

(12) United States Patent Lacap et al.

(10) Patent No.: US 8,106,516 B1 (45) Date of Patent: Jan. 31, 2012

(54) WAFER-LEVEL CHIP SCALE PACKAGE

- (75) Inventors: Efren M. Lacap, Hayward, CA (US);
 Subhash Rewachand Nariani,
 Pleasanton, CA (US); Charles Nickel,
 Hayward, CA (US)
- (73) Assignee: Volterra Semiconductor Corporation, Fremont, CA (US)

5,316,205	Α	5/1994	Melton
5,553,769	Α	9/1996	Ellerson et al.
5,558,271	Α	9/1996	Rostoker et al.
5,675,889	Α	10/1997	Acocella et al.
5,918,792	Α	7/1999	Stumpe et al.
5,937,320	Α	8/1999	Andricacos et al.
6,020,729	Α	2/2000	Stratakos et al.
6,196,443	B1	3/2001	DiGiacomo
6,225,795	B1	5/2001	Stratakos et al.
6,278,264	B1	8/2001	Burstein et al.
6,369,451	B2	4/2002	Lin
6,372,622	B1 *	4/2002	Tan et al 438/612

- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.
- (21) Appl. No.: **12/844,649**
- (22) Filed: Jul. 27, 2010

Related U.S. Application Data

- (63) Continuation of application No. 10/648,586, filed on Aug. 26, 2003, now abandoned.
- (51) Int. Cl. *H01L 21/00* (2006.01)
 (52) U.S. Cl. 257/772; 257/666; 257/690; 257/779; 438/26

(56) **References Cited**

 6,374,487
 B1
 4/2002
 Haba et al.

 6,400,126
 B1
 6/2002
 Zuniga et al.

 6,433,614
 B1
 8/2002
 You et al.

 6,445,169
 B1
 9/2002
 Schultz et al.

 6,445,244
 B1
 9/2002
 Stratakos et al.

 6,462,522
 B2
 10/2002
 Burstein et al.

(Continued)

OTHER PUBLICATIONS

Figures 1, and 3-6 from "Oki technical Review", http://www.oki. com/en/otr/html/nf/, Feb. 19, 2003, 5 pages.

(Continued)

Primary Examiner — Jarrett Stark
Assistant Examiner — Nicholas Tobergte
(74) Attorney, Agent, or Firm — Lathrop & Gage LLP

(57) **ABSTRACT**

A chip scale package implements solder bars to form a connection between a chip and a trace, formed in a substrate, such as another chip or PCB. Solder bars are formed by depositing one or more solder layers into the socket, or optionally, depositing a base metal layer into the socket and applying the solder layer to the base metal layer. The geometry of a solder bars may be rectangular, square, or other regular or irregular geometry. Solder bars provide a greater utilization of the connectivity footprint and increase the electrical and thermal flow capacity. Solder bars also provide a robust connection.

U.S. PATENT DOCUMENTS

3,401,126	A		9/1968	Miller et al.	
3,429,040	Α		2/1969	Miller	
T955,008	I4		2/1977	Gregor et al.	
4,604,644	A		8/1986	Beckham et al.	
4,645,114	A		2/1987	Van Den Brekel et al.	
4,808,274	A	*	2/1989	Nguyen	361/748
4,818,728	A		4/1989	Rai et al.	
4,851,966	A		7/1989	Roback et al.	
5.258.648	Α	*	11/1993	Lin	257/778

38 Claims, 14 Drawing Sheets

Page 2

U.S. PATENT DOCUMENTS

6,498,467	B1	12/2002	Stratakos
6,657,697	B2 *	12/2003	Yamate et al 349/151
6,756,680	B2	6/2004	Jimarez et al.
6,820,329	B2	11/2004	Fang
6,977,396	B2	12/2005	Shen et al.
2003/0157789	A1	8/2003	Tong et al.

OTHER PUBLICATIONS

"Flip chip photographs of filp chip bumps, filp chip assemblies, filp chip interconnections", Flipchips dot com, http://www.flipchips. com/photos.html, Feb. 13, 2003, 3 pages.

"Flip-chip Packaging: a 32-Year-Old Infant Grows Up", Chip Scale Review Online, http://www.chipscalereview.com/issues/0701/fl_ 01.html, Jul. 2001, pp. 1-4. "Flip-chip Packaging: a 32-Year-Old Infant Grows Up", Chip Scale Review Online, http://www.chipscalereview.com/issues/0701/fl___ 02.html, Jul. 2001, pp. 1-5. "The Emerging Copper Revolution Will Impact ICs with Critical Dimensions 100nm", Chip Scale Review Online, http://www. chipscalereview.com/Issues/0301/techReport.html, Mar. 2001, pp. 1-3. "Making Microchips", http://www.glenco.com/norton/n-instructor-/ updates/2000/21100-7.html, Feb. 19, 2003, pp. 1-4. "Process Defect Guides", ppm-monitoring.com, http://www. thepdfshop.com.uk/ppm/asp/wave.asp, Jul. 2, 2003, 4 pages.

"300mm Wafer Bumping", Technology Publishing—A division of Montgomery Research Europe Ltd., http://www.future-fab.com/ documents.asp?grID=217&d_ID=1338, Jul. 1, 2003, 6 pages. XICOR, "CSP Packaging Technology ("B" Package Option)", Revised Mar. 2003, 11 pages, XICOR, Milpitas, CA. Jasper, Jorg, "From Direct Chip Attach to Wafer Level CSP-A Modular Appropach to Serve Customer Needs", 5 pages, EM-Marin S.A., no date available.

Bice, Shannon B. and Li, Yuzhuo, "Chemical Mechanical Polishing" (CMP) for Computer Chip Manufacturing", 3 pages, no date available.

Elenius, Peter, "The UltraCSP[™] Wafer Scale Package", 6 pages, Flip Chip Technologies, Phoenix, AZ, no date available.

"STAYCHIP™ 3075F Underfill for Handheld Electronic Devices & System-in-Package", 15 pages, Cookson Electronics Semiconductor Products, Alpharetta, GA, no date available.

Durah, Dr. Hamit, "Chip-on-Foil: An Emerging Technology for Display Driver Electronics", Oct. 10, 2002, 33 pages, Phillips Semiconductors Zurich.

Fjelstad, Joseph, "Wafer Level Packaging of Compliant CSPs Using Flexible Film Interposers", HDI Magazine, Spring 1999, 6 pages. "Flip Chip Packaging for SRAM", Copyright 1999, 2 pages, IBM USA.

U.S. Appl. No. 10/648,586 Selected Pages from Image File Wrapper dated Mar. 24, 2005 through Aug. 9, 2010, 202 pages.

* cited by examiner

U.S. Patent Jan. 31, 2012 Sheet 1 of 14 US 8,106,516 B1

U.S. Patent Jan. 31, 2012 Sheet 2 of 14 US 8,106,516 B1

FIG. 2 (Prior Art)

U.S. Patent Jan. 31, 2012 Sheet 3 of 14 US 8,106,516 B1

FIG. 3

U.S. Patent Jan. 31, 2012 Sheet 4 of 14 US 8,106,516 B1

U.S. Patent Jan. 31, 2012 Sheet 5 of 14 US 8,106,516 B1

40

FIG. 5

U.S. Patent Jan. 31, 2012 Sheet 6 of 14 US 8,106,516 B1

60

U.S. Patent Jan. 31, 2012 Sheet 7 of 14 US 8,106,516 B1

FIG. 8

U.S. Patent US 8,106,516 B1 Jan. 31, 2012 Sheet 8 of 14

U.S. Patent US 8,106,516 B1 Jan. 31, 2012 Sheet 9 of 14

FIG. 10B

U.S. Patent Jan. 31, 2012 Sheet 10 of 14 US 8,106,516 B1

U.S. Patent Jan. 31, 2012 Sheet 11 of 14 US 8,106,516 B1

U.S. Patent US 8,106,516 B1 Jan. 31, 2012 **Sheet 12 of 14**

•

gives bar Solder

CSP

12 E G

U.S. Patent Jan. 31, 2012 Sheet 13 of 14 US 8,106,516 B1

Ó Ö

U.S. Patent US 8,106,516 B1 Jan. 31, 2012 **Sheet 14 of 14**

1

WAFER-LEVEL CHIP SCALE PACKAGE

CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 10/648,586 filed Aug. 26, 2003, now abandoned which is incorporated herein by reference.

BACKGROUND

- 1. Field of the Invention
- The disclosure herein pertains to materials and methods for

2

protect embedded circuits from contamination or physical damage. The passivation layer may, for example, be formed of polysilicon or oxinitride. The polymer layer provides additional dielectric properties and masks the package for etching,
which exposes the UBM and forms the sockets. In some applications, the UBM is applied to the entire void formed in the passivation and polymer layers as a lining in the etched void. In such an application, the UBM.

After application of the UBM, the passivation layer may be 10 applied to the pad and etched to form a plurality of openings exposing the UBM layer. A polymer layer, for example a benzocyclobutane (BCB) layer, is next applied to the passivation layer. The BCB layer is also etched to form a plurality of openings, each corresponding to, and aligning with, an opening in the passivation layer. Together, the adhesion layer, UBM layer, and openings in the passivation and BCB layers form a cavity or socket that may be used to contact an installed solder ball. Prior art packages are typically assembled by placing preformed solder balls at selected socket locations on the chip. The chip is then placed in a predetermined positional alignment such that each preformed solder ball contacts the socket where it resides and conductive traces on the PCB or other circuit connection. The preformed solder balls are reflown to complete the connection between the trace and the UBM layer. Optionally, an underfill resin is applied to the space between solder balls. The resin provides shock-load tolerance beyond the limits of the solder balls alone. The chip may be reinforced by attaching the solder balls to a ceramic carrier, such as an interposer with conductive vias, for example, to enhance rigidity when the PCB is too flexible or as a manufacturing aid to increase solder ball installation alignment tolerances. The interposer is then attached to the PCB. Packages often have different sockets that connect, for

soldering one electrical component to another, for example, in the use of specially prepared solder films to connect chips 15 and other circuit components to printed circuit boards (PCBs) or other substrates.

2. Description of the Related Art

A wafer-level chip scale package (package) is an integrated circuit assembled at the wafer level. The package provides a 20 physical interface between each pad of a chip and a corresponding circuit connection, e.g., a PCB, interposer, or another chip in a chip-on-chip installation. Intra-package connections may extend straight and vertically through the package from the chip to the PCB so that the package has the 25 same width and depth as the chip, thereby reducing or eliminating wasted space. Utilizing a package saves space and weight when compared to face-up chip placement utilizing wire connections between a chip and PCB.

Solder balls may be used to connect the chip to the PCB, for 30 example, using automated 'flip-chip' processing equipment as shown in U.S. Pat. No. 5,918,792 issued to Stumpe et al. Generally, each solder ball connects a chip to conductive traces on the PCB. The chip contains a socket that is made of adhesive and conductive materials bonded to the wafer in an 35 area of the chip often referred to as the pad. Each socket retains a selectively placed preformed solder ball as an aid to solder-coupling the chip with the substrate. The pad is a conductive area on the wafer where either conductive material is applied to the chip or ion implantation renders the wafer 40 conductive. Although silicon wafers are most commonly used, other materials such as gallium arsenide are also utilized. With preformed solder balls positioned on the socket and the chip positioned on the PCB or other circuit connection, the preformed solder balls are heated to at least their melting point. Adhesion forces pull the molten solder over the socket and circuit connection to establish an electrical contact between the chip and the circuit connection. The process of melting the preformed solder ball to form an installed solder 50 ball that couples the socket and the circuit connection is known as "reflow." The socket resides in electrical contact with conductive traces on the PCB, and these traces operably connect the chip to other PCB components.

Pads include a socket area that may contain a solder receptacle and contact materials. Other portions of the pad may be protected by passivation and polymer layers. As there is difficulty in directly bonding solder to silicon or other wafer materials, the contact materials on the socket are often formed by an under-bump metallization (UBM) layer and an adhesion layer. The adhesion layer, e.g., aluminum, aluminumcopper, connects the pad to the UBM, which is capable of bonding with solder. The solder receptacle may be coextensive with the surface of the UBM, such that the socket boundaries are defined by the surface of the UBM where the perimeter of the socket is formed by voids in passivation and polymer layers. The passivation layer is a dielectric and may

example, with low-current, data (I/O) circuits and high-current, power circuits. Both I/O and power circuits utilize solder ball connections. A single solder ball is often inadequate to carry the load of power circuits. Therefore, the load of a power circuit may be shared across a plurality of electrically parallel solder ball connections. Some installations may require additional solder ball connections to provide adequate heat dissipation from the chip.

Although the prior art solder-ball package provides many benefits, problems remain. Power connections require a greater current capacity compared to I/O connections. As a result, these high-current connections may require multiple solder balls to handle the required current flow. The use of multiple solder balls imposes additional design constraints. For example, the footprint of multiple solder balls must accommodate the plurality of solder balls and the unused space between each solder ball, e.g., the space between each socket. The resulting package is overly large, and the connection footprint contains wasted space. Additionally, the relatively small cross-sectional area of solder balls limits the chip's ability to transfer heat. Heat may accumulate within a chip and degrade performance. Safe operating temperatures are more easily exceeded, and this circumstance may impose associated operational constraints affecting frequency, current, or voltage. If thermal effects are unmitigated, damage to the chip may occur. Incomplete reflow and stress cracking exacerbate the problems associated with the limited cross-sectional area of solder balls. As chip processing activity fluctuates, associated variable power draw and near-constant electrical resistance produce a corresponding fluctuation in heat, resulting in thermal expansion and contraction of the package and components

3

therein. These fluctuations, known as thermal cycling, create stresses on the connections, for example, because materials of the package do not have the same coefficients of thermal expansion. Thermal stress may lead to fatigue cracks or to complete breakage of contact with a solder ball. Additionally, 5 incomplete reflow further compounds the stress. Incomplete reflow occurs when a preformed solder ball melts to form a solder ball but does not achieve complete coverage of the UBM layer or other connection area. The resulting incomplete connection has a diminished cross-sectional area, which 10 provides a further diminution of performance and an increased probability of cracking and breakage.

SUMMARY

4

Forming the solder layers and base metal layers may be accomplished, for example, by electroplating the socket. Other methods may be employed to form the base metal layer and/or solder layer, such as liquid chemical deposition, chemical-vapor deposition, sputtering, or screen printing. The thickness of each of the base metal layer or solder layer, as well as the composition thereof, is a matter of design where the thicknesses are adjusted to meet connection and processing requirements. Some of the determinate factors for the solder bar height and materials include providing sufficient solder volume to facilitate complete wetting of the connection surfaces during reflow, providing sufficient solder volume to bridge the gap between connection surfaces without inducing unwanted resistance, mitigation of parasitic capacitance 15 when using heterologous conductors, and limiting the solder volume to avoid overflow and/or inadvertent contact with another circuit. Solder materials and techniques for their deposition are known, for example, as shown in U.S. Pat. No. 5,326,453 issued to Endicott et al. Solder characteristics may be adjusted by forming alloys of various materials, such as tin, silver, gold, manganese, copper, lead, and bismuth, to provide the desired characteristics of the connection. Examples of solder design factors include melting point, resistance, thermal conductivity, flux requirements, and flow rate. The melting point for the solder layer is generally greater than that of the melting point for the base metal layer. In one embodiment, a method is provided for constructing a solder bar. First, a pad is formed with a socket to accept the solder bar. The socket geometry is in essence a planar face on the pad onto which has been deposited an adhesion layer and an UBM layer, or another such layer as may be desirable to facilitate solder bonding and electrical contact with the pad. The socket may be formed on a region of the pad where, for example, passivation and BCB materials have been removed or where such materials have not been deposited. The socket differs in geometry from sockets designed to accept solder balls because no dimple or recess for retaining the solder ball is required. With the socket formed to an appropriate geometry for accommodating a solder bar of the type described above, a base metal, such as copper, is optionally but preferably deposited directly onto the UBM layer. Deposition is preferably made by electroplating, but may be augmented or implanted by screen printing or other deposition processes. The thickness of the base metal is a matter of connection design requirements, and the base metal may sometimes be omitted, but the thickness is generally that of a thick film. A thickness in the range from 13,000 to 17,000 Å is suitable for many design requirements. Next, a solder layer is electroplated onto the base metal, or directly to the UBM if the base metal is omitted. Sputtering, liquid chemical deposition, chemical vapor deposition, or screen printing may be used as alternatives to electroplating the solder. The application of solder and/or a base metal layer may include an overage and a subsequent removal of the overage by grinding, shaving, etching, or other removal processes. As an option, the solder layer is placed in contact with a trace and reflowed to complete the connection between a pad and trace. Problems associated with prior art preformed solder ball placement and reflow may be reduced or eliminated. For example, adhesion forces of molten solder may be increased by the presence of a base metal layer, e.g., by capillary action, whereas in solder ball placement such forces may be insufficient to completely wet large or non-circular connection surfaces. By implementing the solder bar construction methods, disclosed herein, the base metal layer and/or solder layer may be uniformly applied to essentially any socket geometry.

Certain features in the present disclosure may overcome certain problems outlined above by providing, for example, systems and methods of chip-to-socket connection. Preformed thick-film solder bars may have increased thermal and electrical connectivity, increased tolerance to stress, and a 20 decreased package footprint. These packages may achieve greater performance, reliability, and efficiency.

In one embodiment, a solder bar is provided. The solder bar connects at least one socket with a conductive trace, for example on a PCB or other circuit connection. The socket is 25 defined on a chip and provides a contact surface to at least one of the chip's circuit conduits. The socket geometry accommodates the geometry of the installed solder bar. Optionally, the solder bar may form various geometries providing the desired connection area and footprint. For example, if a chip 30 and/or substrate design provides for an "L" shaped power connection, the socket and solder bar may have a complementary "L" shape.

Solder bars offer a greater contact surface area over the same connectivity footprint, as compared to an equivalent 35 footprint of prior art solder balls. Chip performance may be increased by exploiting additional current and heat flow capacities over this surface area, as compared to prior solder ball connections. Furthermore, the solder bars may provide stronger connections having greater tolerance to stress, such 40 as thermal cycling stresses. Accordingly the package of the present disclosure may have improved durability, reliability, and/or operational parameters. In another embodiment, solder bars form geometries other than a linear bar-shape, such as rectangle or "I" geometries. 45 The solder bar may form any contiguous geometry providing a single electrical potential. Solder bar geometry may be, for example, "I," "E," "U," ring, and/or square, or any other regular or irregular geometry that is complementary to a chip pad design. The ability to pre-form solder simplifies the task 50 of implanting solder bars for chip-bonding processes. In one embodiment, the solder bar has a base metal layer coated with a solder layer. The base metal may be an alloy, layered, and/or doped composition of, for example, copper, gold, platinum, palladium, silver, aluminum, tin, bismuth, 55 vanadium, tungsten, titanium, or lead. As an option, the base metal layer may be omitted increasing resistance and may prevent the solder from forming into clumps, by action of adhesion forces during reflow. The footprint geometry of the solder bar is defined by a socket, having dimensions comple- 60 mentary to one bump, for retaining solder during reflow. The height of the solder bar is determined by the combined height of the base metal layer, if used, and the solder layer. The base metal layer may be comprised of zero or more layers and the solder layer may be one or more layers. By way of 65 example, solder bars may be formed of different thick film layers, each layer having a different melting temperatures.

5

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a PCB mounted prior art chip scale package; FIG. 2 shows a side view block diagram of a prior art chip scale package;

FIG. 3 shows a block diagram of one electrical circuit through a package;

FIG. 4 shows a side view block diagram of an exemplary wafer package with solder bars;

FIG. 5 shows a top view block diagram of an exemplary wafer package with solder bars;

FIG. 6 shows an exemplary PCB for use with a combination of solder balls and solder bars;

0

significantly dependent on the chip's mechanical connection to first and second terminals 31, 35.

According to the instrumentalities described herein, improved electrical conductivity is provided to circuit 30 and improved thermal conductivity is provided to the chip containing switching element 31 by implementing solder bars to establish first and second terminals 31, 35. Advantages in current or power throughput are obtained and dissipation of heat and flux N is improved by providing first and second terminals 31, 35 with larger contact surface area, whereas the footprint of chip 4 over area 36 may also be advantageously decreased.

FIG. 4 shows a schematic midsectional elevation view of a wafer package 40 incorporating solder bars 41, 42. FIG. 4 is 15 taken across line A-A of FIG. 5. Solder bars 41, 42 form respective power circuit connections. Solder ball 43 provides data signal or I/O circuit contact and may optionally be used in combination with solder bars 41, 42 or replaced by an additional solder bar. Passivation layer 44 and BCB layer 45 20 provide a non-conductive base for each of sockets 37A, 37B, **37**C. Sockets **37**A and **37**B have dimensions complementary to solder bars 41, 42 for retention of solder bars 41, 42 therein. PCB 48 may contain traces 46A-B and vias 47A-B to electrically connected additional circuitry (not shown) on PCB 48. Optionally, PCB 48 may be another chip, such as a chipon-chip configuration, or ceramic interposer. Sockets 37A, 37B may be formed by multiple processes; for example by screen printing the adhesion layers 49A, 49B, onto wafer 50, followed by liquid or vapor deposition of 30 passivation layer 44 to a uniform thickness at interface 51. BCB layer 45 is applied through a mask to passivation layer **44**. The masked application of BCB layer **45** leaves areas of passivation layer 44 exposed, including the areas of the passivation layer covering adhesion layers **49**A-C. Lithographic etching of passivation layer 44, where passivation layer 44 is unprotected by the masked application of BCB layer 45, removes the exposed portions of passivation layer 44. As a result, adhesion layers 49A-C are exposed and available to receive sputtered UBM layers 42A-42C. A discrete and isolated electric pathway is formed, for example, between wafer 50, adhesion layer 49A, UBM layer 42A, solder bar 41, trace **46**A, and via **47**A.

FIG. 7A and FIG. 7B show an exemplary solder bar; FIG. 8 shows a cross-section of an exemplary solder bar; FIG. 9 shows an exemplary process for manufacture of solder bars;

FIGS. **10**A-E show one formation of an exemplary solder bar in a socket;

FIG. 11 shows the layout of two packages for benchmarking and comparison of the performance of similar packages, one utilizing solder bars and another utilizing only solder balls;

FIG. 12 shows a chart depicting the results of a Simulated 25 NFET Rdson benchmark;

FIG. 13 shows a chart depicting the results of a load efficiency benchmark; and

FIG. 14 shows a chart depicting the results of a power dissipation benchmark.

DETAILED DESCRIPTION OF THE DRAWINGS

FIG. 1 shows PCB 1 with a prior art chip scale package 2 mounted thereon. Package 2 is a "Standard CSP," which is 35 shown in midsectional top view to reveal a plurality of solder ball connections 3. Solder ball connections 3 attach chip 4 to power plane 5 and ground plane 6, contained on PCB 1. Current flows through power plane 5, a subset of solder ball connections 3 to chip 4, switches within chip 4, another subset 40 of solder ball connections 3, optionally through other circuitry (not shown), and ground plane 6. FIG. 2 shows a side view, of the prior art chip scale package 2. Chip 4 has sockets 20A-20C. Solder balls 3A-3C are interposed between sockets 20A-20C and conductive PCB con- 45 tacts 22A-22C to form respective current pathways between PCB 1 and chip 4. The conductive PCB contacts 22A-22C are in electrical contact with PCB wiring traces 24A-24C connecting chip 4 with other components (not shown) of PCB 1. The sockets 20A-20C are each formed to include, for 50 example, a conductive pathway formed by an adhesion layer 25 bonded to wafer 26 and UBM 27. BCB layer 28 and passivation layer 29 define sockets 20A-20C in areas apart from UBM **27**.

FIG. 3 shows a block diagram of electrical circuit 30 which 55 may for example be used in package 2 as shown in FIG. 2. Circuit 30 may be one of many such circuits connected to chip 4. Resistance is encountered as current flows through first circuitry 31 on PCB 1, a first terminal 32 (e.g., conductive PCB contact 22A, solder ball 3A, and socket 20A), switching 60 element(s) 33 on chip 4, second terminal 34 (e.g. conductive PCB contact 22B, solder ball 3B, and socket 20B), and second circuitry 35 on PCB 1. Large currents, which for example are common with power circuits, generate a large amount of heat when flowing through first and second terminals 31, 35. 65 Heat generated in switching element 33, and elsewhere in the chip 4, must be dissipated as flux N. Heat dissipation is

A data circuit 53 contacts to solder ball 43, which is optionally replaced by a solder bar (not shown).

FIG. 5 is a top view of wafer package 40. Solder balls 43, **43**A-E connect PCB **48** to data traces **54**, **54**A-E and sockets **37**C, **55**A-E on wafer **50**. Power traces **46**A, **46**B, solder bars 41, 42 and sockets 37A, 37B form respective power circuits. One or more of the solder balls 43, 43A-E may optionally be replaced by solder bars to accommodate greater current and/ or heat flow, improve package reliability, or to simplify the design and/or manufacture of wafer package 40.

FIG. 6 is a top view of PCB 60, which may be used with a combination of solder balls and solder bars. PCB 60 contains a plurality of semi-spherical solder ball traces 61 and rectangular solder bar traces 62A-D. Traces 62A-D may be formed by known processes, such as screen printing or stenciling of gold, copper, aluminum, or other conductor materials onto PCB 60. Solder bar traces 62A-D and solder ball traces 61 each present solder-bonding surfaces. It will be appreciated that the elements of PCB 60 may be arranged and deployed for use as PCB 48 shown in FIG. 5, or in any other manner that is effective to implement circuit requirements on PCB 60. FIG. 7A is a side view of solder bar 70, which is suitable for use with PCB 60 (FIG. 6), for example, for bonding with one of sockets 62A-62D. Chip 71 bonds with solder bar 70. Although solder bar 70 is generally shown as a rectilinear

7

shape, it may have radius corners 73 resulting from electrodeposition processes. Solder bar 70 is also substantially planar rectilinear in the sense that the height dimension extends through a thick film that is substantially planar when the height dimension is several times less, e.g., 4x, 8x, 12x, 5 16x, less than the width or depth dimension. Solder bar 70 may also be planar curvilinear. FIG. **7**B is a bottom view of the solder bar 70. Surface 74 forms a bonding surface when installed, for example, to trace 62D (FIG. 6). Solder bar 70 is, for example, optionally used as solder bar 41 or 42 (FIG. 4). 10 FIG. 8 is a midsectional view providing additional detail with respect to solder bar 70 (FIG. 7). Wafer 80 may be any type of semiconducting wafer, such as silicon. In these contexts, wafer 80 may be an integrated circuit chip or any other solid state electronic component involving the use of a wafer. 15 Adhesion layer 81 is in contact with wafer 80, and is bonded to UBM material 82. UBM material 82 substantially defines the footprint of solder bar 70 on wafer 80. Passivation layer 83 and BCB layer 84 substantially define the areal extent of solder bar 70 and may be deposits of certain processes, such 20 as silicon dioxide crystal growth or polysilicon coating. Solder bar 70 may be entirely solder or optionally contain a base metal 85 as, for example, copper, gold, silver, aluminum, lead, tin, or other metal. Copper is especially preferred. Solder **86** is in substantially continuous contact with base metal 25 85, or UBM layer 82 if base metal 85 is omitted. The height 87 of solder bar 70 may be any height, where useful heights for most applications range from 50 μ m to 300 μ m, and are more typically between 100 μ m and 200 μ m. The base metal 85 and solder 86 constituents of solder bar 70 may be deposited by 30 electrodeposition processes, where heights of the respective layers may be supplemented by screen printing or evaporative processes, as needed.

8

98, process 90 has assembled the solder bar. Installation of the solder bar may place a trace of a substrate in contact or in close proximity with the solder bar and heated to reflow 99 the solder bond with the trace and complete the connection. FIGS. **10**A-E illustrate stages of solder bar manufacture. Structure **110** is prepared by application of an adhesion layer 81, passivation layer 83, and UBM layer 82 (FIG. 9, steps **92-94**). These layers may be etched in a predetermined pattern. Next, structure 112 shows the addition of BCB 84 to complete the definition of socket **113** (FIG. **9**, step **95**). Structure 114 shows deposition of base metal 85 applied to UBM layer 82 (FIG. 9, step 97). Structure 116 shows deposited solder 86 on base metal 85 (FIG. 9, step 98). Optionally, a plurality of solder layers having different material properties may be deposited, e.g., as layers 117, 118 where layer 117 may have a lower melting point or different composition than does layer **118**. For example, layer **117** may have an alloy having different percentages of lead and silver than does solder layer 118. Structure **120** shows solder **86** after melting during reflow (FIG. 9, step 99), where wafer 80 is positioned in place of wafer 50 and solder bar 70 stands in place of solder bar 41 in socket **48**A. FIG. 11 depicts one layout 300 of package 301, which was used in benchmark performance comparison testing against the standard ball-grid package 2 shown in FIG. 1. The two packages 2, 301 differed only in the implementation of plural solder bars 70 (FIG. 7) versus solid balls 3 (FIG. 1). Package 301 implements solder bars 70 with a copper base metal layer applied to the socket, as shown in FIG. 8. The objective of the comparison was to determine performance differences between a standard chip scale package having solder ball connections 3 and package 301 having plural solder bar 70 connections. Solder bar 70 connections utilized a copper base metal layer with solder applied to the copper (FIG. 8). The connectivity footprint of solder ball connections 3 and solder bar 70 connections are substantially identical, however, comparative data shows that solder bars 70 provide improved utilization of the same footprint. FIG. 12 shows chart 310 depicting the comparative simulated NFET Rdson ("n" Field Effect Transistors On-Resistance) benchmarks from layouts 300 A and B (FIG. 11). The simulated NFET Rdson benchmark results for solder ball package 2 are represented by "CSP" group 311 and the results for solder bar package 301 are represented "Bars" group 312. Solder bar package 301 produced a 10-15% improvement in Rds over solder ball package 5. FIG. 13 shows chart 320 depicting the comparative load efficiency benchmarks from layout **300** A and B (FIG. **11**). The load efficiency benchmark results for solder ball package 2 are represented by "CSP" line 322 and the results for solder bar package 301 are represented by "Bars" line 321. Solder bar package **301** produced a 1.6% higher efficiency at 25 A and 3.5 A more current at comparable 93% efficiencies in comparison to solder ball package 2.

FIG. 9 shows exemplary process 90 for manufacture of a solder bar, such as solder bar 70 (FIG. 7). A chip is prepared 35

91 for incorporation into a package having electrical contact pads operable to receive a conductive adhesion layer. An adhesion layer, e.g., aluminum, is applied 92 to the pad of the chip. The adhesion layer application 92 may entail screen printing or other methods of application and may include the 40 application of nickel, vanadium, copper, titanium, tungsten, or aluminum. A passivation layer, e.g., polyimide, silicon nitride, silicon oxide, polysilicon, or oxinitride, is applied 93, for example, by chemical vapor deposition and covers the chip and adhesion layers. A UBM layer, e.g., aluminum, 45 nickel-vanadium, copper, titanium, tungsten, vanadium, tin, gold, silver, lead or titanium-tungsten, is applied 94 substantially to the adhesion layer. The UBM layer may be applied 94 by etching, photolithography, sputtering, or other method of application. A BCB layer is applied 95 through a mask, thus 50 preventing application to areas where the passivation layer is to be removed, such as areas covering the adhesion layers. Voids are created 96 by exposing the chip to lithography which softens the areas of the passivation layer not protected by the BCB layer. The softened passivation layer is washed 55 away exposing the adhesion layer. As a matter of design choice, a base metal, such as copper, is electroplated 97 onto the UBM layer. A solder layer is then electroplated 98 onto the base metal, if provided, or if the base metal is omitted, electroplated 98 directly to the UBM layer. It will be appre-60 ciated that one or more of the deposition steps may be eliminated, for example, where passivation is not required or elimination of the UBM if the base metal or solder is capable of bonding directly to the adhesion layer. Base metal application 97 or solder application 98 may, for 65 example, be accomplished by electroplating in an electrochemical reactor using standard plating solutions. After step

FIG. 14 shows chart 330 depicting comparative power dissipation benchmarks from package 2 (FIG. 1) and package 301 (FIG. 11). The power dissipation benchmark results for solder ball package 2 are represented by "CSP" line 331 and the results for solder bar package 301 are represented "Bars" line 332. Solder bar package 301 produced a 550 mW savings at 25 A and 2 A more current at 2 W dissipation over solder ball package 2. Although the foregoing discussion emphasizes the bonding of a chip scale package to a PCB, it will be appreciated that the discussion also applies to bonding between other types of components. For example, a chip-on-chip structure

9

may be created where two wafers are subjected to the process shown in FIG. 9, one chip through the entire process and the other through step 96. It is also possible to alter process 90 where the wafer is processed through step 96 and the steps 97, 98 form the solder bar on the PCB.

Changes may be made in the above methods and systems without departing from the scope hereof. It should thus be noted that the matter contained in the above description or shown in the accompanying drawings should be interpreted as illustrative and not in a limiting sense. The following 10 claims are intended to cover all generic and specific features described herein, as well as all statements of the scope of the present method and system, which, as a matter of language, might be said to fall there between. What is claimed is: 15

10

the microchip further includes a second connection pad area electrically coupled to the second solder bar;
the chip scale package further comprises a first adhesion layer and a first under bump metallization layer disposed between the first connection pad area and the first solder bar; and

the chip scale package further comprises a second adhesion layer and a second under bump metallization layer disposed between the second connection pad area and the second solder bar.

9. The chip scale package of claim 1, wherein the switching element is a field effect transistor.

10. The chip scale package of claim **1**, further comprising a plurality of solder balls, each of the plurality of solder balls 15configured to provide an interface with the microchip for a signal selected from the group consisting of a data signal and an input/output signal. **11**. The chip scale package of claim **1**, further comprising a plurality of additional solder bars, each of the plurality of additional solder bars configured to provide an interface with the microchip for a signal selected from the group consisting of a data signal and an input/output signal. **12**. The chip scale package of claim 1, wherein: the first solder bar comprises a plurality of first solder bars; the second solder bar comprises a plurality of second solder bars; the chip scale package comprises a plurality of third solder bars; each of the plurality of third solder bars is configured to provide an electrical interface with the microchip; each of the plurality of first solder bars is electrically coupled to a first node in the microchip, each of the plurality of second solder bars is electrically coupled to a second node in the microchip, and each of the plurality of third solder bars is electrically coupled to a third node in the microchip, each of the first, second, and third nodes being different nodes;

1. A chip scale package made-ready for installation of a microchip on a printed circuit board, an interposer, or chip-on-chip stack, comprising:

a microchip including a switching element;

a first solder bar electrically coupled to a first terminal of 20 the switching element; and

a second solder bar electrically coupled to a second terminal of the switching element;

wherein:

the first solder bar includes a first and second sublayer, 25 the first and second sublayers having a different material composition from one another, and the first and second sublayers having substantially similar shape to one another,

the second solder bar includes a third and fourth sub- 30 layer, the third and fourth sublayers having a different material composition from one another, and the third and fourth sublayers having substantially similar shape to one another,

the first and second solder bars both form respective 35 surfaces for soldering to a bonding surface, and the first and second solder bars both have a geometric configuration selected from the group consisting of a planar curvilinear configuration and a planar rectilinear configuration. 40 2. The chip scale package of claim 1, wherein: the first solder bar comprises a plurality of first solder bars; the second solder bar comprises a plurality of second solder bars; and the plurality of first solder bars is disposed in an alternating 45 sequence with the plurality of second solder bars. 3. The chip scale package of claim 1, wherein the geometric configuration includes a geometry selected from the group consisting of ring, rectangular, "E", "L", "U", and circular shapes. 50 **4**. The chip scale package of claim **1**, wherein the first and third sublayers both comprise a base metal layer. 5. The chip scale package of claim 4, wherein the base metal layer is selected from the group consisting of copper, gold, silver, lead, tin, titanium, tungsten, and vanadium. 55 6. The chip scale package of claim 5, the base metal layer being formed of copper.

- a first row of solder bars includes an alternating sequence of the plurality of first solder bars and the plurality of second solder bars; and
- a second row of solder bars includes an alternating sequence of the plurality of second solder bars and the plurality of third solder bars.

13. The chip scale package of claim **1**, further comprising an interposer coupled to the first and second solder bars.

14. The chip scale package of claim 13, the interposer being a substrate.

15. The chip scale package of claim 14, the substrate being a ceramic substrate.

16. An assembly, comprising:

- a printed circuit board; and
- a chip scale package, including:
- a microchip including a switching element,
- a first solder bar electrically coupled to a first terminal of the switching element, and
- 7. The chip scale package of claim 1, wherein:at least one of a width and a depth of the first solder bar is at least four times greater than a height of the first solder 60 bar; and
- at least one of a width and a depth of the second solder bar is at least four times greater than a height of the second solder bar.
- 8. The chip scale package of claim 1, wherein: 65
 the microchip further includes a first connection pad area electrically coupled to the first solder bar;

a second solder bar electrically coupled to a second terminal of the switching element, wherein:

the first solder bar includes a first and second sublayer, the first and second sublayers having a different material composition from one another, and the first and second sublayers having substantially similar shape to one another,

the second solder bar includes a third and fourth sublayer, the third and fourth sublayers having a different

20

11

material composition from one another, and the third and fourth sublayers having substantially similar shape to one another,

- the first and second solder bars are soldered to the printed circuit board, and
- the first and second solder bars both have a geometric configuration selected from the group consisting of a planar curvilinear configuration and a planar rectilinear configuration.

17. The assembly of claim **16**, wherein: 10 the first solder bar comprises a plurality of first solder bars; the second solder bar comprises a plurality of second solder bars; and

the plurality of first solder bars is disposed in an alternating sequence with the plurality of second solder bars. 15 **18**. The assembly of claim **17**, wherein: each of the plurality of first solder bars is electrically

12

each of the plurality of first solder bars is electrically coupled to a first node, each of the plurality of second solder bars is electrically coupled to a second node, and each of the plurality of third solder bars is electrically coupled to a third node, each of the first, second, and third nodes are different nodes;

- a first row of solder bars includes an alternating sequence of the plurality of first solder bars and the plurality of second solder bars; and
- a second row of solder bars includes an alternating sequence of the plurality of second solder bars and the plurality of third solder bars.
- 26. An assembly, comprising:

coupled to a first node;

each of the plurality of second solder bars is electrically coupled to a second node; and

the first node is different from the second node.

19. The assembly of claim **16**, wherein:

at least one of a width and a depth of the first solder bar is at least four times greater than a height of the first solder bar; and 25

at least one of a width and a depth of the second solder bar is at least four times greater than a height of the second solder bar.

20. The assembly of claim **16**, wherein:

the microchip further comprises a first connection pad area 30 electrically coupled to the first solder bar;

the microchip further comprises a second connection pad area electrically coupled to the second solder bar; the chip scale package further comprises a first adhesion layer and a first under bump metallization layer disposed 35

a printed circuit board; and a chip scale package, including: a microchip including a switching element, a first solder bar electrically coupled to a first terminal of the switching element, a second solder bar electrically coupled to a second terminal of the switching element, and an interposer disposed between the first and second solder bars and the printed circuit board,

wherein:

the first solder bar includes a first and second sublayer, the first and second sublayers having a different material composition from one another,

and the first and second sublayers having substantially similar shape to one another,

the second solder bar includes a third and fourth sublayer, the third and fourth sublayers having a different material composition from one another, and the third and fourth sublayers having substantially similar shape to one another, and

between the first connection pad area and the first solder bar; and

the chip scale package further comprises a second adhesion layer and a second under bump metallization layer disposed between the second connection pad area and the 40 second solder bar.

21. The assembly of claim 16, the printed circuit board further comprises a first and a second via, wherein the first via is disposed below the first solder bar and the second via is disposed below the second solder bar. 45

22. The assembly of claim 16, wherein the switching element is a field effect transistor.

23. The assembly of claim 16, further comprising a plurality of solder balls soldered to traces of the printed circuit board, each of the plurality of solder balls configured to 50 provide an interface with the microchip for a signal selected from the group consisting of a data signal and an input/output signal.

24. The assembly of claim 16, further comprising a plurality of additional solder bars soldered to traces of the printed 55 circuit board, each of the plurality of additional solder bars configured to provide an interface with the microchip for a signal selected from the group consisting of a data signal and an input/output signal. **25**. The assembly of claim **16**, wherein: 60 the first solder bar comprises a plurality of first solder bars soldered to the printed circuit board; the second solder bar comprises a plurality of second solder bars soldered to the printed circuit board; the chip scale package comprises a plurality of third solder 65 bars configured to provide an electrical interface with the microchip and soldered to the printed circuit board;

the first and second solder bars both have a geometric configuration selected from the group consisting of a planar curvilinear configuration and a planar rectilinear configuration.

27. The assembly of claim **26**, wherein:

the first solder bar comprises a plurality of first solder bars; the second solder bar comprises a plurality of second solder bars; and

the plurality of first solder bars is disposed in an alternating sequence with the plurality of second solder bars.

28. The assembly of claim **27**, wherein:

each of the plurality of first solder bars is electrically coupled to a first node;

each of the plurality of second solder bars is electrically coupled to a second node; and

the first node is different from the second node.

29. The assembly of claim **26**, wherein:

- at least one of a width and a depth of the first solder bar is at least four times greater than a height of the first solder bar; and
- at least one of a width and a depth of the second solder bar is at least four times greater than a height of the second

solder bar.

30. The assembly of claim **26**, wherein:

the microchip further comprises a first connection pad area electrically coupled to the first solder bar; the microchip further comprises a second connection pad area electrically coupled to the second solder bar; the chip scale package further comprises a first adhesion layer and a first under bump metallization layer disposed between the first connection pad area and the first solder bar; and

10

13

the chip scale package further comprises a second adhesion layer and a second under bump metallization layer disposed between the second connection pad area and the second solder bar.

31. The assembly of claim **26**, the interposer further com-⁵ prising a first and a second via, wherein the first via is disposed below the first solder bar and the second via is disposed below the second solder bar.

32. The assembly of claim 26, wherein the switching element is a field effect transistor.

33. The assembly of claim **26**, further comprising a plurality of solder balls coupled to the interposer, each of the plurality of solder balls configured to provide an interface with the microchip for a signal selected from the group consisting of a data signal and an input/output signal. 34. The assembly of claim 26, further comprising a plurality of additional solder bars coupled to the interposer, each of the plurality of additional solder bars configured to provide an interface with the microchip for a signal selected from the group consisting of a data signal and an input/output signal. 35. The assembly of claim 26, wherein: the first solder bar comprises a plurality of first solder bars; the second solder bar comprises a plurality of second solder bars; the chip scale package comprises a plurality of third solder bars configured to provide an electrical interface with the microchip; each of the plurality of first solder bars is electrically coupled to a first node, each of the plurality of second solder bars is electrically coupled to a second node, and 30each of the plurality of third solder bars is electrically coupled to a third node, each of the first, second, and third nodes are different nodes;

14

the first and second solder bars both form respective surfaces for soldering to a bonding surface, the first and second solder bars both have a geometric configuration selected from the group consisting of a planar curvilinear configuration and a planar rectilinear configuration,

the first solder bar comprises a plurality of first solder bars,

the second solder bar comprises a plurality of second solder bars, and

the plurality of first solder bars is disposed in an alternating sequence with the plurality of second solder bars.

a first row of solder bars includes an alternating sequence of the plurality of first solder bars and the plurality of ³⁵

38. A chip scale package made-ready for installation of a 15 microchip on a printed circuit board, an interposer, or chipon-chip stack, comprising:

a microchip including a switching element;

a first solder bar electrically coupled to a first terminal of the switching element; and

a second solder bar electrically coupled to a second terminal of the switching element;

wherein:

the first and second solder bars both form respective surfaces for soldering to a bonding surface, the first and second solder bars both have a geometric configuration selected from the group consisting of a planar curvilinear configuration and a planar rectilinear configuration,

the first solder bar comprises a plurality of first solder bars,

the second solder bar comprises a plurality of second solder bars,

the chip scale package comprises a plurality of third solder bars,

each of the plurality of third solder bars is configured to

- second solder bars; and
- a second row of solder bars includes an alternating sequence of the plurality of second solder bars and the plurality of third solder bars.

36. The assembly of claim 26, the interposer being coupled to the printed circuit board.

37. A chip scale package made-ready for installation of a microchip on a printed circuit board, an interposer, or chipon-chip stack, comprising: 45

a microchip including a switching element;

- a first solder bar electrically coupled to a first terminal of the switching element; and
- a second solder bar electrically coupled to a second terminal of the switching element;

wherein:

- provide an electrical interface with the microchip, each of the plurality of first solder bars is electrically coupled to a first node in the microchip, each of the plurality of second solder bars is electrically coupled to a second node in the microchip, and each of the plurality of third solder bars is electrically coupled to a third node in the microchip, each of the first, second, and third nodes being different nodes,
- a first row of solder bars includes an alternating sequence of the plurality of first solder bars and the plurality of second solder bars, and
- a second row of solder bars includes an alternating sequence of the plurality of second solder bars and the plurality of third solder bars.

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

 PATENT NO.
 : 8,106,516 B1

 APPLICATION NO.
 : 12/844649

 DATED
 : January 31, 2012

 INVENTOR(S)
 : Efren M. Lecap et al.

Page 1 of 1

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Item (57), Line 6 of Abstract, "solder bars" should read --solder bar--; Column 3, Line 67, "melting temperatures" should read --melting temperature--;

David J. Kappos Director of the United States Patent and Trademark Office