directory entries for
storing data needed to access the blocks of data, and wherein
cach of the cache directory entries corresponds to a different
one of the cache memory entries, and wherein each of the
cache directory entries includes an encrypt data bit indicating
whether a block of data stored in the corresponding cache
memory entry 1s to be encrypted belfore being stored in the
memory.

14. The system as recited in claim 13, wherein when a
block of data stored 1n a given cache memory entry is to be
stored 1in the memory, and the cache unit 1s configured to use
the encryption/decryption unit to encrypt the block of data
dependent upon the encrypt data bit 1n the cache directory
entry corresponding to the given cache memory entry belfore
storing the encrypted block of data in the memory.

15. The system as recited 1n claim 9, wherein the security
check unit 1s configured to use the physical address to access
the at least one security attribute data structure located in the
memory to obtain an additional secunity attribute of the
selected memory region and the encryption indicator and to
generate a fault signal dependent upon the security attributes
of selected memory region and the additional security
attribute of the selected memory region.

16. The system as recited in claim 15, wherein the security
attributes of the selected memory region comprise a user/
supervisor bit and a read/write bit as defined by the x86
processor architecture.

17. The system as recited 1n claim 15, wherein the addi-
tional security attribute comprises a secure page bit, and
wherein the secure page bit indicates whether the selected
memory region 1s a secure region.

18. The system as recited in claim 15, wherein the fault
signal 1s a general protection fault signal as defined by the x86
processor architecture.

19. The system as recited in claim 9, wherein the security
check unit1s comprised within the memory management unait.

20. The system as recited 1n claim 9, wherein the memory
management unit, the security check unit, and the cache unit
are comprised within a processor.

10

15

20

25

30

35

40

45

50

55

60

65

22

21. A computer system, comprising:

a memory for storing data, wherein the data includes
instructions;

a memory management unit operably coupled to the a
memory and configurable to manage the memory such
that the memory stores data arranged within a plurality
of memory regions;

a security check unit coupled to receive a physical address
within a selected one of the memory regions and con-
figured to use the physical address to access at least one
security attribute data structure located 1n the memory 1n
order to obtain an encryption indicator indicating
whether data stored in the selected memory region 1s
encrypted in the memory; and

a cache unit coupled to receive a block of data obtained
from the selected memory region and to receive the
encryption indicator from the security check unit, the
cache unit comprising;
an encryption/decryption unit configured to decrypt the

received block of data dependent upon the encryption
indicator before the recerved block of data 1s stored 1n
the cache unait.

22. The computer system as recited in claim 21, wherein
the recerved block of data comprises a plurality of data units
stored within contiguous locations of the memory.

23. The memory as recited in claim 22, wherein the
selected memory region corresponds to a memory page, a
memory segment, or a base-band patr.

24. The computer system as recited in claim 21, wherein
the security attribute data structure comprises a security
attribute table directory and a security attribute table, the
security attribute table including a security attribute table
entry, and wherein the encryption indicator 1s an encrypt
memory bit 1n the security attribute table entry.

25. A method for providing security for data stored within
a memory, wherein the data are arranged within a plurality of
memory regions, the method comprising:

recerving an address within a selected one of the memory
regions;

using the address to access an encryption indicator indicat-
ing whether data stored in the selected memory region 1s
encrypted 1in the memory;

recerving a block of data from the selected memory region
and the encryption indicator; and

decrypting the received block of data dependent upon the
encryption indicator.

26. The method as recited 1n claim 25, further comprising,

storing the recerved block of data.

277. The method as recited in claim 25, wherein receiving,
the block of data from the selected memory region and the
encryption indicator comprises receving a plurality of data
units stored within contiguous locations from the selected
memory region and the encryption indicator, and wherein
decrypting the block of data dependent upon the encryption
indicator further comprises decrypting the plurality of data
units stored within contiguous locations dependent upon the
encryption indicator.

28. The method as recited in claim 25, wherein receiving
the address within the selected memory region comprises
receiving a physical address within the selected memory
region, and wherein using the address to access the encryp-
tion 1indicator comprises using the physical address to access
the encryption indicator.

29. The method as recited in claim 28, wherein using the
physical address to access an encryption indicator further
comprises using the physical address to access at least one

US 8,135,962 B2

23

security attribute data structure located in the memory to
obtain the encryption indicator.

30. The method as recited in claim 29, wherein comprises
using the physical address to access at least one security
attribute data structure located 1n the memory to obtain the
encryption indicator further comprises using the physical
address to access a security attribute table entry comprising
an encrypted memory bit.

31. A non-transitory machine readable medium encoded
with 1instructions that, when executed by a computer system,
perform a method for providing security for data stored
within a memory and arranged within a plurality of memory
regions, the method comprising;

receiving an address within a selected memory region;

using the address to access an encryption indicator indicat-

ing whether data stored in the selected memory region 1s
encrypted in the memory;

receiving a block of data from the selected memory region

and the encryption indicator; and

decrypting the received block of data dependent upon the

encryption indicator.

32. The non-transitory machine readable medium as
recited 1in claim 31, the method further comprising storing the
received block of data.

33. The non-transitory machine readable medium as
recited 1n claim 31, wherein recerving the block of data from
the selected memory region and the encryption indicator
comprises receiving a plurality of data units stored within
contiguous locations from the selected memory region and
the encryption indicator, and wherein decrypting the block of
data dependent upon the encryption indicator further com-
prises decrypting the plurality of data units stored within
contiguous locations dependent upon the encryption indica-
tor.

34. The non-transitory machine readable medium as
recited 1n claim 31, wherein receiving the address within the
selected memory region comprises recerving a physical
address within the selected memory region, and wherein
using the address to access the encryption indicator com-
prises using the physical address to access the encryption
indicator.

35. The non-transitory machine readable medium as
recited in claim 34, wherein using the physical address to
access an encryption indicator further comprises using the
physical address to access at least one security attribute data
structure located 1n the memory to obtain the encryption
indicator.

10

15

20

25

30

35

40

45

24

36. The non-transitory machine readable medium as
recited in claim 35, wherein using the physical address to
access at least one security attribute data structure located 1n
the memory to obtain the encryption indicator further com-
prises using the physical address to access a security attribute
table entry comprising an encrypted memory bit.

37. A system, comprising: means for recerving an address
within a selected memory region 1n a memory; means for
using the received address to access an encryption indicator
indicating whether

data stored in the selected memory region 1s encrypted 1n

the memory;

means for receiving a block of data from the selected

memory region and the encryption indicator; and
means for decrypting the recerved block of data dependent

upon the encryption indicator; and

means for storing the received block of data.

38. The system as recited 1n claim 37, wherein the means
for receiving the block of data from the selected memory
region and the encryption indicator comprises means for
receiving a plurality of data units stored within contiguous
locations from the selected memory region and the encryp-
tion indicator, and wherein the means for decrypting the block
of data dependent upon the encryption indicator further com-
prises means for decrypting the plurality of data units stored
within contiguous locations dependent upon the encryption
indicator.

39. The system as recited in claim 37, wherein the means
for recerving the address within the selected memory region
comprises means for receiving a physical address within the
selected memory region, and wherein the means for using the
address to access the encryption indicator comprises means
for using the physical address to access the encryption 1ndi-
cator.

40. The system as recited 1in claim 39, wherein the means
for using the physical address to access an encryption indi-
cator further comprises means for using the physical address
to access at least one security attribute data structure located
in the memory to obtain the encryption indicator.

41. The system as recited in claim 40, wherein the means
for using the physical address to access at least one security
attribute data structure located 1n the memory to obtain the
encryption indicator further comprises means for using the
physical address to access a security attribute table entry
comprising an encrypted memory bit.

	Front Page
	Drawings
	Specification
	Claims

