US008127354B1
12 United States Patent (10) Patent No.: US 8,127,354 B1
Bettini et al. 45) Date of Patent: Feb. 28, 2012
(54) SYSTEM,METHOD, AND COMPUTER 7,945,958 B2* 5/2011 Amarasinghe etal. 726/25
PROGRAM PRODUCT FOR IDENTIFYING 2005/0108562 Al* 5/2005 Khazanetal. 713/200
VUILNERARILITIES ASSOCIATED WITH 2008/0104699 Al1* 5/2008 Gounares etal. 726/22
DATA LOADED IN MEMORY
OTHER PUBLICATIONS
(75) Inventors: Anthony J. Bettini, San Francisco, CA “Enterprise Security Manager.” copyright 2008 Symantec Corpora-
(US); Michael M. Price, San Ramon P d 5 PITE 4 b
CA (jUS)) ’ " tion, http://www.symantec.com/avcenter/security/Content/Product/
Product_ ESM.html.
(73) Assignee: McAfee, Inc., Santa Clara, CA (US) “Personal Sf;)ftware Inspecto.r.(PSI),” copyright Secunia 2002-2008,
http://secunia.com/vulnerability scanning/personal/.
(*) Notice: Subject to any disclaimer, the term of this “Founstonc—A division of McAfee,” cqpyright 2003-2008,
patent is extended or adjusted under 35 McAfee, Inc., http://www.foundstone.com/us/index.asp.
U.S.C. 154(]2)) by 660 days * cited by ex aminer
(21) Appl. No.: 12/248,550
_ Primary Examiner — Krisna Lim
22) Filed: Oct.9,2008 '
(22) Tiled; o7 (74) Attorney, Agent, or Firm — Patent Capital Group
(51) Int.CL.
GOol 11/00 (2006.01) (57) ABSTRACT
(52) US.CL . 726/22; 726/25
(38) Field of Classification Search 726/22-26; A system, method, and computer program product are pro-
717/168, 169, 170 vided for identifying vulnerabilities associated with data
See application file for complete search history. loaded 1n memory. In operation, a subset of data that 1s loaded
in memory 1s 1dentified. Additionally, the subset of data i1s
(56) References Cited compared to a list of known data. Furthermore, there 1s a

U.S. PATENT DOCUMENTS

7,716,727 B2* 5/2010 Phillipsetal. 726/11
7,913,303 B1* 3/2011 Rouland etal. 726/23

LOAD LIST OF KNDWN

reaction based on the comparison.

16 Claims, 5 Drawing Sheets

302

VULNERABLE LIBRARIES

‘< INCLUDING NAME AND
VERSION I
204 |FOR EACH PROCESS RUNNING

.

ON LOCAL SYSTEM, OBTAIN

S

308
L

LIST OF IMPORTED LIBRARIES

FOR EACH IMPORTED LIBRARY [—

308

IS LIERARY NAME IN NO
LIST OF KNOWN VULNERABLE

LIBRARIES?

310
L

OBTAIN LIBRARY VERSION
FROM RESOURCE SECTION OF
LIBRARY

312

IS LIBRARY
VERSION GREATER
THAN MINIMUM KNOWN

NO

NON-VULNERABLE VERSION
AND LESS THAN OR EQUAL TO
KNOWN
YULNERABLE
VERSION?

REPORT VULNERABILITY

S%u

U.S. Patent

102

104

106

Feb. 28, 2012 Sheet 1 of 5

IDENTIFY A SUBSET OF DATA
THAT IS LOADED IN MEMORY

COMPARE THE SUBSET OF DATA
TO A LIST OF KNOWN DATA

REACT BASED ON THE
COMPARISON

FIGURE 1

US 8,127,354 B1

3100

US 8,127,354 B1

e
__ |
| |
| 1Nd1NO |
| vic “
e _
= | _
3 _ _
2 | sowaw |
7 | 0¢
| |
| |
S | |
S SENYEL 1ST _
o 80¢ | cie _
= | _
“ _. llllllll \...nI.INI IIIIIIIIIIIIIIII
012 s07

gw

U.S. Patent

U.S. Patent Feb. 28, 2012 Sheet 3 of 5 US 8,127,354 B1

LOAD LIST OF KNOWN

302 | VULNERABLE LIBRARIES 300
INCLUDING NAME AND
VERSION

304 |FOR EACH PROCESS RUNNING
ON LOCAL SYSTEM, OBTAIN
LIST OF IMPORTED LIBRARIES

306
FOR EACH IMPORTED LIBRARY
308 IS LIBRARY NAME IN
LIST OF KNOWN VULNERABLE
LIBRARIES?
319 | OBTAIN LIBRARY VERSION
FROM RESOURCE SECTION OF
LIBRARY
IS LIBRARY
VERSION GREATER
312 THAN MINIMUM KNOWN
NON-VULNERABLE VERSION
AND LESS THAN OR EQUAL TO
KNOWN
VULNERABLE
VERSION?
YES
314

REPORT VULNERABILITY

— FIGURE 3

END

U.S. Patent Feb. 28, 2012 Sheet 4 of 5 US 8,127,354 B1

402

404

SERVER

402

402

406

-

e |
FE Y]
L]

CLIENT

408

404 SR

0 - m|
C B =
CLIENT CLIENT

406

400

FIGURE 4

U.S. Patent Feb. 28, 2012 Sheet 5 of 5 US 8,127,354 B1

520
— NETWORK (535)
510 516 514 18 534
CPU 10 COMMUNICATION
ADAPTER ADAPTER

512
524 2¢2 536 538
USER
DISPLAY
e | [s]
N [

p

FIGURE 5

T U
526

53 928

US 8,127,354 Bl

1

SYSTEM, METHOD, AND COMPUTER
PROGRAM PRODUCT FOR IDENTIFYING
VULNERABILITIES ASSOCIATED WITH
DATA LOADED IN MEMORY

FIELD OF THE INVENTION

The present invention relates to vulnerability assessment,

and more particularly to identifying vulnerabilities for reme-
diation purposes.

BACKGROUND

In computer security, the term vulnerability refers to a
weakness 1n a computer system that allows an attacker to
violate the integrity of that system. Vulnerabilities may result
from software bugs, a computer virus or other malware, a
script code 1njection, a structured query language (SQL)
injection, and/or other techniques. A vulnerability may exist
in theory, or may have a known instance of an exploit.

Traditional vulnerability scanning, assessment, and man-
agement soltware has been implemented in a network-centric
tashion. Although host-based vulnerability scanning, assess-
ment, and management software exists, these host-based
implementations are typically managed implementations.
Additionally, these host-based implementations typically
have a patch management or policy violation focus.

Such managed implementations often require regular
updating and maintenance. Furthermore, these implementa-
tions often evaluate dormant, unused applications without
considering the possibility of these applications never open-
ing an attack vector to exploit a vulnerability of the host
system. There 1s thus a need for overcoming these and/or
other 1ssues associated with the prior art.

SUMMARY

A system, method, and computer program product are
provided for identifying vulnerabilities associated with data
loaded 1n memory. In operation, a subset of data that 1s loaded
in memory 1s 1dentified. Additionally, the subset of data 1s
compared to a list of known data. Furthermore, there 1s a
reaction based on the comparison.

BRIEF DESCRIPTION OF THE DRAWINGS

FI1G. 1 shows a method for identifying vulnerabailities asso-
ciated with data loaded in memory, in accordance with one
embodiment.

FIG. 2 shows a system for identifying vulnerabilities asso-
ciated with data loaded 1n memory, 1n accordance with one
embodiment.

FIG. 3 shows a method for identifying vulnerabilities asso-
cliated with data loaded in memory, 1n accordance with
another embodiment.

FIG. 4 1llustrates a network architecture, in accordance
with one embodiment.

FIG. 5 shows a representative hardware environment that
may be associated with the servers and/or clients of FIG. 4, in
accordance with one embodiment.

DETAILED DESCRIPTION

FIG. 1 shows a method 100 for identifying vulnerabilities
associated with data loaded 1n memory, in accordance with
one embodiment. As shown, a subset of data that 1s loaded 1in

memory 1s 1dentified. See operation 102.

10

15

20

25

30

35

40

45

50

55

60

65

2

In this case, the subset of data loaded 1n memory may
include any data loaded into memory as a result of opening or
executing a software application, computer program, and/or
file. For example, 1n various embodiments, the subset of data
may include one or more libraries [e.g. dynamic-link library
(DLL) files, etc.] loaded into memory as a result of opening or
executing an application, one or more files loaded into
memory as a result of opening or executing an application,
one or more executables loaded 1into memory as a result of
opening or executing an application, and/or any other subset
of data that meets the above definition.

In these cases, the application, computer program, and/or
file may include any items that load data into memory as a
result of being executed or opened. For example, 1n various
embodiments, the application may include a word processor
application, a spread sheet generation application, a media
player application, and/or any other application, computer
program, and/or file.

Once the subset of data 1s 1dentified, the subset of data 1s
compared to a list of known data. See operation 104. In one
embodiment, the list of known data may include known data
that 1s known to be safe.

In this case, the comparison may include comparing at least
one name of the subset of data with at least one name of the
known data to determine if a match exists. Subsequently, 1f 1t
1s determined that the match exists, the comparison may
turther include comparing a version of the subset of data with
a minimum version of the known data that 1s known to be safe.

In another embodiment, the known data may be data that 1s
known to be unsafe. In this case, 1f 1t 1s determined that the
match exists, the comparison may further include comparing
a version of the subset of data with a version of the known data
that 1s known to be unsafe. As an option, the subset of data and
the list of known data may be, 1dentified utilizing a plurality of
file names and/or version 1dent1ﬁers

Once the subset of data 1s compared to the list of known
data, there 1s a reaction based on the comparison. See opera-
tion 106. The reaction may include any number of actions.

For example, in one embodiment, the reaction may include
reporting a vulnerability. In another embodiment, the reaction
may include blocking access to the subset of data. In still
another embodiment, the reaction may include replacing or
updating the subset of data.

As an option, the reaction may be carried out 1f the version
ol the subset of data 1s less than the minimum version of the
known data that 1s known to be safe. In this case, the reaction
may include replacing the subset of data with data that 1s of a
version that 1s known to be safe. In this case, the reacting may
also include prompting a user to 1nitiate such replacement.

More illustrative information will now be set forth regard-
ing various optional architectures and features with which the
foregoing technique may or may not be implemented, per the
desires of the user. It should be strongly noted that the fol-
lowing information 1s set forth for illustrative purposes and
should not be construed as limiting 1n any manner. Any of the
following features may be optionally incorporated with or
without the exclusion of other features described.

FIG. 2 shows a system 200 for identifying vulnerabilities
associated with data loaded 1n memory, 1n accordance with
one embodiment. As an option, the system 200 may be imple-
mented 1n the context of the environment of F1G. 1. Of course,
however, the system 200 may be implemented 1n any desired
environment. It should also be noted that the aforementioned
definitions may apply during the present description.

In operation, a host device 202 loads a subset of data 1nto
memory 204 as a result of executing an associated software
application. Logic 206 1s then utilized to 1identify the subset of

US 8,127,354 Bl

3

data 1n memory 204. In this case, the subset of data may be
identified by 1dentifying at least one running process associ-
ated with the application. As an option, the subset of data may
be 1dentified by 1dentifying at least one imported library asso-
ciated with the at least one running process.

Although the logic 206 1s illustrated 1n FIG. 2 as being
located on the host device 202, the logic 206 1s not limited to
being located on the host device 202. In various embodi-
ments, the logic 206 may include host-based logic (i.e.
located on the host device 202) or network-based logic. For
example, the logic 206 may include logic provided by a server
208 over a network 210.

It should be noted that the host device 202 may include any
device capable of executing an application. For example, 1n
various embodiments, the host device 202 may include a
desktop computer, lap-top computer, hand-held computer,
mobile phone, personal digital assistant (PDA), peripheral
(e.g. printer, etc.), any component ol a computer, and/or any
other type of logic. Additionally, the network 210 may
include a local area network (LAN), a wireless network, a
wide area network (WAN) such as the Internet, peer-to-peer
network, etc.

Once the subset of data stored 1n the memory 204 1s 1den-
tified, the subset of data 1s compared to a list of known data
212 utilizing the logic 206. In various embodiments, the
comparison may be mitiated utilizing different techniques.
For example, in one embodiment, the comparison may be
performed i response to the subset of data being loaded in the
memory 204.

In another embodiment, the comparison may be performed
on-demand. In still another embodiment, the comparison may
be performed 1n accordance with a schedule. In either case,
the list of known data 212 may be a list stored on the host
device 202 or on the server 208.

In one embodiment, the list of known data 212 may be
provided to the host device 202 from the server 208. As an
option, the list of known data 212 may be provided to the host
device 202 periodically. For example, the list of known data
212 may be provided to the host device 202 at predetermined
time intervals. In this case, the time 1ntervals may be user
configurable (e.g., by auser of the hostdevice 202 or by a user
at the server 208, etc.).

As another option, the list of known data 212 may be
provided to the host device 202 upon an update to the list 212.
For example, when data in the list of known data 212 1is
updated, the server 208 may send the list 212 to the host
device 202. As yet another option, the list may be automati-
cally sent to the host device 202 upon the execution of an
application.

In another embodiment, the list of known data 212 may be
stored on the server 208 and any processing may be imple-
mented on the server 208. For example, the server 208 may
identily the subset of data 1n the memory 204 of the host
device 202. In this case, the subset of data may be communi-
cated to the server 208 from the host device 202.

The server 208 may then compare the subset of data to the
list of known data 212 utilizing the logic 206 located on the
server 208. Regardless of whether the comparison 1s 1imple-
mented on the server 208 or the host device 202, the result of
the comparison 1s formulated into an output 214. This output
214 may then be utilized to determine a reaction based on the
comparison.

As an example implementation of the system 200, a soft-
ware patch may be released by a software provider. In this
case, the patch may resolve a vulnerability that 1s present 1n

10

15

20

25

30

35

40

45

50

55

60

65

4

one or more files (e.g. a DLL, etc.) loaded 1n the memory 204.
Thus, the patch may provide a new or updated version of
those files.

The logic 206 may include a vulnerability assessment tool,
either host-based or network-based, that determines the loca-
tion of the files 1 the memory 204 based on enumerating
processes, then enumerating loaded libraries, and may deter-
mine a version number of the files loaded 1n the memory 204.
I1 the files 1n the memory 204 have a version that 1s lower than
the files deployed by the patch, the host device 202 may be
assessed as vulnerable due to having the vulnerable code
actively loaded 1n the memory 204.

In addition, the logic 206 may be utilized to determine the
location of the files on a disk (not shown) from a registry and
may determine 11 the version of the file on the disk 1s older
nan the patched file based on the version. It the file version of
ne file on the disk 1s lower than the file deployed by the patch,
ne system may also be assessed as vulnerable due to having
e vulnerable code on the disk.

In this way, the logic 206 will be able to determine whether
a vulnerable process 1s actively running as well as whether a
vulnerable file 1s stored on a disk. Furthermore, in one
embodiment, vulnerabilities may be detected 1n systems uti-
lizing a side-by-side assembly implementation (e.g.
Microsoit Windows Side-by-Side, etc.).

A side-by-side application compatibility framework may
allow different versions of libraries to co-exist on the same
system. In these cases, the different versions may contain
different security vulnerabilities. Thus, the security vulner-
abilities for each of the different versions may be determined
and remedied utilizing data loaded in memory as a result of
running these different versions.

For example, the subset of data may include a first subset of
data and a second subset of data. In this case, the first subset
set o data may be loaded into the memory 204 as a result of
executing a {irst application. Additionally, the second subset
of data may be loaded into the memory 204 as a result of
executing a second application.

Subsequently, the first and the second subset of data may be
assessed for vulnerabilities. In other words, the first subset of
data and the second subset of data may both be compared to
the list of known data. An appropriate reaction may then be
implemented based on this comparison.

FIG. 3 shows a method 300 for identifying vulnerabilities
associated with data loaded 1n memory, 1n accordance with
another embodiment. As an option, the method 300 may be
implemented 1n the context of the architecture and environ-
ment of FIGS. 1-2. Of course, however, the method 300 may
be carried out 1n any desired environment. Again, the afore-
mentioned definitions may apply during the present descrip-
tion.

As shown, a list of known vulnerabilities 1s loaded. See
operation 302. In this case, the list may include name infor-
mation and/or version information. For example, the list may
include one or more names of files, applications, and/or other
data.

Furthermore, the list may include version information
associated with such files, applications, and/or other data. In
this case, the version information may include version num-
bers for outdated or vulnerable 1items, version numbers for
updated 1tems, a range of version numbers for vulnerable
items, a range of version numbers for non-vulnerable 1tems,
and/or any other version information.

In one embodiment, the list may include names, version
numbers, default locations, sizes (e.g. a 32-bitlibrary, a 64-bit
library, etc.), types, language information, hashes, and/or
metadata information for all files that may be vulnerable. In

t
t
t
t.

US 8,127,354 Bl

S

this case, the list may be loaded onto a host system from a
server. Furthermore, the list may be updated continuously,
periodically, on demand, etc.

Once the list of known vulnerabilities 1s loaded to a host
system, a list of imported libraries 1s obtained for every pro-
cess running on the host system. See operation 304. In this
case, the imported libraries may include any library file and/
or executable that 1s imported mnto memory as a result of an
associated process runmng on the host system.

The imported libraries may be obtained utilizing an oper-
ating system application programming interface (API) and/or
other logic. For example, the imported libraries may be
obtained utilizing an API for determining all processes run-
ning on the host system. For every running process, an import
table may be utilized to determine the list of imported librar-
1e8.

Each of these imported libraries (e.g. each list of imported
libraries, etc.) may then be compared to the list of known
vulnerabilities. Thus, for each imported library, it 1s deter-
mined whether the library name 1s 1n the list of known vul-
nerable libraries. See operations 306-308.

If 1t 1s determined that a library name in the list of imported
libraries 1s 1n the list of known vulnerable libraries, a library
version 1s obtained from a resource section of that library. See
operation 310. It 1s then determined whether the imported
library version 1s greater than a minimum known non-vulner-
able version and less than or equal to a known vulnerable
version. See operation 312.

If 1t 1s determined that the imported library version 1s
greater than a minimum known non-vulnerable version and
less than or equal to a known vulnerable version, the imported
library may be deemed vulnerable. In this case, the vulner-
ability may be reported. See operation 314.

In one embodiment, the reporting may include notifying a
user of the host system. In another embodiment, the reporting,
may include notilying a server associated with the host sys-
tem. In still another embodiment, a system adminmistrator may
be notified. The vulnerability may be logged as part of the
reporting.

In addition to reporting the vulnerability, further reactions
may be implemented by the host system and/or a server
associated with the host system. In this case, the reaction may
include prohibiting use of an application associated with the
vulnerability. As another option, the vulnerable library may
be updated.

It should be noted that, 1n various embodiments, different
techniques may be utilized 1n operation 312 to determine
whether the imported libraries are vulnerable. For example, in
one embodiment, 1t may be determined whether the version of
the imported library 1s different than a version of a known
vulnerable version. In another embodiment, 1t may be deter-
mined whether the version of the imported library i1s an
unknown version.

Furthermore, 1n one embodiment, the method 300 may be
implemented in conjunction with a vulnerability scan of a
disk (e.g. a hard drive, etc.) of the host system. For example,
data (e.g. dynamic-link library files, etc.) that 1s stored on a
disk may be 1dentified. This data may then be compared to the
list of known data.

Furthermore, there may be a reaction based on the com-
parison of the data stored on the disk to the list of known data.
In this case, the reaction may include any appropriate action.
For example, in various embodiments, the reaction may
include updating the vulnerable data, prohibiting the use of
the vulnerable data, and/or any other appropriate action

FI1G. 4 illustrates a network architecture 400 1n which the
various architecture and/or functionality of the various pre-

10

15

20

25

30

35

40

45

50

55

60

65

6

vious embodiments may be implemented. As shown, a plu-
rality of networks 402 1s provided. In the context of the
present network architecture 400, the networks 402 may each
take any form including, but not limited to a local area net-
work (LAN), a wireless network, a wide area network (WAN)
such as the Internet, peer-to-peer network, etc.

Coupled to the networks 402 are servers 404 which are
capable of communicating over the networks 402. Also
coupled to the networks 402 and the servers 404 1s a plurality
of clients 406. Such servers 404 and/or clients 406 may each
include a desktop computer, lap-top computer, hand-held
computer, mobile phone, personal digital assistant, peripheral
(e.g. printer, etc.), any component of a computer, and/or any
other type of logic. In order to facilitate communication
among the networks 402, at least one gateway 408 1s option-
ally coupled therebetween.

FIG. 5 shows a representative hardware environment that
may be associated with the servers 404 and/or clients 406 of
FIG. 4, in accordance with one embodiment. Such figure
illustrates a typical hardware configuration of a workstation
in accordance with one embodiment having a central process-
ing umt 510, such as a microprocessor, and a number of other
units interconnected via a system bus 312.

The workstation shown 1 FIG. 5§ includes a Random
Access Memory (RAM) 514, Read Only Memory (ROM)
516, an I/O adapter 518 for connecting peripheral devices
such as disk storage unmits 520 to the bus 512, a user interface
adapter 522 for connecting a keyboard 524, a mouse 526, a
speaker 528, a microphone 532, and/or other user interface
devices such as a touch screen (not shown) to the bus 512,
communication adapter 534 for connecting the workstation to
a communication network 535 (e.g., a data processing net-
work) and a display adapter 536 for connecting the bus 512 to
a display device 538.

The workstation may have resident thereon any desired
operating system. It will be appreciated that an embodiment
may also be implemented on platiorms and operating systems
other than those mentioned. One embodiment may be written
using JAVA, C, and/or C++ language, or other programming
languages, along with an object oriented programming meth-
odology. Object oriented programming (OOP) has become
increasingly used to develop complex applications.

Of course, the various embodiments set forth herein may
be implemented utilizing hardware, software, or any desired
combination thereol. For that matter, any type of logic may be
utilized which 1s capable of implementing the various func-
tionality set forth above.

While various embodiments have been described above, 1t
should be understood that they have been presented by way of
example only, and not limitation. Thus, the breadth and scope
of a preferred embodiment should not be limited by any of the
above-described exemplary embodiments, but should be
defined only 1n accordance with the following claims and
their equivalents.

What 1s claimed 1s:

1. A computer program product embodied on a non-tran-
sitory computer readable storage medium for performing
operations, comprising:

identifying a subset of data that 1s loaded 1n memory as a

result of executing an associated software application;
comparing the subset of data to a list of known data, which
includes comparing at least one name of the subset of
data with at least one name of the known data to deter-
mine 1f a match exists, and wherein 1t 1t 1s determined
that the match exists, the comparison further includes
comparing a version of the subset of data with a mini-
mum version of the known data known to be safe; and
reacting based on the comparison.

US 8,127,354 Bl

7

2. The computer program product of claim 1, wherein the
subset of data 1s loaded 1n memory as a result of an associated
application being executed.

3. The computer program product of claim 1, wherein the
comparison 1s performed, in response to the subset of data
being loaded 1n memory.

4. The computer program product of claim 1, wherein the
comparison 1s performed on-demand.

5. The computer program product of claim 1, wherein the
comparison 1s performed in accordance with a schedule.

6. The computer program product of claim 1, wherein the
subset of data and the list of known data are 1dentified utiliz-
ing a plurality of file names and version 1dentifiers.

7. The computer program product of claim 1, wherein the
list of known data 1s updated on a periodic basis.

8. The computer program product of claim 1, wherein the
subset of data 1s 1dentified by 1dentifying at least one running
pProcess.

9. The computer program product of claim 8, wherein the
subset of data 1s 1dentified by 1dentifying at least one imported
library associated with the at least one running process.

10. The computer program product of claim 1, wherein the
list of known data includes known data that 1s known to be
safe.

11. The computer program product of claim 1, wherein the
reacting includes reporting a vulnerability.

10

15

20

25

8

12. The computer program product of claim 1, wherein the
reacting includes blocking access to the subset of data.

13. The computer program product of claim 1, and further
comprising computer code for identifying data that 1s stored
on a disk, comparing the data stored on the disk to the list of
known data, and reacting, based on the comparison of the data
stored on the disk to the list of known data.

14. The computer program product of claim 1, wherein the
subset of data includes a dynamic-link library (DLL) file.
15. The computer program product of claim 1, wherein the
subset of data includes a first subset of data and a second
subset of data, the first subset of data being loaded into
memory as a result of executing a first application and the
second subset of data being loaded mnto memory as a result of
executing a second application.
16. A method, comprising:
identifying a subset of data that 1s loaded 1n memory as a
result of executing an associated software application;
comparing the subset of data to a list of known data, which
includes comparing at least one name of the subset of
data with at least one name of the known data to deter-
mine 1f a match exists, and wherein 1t 1t 1s determined
that the match exists, the comparison further includes
comparing a version of the subset of data with a mini-
mum version of the known data known to be sate; and
reacting based on the comparison.

G ex x = e

	Front Page
	Drawings
	Specification
	Claims

