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CONTROL-FLOW PREDICTION USING
MULTIPLE INDEPENDENT PREDICTORS

STATEMENT REGARDING GOVERNMENT
SPONSORED RESEARCH

The 1invention was made with government support under
F33615-03-C-4106 awarded by the Air Force. Thus, the U.S.
Government has certain rights to the invention.

BACKGROUND

In a computer architecture, a branch predictor 1s a compo-
nent or a portion of a processor that determines whether a
conditional branch in the mstruction tlow of a program 1is
likely to be taken or not taken. This 1s called branch predic-
tion. Branch predictors are important for today’s modern,
superscalar processors for achieving high performance. Such
arrangements facilitate processors to fetch and execute
instructions without waiting for a branch to be resolved. Most
pipelined processors perform some type of branch prediction
as they can guess the address of the next instruction to fetch
betfore the current instruction has been executed.

Branch predictors may be local or global, and can be sepa-
rate devices and/or part of processors and/or cores. Local
branch predictors generally maintain two tables of two-bit
entries. For example, the first table 1s the local branch history
table. Such table 1s indexed by the low-order bits of each
branch instruction’s address, and 1t can record the taken/not-
taken history of the n-most recent executions of the branch.
The other table can be the pattern history table. This table
contains bimodal counters, and its index may be generated
from the branch history in the first table. To predict a branch,
the branch history 1s looked up, and that history 1s then used
to look up a bimodal counter which makes a prediction.

Global branch predictors make use of the fact that the
behavior of many branches 1s strongly correlated with the
history of other recently taken branches. For example, a
single shift register can be updated with the recent history of
every branch executed, and this value may be used to index
into a table of bimodal counters. Generally, global branch
prediction may be less accurate than the local prediction.

Conventional branch predictors may consist of multiple
distinct types of predictors. In particular, this can be some
combination of local and global predictors. However, under a
conventional architecture, each distinct predictor generally
makes a prediction for every branch, and then the aggregate
predictor selects from among the various predictions.

In the expected later-developed distributed architectures, it
may be that a variable number of processors can collaborate
to accelerate single programs. In that case, one problem that
may need to be addressed 1s how the predictions are made to
keep many 1nstructions in flight among all of the participating,
processors. These participating processors may, at some time,
collude to accelerate one program, and, at other times,
execute separate, distinct programs. In the latter mode, 1t may
be 1mportant for each of the processors to have their own
predictor for the independent jobs they are executing.

One possible solution to the above described problem that
has been the subject of the current research 1s to designate one
of the participating processors to be the “master processor”,
which 1s responsible for making all of the predictions. In such
case, all of the other participating processors’ branch predic-
tors would be unused. This case could create two unappealing,
solutions. In one case, €.g., the predictor 1s made large enough
to drive the predictions for the large configuration in which
many processors are participating, and many instructions are
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in tlight. In that case, the predictor 1s too large (and therefore
potentially slow) for when the processors are running in
“independent” mode, with their own respective solftware
tasks. In the other case, the predictor 1s tuned for independent

mode, and 1s therefore smaller, but 1n that case 1t 1s undersized
for “collaborative” mode.

BRIEF DESCRIPTION OF THE FIGURES

The foregoing and other features of the present disclosure
will become more fully apparent from the following descrip-
tion and appended claims, taken in conjunction with the
accompanying drawings. Understanding that these drawings
depict only several examples 1n accordance with the disclo-
sure and are, therefore, not to be considered limiting of 1ts
scope, the disclosure will be described with additional speci-
ficity and detail through use of the accompanying drawings,
in which:

FIG. 1 1s a schematic illustration of a block diagram of a
computing system arranged in accordance with some
examples;

FIG. 2 1s a schematic 1llustration of a block diagram of a
processor 1n accordance with some examples;

FIG. 3 1s a schematic 1llustration of a block diagram of a
prediction scheme 1n accordance with some examples;

FIG. 4 1s a schematic 1llustration of a block diagram of the
prediction scheme in accordance with some additional
examples;

FIG. 5 1s a flow and block diagram 1llustrative of example
systems and methods;

FIG. 6a 1s a schematic 1llustration of a block diagram of a
predictor design in accordance with some examples;

FIG. 65 1s a schematic 1llustration of a block diagram of a
prediction scheme as implemented on an example multi-core
processor; and

FIG. 7 1s a flow and block diagram 1illustrative of example
systems and methods arranged to execute the procedures that
may be stored as computer instructions on computer-acces-
sible medium, all arranged 1n accordance with the present
disclosure.

DETAILED DESCRIPTION

In the following detailed description, reference 1s made to
the accompanying drawings, which form a part hereof In the
drawings, similar symbols typically identily similar compo-
nents, unless context dictates otherwise. The illustrative
examples described in the detailed description, drawings, and
claims are not meant to be limiting. Other examples may be
utilized, and other changes may be made, without departing
from the spirit or scope of the subject matter presented herein.
It will be readily understood that the aspects of the present
disclosure, as generally described herein, and 1llustrated 1n
the Figures, can be arranged, substituted, combined, sepa-
rated, and designed 1n a wide variety of different configura-
tions, all of which are implicitly contemplated herein.

This disclosure 1s drawn to methods, apparatus, computer
programs and systems related to branch prediction. Certain
preferred embodiments of one such system are illustrated in
the figures and described below. Many other embodiments
are also possible, however, time and space limitations prevent
including an exhaustive list of those embodiments 1n one
document. Accordingly, other embodiments within the scope
of the claims will become apparent to those skilled 1n the art
from the teachings of this patent.

Briefly stated, the present disclosure generally describes
computing systems with a multi-core processor comprising
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one or more branch predictor arrangements. The branch pre-
dictor are configured to predict a single and complete flow of
program 1nstructions associated therewith and to be per-
formed on at least one processor core of the computing sys-
tem. Overall processor performance and physical scalability
may be improved by the described methods.

The figures include numbering to designate illustrative
components of examples shown within the drawings, includ-
ing the following: a computer system 100, a processor 101, a
system bus 102, an operating system 103, an application 104,
a read-only memory 105, a random access memory 106, a
disk adapter 107, a disk unit 108, a communications adapter
109, an interface adapter 110, a display adapter 111, a key-
board 112, amouse 113, a speaker 114, a display monitor 115,
an 1nstruction data tlow 170, a plurality of heterogeneous
processor cores 201-204, branch predictors 205-208, condi-
tional branches 209-212, a hash function 213, a global history
table 215, and a predicted address 217.

FIG. 1 1s a schematic illustration of a block diagram of a
computing system 100 arranged in accordance with some
examples. Computer system 100 1s also representative of a
hardware environment for the present disclosure. For
example, computer system 100 may have a processor 101
coupled to various other components by a system bus 102.
Processor 101 may be a heterogeneous multi-core processor
with a plurality of branch predictors 205-208 arranged in
accordance with the examples herein. A more detailed
description of processor 101 1s provided below 1n connection
with a description of the example shown in FIG. 2. Referring
to FI1G. 1, an operating system 103 may run on processor 101,
and provide control and coordinate the functions of the vari-
ous components of FIG. 1. An application 104 in accordance
with the principles of examples of the present disclosure may
execute 1n conjunction with operating system 103, and pro-
vide calls and/or 1nstructions to operating system 103 where
the calls/instructions implement the various functions or ser-
vices to be performed by application 104.

Referring to FIG. 1, a read-only memory (“ROM™) 105
may be coupled to system bus 102, and can include a basic
input/output system (“BIOS”) that can control certain basic
functions of computer device 100. A random access memory
(“RAM™) 106 and a disk adapter 107 may also be coupled to
system bus 102. It should be noted that software components,
including operating system 103 and application 104, may be
loaded into RAM 106, which may be computer system’s 100
main memory for execution. A disk adapter 107 may be
provided which can be an integrated drive electronics
(“IDE”) or parallel advanced technology attachment
(“PATA”) adapter, a serial advanced technology attachment
(“SATA”) adapter, a small computer system interface
(“SCSI”) adapter, a universal serial bus (“USB™) adapter, an
IEEE 1394 adaptor, or any other appropriate adapter that
communicates with a disk unit 108, e.g., disk drive.

Referring to FIG. 1, computer system 100 may further
include a communications adapter 109 coupled to bus 102.
Communications adapter 109 may interconnect bus 102 with
an external network (not shown) thereby facilitating com-
puter system 100 to communicate with other similar and/or
different devices.

Input/Output (“1/0”) devices may also be connected to
computer system 100 via a user interface adapter 110 and a
display adapter 111. For example, a keyboard 112, a mouse
113 and a speaker 114 may be interconnected to bus 102
through user interface adapter 110. Data may be provided to
computer system 100 through any of these example devices.
A display monitor 115 may be connected to system bus 102
by display adapter 111. In this example manner, a user can
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provide data or other information to computer system 100
through keyboard 112 and/or mouse 113, and obtain output
from computer system 100 via display 115 and/or speaker
114.

The various aspects, features, embodiments or implemen-
tations of examples of the present disclosure described herein
can be used alone or 1n various combinations. The method
examples of the present disclosure can be implemented by
software, hardware or a combination of hardware and soft-
ware (e.g., solftware stored on a computer-accessible
medium).

FIG. 2 1s a schematic illustration of a block diagram of a
processor 1n accordance with some examples. Referring to
FIG. 2, processor 101 1s depicted according to an illustrative
example. Within processor 101, a plurality of heterogeneous
processor cores 201-204 can be provided, which each may
have different sizes, performance capabilities, and hardware
attributes. For simplicity of illustration, four heterogeneous
processor cores 201-204 are depicted in FIG. 2, although it 1s
to be appreciated that any number of processor cores may be
included. For example, processor core 201 1s depicted larger
than the other cores, illustrating that it can have a higher
performance capability than the other processor cores 202-
204.

Associated with each of processor cores 201-204 1s a
respective one of branch predictors 205-208. As discussed
above, branch predictors 205-208 may be local predictors (L),
global predictors ((G), or any combination of distinct local
and/or global predictors. For example, branch predictor 205 1s
shown within FIG. 2 as having a combination of a local
predictor (L) and a global predictor (G). Alternatively, branch
predictor 206 1s shown as having a local predictor (L).

FIG. 3 1s a schematic illustration of a block diagram of a
prediction scheme 1n accordance with some examples. FIG. 3
also 1llustrates a flow diagram as will be described. Each of
processor cores 201-204 within processor 101 1s configured
to execute a computer software istruction data flow 170 from
application 104. This instruction data flow 170 may include
conditional branches 209-212. Each of conditional branches
209-212 can represent a point 1n application 104 where the
flow of control may be altered. In particular, this example of
the prediction scheme can be configured for a computing
environment, where application 104 can have a block-based
instruction set architecture. For example, each prediction can
represent an 1ndividual block, each of which generates one
branch (exit) to the next block (as opposed to predicting
individual branches). Application 104 may be a program writ-
ten 1n machine code, assembly language, or a high-level pro-
gramming language. In the case of a high-level programming
language, branches can take the form of conditional state-
ments, subroutine calls, or GOTO statements. An instruction
that causes a branch, 1.e., a branch instruction, can be taken or
not taken. For example, 1f a branch 1s not taken, the tflow of
control 1s likely unchanged, and the next instruction to be
executed 1s the instruction immediately following the current
instruction in memory. If the branch 1s taken, the next instruc-
tion to be executed 1s an instruction at some other place 1n
memory or in another storage device.

As discussed herein, each of conditional branches 209-212
can be mapped to the respective one of processor cores 201 -
204 using, ¢.g., a hash function 213. Hash function 213 can be
a well-defined procedure or mathematical function which
converts a large, possibly variable-sized amount of data into
smaller data, e.g., one or more single integers that may serve
as an index 1nto an array. The values returned by hash function
213 may be called hash values, hash codes, hash sums,
hashes, etc. When a conditional branch 1s mapped to a respec-
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tive processor core, 1t can be consequently predicted by the
associated branch predictor. Thus, by mapping each of con-
ditional branches 209-212 to the respective one of processor
cores 201-204, each of branch predictors 205-208 1s likely
responsible for only a subset of the overall branches that 5
application 104 can i1ssue over the course of 1ts execution.

After a particular one of conditional branches 209-212 has
been mapped to the respective one of processor cores 201-204
using hash function 213, a prediction can be produced. As
discussed herein, in a block-based instruction set architec- 10
ture, these predictions can represent individual blocks, each
of which possibly generating one branch to the next block.

FIG. 4 1s a schematic illustration of a block diagram of the
prediction scheme 1n accordance with some additional
examples. Referring to FIG. 4, when a prediction 214 1ssues, 15
a predicted address 217 1s mapped to one of branch predictors
205-208 using hash function 213. For example, the predicted
address 217 can be mapped to branch predictor 207. Then, a
recent branch history table 215 of that predictor and predicted
address 217 may be routed to the particular one of processor 20
cores 201-204 that had previously been assigned the branch
associated with the predicted address 217, e.g., shown as
being routed to processor core 202. The size of recent branch
history table may be equal to the depth of the history tracked
multiplied by the number of bits per history entry. The par- 25
ticular one of the processors can receive the state data, and
may use such data to 1ssue subsequent branch predictions.
Thus, the plurality of branch predictors 205-208 can act as a
single logical predictor, which can have the effect of improv-
ing the processor performance while also improving the 30
physical scalability of processor 101.

FIG. 5 15 a flow and block diagram 1llustrative of example
systems and methods arranged 1n accordance with the present
disclosure. As discussed herein, computer system 100
includes processor 101, on which the example procedures as 35
described may be executed. In particular, conditional
branches (e.g., branches 209-212) can be mapped to the
respective one of a plurality of processor cores (e.g.,201-204)
using a hash function (e.g., 213). For example, procedure 301
1s arranged to map branches to processor cores using a hash 40
function. Next, at procedure 302, the respective branch pre-
dictor associated (e.g., one of predictors 205-208) with one of
the plurality of processor cores can 1ssue a prediction, which
can include or be an address to a particular block of code (e.g.,

a block-based instruction set architecture). Then, at proce- 45
dure 303, after a prediction has been 1ssued, the predicted
address 1s mapped to a predictor (e.g., a particular one of the
plurality of predictors) using the hash function. Next at pro-
cedure 304, the recent branch history table (e.g., 215, which
corresponds to a specific predictor), and the previously pre- 50
dicted address (e.g., 217) are routed to the processor core
(e.g., the specific processor core that had been assigned the
block associated with the predicted address). In some
examples, predictors 205-208 and processor cores 201-204
may be co-located, while 1n other examples, the predictors 55
205-208 and processor cores 201-204 may be located at dii-
terent locations on the multi-core processor 101. Further, at
procedure 305, the processor receives state data, and 1ssues
subsequent predictions based on the recerved state data. Fur-
ther, the above example may be repeated throughout the 60
execution of the application program (procedures 301-305).

FIG. 6a shows a schematic 1llustration of a block diagram
of a predictor design 1n accordance with some examples. For
example, a global history (“GHist”) data 602 may be com-
bined with a program counter (“PC””) value 618 at a summer 65
block 604, resulting in a combined data. Local (L") exit 612
datamay be obtained from program counter 618, while global

6

(“G”) exat 610 data may be obtained from the output of block
604. In some examples, a tournament (“I””) predictor 608
may also receive data from block 604, and make a selection
between local exit 612 and global exit 610 at multiplexor
block 614, resulting in exit data 616. Exit data 616 may be
added to the global history data 602, resulting 1n updated
global history data 622 that may then be used to make subse-
quent predictions.

Exit data 616 may also be appended with the program
counter value 618 at a block 620. When appended, such data
may take the form of a plurality of different types of branches,
for example, a call target butter (“C'TB”) 632, a return address
stack (“RAS”) top 630, a next sequential branch (“NEXT™)
628, and/or a branch target bufter (“BTB”) 626. Type data 624
may select among the plurality of types of branches at a
multiplexor block 634. This selection may be represented in
the form of a predictor data 636. Predictor data 636, updated
global history data 622, and/or a return address stack value
606 (which may i1ndicate the location of the top of the RAS)
may then be used 1n subsequent predictions.

In some examples, RAS top 630 and RAS value 606 may
be derived from the same logical RAS. The RAS may be
interleaved across some or all of the processor cores 201-204
on the multi-core processor 101. In these examples, when a
new address 1s added to the stack, the particular processor
core that predicts the corresponding branch may send an
address to the particular processor core where the current
RAS top 630 1s located.

FIG. 65 show a schematic 1llustration of a block diagram of
an example of a prediction scheme as implemented on an
example multi-core processor, and should be discussed 1n
conjunction with FIG. 6a. For example, the example multi-
core processor may have four cores 201-204. Predictor(s)
205-208 can be associated with each core 201-204 with
design characteristics as described above with reference to
FIG. 6a. A value of program counter 618 1s shown in FIG. 65
in connection with, for example, processor core 201 and
predictor 205. As has been described 1n more detail above 1n
connection with FIG. 6a, e.g., predictor 205 may generate
predictor data 636, updated global history data 622, and/or
return address stack value 606. To make subsequent predic-
tions with such data, next block program counter value 636
may be routed to a hash function 213, which also may have a
number of cores data 668. The hash function 213 can then
generate a target core data 684, whereas the data from the
previous prediction may be routed, for example, to core 204.
Subsequently, core 204 may generate data (e.g., data 636,
622, and/or 606), which may then be routed to another core,
as further branch instructions can be executed on or using the
other core.

FIG. 7 1s a flow and block diagram 1llustrative of example
systems and methods arranged to execute the procedures that
may be stored as computer mnstructions on computer-acces-
sible medium. For example, at procedure 702 (Branch X
Arrives at Core O), a branch 1nstruction may arrive at a core
within the multi-core processor. Then, at procedure 704 (Pre-
dict Exit), an exat can be predicted. The exit may be added to
the local exit predictor at procedure 708 (Add Exit to Local
Exit Predictor), and the branch exit can be added to the global
exi1t predictor at procedure 710 (Add Exit to Global History).
A target predictor index may be generated to a plurality of
different types of branches at procedure 706 (From Target
Predictor Index). From this index, the system can be executed
or configured to then look up a plurality of different types of
branches, for example, C1B at procedure 714 (Lookup CTB,
Use), BTB at procedure 716 (Look up BTB, use), RAS at
procedure 718 (Use RAS), and/or NEXT at procedure 720
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(Use Next block). The type data may then be looked up at
procedure 712 (Look up Type Predictor), and used to select
among the plurality of different types of branches at proce-
dure 732 (Use Type to Select Next Block Address), thus likely
obtaining the corresponding next block address. Such data
may be used by the hash function to determine the next owner
core at procedure 734 (Use # Available Cores, Address to
Compute Next Core), and then the example technique may be
repeated, starting with a new prediction at procedure 736 (Do
Next Prediction) and returned to procedure 702.

In some examples, additional procedures may be per-
tormed to update the RAS. For example, when a CTB branch
type 1s selected (e.g., the type=call), such data may be trans-
mitted to the RAS at procedure 726 (Send To RAS). Then, a
return value may be looked up, and the RAS updated, at
procedure 724 (Look Up Return). Alternatively, when a RAS
branch type 1s selected (e.g., the type=return), then such data

may “pop” (e.g., discard) the top of the RAS data, and the new
RAS data may be added at procedure 730 (Pop RAS Request

2" Stack Top).

Disclosed in some examples are multi-core processor com-
puting systems comprising a branch predictor arrangement
which 1s configured to predict a single and complete tlow of
program 1nstructions associated therewith to be performed on
at least one processor core of the multi-core processor com-
puting system. In some examples, the branch predictor
arrangement may be provided in the processors cores. In
other examples, the branch predictor arrangement may be
configured to map and control branches in the respective flow
of program 1nstructions to at least one of the at least one
processor core using a hash function. In further examples, the
branch predictor arrangement may be configured to update
cach of the at least one processor core with a state information
when a prediction 1s generated regarding a branch of the
program instructions that has been mapped to such processor
core. In some other examples, the state information may
comprise a predicted address for the at least one processor
core and a global history vector. In still further examples, the
program 1nstructions may have a block based instruction set
architecture which comprise a plurality of blocks of mstruc-
tions, and wherein when the branch predictors predict a
branch of the instructions, the prediction provides a branch
from one of the blocks to another one of the blocks. In further
examples, the branch predictor arrangement 1s configured to
predict a particular subset of branches in the flow of the
program 1nstructions.

Disclosed 1n further examples are methods for branch pre-
diction in a multi-core processor computing system which
may comprise the steps ol mapping one or more branches of
a flow of program instructions to at least one processor core 1n
the multi-core processor computing system and generating a
prediction regarding a placement of the one or more branches
using a branch predictor arrangement. In some examples, the
mapping procedure may be performed using a hash function.
In other examples, the program instructions may have a block
based 1nstruction set architecture which comprise a plurality
of blocks of 1nstructions, and wherein when the branch pre-
dictors predict a branch of the instructions, the prediction
provides a branch from one of the blocks to another one of the
blocks. In further examples, at least one of the branch predic-
tor arrangement may be provided 1n the processors cores. In
some other examples, the branch predictor arrangement may
be configured to predict a particular subset of branches 1n the
flow of the program 1nstructions. In still further examples, the
branch predictor arrangement may be configured to update
cach of the at least one processor core with a state information
when a prediction 1s generated regarding a branch of the
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program 1nstructions that has been mapped to such processor
core. In other examples, the prediction 1s generated using a
plurality of branch predictor arrangements.

Disclosed 1n yet turther examples are computer accessible
mediums having stored thereon computer executable mnstruc-
tions for at least one branch prediction within a multi-core
processor computing system such that when a processing
arrangement executes the instructions, the processing
arrangement may be configured to map one or more branches
of a flow of program 1nstructions to at least one of processor
cores 1n the multi-core processor computing system and gen-
crate a prediction regarding a placement of the one or more
branches using a branch predictor arrangement. In some
examples, the mapping procedure may be performed using a
hash function. In other examples, the program instructions
may have a block based instruction set architecture which
may comprise a plurality of blocks of instructions such that
when the branch predictors predict a branch of the mnstruc-
tions, the prediction may provide a branch from one of the
blocks to another one of the blocks. In further examples, the
branch predictor arrangement 1s provided in the processors
cores. In some other examples, each of the branch predictor
arrangement may be configured to predict a particular subset
of branches 1n the flow of the program instructions. In still
turther examples, the branch predictor arrangement may be
configured to update each of the at least one processor core
with a state information when a prediction 1s generated
regarding a branch of the program instructions that has been
mapped to such processor core.

The present disclosure 1s not to be limited 1n terms of the
particular examples described 1n this application, which are
intended as illustrations of various aspects. Many modifica-
tions and examples can be made without departing from its
spirit and scope, as will be apparent to those skilled in the art.
Functionally equivalent methods and apparatuses within the
scope of the disclosure, 1n addition to those enumerated
herein, will be apparent to those skilled in the art from the
foregoing descriptions. Such modifications and examples are
intended to fall within the scope of the appended claims. The
present disclosure 1s to be limited only by the terms of the
appended claims, along with the full scope of equivalents to
which such claims are entitled. It 1s to be understood that this
disclosure 1s not limited to particular devices, methods, sys-
tems, which can, of course, vary. It 1s also to be understood
that the terminology used herein 1s for the purpose of describ-
ing particular examples only, and 1s not intended to be limut-
ng.

With respect to the use of substantially any plural and/or
singular terms herein, those having skill 1n the art can trans-
late from the plural to the singular and/or from the singular to
the plural as 1s appropriate to the context and/or application.
The various singular/plural permutations may be expressly
set forth herein for sake of clarity.

It will be understood by those within the art that, in general,
terms used herein, and especially in the appended claims
(e.g., bodies of the appended claims) are generally intended
as “open” terms (e.g., the term “including” should be 1inter-
preted as “including but not limited to,” the term “having”
should be mterpreted as “havmg at least,” the term “includes”™
should be 1interpreted as “includes but 1s not limited to,” etc.).
It will be further understood by those within the art that if a
specific number of an mtroduced claim recitation 1s intended,
such an intent will be explicitly recited 1n the claim, and in the
absence of such recitation no such intent 1s present. For
example, as an aid to understanding, the following appended
claims may contain usage of the introductory phrases “at least
one” and “one or more” to introduce claim recitations. How-
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ever, the use of such phrases should not be construed to imply
that the introduction of a claim recitation by the indefinite
articles “a” or “an” limits any particular claim containing
such mtroduced claim recitation to examples containing only
one such recitation, even when the same claim includes the °
introductory phrases “one or more” or “at least one” and
indefinite articles such as “a” or “an” (e.g., “a” and/or “an”
should be interpreted to mean ““at least one” or “one or
more™); the same holds true for the use of definite articles
used to mtroduce claim recitations. In addition, even it a
specific number of an introduced claim recitation 1s explicitly
recited, those skilled 1n the art will recognize that such reci-
tation should be interpreted to mean at least the recited num-
ber (e.g., the bare recitation of “two recitations,” without
other modifiers, means at least two recitations, or two or more
recitations). Furthermore, in those instances where a conven-
tion analogous to ““at least one of A, B, and C, etc.” 1s used, in
general such a construction 1s intended 1n the sense one hav-
ing skill 1in the art would understand the convention (e.g., “a 2g
system having at least one of A, B, and C” would include but
not be limited to systems that have A alone, B alone, C alone,
A and B together, A and C together, B and C together, and/or
A, B, and C together, etc.). In those instances where a con-
vention analogous to “at least one of A, B, or C, etc.” 1s used, 25
in general such a construction 1s intended in the sense one
having skill in the art would understand the convention (e.g.,
“a system having at least one of A, B, or C” would include but
not be limited to systems that have A alone, B alone, C alone,
A and B together, A and C together, B and C together, and/or
A, B, and C together, etc.). It will be further understood by
those within the art that virtually any disjunctive word and/or
phrase presenting two or more alternative terms, whether in
the description, claims, or drawings, should be understood to
contemplate the possibilities of including one of the terms,
either of the terms, or both terms. For example, the phrase “A
or B” will be understood to include the possibilities of “A” or
“B” or “A and B.”

In addition, where features or aspects of the disclosure are 4
described 1n terms of Markush groups, those skilled 1n the art
will recognize that the disclosure 1s also thereby described in

terms of any individual member or subgroup of members of
the Markush group.

As will be understood by one skilled 1n the art, for any and 45
all purposes, such as in terms of providing a written descrip-
tion, all ranges disclosed herein also encompass any and all
possible subranges and combinations of subranges thereof.
Any listed range can be easily recogmzed as suiliciently
describing and enabling the same range being broken down 50
into at least equal halves, thirds, quarters, fifths, tenths, etc. As
a non-limiting example, each range discussed herein can be
readily broken down into a lower third, middle third and
upper third, etc. As will also be understood by one skilled 1n
the art all language such as “up to,” “at least,” “greater than,” 55
“less than,” and the like include the number recited and refer
to ranges which can be subsequently broken down 1nto sub-
ranges as discussed above. Finally, as will be understood by
one skilled 1n the art, a range 1includes each individual mem-
ber. Thus, for example, a group having 1-3 cells, processors 60
and/or cores refers to groups having 1, 2, or 3 cells, processors
and/or cores. Similarly, a group having 1-5 cells refers to
groups having 1, 2, 3, 4, or 5 cells, processors and/or cores,
and so forth.

While various aspects and examples have been disclosed 65
herein, other aspects and examples will be apparent to those
skilled 1n the art. The various aspects and examples disclosed
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herein are for purposes of 1llustration and are not intended to
be limiting, with the true scope and spirit being indicated by
the following claims.

What 1s claimed 1s:

1. A multi-core processor computing system comprising a
branch predictor arrangement which 1s configured to predict
a single and complete tlow of program instructions associated
therewith to be performed on at least a first processor core and
a second processor core of a plurality of processor cores of the
multi-core processor computing system, wherein each of the
first and the second processor cores include at least one dis-
tinct branch predictor, wherein the branch predictor arrange-
ment uses a hash function to assign the plurality of branches
to the plurality of processor cores, and wherein each of the
distinct branch predictors are configured to generate a pre-
dicted address and prediction data and provide the prediction
data to a selected one of the plurality of processor cores as
indicated by the predicted address and the hash function.

2. The computing system of claim 1, wherein the branch
predictor arrangement 1s configured to update at least one
core of the plurality of processor cores with a state informa-
tion when a prediction 1s generated regarding a branch of the
program instructions that has been mapped to the at least one
Processor core.

3. The computing system of claim 2, wherein the state
information comprises a predicted address for the plurality of
processor cores and a global history vector.

4. The computing system of claim 3, wherein the state
information further comprises a return address stack value.

5. The computing system of claim 1, wherein the program
instructions have a block based instruction set architecture
which comprise a plurality of blocks of instructions, and
wherein when the branch predictors predict a branch of the
instructions, the prediction provides a branch from one of the
blocks to another one of the blocks.

6. The computing system of claim 3, wherein the predicted
branch 1s selected from a plurality of types of branches using
a particular type data.

7. The computing system of claim 1, wherein the branch
predictor arrangement 1s configured to predict a particular
subset of branches 1n the flow of the program instructions.

8. The computing system of claim 1, wherein the branch
predictor arrangement 1s configured to generate the predic-
tion of the flow by using at least one sub-prediction from a
local branch predictor and a global branch predictor using a
tournament predictor.

9. A method for branch prediction in a multi-core processor
computing system comprising:

mapping a plurality of branches of a flow of program

istructions to a plurality of processor cores 1n the multi-
core processor computing system, wherein the mapping
1s performed using a hash function; and
generating a prediction regarding a placement of the plu-
rality of branches using a branch predictor arrangement
using a {irst processor core and a second processor core
of the plurality of processor cores, wherein each of the
first and second processor cores includes at least one
distinct branch predictor, wherein the prediction
includes a predicted address and prediction data; and

providing the prediction data to a selected one of the plu-
rality of processor cores as indicated by the predicted
address and the hash function.

10. The method of claim 9, wherein the program instruc-
tions have a block based instruction set architecture which
comprises a plurality of blocks of 1nstructions, and wherein
when the branch predictor arrangement predicts a branch of
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the instructions, the prediction provides a branch from one of use a hash function to map a plurality of branches of a flow
the blocks to another one of the blocks. of program instructions to a plurality of processor cores

in the multi-core processor computing system; and

11. The method of claim 9, wherein the branch predictor generate a prediction regarding a placement of the plurality

arrangement 1s configured to predict a particular subset of

, ‘ _ 5 of branches using a branch predictor arrangement using
branches in the flow of the program 1nstructions. a first processor core and a second processor core of the
12. The method of claim 9, wherein the branch predictor plurality of processor cores, wherein each of the first and

second processor cores includes at least one distinct
branch predictor, wherein the prediction includes a pre-
dicted address and prediction data; and

provide the prediction data to a selected one of the plurality
of processor cores as indicated by the predicted address

arrangement 1s configured to update at least one core of the
plurality of processor cores with a state information when a
prediction 1s generated regarding a branch of the program 10
instructions that has been mapped to the at least one processor

COLE. and the hash tunction.
13. The method of claim 9, wherein the prediction 1s gen- 15. The computer accessible medium of claim 14, wherein
erated using a plurality of branch predictor arrangements. the program 1instructions have a block based 1nstruction set

15 architecture which comprise a plurality of blocks of instruc-
tions, and wherein when the branch predictor arrangement
predicts a branch of the instructions, the prediction provides

a branch from one of the blocks to another one of the blocks.

14. A computer accessible medium having stored thereon
computer executable mstructions for at least one branch pre-
diction within a multi-core processor computing system,
wherein when a processing arrangement executes the mnstruc-
tions, the processing arrangement 1s configured to: I T
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