United States Patent

US008112677B2

(12) (10) Patent No.: US 8,112,677 B2
Barlow et al. 45) Date of Patent: Feb. 7, 2012
(54) METHOD OF DEBUGGING MULTIPLE 7,665,002 Bl 2/2010 White et al.
,, ,, 1 cmmertetal.
PROCESSES 7,802,233 B2* 9/2010 Wel 1 717/125
7,853,928 B2* 12/2010 Attinellac..... 717/128
7,987,393 B2 7/2011 Sol tal. ... 714/45
(75) Inventors: Stephen John Barlow, Conington (GB): 20020075326 AL* 62002 Allen oo 345/853
Andrew James Bower, Cambridge 2003/0110420 A1 6/2003 Smith et al.
: : : 2006/0059286 Al 3/2006 Bertone et al.
(FGlBk)’ Andr?BI%rzn Th]()'fn:“ Hopkins, 2006/0130000 Al* 62006 Miyao etal. 717/128
olkestone (GB); Klaus Dieter 2006/0259827 Al* 11/2006 Sohmetal. 714/38
McDonald-Maier, Harwich (GB) 2006/0259831 Al* 11/2006 Sohmetal.cocoovnn..... 714/45
2007/0220360 Al* 9/2007 Wemertetal. 714/45
(73) Assignee: UltraSoc Technologies Limited, 2008/0184150 AL~ 7/2008 Minato et al.
: 2008/0209176 Al 8/2008 Singh et al.
Cambnidge (GB) _
2008/0244531 Al* 10/2008 Schmelteretal. 717/128
1 *
(*) Notice: Subject to any disclaimer, the term of this 2011/0138236 Al 6/2011 Parketal. 714/57
patent 1s extended or adjusted under 35 FOREIGN PATENT DOCUMENTS
U.5.C. 154(b) by O days. CN 101251819 8/2008
JP 57164362 10/1982
(21) Appl. No.: 12/713,880 Jp 58129559 8/1983
WO WO 2008/061067 5/2008
(22) Filed: Feb. 26, 2010 WO WO 2010/021778 2/2010
* cited by examiner
(65) Prior Publication Data
Primary Examiner — Robert Beausoliel, Ir.
US 2011/0214023 Al Sep. 1, 2011 Assistant Examiner — Joshua P Lottich
(51) Int.Cl (74) Attorney, Agent, or Firm — Dilworth Paxson LLP;
GOGF 11/00 (2006.01) Philip J. Foret
(52) US.CL ... 714/46; 714/38.1; 714/45; 714/57; (57) ABSTRACT
717/124; 717/125;,717/127; 717/128 A method of debuo . t
(58) Field of Classification Search 714/38.1, JUCLOU O EEDUSSING & ILUPIC COLICUITENT PIOTESSES COM
T14/45. 46. 57- 717/124. 125. 197 198 prising: obtaining, from each process, a plurahty of events
See apolication file f:jjr c::)m jle o searcfl hic ’Eo " that have been processed and, 11 no time information 1s asso-
PP p t ciated with each event, associating time information there-
(56) References Cited with; causing a display to display the events such that an event

U.S. PATENT DOCUMENTS

5,410,686 A * 4/1995 Kish ..o, 714/30
7,120,901 B2* 10/2006 Ferrnmetal. 717/128
7,213,113 B2* 5/2007 Sahmetal. 711/162
7,236,900 B2* 6/2007 Hagenetal. 702/67
7,509,539 B1* 3/2009 Denetlechetal. 714/48

302 ﬁ'

+atuncl

~atunc?

finel
314~

b2
31 6 Frrye s

firped

that has occurred 1n a first portion of the display associated
with a first process at a first time 1s aligned with an eventin a
second portion of the display associated with a second pro-
cess that has occurred at a similar time to the first time. To be
accompanied, when published, by FIG. 5 of the drawings.

23 Claims, 5 Drawing Sheets

Peoc B o e

Bfuncel

L
linel 308

U.S. Patent Feb. 7, 2012 Sheet 1 of 5 US 8,112,677 B2

110 :.ﬁ112 100
/
Debug Support
102 104 108
CPU 1 CPU 2

<r BUS 106
Fig. 1

f_z_g_g_ ‘ 112
- 06 100

Fig. 2
204
102 N nop | n.O...p_....I m,noal now Flg. 3

104

nop fime
7

U.S. Patent Feb. 7, 2012 Sheet 2 of 5 US 8,112,677 B2

ocA . 0 PR . /

+hfuncle—_
308

\ +hfunc?
312

Fig. 4

+hfurncl

+hfuric?
0
lined 312

216 | lines

ipped

Fig. 5

B R L R R R R R I T T T T R B I R T R R R R R Premmams maemc e Ea Eaol He a0 e Bl st eme ERT . e = s e e N L R e B L
IECICC Se g mos s eme sesms s maaaa B Boaa P .. Sag saram prs seems ms smesm smssmssms = o= A PR s e e armaamgrm mm sm=l e maama B o= aa oam s - Sr hh sm me s ames e aes meas s N IFEELEREET PU or i rrraninraaa
. e T - e rom aEt M A= sap msaa r = == s - = e == - - L R R IR N R L R R L R R LR LR R D | - - . e s e e e e e
e IR IR R R R R R R Lk LN B N BUE R IR B L R e B R I R I [L T R I L L I .. reem s B R IR R
' frar s amaa oxa owa R R R A I Ba "0 * = = = smsssssarmes s smram IE.o.mee o0 e - e = A=, e m =T - - e e - I B I D L o L L L [
[' - - - e I I R R R I - - . e T e e mp e e = e . . _ - i . PSR - e - A mmrm s m o sie s s sre aaeaam e o= T TR
! " LTI T el ltO I il Il Trrriilanroioiiinaiieh R - : L BT oLl LLIIL TTI oL TITTIovIoiIiiiiioLubLs T LS
N - . .. " P N TP B T B T m o g rammas REsa s ox s mroas mma s masmal omatmartmtty tEE osssoses = a = o= . . L S L R L L R I R I R R I I B LI] g [I =% s rr [N
H - [SLlrLotoLr . e T I e R] R O - ' i .- mr s ownm- i rmmmaa e R I, D em s . - . . e ee eee e
e T) . . el Ft et o atadacg e apgee= . e L L T R O] 1e--lE. .= ot . .- mrrams mam P mrmel e = e 1o LI L T
' Mol L it 1 LAt e e e e e e e mee e amrameeaa - P T T T crm e 1 fla P e = st ommrra o omr rmmms s oae s e oaaee sweeoeowal e L L] LB]
1 .- P L L | 4t rmosssssams 0 e mmssmasmssmllaS st e eem e e eemeee s s = = masmsemcams e med e - mrta= m o= s e s EE I NI B IR - . R e e e e s e
R mioams e srr o r e anrn s o boy owmoamn bavnoan bt LR I I R I NI ST I SR | ' P R e L IR I IR A P EREIC] EE T m e e pmsamas o aar s o= oaa ommoard e aowaa s me me e P e s amr e
H e s f e e e e =l e - e e ae. e e [e e e e e e e e amma e am . - - P L R R R R BRI - = - 11 = - ram = . - - - DI . LI L L . L L e

+atuncl

+hiuncl
~atuncs
Hinel

/

314 BN e
lirelew 312

/" fne2 i
316 el

Hined

line 2

e

Fig. 6

U.S. Patent

302

+atuncl

~Afunc
Hinel

314~

fine 2
" fines
316 '

Hed

302

306

~afuic
310"

Feb. 7, 2012

Sheet 3 of 5

US 8,112,677 B2

Hfuncl
-

Prock: . . PeeeB .. .

el 308

A 320

litvel o
bfuric2 322
-bfunc ¢

[lﬂ@‘l‘\

bl
lipet

lityed
e
el
e
line3

ProcA ProcB

/"’*i*:afumi TR,

Fig. 8

U.S. Patent Feb. 7, 2012 Sheet 4 of 5 US 8,112,677 B2

Procs. . PmeB. .
+afuncl +hfunct
+afung +ofune?

+atuncl +hfuncl
-afunic?
el +htuned

g

lirre
im%ﬁ
tined

Fig. 10

f--,afum;l +hfunct
~atunc
el Bfuric?
[line2 linal
g3
Hred lined
L3

Fig. 11

%-%.-amm ol ~bfunct
-afuncE el
| el e
-pfync?
line2 linel
Hnes firie2
Hined Hines

U.S. Patent Feb. 7, 2012 Sheet 5 of 5 US 8,112,677 B2

ProcA = . C o PrcB o
+afunel -bfuncl
-afunc2 e
e
~bfungz
lfned
el
line 3

g af LI _L
+pfuncl
-atinicd
Hinel
+hfunc?

Hiie 2
Hie2
lined

Fig. 14

US 8,112,677 B2

1

METHOD OF DEBUGGING MULTIPLE
PROCLESSES

FIELD OF THE INVENTION

This mvention relates to a method of debugging multiple
processes together with related hardware.

BACKGROUND OF THE INVENTION

10

It 1s known for electronic systems to have multiple pro-
cesses running thereon. These multiple processes can arise
due to there being multiple processors, multiple physical
cores on a single processor, multi-threading on a single core,
or the like.

However the multiple processes arise it means that more
than one set of instructions 1s being processed at any one time.
Processing of more than one set of instructions may mean that
more than one mstruction 1s executed at any one time but also
generally means that execution of mstructions from the plu-
rality of threads 1s interleaved. As such, and considering a
time-line, one or more instructions 1s executed from one of the
threads.

Whilst 1t 1s known for each process to generate debug
information, 1t can be diflicult to debug the processes on such
a system and 1n particular 1 the system 1s embedded. Typi-
cally it can be difficult to determine the current status of each
individual process and work out which process 1s doing what
at any one moment 1n time.

15

20

25

30
SUMMARY OF THE INVENTION

Accordingly, embodiments of the invention provide a view
in which concurrent mstructions are displayed adjacent one

another. 35

BRIEF DESCRIPTION OF THE DRAWINGS

There now follows by way of example only a detailed
description of embodiments of the present imnvention with
reference to the accompanying drawings 1n which

FIG. 1 schematically shows the internals of a system for
which embodiments of the invention may be utilised;

FIG. 2 shows a computer system connected to the system of
FIG. 1;

FIG. 3 shows a time line showing multiple execution of
mstructions;

FI1G. 4 shows a portion of a display from a first embodiment
of the invention;

FI1G. 5 shows the portion of the display of FIG. 4 with areas 50
thereol expanded;

FIG. 6 shows the portion of the display of FIG. 4 with
turther areas thereof expanded;

FIG. 7 shows the portion of the display of FIGS. 4 to 6;

FIG. 8 shows a further view of the portion of the display of 55
FIGS. 4 to 7;

FIG. 9 shows a portion of a display from a second embodi-
ment of the invention;

FIG. 10 shows the portion of FIG. 9 with an area thereof
expanded;

FIG. 11 shows the portion of FIG. 10 with a further area
thereol expanded;

FI1G. 12 shows a further view of the portion of the display
of FIGS. 9 to 11;

FI1G. 13 shows a further view of the portion of the display
as shown 1n FIGS. 9 to 12; and

FIG. 14 shows a further embodiment of the invention:

40

45

60

65

2
DETAILED DESCRIPTION OF THE DRAWINGS

FIG. 1 schematically shows an example of a system 100 on
which embodiments of the invention may be used to analyse
debug information, also known as trace information, gener-
ated from multiple processors 102, 104. Each of these pro-
cessors communicate, through a system bus 106, to shared
resources such as system memory 108, bulk storage devices,
I/O controllers, or the like.

In other embodiments, the trace information may be gen-
crated from multiple processes running on a single processor.

Embodiments of the mvention may support general pur-
pose and signal processor architectures (including single-
1ssue; superscalar; and VLIW); and Single Instruction Mul-
tiple Data (SIMD) architectures. Pure Multiple Instruction
Multiple Data (MIMD) architectures constitute multiple pro-
cessor cores, as do any virtual processor cores created by
special threading arrangements such as chip-multi-threading
and hyper-threading and such like, each of which can also be
processed by embodiments of the invention. It 1s also possible
for some embodiments to trace modules that are not conven-
tional processors, which may have other control flow and
state information that can be listed, exploiting hierarchical
structure similar to an instruction set-based processor, €.g.
Data transfers shown beneath entries for specific, possibly
hierarchical, machine states. As such, embodiments of the
invention may process trace information from processes
which generate time stamped data and references to proces-
sors hereinaiter should be taken to mean a process (whether
physical or simulated) which can generate such trace infor-
mation.

Further, each of the processors 102, 104 1s connected to a
debug support unit 110 which generates trace information
from information sent thereto by the processors 102, 104. As
such, the debug support unit 110 generates a stream of trace
packets which are multiplexed from the processors. This trace
information i1s made available on an output 112.

In some embodiments there may be istrumentation trace
that 1s programmatically generated by software processes,
including operating system soltware, and passed to the debug
support 110 for inclusion with any other trace streams as a
way to include high-level information 1n the trace. In such
embodiments, the trace information generated by the debug

support 110 will likely include the mstrumentation trace 1n
addition to other trace information. In such embodiments, the
debug-support 110 may or may not add time stamp 1informa-
tion to the mstrumentation trace. The high level processes
may add time stamp mformation.

The debug system 1s universally applicable to any proces-
sor be that a small state-machine, an 8-bit or smaller proces-
sor core through to processors with wider 1nstructions, e.g.
16-bit, 24-bit, 32-bit, 48-bit and 64-bit or wider. Products 1n
the market place include: Reduced Instruction Set Computing
(RISC) cores such as the ARM 7,9,11 and Cortex families of
16/32-bit processor, the MIPS16, MIPS32 and MIPS64 fami-
lies, SuperH RISC engine families, processors implementing
the PowerPC™ instruction-set architectures and various
SPARC and UltraSPARC architecture processors; Complex
Instruction Set Computing (CISC) cores such as the Renesas
R32C/100, Intel Atom processor, and Pentium families;
MicroChip PIC™ family microcontrollers of various instruc-

tion widths; Texas Instruments” C6000 family of Digital Sig-
nal Processors (DSP); Analogue Devices” Blackiin™ and
SHARC™ families of DSP; Tilera Tile64™ TilePro™ and

TileGX™ families of many-core processor; and the various

US 8,112,677 B2

3

Xtensa families of configurable processor from Tensilica.
Examples of modules, include the arbiters and modules of
interconnect (bus/network-on-chip) architectures like the
ARM AMBA™ [BM CoreConnect™, Sonics’ networks and
similar; Memory Controller modules; Fast peripherals like
Ethernet network controller modules, Direct Memory Access
(DMA) modules and such like; Coprocessor modules that
perform bulk arithmetic operations; software defined radio
processors and their analogue transceivers.

Analogue modules and signals, including power line volt-
age and current, may also be traced by way of feedback from
digital control circuits or by sampling of their signals and
conversion to a digital value using a converter located inter-
nally or externally to the system 100. Likewise optical signals
may also be captured using a suitable detection and receiver
arrangement. Systems may contain a mixture of processors
and modules; the Texas Instruments OMAP3 family combine
a Cortex A8 processor core ifrom ARM with their own C6000
DSP core plus many other modules. Numerous other appli-
cable processors and modules are also applicable and will be
apparent to anyone skilled 1n the art.

In some embodiments, the debug-support 110 1s arranged
to monitor the system bus to ascertain accesses thereto and/or
to monitor instruction execution. Further some embodiments,
of the debug-support may output the trace information via a
dedicated trace port and/or a small-scale trace stored 1n a
buffer. In some embodiments, the buffer 1s accessible via a
boundary scan techniques such as JTAG (Joint Test Action
Group as specified in IEEE 1149.1).

In the example shown the system 100 shown 1s a so-called
embedded system which may have limited or no display
facilities; limited or no user input facilities; real-time execu-
tion requirements that prevent the system from being stopped
or interrupted; located 1n a diflicult to access location such as
within a gearbox or 1n a remote location like outer space. As
such, debugging of the processors 102, 104 1s generally per-
formed via information that 1s passed out of the output 112,
which may be electrical, optical, radio frequency or electro-
magnetic. Such an approach 1s generically applicable and
could be added to any computer system, embedded or other-
wise, including PCs, workstations, servers, telecommunica-
tions processor systems, mainframes and such like without
turther invention.

FIG. 2 shows a computer system 200 to which the output
112 has been connected. The computer system 200 comprises
a display 202, 1n this case an LCD (Liquid Crystal Display)
monitor, a keyboard 204 and processing circuitry 206. It waill
be appreciated that other display means such as LEP (Light
Emitting Polymer), CRT (Cathode Ray Tube) displays, pro-
jectors, holographs, televisions and the like may be equally
possible.

Typically, embodiments of the invention will be utilised on
the computer system 200 such that the output therefrom 1s
displayed on the display 202.

The processing circuitry 206 comprises a processor, a hard
drive, memory, an I/O subsystem and a display driver which
all communicate with one another, as 1s known 1n the art, via
a system bus. The processor typically comprises at least one
INTEL™ PENTIUM™ series processor, (although it 1s of
course possible for other processors to be used) and performs
calculations on data. Other processors may include proces-
sors such as the AMD™ ATHLON™, POWERPC™, DIGI-
TAL™ ALPHA™, and the like. The processing circuitry 206
may optionally comprise one or more programmable logic
type units such as Field Programmable Gate Arrays, either as
the main processor or 1n supplement to a first processor
arrangement. The processing circuitry 206 may be a distrib-

10

15

20

25

30

35

40

45

50

55

60

65

4

uted arrangement with some processors located separately
from one another communicating as 1s known 1n the art.

The keyboard 204 provides an input to the processor, how-
ever other forms of input such as a touch screen, mouse, voice
recognition or brain computer interface provide useable alter-
natives. Other devices such as CDROMS, DVD ROMS, scan-
ners, etc. could be coupled to the system bus and allow for
storage of data, commumnication with other computers over a
network, etc.

The I/O (Input/Output) subsystem 1s arranged to receive
inputs from the keyboard 204 and from the processor and may
allow communication from other external and/or internal
devices. The display driver allows the processor to display
information on the display 202.

The processing circuitry 200 could have the architecture
known as a PC, originally based on the IBM specification, but
could equally have other architectures. The processing cir-
cuitry 200 may be an APPLE™, or may be a RISC system,
and may run a variety of operating systems (perhaps HP-UX,
LINUX, UNIX, MICROSOFT™ NT, AIX™, OSX™ or the
like). The processing circuitry 200 may also be provided by
devices such as Personal Digital Assistants (PDA’s), note-
book computers, a logic analyzer, an application specific
embedded device/instrument or the like.

It will be appreciated that although reference 1s made to a
memory within the processing circuitry 200 it 1s possible that
the memory could be provided by a variety of devices. For
example, the memory may be provided by a cache memory, a
RAM memory, a local mass storage device such as the hard
disk, any of these connected to the processing circuitry 200
over a network connection. However, the processor can
access the memory via the system bus, accessing program
code to 1nstruct 1t what steps to perform and also to access
data.

As the processors 102, 104 within the apparatus 100
execute mstructions within the memory 108 trace informa-
tion (which 1s generally packetised information) 1s generated
by the debug support 110, which may include a bufler
memory, and output on the output 112.

FIG. 1 shows the presence ol two processor 102, 104 which
in some embodiments may themselves comprise multiple
cores, and/or be arranged to execute multiple threads of
instructions. Indeed, in other embodiments, only a single
processor 102, 104 may be provided although that processor
may have multiple cores and/or be arranged to execute mul-
tiple threads. As such, the or each processor concurrently
processes multiple 1nstruction sets, whether those nstruc-
tions sets are generated by multiple threads, multiple cores,
multiple processors, etc.

Thus, and as explained with reference to FIG. 3, concurrent
execution ol multiple instruction sets does not mean that
instructions are necessarily executed at the same time (al-
though 1t can do). The Figure shows two time lines. The top
line represents when processor 102 1s executing an instruction
and the bottom line represents when processor 104 1s execut-
ing an instruction. In this embodiment each or the processors
102, 104 1s clocked from the same clock and so are synchro-
nised. However, 1n other embodiments this need not be the
case.

Thus, 1t can be seen that time period 1 1s only period shown
in which 1nstructions are executed concurrently. In the other
time periods (2-7) only one of the processors 102, 104 1s
executing an instruction.

However, for some embodiments of the invention 1t 1s
convenient to assume that instructions are not executed simul-
taneously. As such, instructions can be time-stamped with a
fraction of a clock-cycle (which may be arbitrarily generated)

US 8,112,677 B2

S

in order to differentiate concurrent instructions. Thus, 1n the
example, the embodiment might assign the instruction from
processor 102 that occurs 1n time period 1 with a time-stamp
of 1.0 and 1t may assign the instruction from processor 104
that occurs 1n time period 1 with a time-stamp 1.1. Subse-
cuently, the instruction that occurs on processor 104 that
occurs 1n time period 2 1s assigned time-stamp 2.0, etc. Such
a method and similar methods helps to ensure that mstruc-
tions can be differentiated from one another regardless of
their actual time of execution.

This output 1s recerved by the processing circuitry 206
where 1t 1s time-stamped and stored within the memory of the
processing circuitry 206. The processing circuitry 206 de-
multiplexes the packets into a separate thread for each source
processor 102, 104 transforms the trace packets, with the aid
ol a disassembly from the debugger (or similar), executable
file (such as an ELF (Execution and Linking Format) file
debug information created by assembler, compiler or linker
tools (or stmilar) and source code into an ordered tree struc-
ture stored in the memory of the processing circuitry 206,
representing a logical structure for the control flow. Such an
ordered tree structure 1s generated for each process for which
trace information 1s provided.

Other embodiments may provide additional circuitry
between the apparatus 100 and the processing circuitry 206.
Such additional circuitry may be arranged to condition the
output, buifer the output, 1solate the output or the like.

In other embodiments timestamps may be generated at the
point of origin nside the apparatus 100, during propagation
within the apparatus 100, at a point of internal bulfering
within the apparatus 100, at the point where the or each packet
leaves the apparatus 100, upon collection by an external trace
probe or builfer (such as posﬂmned between the apparatus and
the processing circuitry), or the timestamp may be synthe-
sised based on the packet sequence (as i1s the case in the
embodiment being described). When synthesising times-
tamps knowledge of the underlying architecture may be uti-
lised to 1ncrease accuracy. For example, knowing the likely
propagation delay from the execution of the mstruction that
generated the trace information packet to the point at which
the time stamp 1s added 1s likely to increase accuracy of the
time stamp 1if this 1s allowed for.

Program code within the processing circuitry 206 1s
executed by the processor to cause the data recerved from the
apparatus 100 to be displayed on the display 202. The skilled
person will appreciate that whilst this embodiment 1s describ-
ing the program as being executed from the memory of the
processing circultry as software, 1t could also be implemented
as firmware or indeed as hardware.

FIGS. 4to 8 show a first embodiment of how the processing,
circuitry 206 causes the trace information to be displayed on
the display 202.

The skilled person will appreciate that the underlying trace
information logs low-level operations such as instructions,
changes of state and data accesses that the monitored proces-
sors 102, 104 perform each of which may be thought of as an
event. Alternatively, the term statement may be appropnate.
The term event may be thought of as the lowest granularity of
the collected trace information. The actual content of an event
depends upon the source that 1s being traced. For example, a
state machine has states each of which may be considered an
event. An analogue signal generates samples each of which
may be considered an event. Each instruction execution or
state change, etc. may be described as an event.

Embodiments of the invention may then be used to display
structure within the collected traced events, such as the hier-
archical partitioning efiect that call and return instructions

10

15

20

25

30

35

40

45

50

55

60

65

6

have. Where a procedural high-level language 1s used (includ-
ing object oriented) or assembly language with a notion of
procedures, the structure of the trace information can be made
more meaningfiul by embodiments of the invention to a user
by presenting 1t with symbolic data. The tree view and trace
decoder are module and language independent; for proces-
sors, the mstruction stream can be used and augmented with
symbols where available.

Each of FIGS. 4 to 8 represent the display 300 that would

be shown on the display 202 and show two columns of data.
A first column 302 shows trace information from the first
processor 102 whilst the second column 304 shows trace
information from the second processor 104. Thus the first
column provides a first portion of the display which 1s asso-
ciated with the first process (the processor 1n this embodi-
ment) and the second column provides a second portion of the
display which 1s associated with the second process (again a
processor 1in this embodiment).

Other embodiments of the invention may cause the display
to show further portions wherein each portion shows data
associated with a process.

In other embodiments, the first and/or second portions of
the display need not be columns and may be any other con-
venient representation. For example, the first and/or second
and/or additional portions may be a row, a perspective view, a
pie chart, a grid, a diagram or schematic with an appropriate
format for the information to be displayed such as a state
diagram for a state machine or a bitmap type 1image for an
image processor or a structured frame for a network proces-
sor, or the like. FIGS. 4 to 8 represent a display with fixed
height rows of events, however this need not be the case, as
some alternative representations, such as charts and diagrams
may be wrregular 1n size, so may require additional display
space.

Additional display space may be gained by increasing the
row height as necessary to display the event and by using
annotation lines, such as arrowed lines, that place large and/or
irregular sized events 1n sequence with other events 1n other
portions of the display. In some embodiments a further por-
tion of the display maybe used to show information displayed
by the first and/or second portion of the display 1n an alterna-
tive way, for example, the first portion may show events
relating to the event execution and data accesses of an 1image
processor while the further portion shows a bitmap of the
image being processed at regular intervals of time and/or
progress 1n alignment with the structure displayed in the first
portion and derived from the same and/or different trace data.

In a system designed to have high-integrity, a plurality of
processes process the same input data, concurrently and/or
sequentially so that a system may be sure that 1t has arrived at
the correct result for given 1ts mputs and has not been cor-
rupted by a failure and/or transient event, such as a single
event upset caused by exposure to 1ons or electromagnetic
radiation; 1.¢. there 1s a higher beliet 1n the result when com-
pared to performing the process a single time. As such, the
first and second processes are substantially the same. In one
embodiment of the invention the plurality of processes and
their results are displayed 1n different portions of the display
(for example, the first, second and/or additional portions of
the display) with any differences 1n timing and/or sequence of
event activity indicated, such as by shading, colouring, anno-
tation lines, annotation 1cons or similar. When the processes
to be compared are 1n fact multiple threads executing at dif-
ferent times, the time displayed by the display 1s a relative
time, typically adjusted to zero, which has the efiect that each
process 1s displayed to start at the same time.

US 8,112,677 B2

7

In other embodiments, additional portions, which may be
columns, may be provided to show trace information from
additional processors.

Rows of the display 300 are aligned to reflect the passage of
time so that increasing time 1s shown lower down the display
300. As such, the alignment of the trace information (1.¢., of
events) 1n the two columns shows the relative timing of trace
information within the two columns 302, 304—specifically,
since 1tems may contain rolled-up information and represent
arange of time, the relative timing of the START of the items.
The positioning of the trace information within the two col-
umns 1s derrved from the time stamp information that1s added
to the trace information.

Thus, events that occur at similar times are aligned by the
row 1n which that event and/or function 1s displayed. Aligned
may not necessarily mean within the same row and may mean
on adjacent row. Indeed, some embodiments of the invention
may align similar time stamped events on the same row
whereas other embodiments may not do this.

Referring to FIG. 3 the skilled person will appreciate that
the time mnformation may be the actual time of occurrence or
a pseudo-time that has been assigned to an instruction (or
other occurrence).

Each column 302, 304 may be thought of as a tree com-
prising at least one and generally a plurality of nodes; alter-
native language may refer to the nodes as leaves of the tree.
The tree shows the events that have been collected from the
trace information and each event represents a node of the tree
and some of these nodes may represent leaves of the tree.

In FIG. 4, four such nodes 306, 308, 310, 312 can be seen.
As denoted by the *+’ sign to the left of each node inthe Figure
cachnode can be expanded to provide further information and
FIG. 4 shows each node fully collapsed and as such the
display 1s as compact as possible. In FIG. 4 each node repre-
sents an event, which 1n this embodiment 1s a function within
a high-level language.

Although the Figure shows only two levels of nesting the
skilled person will appreciate that this may be extended to any
number of levels. For example, theremaybe3,4,5,6,7,8, 10,
15 or more levels.

The visual tree structure 1s generated from the tree stored
within the memory with the same logical structure that was
previously generated. As described earlier, the tree stored in
the memory 1s generated by interpreting events within the
incoming trace information in conjunction with empirical
knowledge of the structure of the program being run, such as
from debug information contained within a file or similar, for
example the executable file, associated with the program that
1s held within the memory of the processing circuitry 200 1n
some embodiments and/or within the memory of the appara-
tus 100 1n alternative embodiments.

In one embodiment the structure used 1s function calls,
corresponding to changes 1n control tlow, nested from the top
level to two levels above the most nested leaves of the tree;
cach Function call may nest source code lines and/or function
calls; source code lines are the level above the leaves, corre-
sponding to lines from source or assembly files, source code
lines nest at least one trace 1nstruction; trace instructions are
the leaves, corresponding to executed addresses. Trace
istructions may be associated with one or more trace data
objects, which represent data accesses that have been traced.
Each of these levels may be thought of as an event.

Each node can be expanded as 1s exemplified in FIG. 5 in
which the node 310 has been expanded. As such, the function
represented by the event has been broken down to show each
of the source code events that are performed to execute that
function; for example, a function to add two mtegers ‘V” and

5

10

15

20

25

30

35

40

45

50

55

60

65

8

‘W’ and return the result, written using the well known *C’
language, may contain a source code event “return V+W;”.
Again, the nodes showing the events are ordered according to
the time stamp data associated therewith and it can be seen
that some of the source code events (eg 314) occur before the
start of function 312 in the second column 304 and some
source code event (eg 316) start aiter the start of function 312.
As such, the vertical position on the view gives an indication
of the relative timing of each event between the processors
102, 104.

Within the software representation, state indicating
whether a given node 1s currently expanded, and therefore
whether 1ts children nodes should be shown, needs to be
stored either 1n a separate data structure such as a tree of
expanded nodes with no data other than their structure, cor-
responding to the structure of the original tree, or 1n the tree
nodes themselves. In this embodiment such nodes (contain-
ing expansion state) are referred to as stateful tree nodes to
reflect their dual purpose of representing the trace informa-
tion and the state of a particular displaying of that state infor-
mation; this 1s an optimisation to keep spatial locality high
and memory usage low.

In the embodiment being described, the view 1s generated
by a function which converts from output row numbers to a
(node reference, tree reference) tuple. This function iterates
through the previously-generated array of such tuples, skip-
ping nodes which are under unexpanded nodes, counting
output rows until the target output row 1s found and the
relevant node returned.

A cache can be maintained to map output row numbers to
(node reference, tree reference) tuples 1n order to accelerate
such lookups when they have already been calculated. 11 the
codomain of the mappings includes internal state for the
above function then lookups for output row numbers higher
than output rows already cached can be accelerated substan-
tially.

The cache 1s mvalidated when the expansion state (1.e.,
moving from collapsed to expanded or vice versa) or tree
structure changes, although this may be optimised to 1mvali-
date only past a certain point when an efficient means 1s
available to obtain a output row number from a node, such as
when reverse mappings are also maintained. The function to
map from output row numbers to nodes iterates over both the
output rows and the globally-ordered list of nodes, keeping
track of the current path through each of the trees as 1t goes.

The state between output rows 1s:

integer: the mdex into the globally-sequenced list of the

last node checked and for each tree:

integer: the highest level (closest to root) of the tree at

which there 1s a collapsed node

boolean: whether there are any collapsed nodes in the

current path

integer: the index into the globally-sequenced list of the

latest current node

boolean: whether this tree has a node in the current output

row or not [by being a boolean for each tree rather than
just an integer 1dentifying the tree, this facilitates the
implementation of the ‘compact view’ variation of the
embodiment, described later]. Such a ‘compact view’
embodiment thus may align events and/or functions that
occur at a similar time on the same row of the display.

In order to allow the 1teration to resume for subsequent
requests without starting from the beginning, the state
between 1terations can be saved as the codomain of the cached
mapping.

Output rows are 1terated-over more slowly than the glo-
bally-ordered list of nodes. For every node 1n the globally-

US 8,112,677 B2

9

ordered list, 11 1t 1s under a collapsed node then it 1s 1ignored
and the next node 1s checked without the output row number
incrementing.

Time stamp ranges for collapsed nodes can be calculated
by inspecting the first and last leat nodes 1n the tree. This 1s an
operation whose execution time 1s proportional to the loga-
rithm of the depth of the tree as 1s know from computational
complexity theory. In the embodiment being described this
can be achieved by checking all leaf nodes for first and last
times or, since all leaves of the tree are inherently ordered,
when a node’s first and last children are both leaves, simply
by checking the timestamp of the first and last child.

FIG. 6 shows a further view 1n which the second function
312 1n the second column 304 has now been expanded. As
such, 1t can be seen that the leats are now interleaved to reflect
the time at which a given instruction occurs. So for example,
it can been seen that instruction 318 in the second column 304
occurred between 1nstructions 314 and 316.

FI1G. 7 shows a further view in which the first function 308
in the second column 304 has been expanded to reveal 1ts
constituent mstructions 320, 322. It should be noted that the
first column 302 has had extra blank lines added 1n order to
keep the relative position between the mstructions 314, 316
and 318.

FIG. 8 shows a further view 1n which the functions 306,310
referred to by the events of the first column have been col-
lapsed. It will therefore be seen that blank lines 1in the second
column 304 have now been removed to the minimum needed
in order to maintain the relative ordering with those 1n the first
column 302.

Thus, 1t will be seen that the functions events can be
expanded and collapsed to reveal and hide, respectively, the
events that go to make up that function. The embodiment
being described ensures that the events and/or functions
remain aligned by arranging that the time stamp of all of the
events referred to 1n a row 1s less than the time stamp of all of
the events referred to 1in the next row of that or another portion
of the display. That 1s, and looking at FIG. 308, the start time
of all of the events for the function 306 are less than the start
time for all of the events of function 308.

In alternative embodiments, 1t 1s possible to avoid genera-
tion of a globally-ordered list of nodes every time there 1s a
change to the tree structure and invalidation of the mapping
cache every time there 1s a change 1n the expansion state of the
displayed tree. Instead such embodiments may rely on tra-
versing the trace trees on the tly to look up nodes for output
rOwSs.

The principal benefit of embodiments which maintain the
globally-ordered list 1s faster handling of incremental opera-
tions on either the trace tree (such as adding nodes or
branches) or the output tree (such as expanding or collapsing,
nodes or ‘folding’ trees).

In embodiments which maintain the globally ordered list
the tree nodes (or some data storage related to the tree node
for the purpose of rendering a particular instance of a display
of the tree) may have additional information provided in
them, namely the number of currently visible descendents
(e.g. 0 1f unexpanded or a leal node). This information 1s
changed whenever descendents are added, removed or have
observable expansion state changes.

Such storage also holds the aggregate minimum and maxi-
mum times covered by the nodes 1n order to save traversing,
branches to find out this information. This information 1s
changed as descendent nodes are added and removed.

In these embodiments a traversal function to map output
rows to nodes traverses each tree 1n parallel, keeping track of
the current path through each tree as it goes. A count1s kept of

10

15

20

25

30

35

40

45

50

55

60

65

10

the current output row, starting at zero. Iteration proceeds
until the desired output row has been reached.

For each 1teration of the traversal function the tree whose
next node to be checked has the earliest minimum timestamp
1s selected and the next highest minimum timestamp for all
the current nodes across the other trees 1s noted. I the selected
node’s maximum timestamp 1s earlier than the noted next
minimum timestamp then the selected node 1s considered to
be the head of an 1solated branch.

If the selected node 1s the head of an 1solated branch then
the total number of expanded descendents of the node 1s
added to the current output row count; 1f the sum 1s less than
the target row then this sum 1s the new current output row
count, the selected tree’s current node 1s advanced to the first
available older sibling of the current node or 1ts ancestors and
iteration proceeds; if the sum 1s greater than the target row
then the current node 1s advanced to the current node’s young-
est child and iteration proceeds.

Ifthe selected node 1s not the head of an 1solated branch, 1.e.
that the branch overlaps with some other nodes 1n another tree
then the first descendent 1s selected (as above) and iteration
proceeds. In other words, more fine-grained traversal 1s nec-
essary where there are overlapping branches.

This algorithm performs most optimally the less overlap
there 1s between nodes at all levels across all the trees which
the method 1s aligning.

FIGS. 9 to 13 show a second example of the collapsing and
expansion of functions to reveal the instructions going to
make up those functions.

However, in FIGS. 9 to 13 a compact view has been used in
which multiple nodes of the two trees can appear on the same
row. Such an embodiment reduces the overall length of dis-
play that 1s needed to show the or each tree. For example, 1t
can be seen that for Proc A the function afuncl 1s shown on the
same row as the function bifuncl for ProcB.

In such embodiments, functions can be listed on the same
row as long as none of the events of that function, such as a
source code line, has a timestamp greater than any node in the
tollowing output row. However, the skilled person will appre-
ciate that, although compact, such embodiments hide time
ordering between nodes from different processors should
those nodes appear on the same row. The time ordering 1s
re-shown 1f that event 1s expanded.

In alternative embodiments the apparatus 100 may have M
processors with only a sub-set N displayed on the display 202
in order to conserve screen real-estate and/or system
resources when M 1s large. The set N may be chosen from the
set of processors that have trace information available (set L).
It 1s noted that 1t 1s possible for L=N=M to be valid.

Embodiments may allow the display to be actively varied,
betore, during and after collection of trace information.
Embodiments, may allow a user to define how many columns
will be shown on the display 202. This may be achieved using
a text box or drop-down menu. The trace shown by the respec-
tive columns may be set and actively changed using scroll left
and scroll rnght buttons such as those provided with a hori-
zontal scroll bar and the processor core name or number.

Alternatively the user interface may use a drop-down-box
or similar selection menu to enable selection of a specific
processor. It 1s also possible to define groups of cores/proces-
sors so that trace from several processors can be added to the
view together; 1t 1s possible to combine one or more groups
with 1individual processor selections.

A Tfurther method of adding and arranging the processor
columns 1n the tree view 1s to use a drag-and-drop mecha-
nism. The order of the columns can be changed by dragging
one or several before or after another column. Columns may

US 8,112,677 B2

11

also be added using right-click menus (or other selection
mechanisms) associated with other processor related user
interface parts in the user interface, such as a view showing a
processor’s stack frame or variables or similar. If no trace
information 1s available for the selected processor then none
1s shown. When the column selection 1s changed the tree
views are recalculated taking into account the changes in
interleaving.

The skilled person will thus appreciate that various aspects
of a Graphical User Interface (GUI) can be used to allow a
user to manipulate the display.

FIG. 14 shows a further possible embodiment in which
processors C and D have been added to the display 202 as
columns 1300 and 1302. These are represented schematically
as blocks and further information can be displayed it the
columns are selected for expansion.

Embodiments of the mvention may be displayed on any
computer system with a customisable graphical user inter-
face, e.g. Windows™ or UNIX like operating systems
enhanced with the X windowing system and any platform
where the AWT, SWT or Swing JAVA libraries can be used;
essentially any operating system capable of supporting a rich
or workstation-class graphical user interface. It could be rea-
lised using a custom windowing library by someone skilled 1in
the art for any computer with a graphical or text-based dis-
play.

Reference to machine readable medium herein may com-
prise any of the following: a floppy disk, a CD ROM, a DVD
ROM/RAM (including a -R/-RW and +R/+RW), EPPROM,
FLASH Memory, a hard drive, a solid state memory (includ-
ing a USB memory key, an SD card, a Memorystick™, a
compact flash card, or the like), a tape, any other form of
magneto optical storage, a transmitted signal (including an

Internet download, an FTP transfer, etc), a wire, or any other
suitable medium.

What we claim 1s:

1. A method of debugging multiple concurrent processes
comprising;

obtaining, from each process, a plurality of events that have

been processed and, 11 no time imnformation 1s associated
with each event, associating time information therewith;
and

causing a display to display the events such that an event

that has occurred 1n a first portion of the display associ-
ated with a first process at a first time 1s aligned with an
event 1n a second portion of the display associated with
a second process that has occurred at the first time;
wherein events are collated into functions and wherein the
method allows functions to be collapsed to hide the
events therewithin and causes the display to display
functions such that at least one of an event and a function
that has occurred 1n the first portion of the display asso-
ciated with the first process at the first time 1s aligned
with at least one of an event and a function that has
occurred 1n the second portion of the display associated
with the second process that occurred at the first time.

2. The method of claim 1 wherein the multiple concurrent
Processes occur on a single processor.

3. The method of claim 1 wherein the multiple concurrent
processes occur on a plurality of processors.

4. The method of claim 3 wherein events from a {irst of the
processors are provided 1n the first portion of the display and
events from a second of the processors are provided 1n the
second portion of the display.

5. The method of claim 4 wherein the first and second
portions of the display are columns thereof.

10

15

20

25

30

35

40

45

50

55

60

65

12

6. The method of claim 1 1n which events are aligned by
providing them on the same row of a display.

7. The method of claim 1 1n which functions are aligned
when the time stamp of any of the events of that function 1s
less that the time stamp of all of the events referred to 1n the
next row of that or another portion of the display.

8. The method of claim 1 1n which functions are aligned
when the time stamp of any of the events of that function 1s
less than the time stamp of one of the function and the event
shown 1n the next row of the portion of the display.

9. The method of claiam 1 in which function can be
expanded and collapsed to respectively reveal and hide the
events therewith and 1n which the method aligns expanded
functions such that events in the first and second portions that
occurred are aligned with one another according to the time at
which they occur.

10. The method of claim 1 which allows turther columns to
be added to represent events occurring in further processes.

11. The method of claim 1 wherein a portion of the display
displays events which occur within a predetermined thread of
events.

12. The method of claim 1 wherein a portion of the display
displays events which occur 1n relation to a predetermined
memory space.

13. The method of claim 1 wherein the first process and
second process are the same.

14. A non-transitory computer readable medium encoded
with mstructions for a program configured for execution by a
microprocessor to perform a method for debugging multiple
concurrent processes, the program be arranged to:

obtain, for each process, a plurality of events that have been

processed and associate time information with each of
the events;

cause a display to display the events such that an event that

has occurred 1n a first portion of the display associated
with a first portion process at a first time 1s aligned with
an event 1n a second portion of the display associated
with a second process that has occurred at the first time;
and

collate events into functions from which they originate and

allow functions to be collapsed to hide the events there-
within and cause the display to display functions such
that at least one of an event and a function that has
occurred 1n the first portion of the display associated
with the first process at the first time 1s aligned with the
at least one of an event and a tunction that has occurred
in the second portion of the display associated with the
second process that occurred at the first time.

15. The computer readable medium of claim 14 in which
the program 1s further arranged to process events generated
from multiple processes running on one of a single processor
and a plurality of processors.

16. The computer readable medium of claim 135 in which
the program 1s further arranged to cause events from a first of
the processors to be provided 1n the first portion of the display
and events from a second of the processors to be provided 1n
the second portion of the display.

17. The computer readable medium of claim 14 which 1s
further arranged to align functions when the time stamp of
any of the events of that function 1s less than the time stamp of
all o1 the events referred to 1n the next row of the portion of the
display.

18. The computer readable medium of claim 14 which 1s
turther arranged to align functions when the time stamp of
any of the events of that function 1s less than the time stamp of
one of the functions and the events shown 1n the next row of
the portion of the display.

US 8,112,677 B2

13

19. A debugging system arranged to allow the debugging of

multiple concurrent processes which comprises processing,
circuitry arranged to:
obtain, from each process, a plurality of events that have
been processed and associate time information there-
with;
cause a display to display the events such that an event that
has occurred 1n a first portion of the display associated
with a first process at a first time 1s aligned with an event
in a second portion of the display associated with a
second process that has occurred at the first time; and
collate events into functions from which they originate and
allow functions to be collapsed to hide the events there-
within and cause the display to display functions such
that at least one of an event and a function that has
occurred 1n the first portion of the display associated
with the first process at the first time 1s aligned with the
at least one of an event and a function that has occurred
in the second portion of the display associated with the
second process that occurred at the first time.
20. A method of debugging multiple concurrent processes
comprising;
obtaining, from each process, a plurality of events that have
been processed and, 11 no time mformation 1s associated
with each event, associating time information therewith;
and
causing a display to display the events such that an event
that has occurred 1n a first portion of the display associ-
ated with a first process at a first time 1s aligned with an
event 1n a second portion of the display associated with
a second process that has occurred at the first time;
wherein a portion of the display displays events which
occur 1n relation to a predetermined memory space.
21. A non-transitory computer readable medium encoded
with instructions for a program configured for execution on a

microprocessor to perform a method for debugging multiple
concurrent processes, the method comprising:

10

15

20

25

30

35

14

obtaining, {from each process, a plurality of events that have
been processed and, 11 no time mformation 1s associated
with each event, associating time information therewith;
and
causing a display to display the events such that an event
that has occurred 1n a first portion of the display associ-
ated with a first process at a first time 1s aligned with an
event 1n a second portion of the display associated with
a second process that has occurred at the first time;
wherein a portion of the display displays events which
occur 1n relation to a predetermined memory space.
22. A method of debugging multiple concurrent processes
comprising;
obtaining, from each process, a plurality of events that have
been processed and, 11 no time mnformation 1s associated
with each event, associating time information therewith;
and
causing a display to display the events such that an event
that has occurred 1n a first portion of the display associ-
ated with a first process at a first time 1s aligned with an
event 1n a second portion of the display associated with
a second process that has occurred at the first time;
wherein the first process and second process are the same.
23. A non-transitory computer readable medium encoded
with instructions for a program configured for execution on a
microprocessor to perform a method for debugging multiple
concurrent processes, the method comprising:
obtaining, from each process, a plurality of events that have
been processed and, 11 no time mnformation 1s associated
with each event, associating time information therewith;
and
causing a display to display the events such that an event
that has occurred 1n a first portion of the display associ-
ated with a first process at a first time 1s aligned with an
event 1n a second portion of the display associated with
a second process that has occurred at the first time;
wherein the first process and second process are the same.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

