United States Patent

US008117600B1

(12) (10) Patent No.: US 8,117,600 B1
Roeck et al. 45) Date of Patent: Feb. 14, 2012
(54) SYSTEM AND METHOD FOR DETECTING 6,728,950 B2* 4/2004 Davisetal. ... 717/136
IN-LINE SYNCHRONIZATION PRIMITIVES OSaaas Bl (e parga
IN BINARY APPLICATIONS 6:848:106 B1 1/2005 Hipp
6,350,945 B2 2/2005 Lanzatella
(75) Inventors: Guenter E. Roeck, San Jose, CA (US); 6,854,108 Bl 2/2005 Choi
7,093,162 B2 8/2006 Barga
Serge Shats, Palo Alto, CA (US) 7251745 B2 72007 Koch
: : : 7,506,318 B1* 3/2009 Lindoetal. 717/130
(73) Assignee: Symant'ec Qperatlng Corporation, 2002/0087843 Al 7/2002 Kottapalli
Mountain View, CA (US) 2002/0133675 Al 9/2002 Hirayama
2003/0212983 Al 11/2003 Tinker
(*) Notice: Subject to any disclaimer, the term of this %883; 83% %;g i ¥ i é? %883 EVU etal. ...l 717/128
: : 1 omet
%ats‘ﬂg lfszxée%de%%g z(;]umd under 33 2006/0026387 Al* 2/2006 Dinechin et al. 712/1
S.C. 154(b) by s 2006/0150183 Al 7/2006 Chinya
(21) Appl. No.: 11/321,460 OTHER PUBLICATIONS
S Schwarz, B., et al., Disassembly of Executable Code Revisited, Pro-
(22) Filed: Dec. 29, 2005 ceedings of the Ninth Working Conference on Reverse Engineering,
51) Int.Cl 2002, pp. 45-54.*
GO6F 9/44 (2006.01) (Continued)
GO6F 9/45 (2006.01)
GO6F 11/00 (2006.01) Primary Examiner — 1uan Dam
(52) US.CL ... 717/128; 717/129; 717/136; 714/38.1; Assistant Examiner — Todd Aguilera
714/45 (74) Attorney, Agent, or Firm — Meyertons, Hood, Kivlin,
(58) Field of Classification Search 717/127; Kowert & Goetzel, P.C.

(56)

712/108, 216; 710/200; 707/8; 711/147
See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS

4,718,008 A 1/1988 Chang
4. 868,738 A 0/1989 Kish
5,280,611 A 1/1994 Mohan
5,282,274 A 1/1994 Liu
5,740440 A * 4/1998 West ..o, 717/125
5,802,585 A * 9/1998 Scalesetal. 711/154
6,014,513 A * 1/2000 Voelkeretal. 717/131
6,101,524 A 8/2000 Choi
6,158,024 A * 12/2000 Mandal 714/37
6,243,793 Bl 6/2001 Aucsmith
6,408,305 Bl 6/2002 Stoodley
6,625,635 Bl 9/2003 Elnozahy

(57) ABSTRACT

A system, method, and computer-accessible medium are dis-
closed for identitying in-line synchronization instructions in
binary program code. One or more executable segments of the
binary program code may be scanned to 1dentily one or more
potential 1n-line synchronization instructions. For each
potential in-line synchronization mstruction, 1t may be deter-
mined whether neighboring potential instructions are valid
instructions. For each potential in-line synchronization
instruction, it may be determined that the potential 1n-line
synchronization instruction is a valid in-line synchronization

instruction 1f the neighboring potential istructions are valid
instructions.

13 Claims, 14 Drawing Sheets

1202

Scan executable segments of binary program
code to identify a potential in-line
synchronization instruction

Are the
Yes

1204

h J

neighboring
potential instructions valid
instructions?

No

h J

Detarmine that the
potential in-line
synchronization

instruction is a valid in-
line synchronization
instruction

1208

Determine that the
potential in-line
synchronization

instruction is not a valid
in-line synchrenization
instruction

1208

No

1210

Executable
segments completely
scanned?

(End

)

US 8,117,600 B1
Page 2

OTHER PUBLICATIONS

Schwarz, B., et al., Disassembly of Executable Code Revisted, Pro-

ceeding of the Ninth Working Conference on Reverse Engineering
[online], 2002 [retrieved Mar. 15, 2011], Retrived from Internet
<http://1eeexplore.ieee.org/stamp/stamp.jsp?tp=
&arnumber=1173063>, pp. 45-54.%

U.S. Appl. No. 11/240,966, entitled “System and Method for Detect-
ing and Logging In-line Synchronization Primitives in Application
Program Code™ , filed Sep. 30, 2005.

U.S. Appl. No. 11/324,457, entitled “System and Method for Log-

ging and Replaying Accesses to Shared Memory”, filed Dec. 29,
2005.

U.S. Appl. No. 11/321,458, entitled “*System and Method for Deter-
ministic Operation and Playback of Binary Applications with Inline
Latches and Spinlocks™ , filed Dec. 29, 2005.

Netzer: “Optimal Tracing and Replay for Debugging Shared-
Memory Parallel Programs;” Workshop on Parallel & Distributed
Debugging; Proceedings of the 1993 ACM/ONR Workshop on Par-
allel and Distributed Debugging; San Diego, California, pp. 1-11;
1993; ISBN:0-89791-633-6.

Ronsse, et al., “RecPlay: a Fully Integrated Practical Record/Replay
System,” ACM Transactions on Computer Systems, vol. 17, No. 2,
pp. 133-152, May 1999.

* cited by examiner

U.S. Patent

Feb. 14, 2012

Server

102A

Application State
103A

Network 120

Application
Instance

104A

Storage

Device
130A

Sheet 1 of 14 US 8,117,600 B1

Server
102B

Application State
103A

Failover 105

Application
Instance
1048

Client

110A

\ Multi-Server Networked
Environment 100

Figure 1

U.S. Patent Feb. 14, 2012

Application State
103C

Application
Instance
104C

Sheet 2 of 14

Faillover 105

Server
102D

Application State
103C

Application
Instance
104D

Network 120/r

Storage Device
1308

Log(s) 134C

Application
Snapshot
132C

File System
Snapshot
133C

Figure 2

Client
110B

.\ Multi-Server Networked
Environment 200

US 8,117,600 B1

U.S. Patent Feb. 14, 2012 Sheet 3 of 14 US 8,117,600 B1

Generate and store application snapshot
302

Generate and store file system snapshot
304

Generate and store log of non-deterministic

events encountered after snapshots
306

Has
application
failed?
308

No

Yes

Resume execution of the computer program
from the point of failure using the application

snapshot, file system snapshot, and log
310

Figure 3

U.S. Patent Feb. 14, 2012 Sheet 4 of 14 US 8,117,600 B1
Server Server
102E 102F

Application State
103E

Application
104E

Instance

In-line
Synchronization
Primitives
106E

Network 120

Failover 10

Application State
103E

Application
Instance 104F

In-line
Synchronization
Primitives
106E

Storage Device

130C

Log(s) 134E

Application
Snapshot
132E

File System
Snapshot
133E

Client
110C

\ Multi-Server Networked
Environment 400

Figure 4

U.S. Patent Feb. 14, 2012 Sheet 5 of 14 US 8,117,600 B1

Detect one or more in-line synchronization
primitives in a computer program

202

Store the one or more in-line synchronization
primitives in a log
504

Figure 5

U.S. Patent Feb. 14, 2012 Sheet 6 of 14 US 8,117,600 B1

Server
102G

Dynamic
Kernel Binary
107 Compiler Server

108 102H

Application State
103G

Application State
103G

Application
Instance 104H

Application
Instance 104G

In-line
Synchronization
Primitives
106G

In-line
Synchronization
Primitives
106G

Faillover 105

Network 120

Storage Device
130D

Log(s) 134G

Application | | File System
Snapshot Snapshot
132G 133G

\ Multi-Server Networked
Environment 600

Figure 6

U.S. Patent Feb. 14, 2012 Sheet 7 of 14 US 8,117,600 B1

Begin execution of a computer program
102

Encounter sychronization primitive during

execution
704

Initial
encounter?
/06

NO

Yes

Use dynamic binary compilation to detect the
in-line synchronization primitive
708

Use dynamic binary compilation to replace the
in-line synchronization primitive with a
substitute synchronization primitive
710

Execute the substitute synchronization
primitive in a manner visible to the OS
12

Store the synchronization primitive in a log in
the same order and with the same result as

encountered during execution
/14

Figure 7

U.S. Patent Feb. 14, 2012 Sheet 8 of 14 US 8,117,600 B1

Detect one or more in-line synchronization
primitives In a computer program

802

Store the one or more in-line synchronization
primitives in a log
804

Determine that execution of the computer

program has failed
806

Resume execution of the computer program
from the point of failure using the log
808

Figure 8

U.S. Patent Feb. 14, 2012

Server
102J

Application State
103J

Sheet 9 of 14

Failover 105

US 8,117,600 B1

Server
102K

Application State
103J

Application
Instance
104J

Shared
Memory
150J

Process
160J

Network 120/‘

Storage Device
130E

Log(s) 134J

File System
Snapshot
133J

Application
Snapshot
132J

Figure 9

Application
Instance
104K

Shared
Memory
150K

Process
100K

.\ Multi-Server Networked
Environment 1000

U.S. Patent

Feb. 14, 2012 Sheet 10 of 14

Mark a shared memory page as inaccessible
to a plurality of consumers with access to a
shared memory
1060

A first consumer generates a request to

access the shared memory page
1062

Generate a page fault in response to the first
consumer's request to access the shared

memory page
1064

Log the first consumer's request 10 access

the shared memory page
1066

Mark the shared memory page as accessible

to the first consumer
1068

Figure 10

US 8,117,600 B1

U.S. Patent

Feb. 14, 2012 Sheet 11 of 14

1068

A second consumer generates a request to

access the shared memory page
1102

Generate another page fault in response to
the second consumer's request
1104

Log a state of the first consumer and a state
of the second consumer in response to the

page fault generated in 1104
1106

Mark the shared memory page as
inaccessible to the first consumer and
accessible to the second consumer

1108

Grant the second consumer access to the

shared memory page
1110

Figure 11

US 8,117,600 B1

U.S. Patent Feb. 14, 2012 Sheet 12 of 14 US 8,117,600 B1

Scan executable segments of binary program
code to identify a potential in-line

synchronization instruction
1202

Are the
neighboring
potential instructions valid

instructions?
1204

Yes No

Determine that the
potential in-line
synchronization

instruction is not a valid
in-line synchronization

instruction
1208

Determine that the
potential in-line
synchronization

instruction is a valid In-
line synchronization

instruction
1206

Executable

segments completely
scanned?

1210

NoO

Yes

End

Figure 12

U.S. Patent Feb. 14, 2012 Sheet 13 of 14 US 8,117,600 B1

Perform an in-line synchronization
instruction during execution of a first
instance of a computer program,

comprising a first spinlock acquisition
1302

Replay the in-line synchronization instruction
during execution of a second instance of the
computer program, comprising a second
spinlock acquisition which has the same result
and the same spinlock count as the first
spinlock acquisition
1304

Figure 13

U.S. Patent Feb. 14, 2012 Sheet 14 of 14 US 8,117,600 B1

Continuous Availability
Software
940

Processor
910

Keyboard and Mouse Graphics and Display
990 956

SCSI Interface Storage (Hard Disk)
952 958

Network Interface Storage (Optical)
9254 960

1)
i |
) |
))
) |
'

Figure 14

A\ Computer

System 900

US 8,117,600 Bl

1

SYSTEM AND METHOD FOR DETECTING
IN-LINE SYNCHRONIZATION PRIMITIVES
IN BINARY APPLICATIONS

BACKGROUND

1. Field of the Invention

This invention relates to enterprise system management
and, more particularly, to continuous availability techniques
in multi-server networked environments.

2. Description of the Related Art

The impact of system downtime on productivity 1s increas-
ing as organizations rely more heavily on information tech-
nology. Consequently, organizations may seem to minimize
downtime through various approaches designed to increase
reliability and availability. Ultimately, the goal of many orga-
nizations 1s to ensure the continuous availability of critical
systems.

One approach to continuous availability 1s the use of redun-
dant hardware executing redundant 1nstances of an applica-
tion 1n lockstep. If one mnstance of an application on one unit
of hardware fails, then the 1instance on the other unit of hard-
ware may continue to operate. However, the redundant hard-
ware 1s often proprietary, and both the redundant and propri-
ctary natures of the hardware yield a cost that may be
prohibitive.

To avoid the expense of special-purpose hardware, soft-
ware techniques may be used to provide failover of an appli-
cation. For example, cluster management software may sup-
port application failover 1n a networked environment having,
two or more servers and a shared storage device. If the failure
of an application or 1its host server 1s sensed, then a new
instance of the application may be started on a functioning
server 1n the cluster. However, software-based failover
approaches may fail to preserve the entire context of the
application instance on the failed server up to the moment of
failure. In the wake of a failure, the new instance of the
application 1s typically started anew. In the process, recent
transactions and events may be discarded. Other transactions
and events may be left 1n an indeterminate state. The server or
its clients may need to initiate new connections to replace
connections lost 1n the failover.

Debugging software has used techniques for the logging
and replay of events encountered by an application. For
example, a debugger may log events occurring during execu-
tion of a first instance of an application. The debugger may
then replay the logged events from the beginning by means of
instrumentation of the application, typically using recompi-
lation or other techniques prior to replay. However, recompi-
lation may not be available for off-the-shelf application sofit-
ware, and static instrumentation may often vyield an
unacceptable performance penalty for software 1n a produc-
tion environment.

It 1s desirable to provide improved methods and systems
for continuously available execution environments.

SUMMARY

A system, method, and computer-accessible medium are
disclosed for identiiying 1n-line synchronization instructions
in binary program code by analysis of neighboring data. The
method may include scanning one or more executable seg-
ments of the binary program code to 1dentily one or more
potential in-line synchronization instructions. In one embodi-
ment, a potential in-line synchronization instruction may be
identified by matching 1t against a set of known synchroniza-
tion 1nstructions for the target platform. In one embodiment,

10

15

20

25

30

35

40

45

50

55

60

65

2

a potential in-line synchronization instruction may be 1denti-
fied by creating and analyzing a graph of possibailities for each

candidate phrase found in the binary program code. Because
a potential in-line synchronization instruction found in the
binary program code may actually comprise non-executable
data instead of a valid, executable instruction, further analysis
may be performed.

After 1dentifying a potential in-line synchronization
instruction, the method may further include determining
whether neighboring potential instructions are valid instruc-
tions. The neighboring potential instructions may comprise
information 1n the binary program code which is located 1n
the vicinity of the potential in-line synchronization instruc-
tion. As with the potential in-line synchronization instruction,
the neighboring potential instructions may actually comprise
non-executable data rather than valid, executable instruc-
tions. IT 1t 1s determined that the neighboring potential
instructions are valid instructions, then the method may
include determining that the potential in-line synchronization
instruction 1s a valid in-line synchronization instruction.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the present invention can be
obtained when the following detailed description 1s consid-
ered 1n conjunction with the following drawings, 1n which:

FIG. 1 1illustrates a multi-server networked environment
including failover according to one embodiment.

FIG. 2 illustrates a multi-server networked environment
including failover based on capturing and restoring a file
system snapshot, application snapshot, and log of events
according to one embodiment.

FIG. 3 1s a flowchart illustrating a method for failover
based on capturing and restoring a file system snapshot, appli-
cation snapshot, and log of events according to one embodi-
ment.

FIG. 4 1llustrates a multi-server networked environment
including detection, interception, and/or capture of in-line
synchronization primitives according to one embodiment.

FIG. 5 1s a flowchart 1llustrating a method for detecting and
logging in-line synchronization primitives according to one
embodiment.

FIG. 6 illustrates a multi-server networked environment
including detection, interception, and/or capture of in-line
synchronization primitives using dynamic binary compila-
tion according to one embodiment.

FI1G. 7 1s a flowchart illustrating a method for detecting and
logging in-line synchronization primitives using dynamic
binary compilation according to one to embodiment.

FIG. 8 15 a flowchart 1llustrating a method for application
tallover based on the detection and logging of in-line syn-
chronization primitives according to one embodiment.

FIG. 9 illustrates a multi-server networked environment
including logging and replay of shared memory accesses
according to one embodiment.

FIG. 10 1s a flowchart 1llustrating a method for identifying
accesses to shared memory according to one embodiment.

FIG. 11 1s a tflowchart further illustrating a method for
identifying accesses to shared memory according to one
embodiment.

FIG. 12 15 a tlowchart illustrating a method for identiiying
in-line synchronization instructions in binary program code
by analysis of neighboring data.

FIG. 13 1s a flowchart 1llustrating a method for determin-
istic execution and playback of binary applications in the
presence ol m-line synchronization primitives and spinlocks
according to one embodiment.

US 8,117,600 Bl

3

FIG. 14 illustrates a block diagram of a typical computer
system for implementing embodiments of the systems and

methods described above.

While the invention 1s described herein by way of example
for several embodiments and illustrative drawings, those
skilled 1n the art will recognize that the invention 1s not
limited to the embodiments or drawings described. It should
be understood that the drawings and detailed description
thereto are not intended to limit the invention to the particular
torm disclosed, but on the contrary, the intention 1s to cover all
modifications, equivalents and alternatives falling within the
spirit and scope of the mvention as defined by the appended
claims.

DETAILED DESCRIPTION OF EMBODIMENTS

Using the systems, methods, and computer-accessible
media described herein, 1dentification of in-line synchroniza-
tion 1nstructions or other atomic operations in binary program
code may be provided. The i1dentification, logging, and/or
replay of in-line synchronization primitives may be used to
preserve and duplicate application context 1n a continuously
available execution environment. FIGS. 1, 2, 4, 6, and 9
illustrate examples of multi-server networked environments
which may be used with the systems, methods, and computer-
accessible media described herein. FIG. 14 illustrates an
example of a computer system which may be used with the
systems, methods, and computer-accessible media described
herein. The example configurations shown 1n F1GS. 1, 2, 4, 6,
9, and 14, and the quantity and kind of elements shown
therein, are intended to be 1llustrative rather than limiting, and
other embodiments are possible and contemplated.

As used herein, the term “server(s)” or “servers(s) 102”

may refer collectively to any of the servers 102A-102K illus-
trated 1n FIGS. 1, 2, 4, 6, and 9. Servers 102 may also be

referred to herein as “hosts.” As used herein, the term “client
(s)” or “client(s) 110~ may refer collectively to any of the
clients 110A-110E 1llustrated in FIGS. 1, 2, 4, 6, and 9. As
used herein, the term “storage device(s)” or “storage device
(s) 130 may refer collectively to any of the storage devices
130A-130E 1llustrated 1n FIGS. 1, 2, 4, 6, and 9. As used
herein, the term “application(s)” or “application(s) 104 may
refer collectively to any of the application nstances 104 A-
104K 1illustrated in FIGS. 1, 2, 4, 6, and 9. As used herein, the
term “application state(s)” or “application state(s) 103” may
refer collectively to any of the application states 103 A, 103C,
103E,103G, 103 J1llustrated in FIGS. 1,2, 4, 6, and 9. As used
herein, the term “multi-server networked environment(s)”
may refer collectively to any of the multi-server networked

environments 100, 200, 400, 600, 1000 1llustrated 1n FIGS. 1,
2.4,6,and9. As used herein, the term “log(s)” or “log(s) 134”
may refer collectively to any of the logs 134C, 134E, 134G,
134J 1illustrated in FIGS. 2, 4, 6, and 9. As used herein, the
term “‘application snapshot(s)” or “application snapshot(s)
132” may refer collectively to any of the application snap-
shots 132C, 132E, 132G, 132] illustrated in FIGS. 2, 4, 6, and
9. As used herein, the term “file system snapshot(s)” or “file
system snapshot(s) 133” may refer collectively to any of the
file system snapshots 133C, 133E, 133G, 1331 illustrated 1n
FIGS. 2, 4, 6, and 9. As used herein, the term “in-line syn-
chronization primitive(s)” or “in-line synchronization primi-
tive(s) 106 may refer collectively to any of the m-line syn-
chronization primitives 106E, 106G 1llustrated in FIGS. 4 and
6.

FIG. 1 illustrates a multi-server networked environment
100 including failover according to one embodiment. The
multi-server networked environment 100 may be used to

10

15

20

25

30

35

40

45

50

55

60

65

4

provide a continuously available execution environment
including failover 105 for one or more applications 104. If
one server 102A {fails, the execution environment may be
recreated on another server 102B such that the application
state 103 A immediately prior to the failure 1s duplicated. The
application state 103 A may include execution state, memory
state, transaction state, open network connections, open files,
and any other parameters and context necessary to resume
execution of the application 104 1n a deterministic manner.
By duplicating the application state 103 A of one application
instance 104 A to another application instance 104B using
fallover techniques 103, the application 104 may continue
execution 1 a manner that 1s transparent to one or more
clients 110. In addition to the failover scenario, the systems,
methods, and computer-accessible media disclosed herein
may also be used to perform a planned migration of an appli-
cation from one server to another.

The continuously available execution environment may
also be referred to as “software fault tolerance™ or “applica-
tion virtualization.” In one embodiment, applications may be
encapsulated 1n a virtual environment 1n which exchanges of
data with the operating system and with other external pro-
cesses are monitored. The virtual environment may include
the virtualization of network addresses, process 1Ds, thread
IDs, semaphore IDs, and other addresses and identifiers
which link the application to external resources. In one
embodiment, the continuously available execution environ-
ment may be implemented primarily in software, 1.e., without
using redundant propriety hardware executing 1n lockstep. In
one embodiment, the continuously available execution envi-
ronment may be implemented without recompilation of an
operating system kernel. In one embodiment, the continu-
ously available execution environment may be implemented
without static recompilation of applications 104. In one
embodiment, the continuously available execution environ-
ment may be implemented without modification of clients
110, and the failover 105 may be transparent to clients 110.
The continuously available execution environment may also
be used for migration of applications 104 from server to
server (e.g., for maintenance or performance reasons).

In the example shown in FIG. 1, the multi-server net-
worked environment 100 includes a storage device 130A
coupled to anetwork 120. Various embodiments of the multi-
server networked environments discussed herein may include
various quantities and types ol storage devices. Storage
devices may include any of various types of storage devices
including, but not limited to, storage systems such as RAID
(Redundant Array of Independent Disks) systems, disk
arrays, JBODs (Just a Bunch Of Disks, used to refer to disks
that are not configured according to RAID), and other suitable
storage devices.

In various embodiments, the network 120 may comprise
any local area network (LAN) such as an intranet or any wide
area network (WAN) such as the Internet. The network 120
may use a variety of wired or wireless connection media.
Wired connection media may include, for example, Ethernet,
Fiber Channel media, or another suiliciently fast connection
media. Wireless connection media may include, for example,
a satellite link, a modem link through a cellular service, or a
wireless link such as Wi-Fi.

In various embodiments, the multi-server networked envi-
ronment 100 may employ any of a number of commercially
available software products for continuous availability, such
as, Tor example, various products available from VERITAS
Software Corporation (Mountain View, Calif.). The software
products for continuous availability may be installed and
executed on servers 102 which are coupled to the network

US 8,117,600 Bl

S

120. In one embodiment, the software products for continu-
ous availability may operate transparently to the servers 102,
and/or applications 104. In various embodiments, the multi-
server networked environment 100 may also employ any of a
number of commercially available software products for stor-
age management, such as, for example, various products

available from VERITAS Software Corporation (Mountain
View, Calil.). The storage management software may provide
functionality such as cluster management, volume manage-
ment, storage virtualization, and/or file system management
to orgamize data on one or more storage devices 130 and/or
provide storage access to servers 102 and clients 110.

In one embodiment, FIG. 1 may illustrate a Network-At-
tached Storage (NAS) environment. In a NAS environment,
storage devices 130 may be directly attached to a network 120
(such as a local area network) using standard network proto-
cols and may serve files to consumers on the network 120. In
one embodiment, FIG. 1 may illustrate a Storage Area Net-
work (SAN) environment. The SAN environment may com-
prise a dedicated storage network in which servers 102 and
subsystems (e.g., switches) collaborate to manage the move-
ment and storage of data on storage devices 130. The hard-
ware (e.g., switches, hubs, bridges, routers, cables, etc.) that
connects servers 102 to storage devices 130 1n a SAN 1s
referred to as a “disk fabric” or “fabric.” In a SAN environ-
ment, clients 110 may send data to and receive data from the
servers 102 over a local area network instead of communi-
cating directly with the storage devices 130. In one embodi-
ment, FIG. 1 may illustrate a cluster file system environment.
A cluster file system may enable concurrent file access to a
single storage device 130 from multiple servers 102. Clusters
may also provide high availability, load balancing, and/or
parallel processing.

In order to capture the application state 103 at a point in
time at or immediately prior to the point of failure, sufficient
data about the application state 103 may be stored on aroutine
basis to enable deterministic and transparent restoration of
the application state 103. The stored data may include, for
example, various combinations of an application snapshot, a
file system snapshot, and/or a log of events. FIG. 2 1llustrates
a multi-server networked environment 200 including failover
based on capturing and restoring a file system snapshot, appli-
cation snapshot, and log of events according to one embodi-
ment. The application state 103C of a first istance 104C
(c.g., on a first server 102C) may be preserved and then
restored to a second instance 104D (e.g., on a second server
102D) using an application snapshot 132C, file system snap-
shot 133C, and log(s) 134C. The application snapshot 132C,
file system snapshot 133C, and log(s) 134C may be stored on
one or more storage devices (e.g., storage device 130B) which
are accessible to both servers 102C, 102D.

The application snapshot 132C may comprise application
state data such as the execution state, memory state, transac-
tion state, open network connections, open files, and other
suitable state-related data for the application instance 104C at
a particular point 1n time. In one embodiment, an application
snapshot may be generated at a regular interval (e.g., once per
minute). Generation of the application snapshot may com-
prise Ireezing all application-related processes, draining 1/0
queues and bullers, taking a memory snapshot of all applica-
tion-related processes, taking a memory snapshot of relevant
kernel resources (e.g., open files, TCP endpoints, sema-
phores, etc.), storing the data to disk, and unfreezing the
application. Further aspects regarding possible implementa-
tions of application snapshots are described in U.S. Pat. No.
6,848,106, which 1s incorporated herein by reference.

10

15

20

25

30

35

40

45

50

55

60

65

6

The multi-server networked environment 200 may include
an application snapshot/restore framework which processes
transactions between the operating system and the applica-
tions 104. In one embodiment, application states may be
tracked via library and kernel interposition using the applica-
tion snapshot/restore Iramework. Requests for system
resources or changes to process state may be routed inter-
nally, and the application snapshot/restore framework may
track these events 1n anticipation of an application snapshot
132C. The application snapshot/restore framework may be
transparent to running (and snapshotted) applications 104
such that an application 1s always running from the applica-
tion’s perspective. An application snapshot 132C may com-
prise multiple processes and multiple threads and may
include shared resources 1n use by a process, such as shared
memory or semaphores. A process may be snapshotted and
restored more than once. In one embodiment, all processes
that are snapshotted together 1n the form of an application
chain may share the same application 1D (“AID”). As used
herein, an application chain 1s the logical grouping of a set of
applications and processes that communicate with each other
and share resources to provide a common function.

In one embodiment, a virtual environment may comprise a
layer that resides between the applications 104 and the oper-
ating system. Resource handles may be abstracted to present
a consistent view to the application 104, but the actual system
resource handles may change as an application 1s snapshotted
or restored more than once. The virtual environment may also
allow multiple applications to compete for the same
resources, where exclusion might normally prohibit such
behavior, to allow multiple snapshots to coexist without
reconfiguration. The virtual environment may comprise a
preload library which interposes between an application and
the operating system for the purpose of intercepting and han-
dling library calls and system calls. Once the library has been
preloaded, 1t may be attached to the address space of a pro-
cess. The preload library may operate 1n “user mode” (i.e.,
non-kernel and non-privileged mode). Application program-
ming interface (API) calls to modily the state of the applica-
tion may be made from the application 104 to the operating
system API interfaces via the application snapshot/restore
framework or the preload library. The preload library may
save the state of various resources by intercepting API inter-
face calls and then save the state at a pre-arranged memory
location. When the memory of a process 1s saved as part of the
snapshot/restore mechanism, this state may be saved since it
resides 1n memory. The state may be saved to non-volatile
storage (1.e., a file on disk). The preload library may notify the
snapshot/restore framework through a private interface.

The file system snapshot 133C may comprise file system
data or storage data such as contents and metadata of a file
system at a particular point 1n time. The file system snapshot
133C may also be referred to as a “disk snapshot”™ or “frozen
image.” The file system represented by the file system snap-
shot may be used by the application instance 104C, e.g., for
storage of application-related data. In one embodiment, a file
system snapshot may be generated at a regular interval (e.g.,
once per minute). In one embodiment, the file system snap-
shot 133C may represent one or more {ile system snapshots
for a plurality of file systems used by the application instance
104C. In one embodiment, the file system snapshot 133C may
include only a relevant subset of any file system used by the
application instance 104C, such as one or more specific vol-
umes, directories, and/or files. Further aspects regarding pos-
sible implementations of file system snapshots are described
in U.S. Pat. No. 6,850,945, which 1s incorporated herein by

reference.

US 8,117,600 Bl

7

Because snapshots are too resource-intensive to be taken
alter every event that changes the application state 103C, one
or more logs 134C may be used to store data between snap-
shots which alters the application state 103C. The log(s) 134C
may comprise any events that are capable of itroducing
non-determinism into program execution, including their
original sequence and original results. For example, a log
134C may comprise a record of events and results such as
transaction requests from clients 110B of the application,
interprocess communication events, TCP/IP events, other file
I/0, system calls for random number generation, system calls
for a date or time, attempts to acquire semaphores, signal
execution, etc. In one embodiment, the log(s) 134C may
comprise both synchronous and asynchronous events. After
restoring the state-related data in the application snapshot
132C and the file system data in the file system snapshot
133C, the entries 1n the log 134C may be “replayed” (1.e.,
encountered in the same order and with the same results as
originally experienced) to restore the application state 103C
and continue execution from the point of failure. In one
embodiment, replaying the log entries may comprise ensur-
ing that function calls return the original value, that sequences
produce the original result, that read operations return the
original results of the original size, that signal execution
occurs at the same location as in the original process, that
semaphores are acquired in the original sequence, etc. To
ensure the original results, replaying some log entries may
therefore comprise simulating execution of particular events
(e.g., through interception of kernel functions) rather than
re-executing the events per se.

FIG. 3 1s a flowchart illustrating a method for failover
based on capturing and restoring a file system snapshot, appli-
cation snapshot, and log of events according to one embodi-
ment. In one embodiment, any of the steps 302 through 310
may be performed programmatically, 1.e., by executing
instructions on a computer system to implement the steps. In
one embodiment, any of the steps 302 through 310 may be
performed automatically, 1.e., without user intervention.

In 302, an application snapshot may be generated and
stored on a storage device as discussed above with respect to
FIG. 2. In 304, a file system snapshot may be generated and
stored on a storage device as discussed above with respect to
FIG. 2. In 306, an event log may be generated and stored on a
storage device as discussed above with respect to FIG. 2. The
log may be continuously updated with new events between
the generation of snapshots in 302 and 304. In one embodi-
ment, an older application snapshot may be discarded after a
new application snapshot i1s successtully generated and
stored. Likewise, an older file system snapshot may be dis-
carded after a new file system snapshot i1s successtully gen-
erated and stored. In one embodiment, an older log may be
discarded after a new application snapshot and new file sys-
tem snapshot are successiully generated and stored.

For purposes of illustration, steps 302 through 306 are
depicted 1n a particular order. In other embodiments, steps
302, 304, and 306 may be performed 1n a different order than
the order depicted 1n FIG. 3. For example, step 304 may be
performed before step 302, or steps 302 and 304 may be
performed substantially sitmultaneously. In one embodiment,
steps 302 through 306 may be performed a plurality of times
until a failure 1s detected 1n 308.

In 308, 1itmay be determined that execution o the computer
program 104 has failed on a server 102 at a particular point in
time. Failure of the application instance 104 may be caused
by a hardware or software fault in the server 102 itself or by a
fault in an external entity such as a storage device. In one
embodiment, the failure may be sensed automatically by

10

15

20

25

30

35

40

45

50

55

60

65

8

another server 102 using conventional cluster management
techniques. The failure may also be sensed by another ele-
ment such as a client 110, a storage device 130, or another
computer system tasked with oversight of the multi-server
networked environment.

For purposes of illustration, the failure detection 308 1s
depicted 1n FIG. 3 as occurring after step 306. However, the
failure detection 308 may occur at substantially any point
between steps 302 through 310 1n one embodiment. The
failure detection 308 may also occur during any of steps 302,
304, or 306. In a common example, the faillure may be
detected while events are being logged 1n 306 1n between the
generation of the snapshots.

In 310, execution of the computer program may be
resumed (e.g., on another server) from the particular point in
time by restoring the application snapshot, file system snap-
shot, and log to another instance of the program. Execution of
the application 104 may then continue from the point of
failure.

The most recent valid application snapshot and the most
recent valid file system snapshot may be restored. Restoring
the application snapshot may comprise restoring the execu-
tion state, memory state, transaction state, open network con-
nections, open files, and other suitable state-related data from
the application snapshot to the context of another application
instance (e.g., on another server). Restoring the file system
snapshot may comprise restoring the contents and metadata
of a file system used by the first application instance and
captured 1n the file system snapshot to a storage device acces-
sible to the new application instance. In various embodi-
ments, the file system snapshot may be restored to a same
storage device or a different storage device with respect to the
location of the original file system. In one embodiment,
restoring the file system snapshot may comprise restoring
data and metadata to a storage stack comprising the second
server, the target storage device, and/or a connectivity layers.

After restoring the snapshots, entries 1n the log may be
replayed 1n the same order and with the same results as
originally encountered to restore the application state 103
deterministically. Replaying the logged events to restore the
application state 103 may comprise executing or simulating
execution of the events 1n the same order and with the same
results as originally detected and logged. After restoring the
snapshots and the log, including the opening of connections
to any clients 110, execution of the application 104 may
continue 1n from a point in time at or immediately prior to the
point of failure. In this manner, the failover 105 from one
server to another server may be transparent to any clients 110.
Theclients 110B may be unaware of the failover from the first
server to the second server, and the clients 110B may take no
steps to resume the connections. In this manner, the faillover
105 from one server to another server may be transparent to
any clients 110.

In one embodiment, network connections between servers
102 and clients 110 may be virtualized through a network
virtualization layer. The network virtualization layer may be
present on any server 102 imnvolved 1n the failover process.
The network virtualization layer may provide servers with a
virtual network address (e.g., a virtual IP address) which 1s
mapped to an actual network address. Using the network
virtualization layer, a network connection between a first
server and a client may be transierred to and restored on a
second server such that the client 1s unaware that a failover
from the first server to the second server has taken place.

The application may include in-line synchronization
primitives (also referred to herein as “latches™) which are also
preserved and duplicated along with the rest of the application

US 8,117,600 Bl

9

state 103. FIG. 4 illustrates a multi-server networked envi-
ronment 400 including detection, interception, and/or capture
of 1n-line synchronmization primitives 106E according to one
embodiment. To enable deterministic replay of the applica-
tion, synchronization instructions 106E should be logged in
the same order in which they were used. 11 the application
uses library calls or calls to the kernel for such nstructions
(e.g., for semaphores), then the synchromization instructions
may be detected and logged using conventional techniques
(e.g., Tor monitoring the kernel). However, the application
may perform such instructions internally or in-line, such that
the instructions are invisible to the operating system (1.¢.,
outside of kernel knowledge). For example, applications run-
ning 1in user mode may avoid calling the kernel for such
instructions. As illustrated in FIG. 4 and discussed in greater
detail below, preservation of the application state 103 may
include the detection, interception, and/or capture of in-line
synchronization instructions 106FE.

FI1G. 515 a flowchart 1llustrating a method for detecting and
logging 1n-line synchromization primitives according to one
embodiment. In one embodiment, 1n-line synchronization
instructions may comprise synchronization primitives which
are executed atomically. Synchronization primitives may
include atomic test-and-set instructions, atomic compare-
and-swap 1structions, atomic fetch-and-add instructions,
and other suitable 1nstructions for solving synchronization or
concurrency problems. For example, synchronization primi-
tives on a SPARC platform may include “Idstub,” “Idstuba,”
“swap,” “swapa,” “casa,” and “casxa” 1 one embodiment.
Synchronization primitives may also be referred to herein as
“latches.” In 502, one or more 1n-line synchronization primi-
tives 106 are detected in a computer program 104. As dis-
cussed in greater detail below, the mn-line synchronization
primitives 106 may be detected programmatically and auto-
matically by use of computer-executable program instruc-
tions. In 504, the one or more 1n-line synchronization primi-
tives 106 are stored 1n a log 134 1n the same order and with the
same results as originally encountered.

In one embodiment, dynamic binary compilation tech-
niques may be used to detect, intercept, and/or capture the one
or more 1n-line synchronization primitives in the computer
program. Dynamic binary compilation 1s a technique used for
generating program code at runtime. Dynamic binary com-
pilation may also be referred to as “dynamic compilation.”

FIG. 6 illustrates a multi-server networked environment
600 including detection, interception, and/or capture of 1n-
line synchronization primitives using dynamic binary com-
pilation according to one embodiment. The dynamic binary
compilation may be implemented by a dynamic binary com-
piler 108 which generates and/or modifies executable pro-
gram code for an application nstance 104G at runtime. The
dynamic binary compiler 108 may provide a full view of
program code segments 1n a currently running application
instance. The dynamic binary compiler 108 may then permat
instructions 1n the program code to be analyzed, modified,
and/orreplaced as they are initially encountered at runtime. In
one embodiment, the dynamic binary compiler may run
against binary program code. In another embodiment, the
dynamic binary compiler may run against program source
code 1n a high-level programming language such as C or C++.
In one embodiment, the dynamic binary compiler 108 may be
employed without any prior modification of the program code
of the application 104. The dynamic binary compiler 108 may
be implemented primarily in software.

FI1G. 7 1s a flowchart 1llustrating a method for detecting and
logging in-line synchronization primitives using dynamic
binary compilation according to one embodiment. In 702,

10

15

20

25

30

35

40

45

50

55

60

65

10

execution of a computer program may begin. At this point, the
dynamic binary compiler 108 may begin examining the pro-
gram code instruction-by-instruction during execution. In
704, a synchronization primitive 1s encountered. If the current
encounter 1s the first encounter of the particular 1nstruction
during execution (as determined 1n 706), then the dynamic
binary compiler 108 detects the presence of the m-line syn-
chronization primitive in the computer program code 1n 708.
The in-line synchromization primitive may be detected by
analyzing an mstruction or sequence of mstructions encoun-
tered 1n the program code and recognizing that the mstruction
or sequence of mstructions includes one of the in-line syn-
chronization primitives 106. To enable the recognition, the
dynamic binary compiler 108 may permit the differentiation
of istructions (e.g., in-line synchronization primitives) from
constants 1n the executing program code.

In 710, the dynamic binary compiler may modily the 1n-
line synchronization primitive to permit its logging. The 1n-
line synchronization primitive may be replaced by or redi-
rected to a substitute synchronization primitive which 1s
visible to the operating system (e.g., the kernel 107 or other
core element of the operating system). In one embodiment,
the dynamic binary compiler 108 may automatically substi-
tute the in-line synchronization primitive with program code
to switch the process into the kernel, where the substitute
synchronization primitive may be executed. In one embodi-
ment, the replacement code 1n the application program may
comprise a trap, wherein control 1s transierred to the operat-
ing system (e.g., for execution of the substitute synchroniza-
tion primitive) and then back to the application program. In
712, the substitute synchronization primitive 1s then executed
in a manner which 1s visible to the operating system (OS),
such as by executing the substitute synchronization primitive
in kernel mode. Steps 710 and/or 712 may also be referred to
as ‘“intercepting” the in-line synchronization primitives.
Steps 710 and/or 712 may also be referred to as “simulating”
execution of the in-line synchronization primitives. The 1n-
line synchronization primitives 106 shown in FIGS. 4 and 6
may include both the original in-line synchronization primi-
tives (1.e., the instructions prior to being detected) and the
substitute synchronization primitives (1.e., the instructions
alter being detected and modified).

In 714, the substitute synchronization primitive 1s recog-
nized by the operating system and stored in a log 134. The
synchronization primitive may be logged 1n the same order
(with respect to other logged events) and with the same result
as encountered during execution. In one embodiment, each
synchronization primitive may be logged at substantially the
same time at which 1t 1s encountered 1n the execution of the
computer program. Each synchronization primitive may be
logged each time 1t 1s encountered 1n the execution of the
computer program. Storing or logging the synchronization
primitive may also be referred to as “capturing” the synchro-
nization primitive.

Execution of the computer program may continue after the
logging 1 714. Each in-line synchronization primitive
encountered for the first time may be detected and intercepted
using dynamic binary compilation as shown in steps 708
through 712. However, a subsequent encounter with the syn-
chronization primitive may bypass steps 708 and 710 and
quickly result in the execution and logging of the substitute
synchronization primitive 1n 712 and 714.

In one embodiment, any performance penalty suffered due
to dynamic binary compilation may be small. After each
synchronization primitive 1s 1mitially encountered 1n the pro-
gram code, recognized, and replaced, the application instance

US 8,117,600 Bl

11

104 will typically run at substantially the same speed as an
unmodified version of the same application.

In one embodiment, execution of the computer program
may be deterministically replayed using the log 134. FIG. 8 15
a flowchart illustrating a method for application failover
based on the detection and logging of in-line synchromization
primitives according to one embodiment. In 802, one or more
in-line synchronization primitives 106 are detected 1n a com-
puter program 104. The in-line synchronization primitives
106 may be detected programmatically and automatically by
use of computer-executable program instructions, such as a
dynamic binary compiler 108. In 804, the one or more in-line
synchronization primitives 106E are stored 1n a log 134 as
discussed above.

In 806, it 1s determined that execution of the computer
program 104 has failed on a server 102 at a particular point in
time. Failure of the application instance 104 may be caused
by a hardware or software fault in the server 102 itself or by a
fault in an external entity such as a storage device. In one
embodiment, the failure may be sensed automatically by
another server 102 (e.g., using conventional cluster manage-
ment techniques). The failure may also be sensed by another
clement such as a client 110, a storage device 130, or another
computer system tasked with oversight of the multi-server
networked environment.

In 808, the log 134 1s used to resume execution of the
computer program on another sever 102 from the particular
point 1n time. In one embodiment, the most recent valid
application snapshot 132 and/or file system snapshot 133 may
initially be restored. After restoring the snapshots 132 and/or
133, entries in the log 134 may be replayed 1in the same order
and with the same results as originally encountered to restore
the application state 103 determimstically. The log 134 may
comprise any events that are capable of introducing non-
determinism 1nto program execution along with the results of
such events. For example, the log 134 may comprise a record
of events and results such as transaction requests from clients
110 of the application, interprocess communication events,
TCP/IP events, other file I/O, system calls for random number
generation, system calls for a date or time, attempts to acquire
semaphores, signal execution, etc. As discussed above, the
log may comprise synchronization primitives 106 that were
detected and logged 1n the proper order using dynamic binary
compilation techniques. Replaying the synchronization
primitives to restore the application state 103 may comprise
executing or simulating execution of the primitives 1n the
same order and with the same results as orniginally detected
and logged. After restoring the snapshots 132 and/or 133 and
the log 134, including the opening of connections to any
clients 110, execution of the application 104 may continue
from a point 1n time at or immediately prior to the point of
failure. In this manner, the failover 105 from one server 102 to
another server 102 may be transparent to any clients 110.

In one embodiment, the application state 103 restored to
the second server 102 may include the substitute synchroni-
zation primitives generated according to FIG. 7. The applica-
tion snapshot 132 of the first application mstance 104 may
preserve the virtual memory relevant to the first instance 104,
including the substitute synchromzation primitives. When the
application snapshot is used to restore the virtual memory for
the second instance 104, the substitute synchromization
primitives may be automatically restored without a need to
detect and modily the original, 1n-line synchronization primi-
tives a second time. In one embodiment, i1t all the in-line
synchronization primitives 106 in the application 104 were
not encountered prior to failure, the application state 103
restored to the second server 102 may include a combination

5

10

15

20

25

30

35

40

45

50

55

60

65

12

of the substitute synchronization primitives that were previ-
ously inserted and the original, in-line synchronization primi-
tives that were not yet encountered.

In one embodiment, the logging and replay discussed with
reference to FIGS. 2 and 3 may include the logging and replay
ol accesses to shared memory by arbitrary applications 104.
FIG. 9 1llustrates a multi-server networked environment 1000
including logging and replay of shared memory accesses
according to one embodiment. By logging accesses of an
application nstance 104J to a shared memory 150J (1.e., a
memory shared with one or more other processes 160J),
execution of the application may be deterministically
replayed using another application instance 104K which
accesses a shared memory 150K (i.e., a memory shared with
one or more other processes 160K). In one embodiment, all or
part of the shared memory 150J may be considered part of the
application state 103J which 1s preserved and duplicated from
one server 102J to another server 102K. In one embodiment,
all the processes 104J and 160J which access the shared
memory 150J may be migrated from one server 102] to
another server 102K wvia the failover mechanism 105
described herein.

Each of the servers 102 may include a paging mechanism
for memory management. The paging mechanism may be
implemented by a memory management unit (MMU) which
divides available memory into a plurality of umts called
pages. The shared memory 150J may therefore include a
plurality of pages. When paging 1s used 1n conjunction with
virtual memory techniques, pages not in use may be swapped
out to a slower memory medium (e.g., a hard drive) from a
more accessible memory medium (e.g., RAM). If a consumer
(1.e., an application, process, or thread) requests a page that 1s
swapped out to disk, the paging mechanism may bring the
requested page back into memory for faster access.

FIG. 10 1s a tlowchart illustrating a method for identiiying
accesses to shared memory 150J according to one embodi-
ment. In 1060, the pages 1n the shared memory 150J may be
marked as inaccessible (e.g., as swapped out) to a plurality of
memory consumers with access to the shared memory. The
exact flags and page modes of the paging mechanism used to
indicate 1naccessibility may vary depending upon the proces-
sor or other hardware of the server 102. The memory con-
sumers may include any applications, processes, or threads
with access to the shared memory.

In 1062, a first consumer (e.g., the application instance
104]) may generate a first request to access the shared
memory page. In 1064, a page fault may be generated in
response to the first consumer generating the first request to
access the shared memory page. The page fault may be gen-
crated automatically and programmatically, e.g., by the
MMU on the server 102, due to the request for a swapped-out

page. As aresult of the page fault, a page fault handler may be
invoked.

In 1066, the first consumer’s request to access the shared
memory page 1s logged. In one embodiment, the page fault
handler may perform the logging. Logging the access request
may comprise generating one or more log entries including
the application state of the requesting consumer as discussed
with reference to FIG. 2. The consumer may be stopped while
the application state 1s captured. In 1068, the shared memory
page 1s marked as accessible (e.g., not swapped out) to the
first consumer. The page fault handler may also perform step
1068. The first consumer may then access the page (e.g., for
reading or writing data) as requested. By marking the page in
this manner, the first consumer may effectively be granted
ownership over the page. Therefore, if the first consumer

US 8,117,600 Bl

13

generates another request to access the shared memory page,
the first consumer may access the page without generating,
another page fault.

FIG. 11 1s a flowchart further illustrating a method for
identifying accesses to shared memory according to one
embodiment. In 1102, a second consumer may generate a
second request to access the shared memory page aiter the
first consumer has acquired “ownership” over the page. As 1n
step 1064, another page fault may be generated 1n 1104 1n
response to the second consumer’s request. In 1106, in
response to the page fault generated 1n 1104, log entries may
be generated. In one embodiment, a log entry capturing the
application state of the first consumer and a log entry captur-
ing the application state of the second consumer may be
stored. In 1108, the shared memory page may be marked as
inaccessible (e.g., swapped out) to the first consumer and
marked as accessible to the second consumer. Theretore, the
second consumer may assume “‘ownership” over the page.
Both consumers may be stopped while their application states
are captured and resumed after ownership of the page 1s
transierred. In 1110, the second consumer may access (e.g.,
tor reading or writing data) the shared memory page per the
request.

As discussed with reference to FIGS. 2 and 3, execution of
the application instance 104J may be replayed deterministi-
cally using the log entries generated upon handling of the
page faults. A mechanism similar to that discussed with ref-
erence to FIGS. 10 and 11 may be used for the replay of the
accesses to the shared memory. Accesses to shared memory
are played back 1n the same order as originally logged. In one
embodiment, the replayed application instance 104K may be
instrumented to ensure deterministic playback. For example,
the application instance 104K may be instrumented so that
synchronization points which are not directly related to
access of shared memory are respected. A log entry generated
tor the application instance 104K upon transfer of ownership
from the application mstance 104K to another process 160K
may not refer to a well-defined execution state of the appli-
cation instance 104K. Therefore, a breakpoint may be set 1in
the application mstance 104K, and application state data in
the log entry such as a program counter and/or stack contents
may be compared with current state data to determine when
ownership of the page was transierred to the other process
160K.

By controlling both read and write accesses to shared
memory, the systems and methods discussed above with ref-
erence to FIGS. 9-11 may ensure deterministic playback 1n
the presence of data races among memory consumers. How-
ever, 11 1t 1s known that there are no data races 1n an application
or set of applications, then the shared memory access 1denti-
fication may be refined as follows. As discussed above, syn-
chronization points (e.g., semaphores) may be logged by
monitoring system calls and/or identifying in-line synchro-
nization instructions. Access to shared memory may be 1den-
tified and logged by detecting write operations to shared
memory pages. Therefore, to 1dentily synchronization opera-
tions 1n shared memory, write requests to shared memory may
be logged while read requests are 1gnored. Shared memory
pages may be marked as inaccessible for writes (e.g., “trap on
write access”). Ownership of a shared memory page may be
transierred on a write request from a new consumer but not on
a read request.

In one embodiment, the shared memory access 1dentifica-
tion may be further refined by detecting failed synchroniza-
tion mstructions. For example, 11 an attempt to obtain a mutex
tails, ownership of a page may not be altered. Therefore, the

5

10

15

20

25

30

35

40

45

50

55

60

65

14

original owner may retain ownership, and the effect of the
failed 1nstruction may be simulated on replay.

The systems and methods discussed above with reference
to FIGS. 9-11 may be used to implement distributed shared
memory applications 1n one embodiment. In the distributed
shared memory system, ownership of shared memory pages
may be assigned and transierred as discussed above. An
access to a page from a distributed application may cause a
change in the ownership of the page. Changes 1n page con-
tents may be exchanged between the involved components by
network connections or other suitable interconnection tech-
niques and systems.

As discussed with reference to FIGS. 4 and 5, the applica-
tion 104 may include in-line synchronization instructions 106
which are preserved and duplicated along with the rest of the
application state 103. FIG. 12 1s a flowchart illustrating a
method for identifying in-line synchronization instructions
106 1n binary program code 104 by analysis of neighboring
data. Beginning 1n 1202, one or more executable segments of
the binary program code may be scanned to identily one or
more potential in-line synchronization istructions. Scanned
executable segments may comprise, for example, executable
segments after a fork() executable segments mapped 1nto
memory using the mmap system call, and/or memory pages
with page permissions set to “executable.”

In one embodiment, the target processor for the binary
program code may be configured to execute fixed-length
instruction words. In this case, a potential 1n-line synchroni-
zation mstruction may be i1dentified by matching it against a
set of known synchronmization instructions for the target plat-
form. However, a potential 1n-line synchronization instruc-
tion found 1n the binary program code may actually comprise
non-executable data instead of a valid, executable instruction,
so the goal of the method for identifying 1n-line synchroni-
zation 1nstructions 1s to determine whether each potential
in-line synchronization instruction 1s actually a valid in-line
synchronization instruction.

In one embodiment, the target processor for the binary
program code may be configured to execute variable-length
instruction words. In this case, a potential 1n-line synchroni-
zation instruction may be identified by creating and analyzing
a graph of possibilities for each candidate phrase found 1n the
binary program code. A candidate phrase may comprise any
sequence of data which 1s analyzed to determine whether 1t 1s
a potential in-line synchronization instruction. A candidate
phrase may comprise, for example, a sequence which
resembles a potential in-line synchronization instruction or
synchronization prefix. The candidate phrases may vary in
length. The graph of possibilities created for each candidate
phrase may comprise a set of potential in-line synchroniza-
tion mstructions (e.g., beginming with or including the candi-
date phrase). A potential 1in-line synchronization instruction
may be 1dentified 11 1t 1s determined that the potential in-line
synchronization instruction 1s within the graph of possible
instructions for the corresponding candidate phrase.

After 1dentifying a potential in-line synchronization
instruction 1 1202, neighboring potential mstructions may
be 1dentified and analyzed 1n 1204 to determine their validity
or mvalidity. The neighboring potential instructions may
comprise information in the binary program code which 1s
located 1n the vicinity of the potential in-line synchronization
istruction. As with the potential in-line synchronization
instruction, the neighboring potential instructions may actu-
ally comprise non-executable data rather than valid, execut-
able instructions. The 1in-line synchronization instruction
identification method may use the validity or invalidity of the
neighboring potential instructions to signmify the validity or

US 8,117,600 Bl

15

invalidity of the potential in-line synchronization instruction.
The validity of a neighboring potential instruction may be
determined by comparing it to the instruction set for the target
platiorm (e.g., the target processor).

In one embodiment, data following the potential 1n-line
synchronization instruction may be analyzed as potential
neighboring istructions up to a pre-defined threshold. In one
embodiment, a local sequence of potential neighboring
instructions may be identified and analyzed. In one embodi-
ment, branches may be followed recursively up to a pre-
defined level to identity additional neighboring potential
instructions. Analysis may be terminated 1f absolute branches
are reached which cannot be decoded statically (e.g., 1t the
branch target 1s 1n a register). In one embodiment, the neigh-
boring potential instructions analyzed 1n 1202 may primarily
be subsequent to the potential in-line synchronization instruc-
tion. However, mformation preceding the potential in-line
synchronization instruction may also be analyzed. For
example, if the instruction set supports branch-delay mstruc-
tions, then the neighboring potential instruction preceding the
potential in-line synchronization instruction may also be ana-
lyzed.

If 1t 1s determined that the neighboring potential mnstruc-
tions are valid instructions, then a determination that the
corresponding potential in-line synchronization instruction 1s
a valid in-line synchronization instruction may be made 1n
1206. However, 111t 1s determined that the neighboring poten-
tial instructions are not valid instructions, then a determina-
tion that the corresponding potential in-line synchronization
instruction 1s not a valid in-line synchronization instruction
may be made 1n 1208. In one embodiment, a single invalid
“instruction” (1.e., an element of non-executable data) found
in the set of potential neighboring imstructions may result in a
determination of mvalidity in 1208. Until it 1s determined 1n
1210 that the executable segments have been completely
scanned, the scanning and analysis may continue for addi-
tional potential in-line synchronization instructions.

In one embodiment, the technique discussed with respect
to FIG. 12 may i1dentity all valid in-line synchromzation
instructions while not returning any false positives. In other
embodiments, the 1in-line synchronization instruction identi-
fication may be augmented with additional analysis. In one
embodiment, for example, a breakpoint may be set in the
binary program code at the instruction address for each in-
line synchronization instruction 1dentified 1n 1206. When the
breakpoint 1s encountered 1n execution of the binary program
code, the instruction data address may be calculated and
evaluated. The instruction corresponding to the breakpoint
may be considered to be a synchronization instruction 1f the
data address 1s 1n a shared memory segment. Therefore, 1t
may be determined that the instruction 1s not a valid in-line
synchronization instruction 1 the instruction data address 1s
not 1n a shared memory segment.

In one embodiment, the in-line synchromization instruction
identification may be modified as follows for a target proces-
sor with separate read and exec page protection. A breakpoint
may be set 1n the binary program code for each of the potential
in-line synchronization instructions. Page protection for
alfected memory pages may be set to exec only. If a page
access error occurs, the associated memory address may be
determined. If the read was on an address with one of the
breakpoints, then the address was a data address. The original
memory context may be restored, and the access may be
marked as safe (i.e., unrelated to an in-line synchromzation
instruction). However, 11 one of the breakpoints 1s executed,
then 1t may be determined that the potential in-line synchro-
nization nstruction corresponding to the executed breakpoint

10

15

20

25

30

35

40

45

50

55

60

65

16

1s a valid i-line synchronization instruction. In either case, 1f
it was the last potential in-line synchronization instruction on
the page, then the original page permissions may be restored.

In one embodiment, the in-line synchronization imstruction
identification may be modified as follows for a target proces-
sor with combined read and exec page protection. The page
permissions for one or more memory pages may initially be
set to an 1nvalid (e.g., swapped out) state. If a page fault
occurs, the access type may be determined. Code accesses,
data accesses, and associated memory locations may be
recorded. If the access 1s a code access, the code in the page
may be analyzed from the entry point as discussed with ref-
erence to FIG. 12. A breakpoint may be set in each potential
ex1it address (1.e., each exit point where the execution path
leaves the current page, or each location where a branch target
1s unknown). Once an exit point 1s hit, breakpoints may be
removed and the current instruction may be stepped over. I
the next instruction 1s 1n the same page and not analyzed, then
the code may be analyzed as discussed with reference to FIG.
12. It the next instruction has already been analyzed, then
continue setting breakpoints 1n each potential exit address.

In one embodiment, the in-line synchronization primitives
106 may be associated with spinlocks. A spinlock is a lock 1n
which a process or thread requesting access to a shared
resource may wait in a loop (i.e., it may “spin”’) while repeat-
edly checking the availability of the lock. A spinlock count or
spinlock retry count 1s the number of attempts to acquire the
lock (1.e., access to a resource) before the requesting applica-
tion goes to sleep. The spinlock count may depend on the
application configuration and design, the behavior of the
operating system, and the execution sequence of other threads
competing for the same latch. Therefore, the spinlock count
for an arbitrary application 1s diflicult to predict. IT the spin-
lock count 1n the replay of an application ditffers from the
spinlock count 1n the original execution, deterministic play-
back cannot be guaranteed.

FIG. 13 1s a flowchart 1llustrating a method for determin-
1stic execution and playback of binary applications in the
presence ol m-line synchronization primitives and spinlocks
according to one embodiment. In 1302, an in-line synchroni-
zation instruction may be performed during execution of a
first instance of a computer program. Performing the in-line
synchronization instruction may comprise a first spinlock
acquisition. In one embodiment, performing the in-line syn-
chronization 1nstruction during execution of the first instance
comprises emulating the 1n-line synchronization instruction
in an operating system. The in-line synchronization instruc-
tion may be emulated in the operating system (e.g., in the
kernel, a kernel-loadable module, or any other component
operating 1n kernel mode) to ensure that the result 1s success-
tul and to ensure that the first instance does not enter spinlock
operation. When control returns to the application 1n user
mode, the latch has been acquired.

In 1304, the in-line synchromization instruction may be
replayed during execution of a second instance of the com-
puter program. Replaying the in-line synchronization instruc-
tion may comprise a second spinlock acquisition. In one
embodiment, replaying the in-line synchronization instruc-
tion during execution of the second instance again comprises
emulating the in-line synchronization instruction in the oper-
ating system. As 1n 1302, the in-line synchronization instruc-
tion may be emulated in the operating system to ensure that
the result 1s successtul and to ensure that the second instance
does not enter spinlock operation. Therefore, the second spin-
lock acquisition comprises the same result and the same spin-

US 8,117,600 Bl

17

lock count as the first spinlock acquisition. Consequently,
deterministic replay of the original execution may be per-
formed.

In one embodiment, both the first instance and second

instance may be instrumented to facilitate the emulation of >

the in-line synchronization instructions. For example, a
breakpoint may be inserted at the in-line synchromzation
instruction, and the emulation may then be performed in
kernel mode. As used herein, the terms “instrumenting”™ and
“instrumentation” refer to techniques of modifying a com-
puter program (e.g., by installing additional logic) to monitor
or alter execution of the program. The instrumentation may
occur dynamically (1.e., during execution of the computer
program), programmatically (1.e., by executing instructions
on a computer system), and automatically (1.e., without user
intervention). The instrumentation may also occur transpar-
ently (1.e., 1n a manner nvisible to the application developer
and user).

As discussed with reference to FIGS. 4-5, in-line synchro-
nization instructions typically comprise umnterruptible
atomic instructions or primitives. In one embodiment, the
in-line synchronization instructions may comprise load-and-
store instructions, swap instructions, and compare-and-set
instructions. Emulation of each ofthese imnstruction types may
be performed 1n the operating system as follows.

A load-and-store 1nstruction (e.g., the “ldstub” 1nstruction
in a SPARC instruction set) reads a value from memory nto
a register and replaces 1t with a constant. A load-and-store
instruction 1s unsuccessiul 1f the value returned 1s 1dentical to
the value written. For example, the “ldstub” instruction fails
to acquire a lock if the returned value 1s “Oxi1.” Such an
istruction may be emulated 1n the kernel by reading the
memory address from the user context, executing the mnstruc-
tion 1n the kernel with the appropriate parameters, possibly
entering a loop to retry the instruction until the lock 1is
acquired (1.e., while the istruction 1s returning the unsuc-
cessiul value), and finally writing the successiul result into
the user context. Spinlock and wait may be implemented in
the loop with an appropnate spinlock count.

A swap mstruction (e.g., the “swap” instruction 1 a
SPARC 1nstruction set or the “xchg” mstruction 1n an Intel
instruction set) exchanges the value 1n a register with a value
in memory. A swap instruction 1s unsuccessiul 1 the value
written to memory 1s identical to the value returned from
memory. Such an instruction may be emulated in the kernel in
a manner similar to a load-and-store instruction.

A compare-and-set instruction (e.g., the “cas” mstruction
in a SPARC 1nstruction set) compares the value 1n a register
with a value in memory. If the compared values are equal, the
instruction replaces the value in memory with the value 1n
another register. A compare-and-set instruction 1s unsuccess-
tul 11 the value returned does not match the “compare” value.
Such failures are rare, and the emulation may return failure 1n
both the original execution and playback rather than attempt
to guarantee success 1n one embodiment. In another embodi-
ment, a more sophisticated code analysis may be performed
to emulate the compare-and-set 1nstruction. First, the code
context surrounding the 1nstruction may be examined. Sec-
ond, the instruction which reads the original value from
memory may be identified. Typically, this would be a memory
read instruction reading from the same data address as the
compare-and-set instruction. If there 1s a conditional branch
tollowing the compare-and-set mstruction, 1t may be deter-
mined whether the branch results in a loop. If so, the analysis
includes the complete loop. Next, the following code
sequence may be i1dentified and replaced with the emulation

10

15

20

25

30

35

40

45

50

55

60

65

18

code, where the <modify> instruction 1s any arithmetic
instruction and <xxx> 1s any register or constant:

<]oad [mem]—rl>

<modity (r1,xxx)—=r2>

<cas |mem|, rl, r2>
Exemplary Computer System

FIG. 14 illustrates a block diagram of a typical computer
system 900 for implementing embodiments of the systems
and methods described above. Computer system 900 may be
illustrative of a server 102, client 110, or storage device 130.
As used herein, “computing device” 1s synonymous with
“computer system.” Computer system 900 includes a proces-
sor 910 and a memory 920 coupled by a communications bus.
Processor 910 can be a single processor or a number of
individual processors working together. Memory 920 1s typi-
cally random access memory (RAM), or some other dynamic
storage device, and 1s capable of storing instructions to be
executed by the processor, e.g., continuous availability sofit-
ware 940. Memory 920 1s also used for storing temporary
variables or other intermediate information during the execu-
tion of mstructions by the processor 910.

Computer system 900 may also include devices such as
keyboard & mouse 950, SCSI interface 952, network inter-
face 954, graphics & display 956, hard disk 958, and other
nonvolatile storage 960, all of which are coupled to processor
910 by a communications bus. In various embodiments, non-
volatile storage 960 may include optical media devices such
as read-only or writable CD or DVD, solid-state devices such
as nonvolatile RAM, or any other suitable type of nonvolatile
storage. It will be apparent to those having ordinary skill 1n
the art that computer system 900 can also include numerous
clements not shown 1n the figure, such as additional storage
devices, communications devices, mput devices, and output
devices, as illustrated by the ellipsis shown. An example of
such an additional computer system device 1s a Fibre Channel
interface.

Those having ordinary skill 1n the art will readily recognize
that the techniques and methods discussed above can be
implemented 1n soitware as one or more soitware programs,
using a variety ol computer languages, including, for
example, traditional computer languages such as assembly
language, Pascal, and C; object oniented languages such as
C++ and Java; and scripting languages such as Perl and Tcl/
Tk. In some embodiments, software 940 may comprise pro-
gram 1nstructions executable, for example by one or more
processors 910, to perform any of the functions or methods
described above. Also, in some embodiments software 940
can be provided to the computer system via a variety of
computer-accessible media including electronic media (e.g.,
flash memory), magnetic storage media (e.g., hard disk 958,
a tloppy disk, etc.), optical storage media (e.g., CD-ROM
960), and communications media conveying signals encod-
ing the instructions (e.g., via a network coupled to network
interface 954). In some embodiments, separate istances of
these programs can be executed on separate computer sys-
tems 1n keeping with the methods described above. Thus,
although certain steps have been described as being per-
formed by certain devices, soltware programs, processes, or
entities, this need not be the case and a variety of alternative
implementations will be understood by those having ordinary
skill 1n the art.

Additionally, those having ordinary skill in the art will
readily recognize that the techmques described above can be
utilized in a variety of different storage devices and computer
systems with variations in, for example, the number of nodes,
the type of operation of the computer system, e.g., cluster

US 8,117,600 Bl

19

operation (failover, parallel, etc.), the number and type of
shared data resources, and the number of paths between nodes
and shared data resources.

Various modifications and changes may be made to the
invention as would be obvious to a person skilled in the art
having the benefit of this disclosure. It 1s intended that the
tollowing claims be interpreted to embrace all such modifi-
cations and changes and, accordingly, the specifications and
drawings are to be regarded in an illustrative rather than a
restrictive sense.

What is claimed 1s:

1. A computer-implemented method for identifying in-line
synchronization instructions in binary program code, the
method comprising:

performing by a computer:

scanning one or more executable segments of the binary
program code to 1dentify one or more potential in-line
synchronization instructions; and
determining whether each of the one or more potential

in-line synchronization instructions 1s non-execut-

able data or a valid in-line synchromization instruc-

tion, comprising, for each potential in-line synchro-

nization instruction:

determining whether each respective one of a plural-
ity of neighboring potential instructions 1s a valid
istruction or non-executable data, wherein the
plurality of neighboring potential instructions are
located 1n a segment of the binary program code
including the respective potential in-line synchro-
nization instruction:

determining that the respective potential 1in-line syn-
chronization instruction is a valid in-line synchro-
nization istruction in response to determimng that
all of the plurality of neighboring potential instruc-
tions 1n the segment are valid instructions; and

determining that the respective potential 1in-line syn-
chronization instruction 1s non-executable data 1n
response to determining that one or more of the
neighboring potential nstructions in the segment
are valid mstructions and one or more of the neigh-
boring potential imstructions occurring prior to the
one or more valid 1nstructions 1n the segment are
non-executable data.

2. The method of claim 1,

wherein a target processor for execution of the binary pro-

gram code 1s configured to execute variable-length
instruction words;

wherein 1dentifying the one or more potential in-line syn-

chronization instructions comprises determining that
cach of the one or more potential in-line synchronization
instructions 1s within a graph of possible instructions for
a corresponding candidate phrase 1n the binary program
code.

3. The method of claim 1, further comprising:

performing by a computer:

for each valid in-line synchronmization instruction:

setting a breakpoint in the binary program code;

evaluating an instruction data address when the break-
point 1s encountered in execution of the binary
program code; and

determining that the 1in-line synchronization instruc-
tion corresponding to the breakpoint 1s not a valid
in-line synchromization instruction 1f the instruc-
tion data address 1s not in a shared memory seg-
ment.

4. The method of claim 1, further comprising;

performing by a computer:

10

15

20

25

30

35

40

45

50

55

60

65

20

setting a breakpoint in the binary program code for each
ol the potential in-line synchronization instructions;

setting page protection for aflected memory pages to
exec only, wherein a target processor for execution of
the binary program code 1s configured with separate
read and exec page protection;

il a page access error occurs regarding a read on an
address with one of the breakpoints, determiming that
the access 1s unrelated to an 1n-line synchronization
instruction; and

il one of the breakpoints 1s executed, determining that
the potential 1n-line synchronization nstruction cor-
responding to the executed breakpoint 1s a valid 1n-
line synchronization instruction.

5. The method of claim 1,

wherein determining whether neighboring potential

istructions are valid instructions comprises following

branches recursively to determine whether subsequent
potential istructions are valid instructions.

6. A non-transitory, computer-accessible storage medium
comprising program instructions for identilying in-line syn-
chronization instructions in binary program code, wherein
the program 1instructions are computer-executable to 1mple-
ment:

scanning one or more executable segments of the binary

program code to 1dentify one or more potential in-line

synchronization instructions; and

determiming whether each of the one or more potential

in-line synchronization instructions 1s non-executable

data or a valid in-line synchronization instruction, com-
prising, for each potential in-line synchromzation
instruction:

determining whether each respective one of a plurality
of neighboring potential instructions 1s a valid
instruction or non-executable data, wherein the plu-
rality of neighboring potential instructions are located
in a segment of the binary program code including the
respective potential in-line synchronization instruc-
tion;

determining that the respective potential in-line syn-
chronization instruction 1s a valid 1n-line synchroni-
zation instruction in response to determining that all
ol the plurality of neighboring potential instructions
are valid instructions; and

determining that the respective potential in-line syn-
chronization instruction 1s non-executable data 1n
response to determines that one or more of the neigh-
boring potential instructions in the segment are valid
instructions and one or more of the neighboring
potential instructions occurring prior to the one or
more valid istructions in the segment are non-ex-
ecutable data.

7. 'The non-transitory,
medium of claim 6,

wherein a target processor for execution of the binary pro-

gram code 1s configured to execute variable-length
instruction words;

wherein 1dentitying the one or more potential in-line syn-

chronization instructions comprises determining that

cach of the one or more potential in-line synchronization
instructions 1s within a graph of possible instructions for

a corresponding candidate phrase 1n the binary program

code.

8. 'The non-transitory, computer-accessible storage
medium of claim 6, wherein the program instructions are
turther computer-executable to implement:

tor each valid 1n-line synchronization instruction:

computer-accessible storage

US 8,117,600 Bl

21

setting a breakpoint 1n the binary program code;

evaluating an 1nstruction data address when the break-
point 1s encountered 1n execution of the binary pro-
gram code; and

determining that the in-line synchronization instruction
corresponding to the breakpoint 1s not a valid 1n-line
synchronization instruction 1t the instruction data
address 1s not in a shared memory segment.

9. The non-transitory, computer-accessible storage
medium of claim 6, wherein the program instructions are
turther computer-executable to implement:

setting a breakpoint in the binary program code for each of
the potential 1n-line synchronization instructions;

setting page protection for affected memory pages to exec
only, wherein a target processor for execution of the
binary program code 1s configured with separate read
and exec page protection;

il a page access error occurs regarding a read on an address
with one of the breakpoints, determining that the access
1s unrelated to an in-line synchromzation instruction;
and

if one of the breakpoints 1s executed, determining that the
potential 1n-line synchronization instruction corre-
sponding to the executed breakpoint 1s a valid in-line
synchronization instruction.

10. A system comprising:

a processor; and

a memory coupled to the processor, wherein the memory
stores program nstructions which are executable by the
processor 1o:
scan one or more executable segments of binary pro-

gram code to 1dentily one or more potential n-line

synchronization instructions; and

determine whether each of the one or more potential

in-line synchronization instructions 1s non-execut-

able data or a valid in-line synchromization instruc-

tion, wherein, for each potential in-line synchroniza-

tion 1nstruction, the program instructions are

executable by the processor to:

determine whether each respective one of a plurality
of neighboring potential instructions 1s a valid
instruction or non-executable data, wherein the
plurality of neighboring potential instructions are
located 1n a segment of the binary program code
including the respective potential 1n-line synchro-
nization instruction:

determine that the respective potential in-line syn-
chronization instruction is a valid in-line synchro-
nization instruction in response to determimng that

10

15

20

25

30

35

40

45

22

all of the plurality of neighboring potential instruc-
tions 1n the segment are valid instructions; and

determine that the respective potential in-line syn-
chronization instruction 1s non-executable data 1n
response to determining that one or more of the
neighboring potential nstructions in the segment
are valid instructions and one or more of the neigh-
boring potential instructions occurring prior to the
one or more valid instructions in the segment are
non-executable data.

11. The system of claim 10,

wherein a target processor for execution of the binary pro-
gram code 1s configured to execute variable-length
instruction words;

wherein 1n identifying the one or more potential in-line
synchronization instructions, the program instructions
are Turther executable by the processor to determine that
cach of the one or more potential in-line synchronization
instructions 1s within a graph of possible instructions for
a corresponding candidate phrase 1n the binary program
code.

12. The system of claim 10, wherein the program instruc-

tions are further executable by the processor to:
tor each valid 1n-line synchronization instruction:
set a breakpoint 1n the binary program code;
evaluate an instruction data address when the breakpoint
1s encountered 1n execution of the binary program
code; and

determine that the in-line synchronization instruction
corresponding to the breakpoint 1s not a valid 1n-line
synchronization instruction 1f the instruction data
address 1s not 1in a shared memory segment.

13. The system of claim 10, wherein the program instruc-

tions are further executable by the processor to:

set a breakpoint 1n the binary program code for each of the
potential in-line synchronization instructions;

set page protection for alfected memory pages to exec only,
wherein a target processor for execution of the binary
program code 1s configured with separate read and exec
page protection;

11 a page access error occurs regarding a read on an address
with one of the breakpoints, determine that the access 1s
unrelated to an m-line synchronization instruction; and

11 one of the breakpoints 1s executed, determine that the
potential 1n-line synchronization instruction corre-
sponding to the executed breakpoint 1s a valid in-line
synchronization instruction.

	Front Page
	Drawings
	Specification
	Claims

