### US008115157B2 # (12) United States Patent Altice, Jr. et al. ## (10) Patent No.: US 8,115,157 B2 ### (45) **Date of Patent:** Feb. 14, 2012 ### (54) ROW DRIVEN IMAGER PIXEL (75) Inventors: **Peter P. Altice, Jr.**, Meridian, ID (US); Jeffrey Bruce, Meridian, ID (US); Jeff A. Mckee, Meridian, ID (US); Joey Shah, Boise, ID (US); Richard A. Mauritzson, Boise, ID (US) (73) Assignee: Round Rock Research, LLC, Mt. Kisco, NY (US) (\*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 234 days. (21) Appl. No.: 12/713,427 (22) Filed: Feb. 26, 2010 ### (65) Prior Publication Data US 2010/0148035 A1 Jun. 17, 2010 ### Related U.S. Application Data - (60) Continuation of application No. 11/882,690, filed on Aug. 3, 2007, now Pat. No. 7,737,388, which is a continuation of application No. 11/643,681, filed on Dec. 22, 2006, now Pat. No. 7,485,836, which is a division of application No. 11/265,154, filed on Nov. 3, 2005, now Pat. No. 7,176,434, which is a division of application No. 10/766,012, filed on Jan. 29, 2004, now Pat. No. 7,196,304. - (51) **Int. Cl.** H04N 3/14 (2006.01) H04N 5/335 (2006.01) See application file for complete search history. ### (56) References Cited ### U.S. PATENT DOCUMENTS | 4,744,057 | A | 5/1988 | Descure et al. | |--------------|------------|---------|------------------------| | 5,041,890 | A | 8/1991 | Pruvot | | 5,877,715 | A | 3/1999 | Gowda et al. | | 5,898,168 | A | 4/1999 | Gowda et al. | | 5,920,274 | A | 7/1999 | Gowda et al. | | 6,115,066 | A | 9/2000 | Gowda et al. | | 6,184,055 | B1 | 2/2001 | Yang et al. | | 6,344,877 | B1 | 2/2002 | Gowda et al. | | 6,888,573 | B2 | 5/2005 | Herold | | 6,911,640 | B1 | 6/2005 | Bencuya et al. | | 7,002,231 | B2 | 2/2006 | Rhodes et al. | | 7,277,130 | B2 * | 10/2007 | Korthout et al 348/308 | | 2002/0018133 | <b>A</b> 1 | 2/2002 | Mendis et al. | | (Continued) | | | | #### FOREIGN PATENT DOCUMENTS WO WO 03/054922 7/2003 Primary Examiner — Tony Ko (74) Attorney, Agent, or Firm — Lerner, David, Littenberg, Krumholz & Mentlik, LLP ### (57) ABSTRACT An imaging system includes a pixel that does not require a row select transistor. Instead, an operating voltage is selectively provided to the pixel's readout circuitry, and the readout circuitry provides output signals based on charge or voltage of a storage node. The operating voltage can be selectively provided to each row of a pixel array by a row driver. Each pixel includes a source follower transistor that provides an output signal on a column output line for readout. An anti-blooming transistor may be linked to each pixel's photosensor to provide an overflow path for electrons during charge integration, prior to transfer of charge to the pixel's storage node by a transfer transistor. Electrons not produced by an image are introduced to the photosensor prior to image acquisition, filling traps in the photosensor to reduce image degradation. ### 13 Claims, 9 Drawing Sheets ## US 8,115,157 B2 Page 2 ### U.S. PATENT DOCUMENTS 2004/0036781 A1 2/2004 Enomoto 2004/0036784 A1 2/2004 Bock 2004/0174450 A1 9/2004 Lee et al. 2004/0251394 A1 12/2004 Rhodes et al. 2005/0083421 A1 4/2005 Berezin et al. 2005/0083422 A1 4/2005 Lee et al. \* cited by examiner ### 1 ### **ROW DRIVEN IMAGER PIXEL** # CROSS-REFERENCE TO RELATED APPLICATIONS This application is a continuation of U.S. patent application Ser. No. 11/882,690, filed on Aug. 3, 2007 now U.S. Pat. No. 7,737,388, which is a continuation of U.S. patent application Ser. No. 11/643,681 (now U.S. Pat. No. 7,485,836), filed Dec. 22, 2006, which is a divisional of U.S. patent application Ser. No. 11/265,154 (now U.S. Pat. No. 7,176, 434), filed on Nov. 3, 2005, which is a divisional of U.S. patent application Ser. No. 10/766,012 (now U.S. Pat. No. 7,196,304), filed on Jan. 29, 2004, all of which are incorporated by reference herein. ### FIELD OF THE INVENTION The invention relates generally to improving the control and operation of an imager pixel. ### BACKGROUND OF THE INVENTION An imager, for example, a CMOS imager includes a focal 25 plane array of pixel cells; each cell includes a photosensor, for example, a photogate, photoconductor or a photodiode overlying a substrate for producing a photo-generated charge in a doped region of the substrate. A readout circuit is provided for each pixel cell and typically includes at least a source fol- 30 lower transistor and a row select transistor for coupling the source follower transistor to a column output line. The pixel cell also typically has a charge storage node, for example, a floating diffusion node which is, in turn, connected to the gate of the source follower transistor. Charge generated by the 35 photosensor is stored at the storage node. In some arrangements, the imager may also include a transistor for transferring charge from the photosensor to the storage node. The imager also typically includes a transistor to reset the storage node before it receives photo-generated charges. In a CMOS imager pixel cell, for example, a four transistor (4T) pixel cell 100 as depicted in FIG. 1, the active elements of a pixel cell perform the functions of (1) photon to charge conversion by photodiode 102; (2) transfer of charge to the floating diffusion node 108 by the transfer transistor 104; (3) 45 resetting the floating diffusion node to a known state before the transfer of charge to it by reset transistor 106; (4) selection of a pixel cell for readout by row select transistor 112; and (5) output and amplification of a signal representing a reset voltage and a pixel signal voltage based on the photo converted 50 charges by source follower transistor 110, which has its gate connected to the floating diffusion node 108. The pixel of FIG. 1 is formed on a semiconductor substrate as part of an imager device pixel array. FIG. 2 illustrates a block diagram of a CMOS imager 55 device 908 having a pixel array 200 with each pixel cell being constructed as described above, or as other known pixel cell circuits. Pixel array 200 comprises a plurality of pixels arranged in a predetermined number of columns and rows (not shown). The pixels of each row in array 200 are all turned 60 on at the same time by a row selected line, and the pixels of each column are selectively output by respective column select lines. A plurality of rows and column lines are provided for the entire array 200. The row lines are selectively activated in sequence by the row driver 210 in response to row address 65 decoder 220 and the column select lines are selectively activated in sequence for each row activation by the column driver 260 in response to column address decoder 270. Thus, a row and column address is provided for each pixel. The CMOS imager is operated by control circuit 250, which controls address decoders 220, 270 for selecting the appropriate row and column lines for pixel readout, and row and column driver circuitry 210, 260 which apply driving voltage to the drive transistors of the selected row and column lines. The pixel output signals typically include a pixel reset signal $V_{rst}$ taken off of the floating diffusion node 108 when it is reset by reset transistor 106 and a pixel image signal $V_{sig}$ , which is taken off the floating diffusion node 108 after photogenerated charges generated by an image are transferred to it. The $V_{rst}$ and $V_{sig}$ signals are read by a sample and hold circuit 265 and are subtracted by a differential amplifier 267, which produces a signal $V_{rst}$ - $V_{sig}$ for each pixel, which represents the amount of light impinging on the pixels. This difference signal is digitized by an analog to digital converter 275. The digitized pixel signals are then fed to an image processor 280 20 to form a digital image. The digitizing and image processing can be located on or off the imager chip. In some arrangements the differential signal $V_{rst}$ - $V_{Sig}$ can be amplified as a differential signal and directly digitized by a differential analog to digital converter. As shown in FIG. 1, the conventional four transistor (4T) pixel requires an operating voltage Vcc, as well as transfer TG, row select ROW and reset RST control signals for operation. #### BRIEF SUMMARY OF THE INVENTION Method and apparatus embodiments of the present invention provide a new pixel design for an imager in which the pixel is operated with a row driver signal which supplies operating power and selects the pixel for operation and readout, and a reset and transfer control signal. In one exemplary embodiment, the pixel cell includes a photosensor, a transfer transistor operated by a transfer control signal, a storage node for receiving transferred charges from the photosensor, reset transistor for the resetting of the storage node operated by a reset control signal and output transistor having a gate coupled to the storage node and receiving operating power and providing a selective readout in response to the row driver signal. In another aspect of the exemplary embodiment, the pixel cell having the foregoing construction can be operated to precharge the photosensor with electrons to mitigate against loss of photo-generated image charges during charge transfer to the storage node. In another exemplary embodiment, the pixel cell includes an anti-blooming transistor coupled to the row driver signal and photosensor which provides an overflow path for electrons to reduce over saturation of the photosensor. ### BRIEF DESCRIPTION OF THE DRAWINGS The foregoing and other advantages and features of the invention will become more apparent from the detailed description of exemplary embodiments provided below with reference to the accompanying drawings in which: FIG. 1 is a schematic diagram of a conventional four transistor pixel; FIG. 2 is a block diagram of a conventional imager device; FIG. 3 is a schematic circuit diagram according to a first embodiment of the invention; FIG. 4 is a timing diagram for shutter operation of the FIG. 3 embodiment; 3 FIG. **5** is a voltage threshold diagram for a pinned photodiode used in the FIG. **3** embodiment; FIG. 6 is a timing diagram for charge readout of the FIG. 3 embodiment; FIG. 7 is a schematic circuit diagram of a pixel according 5 to a second embodiment of the invention; FIG. **8** is a timing diagram for shutter operation of the FIG. **7** embodiment; and FIG. **9** is a diagram of a processing system which employs an imager employing an array of pixels constructed in accor- 10 dance with the various embodiments of the invention. ### DETAILED DESCRIPTION OF THE INVENTION In the following detailed description, reference is made to the accompanying drawings, which are a part of the specification, and in which is shown by way of illustration various embodiments whereby the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to make and use the invention. It is to be understood that other embodiments may be utilized, and that structural, logical, and electrical changes, as well as changes in the materials used, may be made without departing from the spirit and scope of the present invention. Additionally, certain processing steps are described and a particular order of processing steps is disclosed; however, the sequence of steps is not limited to that set forth herein and may be changed as is known in the art, with the exception of steps or acts necessarily occurring in a certain order. The terms "wafer" and "substrate" are to be understood as interchangeable and as including silicon, silicon-on-insulator (SOI) or silicon-on-sapphire (SOS), doped and undoped semiconductors, epitaxial layers of silicon supported by a base semiconductor foundation, and other semiconductor structures. Furthermore, when reference is made to a "wafer" 35 or "substrate" in the following description, previous process steps may have been utilized to form regions, junctions or material layers in or on the base semiconductor structure or foundation. In addition, the semiconductor need not be silicon-based, but could be based on silicon-germanium, germanium, gallium arsenide, or other known semiconductor materials. The term "pixel" refers to a photo-element unit cell containing a photoconversion device or photosensor and transistors for processing an electrical signal from electromagnetic 45 radiation sensed by the photoconversion device such as imager 908 (FIG. 2). The embodiments of pixels discussed herein are illustrated and described as employing three transistor (3T) or four transistor (4T) pixel circuits for the sake of example only. It should be understood that the invention may 50 be used with other pixel arrangements having more than three transistors. Although the invention is described herein with reference to the architecture and fabrication of one pixel cell, it should be understood that this is representative of a plurality of pixels 55 in an array of an imager device such as imager 908 (FIG. 2). In addition, although the invention is described below with reference to a CMOS imager, the invention has applicability to any solid state imaging device having pixels. The following detailed description is, therefore, not to be taken in a limiting 60 sense, and the scope of the present invention is defined only by the appended claims. FIG. 3 illustrates an exemplary circuit 300 for a pixel of a CMOS imager according to a first exemplary embodiment of the invention. The pixel includes a photosensor, e.g. a photodiode 302, transfer transistor 304, a floating diffusion node 306, and a reset and readout circuit including reset transistor 4 308, source follower transistor 312 and row driver circuit 310. Row driver circuit 310 supplies operating power and reset voltage levels to the pixel 300 in the form of a row driver signal ROW\_DRIVER, which can be provided in the same manner as row driver 210 (FIG. 2). It should be understood, that when the pixel 300 is employed in a pixel array, a plurality of like pixels are arranged in rows and columns and all pixels in a row receive ROW\_DRIVER from a common row driver circuit 310 while all pixels in a column are coupled to provide output signals on a common column line 313. The illustrated pixel 300 is formed on a semiconductor substrate. The photodiode 302 generates and accumulates signal charge in response to incident light during a charge integration period. After the integration period, the charge is transferred via the transfer transistor 304 to the floating diffusion node 306. Shutter timing signals are used to initiate a charge integration operation of the pixel 300. FIG. 4 illustrates the shutter timing signals for operating the FIG. 3 pixel. Referring now to FIGS. 3 and 4, initially, at time t1, the signal ROW\_DRIVER is set low and thereafter the gate control signals for transfer transistor **304** (TX\_EN) and reset transistor 308 (RST\_EN) are set high at time t2 causing electrons to fill photodiode 302 and floating diffusion node 306. ROW\_DRIVER is provided to a channel terminal of reset transistor 308, illustratively the source terminal. The electrons are drawn to the photodiode 302 and floating diffusion node 306 because both photodiode 302 and floating diffusion node 306 are initially at a higher potential Vpin, for example, 2.3 volts. When ROW\_DRIVER is set low the actual voltage of ROW\_DRIVER still remains above ground (for example, 0.1 volts) to prevent an injection of electrons into the substrate. With row driver 310 set low and an influx of electrons flowing into photodiode 302 and floating diffusion node 306, the potential of photodiode 302 and floating diffusion node 306 is subsequently reduced to, for example, 0.1 volts. Next, while the gate control signals for transfer transistor 304 and reset transistor 308 remain high, the ROW\_DRIVER signal is set high at time t3. This drains the electrons from photodiode 302 and floating diffusion node 306, thereby resetting photodiode 302 to Vpin. In addition, any electron traps within photodiode 302 caused by an inherent barrier voltage Vbarrier (FIG. 5 discussed below) are filled with electrons previously introduced to photodiode 302 when ROW\_DRIVER was set low. The timing illustrated at t2 and t3 is for precharging the photosensor with electrons to mitigate against the loss of photo-generated image charges during charge transfer to the storage node, this precharging is an optional operation. Next, while RST\_EN and ROW\_DRIVER remain high, TX\_EN is set low at time t4. This turns off transfer transistor 304 and photodiode 302 is now isolated from the floating diffusion node 306. With photodiode 302 reset to Vpin and isolated from floating diffusion node 306, charge integration for photodiode 302 now begins. Next, while RST\_EN is high and TX\_EN is low, ROW\_DRIVER is set low at time t5. Setting ROW\_DRIVER low forces the floating diffusion node 306 to a potential of approximately 0.1 volts, which turns off source follower transistor 312 to isolate the output bus shared by pixels in each column. Next, while TX\_EN and ROW\_DRIVER are low, RST\_EN is set also low at time t6. This turns off reset transistor 308 low and floating diffusion node 306 is isolated from the ROW\_DRIVER signal. Since the floating diffusion node 306 is also now set low there is no output from the source follower transistor 312. The shutter timing signals in FIG. 4 can be applied concurrently to all pixels in an imager array 200 (FIG. 2). As a result, all photodiodes 302 in the array begin integration concurrently and all source follower transistors 312 are turned off concurrently by setting all floating diffusion nodes 306 to a 5 turn off voltage, for example 0.1 volts. FIG. 5 illustrates the potential diagram of the photodiode 302, transfer gate TG and floating diffusion node FD. When the transfer transistor 304 is turned off by TX\_EN going low at time t4, a barrier exists impeding charge transfer between photodiode 302 and floating diffusion node 306 which is shown by A. While the barrier A exists between the photodiode 302 and floating diffusion node 306, charge integration from a signal produced by light incident on the photodiode 15 302 occurs. Subsequently, as described below, when TX\_EN goes high again, the barrier A falls to the level of Vbarrier allowing electrons to transfer from the photodiode 302 to the floating diffusion node 306. However, even when the transfer gate 304 is on, a small barrier may still remain so that not all electrons in the photodiode 302 are transferred to the floating diffusion node 306. Some electrons remain trapped at photodiode 302. However, because the photodiode 302 was initially coupled to the ROW\_DRIVER signal, the trap was filled, i.e., precharged, with non-image electrons, so image 25 electrons acquired in photodiode 302 during integration are not lost during the charge transfer to floating diffusion node 306 due to the small remaining barrier between the photodiode 302 and floating diffusion node 306 when the transfer transistor **304** is on. FIG. 6 illustrates a timing diagram for the FIG. 3 circuit 300 during pixel readout, which occurs after the shutter timing depicted in FIG. 4 and the charge integration at photodiode 302 is completed. Initially, the floating diffusion nodes predetermined voltage, for example 0.1 volts to ensure that all source follower transistors 312 are turned off as described above when ROW\_DRIVER is low, TX\_EN is low and RST\_EN is high at time t5 (FIG. 4). The ROW\_DRIVER signal of the pixel intended to be read is pulsed high at time t8 40 (FIG. 6) providing an operating voltage across source follower transistor 312. The floating diffusion node 306 of the pixel intended to be sampled is then reset at time t9 by briefly turning on reset transistor 314 supplied with operating voltage by ROW\_DRIVER and signal RST\_EN going high, 45 thereby resetting floating diffusion node 306 to a predetermined ROW\_DRIVER voltage (for example, 3.3 volts). The reset voltage level on the floating diffusion node 306 is then applied to the gate of source follower transistor 312, which converts it to a reset output voltage $V_{rst}$ on a column output 50 line **313** (FIG. **3**). The output signal is subsequently sampled at time t10, for example by a sample and hold circuit 265 (FIG. 2), where a high pulse SHR is used to sample and hold the reset output voltage $V_{rst}$ onto a first sample and hold capacitor. Charge stored in photodiode **302** from a previous integration period is then transferred to floating diffusion node 306 by signal TX\_EN going high at time t11 thereby, turning on transfer transistor 304 and lowering the potential barrier in FIG. 5 to Vbarrier. The transferred charge lowers the voltage 60 on the floating diffusion node 306 to a pixel output signal level, which is applied to the gate of source follower transistor 312. Source follower transistor 312, which is still supplied with operating voltage by ROW\_DRIVER being high, converts the signal voltage level to a signal output voltage $V_{sig}$ on 65 the column output line. Sample and hold circuit 265 (FIG. 2) in response to a sample/hold pulse SHS at time t12 causes the pixel's signal output voltage $V_{sig}$ on the column line to be stored in a second sample and hold capacitor. After $V_{sig}$ is sampled, the ROW\_DRIVER signal is set to a low voltage above ground, for example 0.1 volts at time t13. Reset transistor 314 is briefly turned on again at time t14, setting floating diffusion node 306 to a low voltage, for example 0.1 volts and the pixel circuit is ready for a next image capture frame. Since transfer transistor 304 is positioned between photodiode 302 and floating diffusion node 306, the floating diffusion node 306 can be reset prior to transferring electrons. This permits a correlated double sampling operation resulting in reduced kTC noise and image noise. A global array signal may be implemented to control multiple row drivers 310 and the reset transistors 308 in an imager array; however, the transfer transistor 304 and the reset transistor 308 are controlled individually for each pixel. As noted above with respect to the FIG. 5 potential diagram, when the transfer transistor 304 is on at time t11, all of the charge stored in the photodiode 302 may not be transferred to the floating diffusion node 306 because the pinning potential Vpin of the photodiode 302 is higher than the barrier voltage Vbarrier. As a result, some of the electrons generated during the integration period are trapped at the photodiode **302**. However because the trap sites were initially filled at time t2 with non-image electrons, no image charges are lost. FIG. 7 illustrates a modified pixel circuit 400 according to a second exemplary embodiment of the invention. This modified embodiment adds to the FIG. 3 pixel 300 an anti-blooming transistor 414 coupled to voltage source $V_{AA}$ , which is a high voltage, for example 3.3 volts. The anti-blooming transistor 414 is controlled by gate signal AB. Pixel circuit 400 operates like pixel circuit 300; however, 306 of all pixels in an imager array 200 (FIG. 2) are set to a 35 pixel circuit 400 includes an anti-blooming transistor 414 to provide an overflow path when photodiode 302 is approaching saturation, to drain excess charge from photodiode 302 when it is overexposed during charge integration. It should be noted that even when transistor 414 is turned on by control signal AB, a high charge barrier $V_{AB}$ (FIG. 5) is present between the photodiode 302 and anti-blooming transistor 414 that must be overcome, i.e. when photodiode 302 approaches saturation, before overflow charges are drained and flow through transistor **414**. FIG. 8 illustrates the shutter timing diagram for the FIG. 7 circuit. The control signals ROW\_DRIVER, TX\_EN and RST\_EN operate according to that of pixel circuit 300 (FIG. 4). In addition, control signal AB controls the operation of anti-blooming transistor 414. When ROW-DRIVER and RST\_EN are set high and TX\_EN transitions from high to low, beginning charge integration in photodiode 302, signal AB is set to a constant voltage, for example 0.1 volts. This allows anti-blooming transistor **414** to provide a blooming path out of pixel circuit 400. With anti-blooming transistor 55 **414** on during charge integration, the overflow path is created from the photodiode 302 to reduce over saturation by photodiode 302 during image acquisition, i.e., charge integration. Charge readout occurs using the same signal timing as that of the FIG. 3 circuit. In a variation to the shutter timing for the FIG. 7 circuit, the AB signal could be pulsed high then held at a constant voltage, for example 0.1 volts, prior to charge integration. The pulsing of signal AB results in resetting pixel circuit 400. When signal AB is held at a constant voltage, an anti-blooming path is provided out of pixel circuit 400. In this instant, signal AB is pulsed and held for the rows that will be used to acquire an image, i.e., rows performing charge integration. 7 If the floating diffusion node 406 becomes saturated during charge transfer from photodiode 402 and electrons begin to overflow, these electrons will overflow into row driver 410 thereby providing an anti-blooming path for floating diffusion node 406. FIG. 9 shows a processor system 900, which includes an imaging device 908 which is the same as FIG. 2, but as modified to use the pixels described herein. The imager device 908 may receive control or other data from system 900. System 900 includes a processor 902 having a central processing unit (CPU) that communicates with various devices over a bus 904. Some of the devices connected to the bus 904 provide communication into and out of the system 900; an input/output (I/O) device 906 and imager device 908 are such communication devices. Other devices which may 15 be connected to the bus 904 provide memory, illustratively including a random access memory (RAM) 910, hard drive 912, and one or more peripheral memory devices such as a floppy disk or other memory drive 914 and compact disk (CD) drive **916**. The imager device **908** may, in turn, be coupled to 20 processor 902 for image processing, or other image handling operations. Examples of processor systems, which may employ the imager device 908, include, without limitation, computer systems, camera systems, scanners, machine vision systems, vehicle navigation systems, video telephones, sur- 25 veillance systems, auto focus systems, image stabilization systems, and others. The devices described above illustrate typical devices of many that could be used. The above description and drawings illustrate an embodiment, which achieves the features and 30 advantages of the present invention. However, it is not intended that the present invention be strictly limited to the above-described and illustrated embodiment. Any modifications, though presently unforeseeable, of the present invention that come within the spirit and scope of the following 35 claims should be considered part of the present invention. What is claimed as new and desired to be protected by Letters Patent of the United States is: 1. A method, comprising: providing a first supply voltage to a channel terminal of a first reset transistor of a first pixel in a first row of pixels of a pixel array while the first reset transistor and a first transfer transistor of the first pixel are on; subsequently providing a second supply voltage, lower than the first supply voltage, to the channel terminal of the first reset transistor while the first reset transistor is on and the first transfer transistor is off; subsequently turning off the first reset transistor to isolate a floating diffusion node coupled to the first reset transistor in a low state; and subsequently, while the first reset transistor remains off and the floating diffusion node is isolated in the low state, reading out a second pixel in a second row of pixels of the pixel array. 2. The method of claim 1, wherein the step of providing the first supply voltage to the channel terminal of the first reset transistor is performed while a second transfer transistor of the second pixel is off and a photodiode of the second pixel is 8 integrating charge to be subsequently read out during the reading out of the second pixel. - 3. The method of claim 2, wherein the step of providing the first supply voltage to the channel terminal of the first reset transistor is performed while a second reset transistor of the second pixel is off. - 4. The method of claim 2, further comprising providing the first supply voltage to the channel terminal of the first reset transistor while supplying the first supply voltage to a channel terminal of a second reset transistor of the second pixel. - 5. The method of claim 1, further comprising providing the first supply voltage to the channel terminal of the first reset transistor while supplying the first supply voltage to a channel terminal of a second reset transistor of the second pixel. - 6. The method of claim 1, wherein the first supply voltage is less than or equal to approximately 3.3 volts and the second supply voltage is slightly above ground. - 7. The method of claim 1, wherein the reading out of the second pixel comprises providing a reset output signal and a photodiode output signal from the second pixel to a column output line via a source follower transistor of the second pixel. - 8. An imaging system, comprising: - a driver circuit to selectively supply high and low supply voltages to a pixel array of a CMOS imager, wherein the high supply voltages are higher than the low supply voltages; - a first pixel in a first row of pixels of the array comprising a first reset transistor coupled between the driver circuit and a first charge storage node, the driver circuit to provide a high supply voltage to the first pixel during a reset of the first pixel and to subsequently provide a low supply voltage to the first pixel to bias the first charge storage node low, and the first reset transistor to subsequently be turned off to isolate the first charge storage node before the first row of pixels is selected for readout and while a second row of pixels of the array is selected for readout; and - a second pixel in the second row of pixels of the array, the second pixel to be read out while the first reset transistor remains off to isolate the first charge storage node. - 9. The system of claim 8, wherein the second pixel comprises a photodiode in which charge is to be integrated while the first pixel is reset, the charge to be read out during the read out of the second pixel. - 10. The system of claim 9, wherein the second pixel comprises a second reset transistor to be off while the first pixel is reset. - 11. The system of claim 10, wherein the driver circuit is to simultaneously supply a high supply voltage to the first and second reset transistors of the first and second pixels. - 12. The system of claim 8, wherein the driver circuit is to simultaneously supply a high supply voltage to the first and second pixels. - 13. The system of claim 12, further comprising an apparatus to focus an image on the pixel array, and a removable, non-volatile storage device to store data representing the image received by the pixel array. \* \* \* \*