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Definition 1 applied ondrop in Log(VL) {linear regression)
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Defintticn 2 applied on drop in Log{VL) {linear regression)
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Definition 2 applied on the probability of failure {(=1/Probability of success) {icgistic regression)
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Definition 3 applied on drop in Log(VL) (linear regression)
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ESTIMATION OF CLINICAL CUT-OFES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a National Stage of International Appli-
cation No. PCT/EP05/50888, filed Mar. 1, 2005, which
claims benefit of U.S. Provisional Application No. 60/549,
219, filed Mar. 2, 2004 and U.S. Provisional Application No.
60/623,481, filed Oct. 29, 2004, all of which are incorporated
by reference 1n their entirety.

The present invention concerns methods and systems for
improving the accuracy of predicting resistance of a disease
to a drug. More specifically, the invention provides methods
for assessing the impact of pre-existing variations 1 drug
susceptibility, whether naturally occurring or selected by pre-
vious drug exposure, on treatment response 1n order to estab-
lish clinically relevant cut-oif values for phenotypic or geno-
typic resistance tests.

All publications, patents and patent applications cited
herein are incorporated in full by reference.

Techniques to determine the resistance of a disease to a
drug are becoming increasingly important. Since the 1ssuance
of the first report suggesting a correlation between the emer-
gence of viral resistance and clinical progression, techniques
to determine the resistance of a pathogen to a drug have been
increasingly incorporated mto clinical studies of therapeutic
regimens (see Brendan Larder et al., HIV Resistance and
Implications for Therapy (1998), herein incorporated by ret-
erence). For example, as with viral infections, some studies
show that p53 mutations may also be predictive of tumour
response to specific anticancer drug therapy, radiation treat-
ment or gene therapy. This 1s the case 1n breast cancer where
initial studies have shown that cisplatin and tamoxifen are
more effective 1 patients whose tumours have a p33 muta-
tion. Thus, the aim of resistance momitoring is to provide the
necessary information to enable the physician to prescribe the
most optimal combination of drugs for the individual patient.

With more therapeutic options becoming available over
time, resistance testing 1s expected to play an important role
in the management and treatment of disease and the develop-
ment of individualized treatment regimes [see e.g. Haubrich
et al. JAIDS, 2001, 26S1, S51-S59].

Furthermore, the number of drug resistant diseases 1s also
increasing. Phenotyping methodologies measure the ability
of a pathogen to grow 1n the presence of different drugs in the
laboratory. This 1s usually expressed as the fold change in the
IC, or IC,, values (the IC., or IC,, value being the dru
concentration at which 50% or 90% respectively of the popu-
lation of pathogen 1s inhibited from replicating). For example,
a highly resistant virus might show a 350 or even 100-fold
increase in IC.,, for example. Some viral mutations only
increase the IC., by as little as 2-3 fold. On the other hand, a
pathogen may exhibit hypersensitivity towards a given drug.
For example, 1t has been demonstrated that a combination of
HIV mutations may lead to hypersensitivity of the pathogen
towards a given drug.

Unlike genotyping, phenotyping 1s a direct measure of
susceptibility, reflecting the effects and interactions of all the
mutations, known or unknown, on the behaviour of the patho-
gen population 1n the presence of a drug.

The utility of drug susceptibility phenotyping 1s dependent
on the “cut-oif” value of the fold increase 1n, for example, the
IC., at which a pathogen 1s considered resistant. The term
“cut-oil value”, as used herein, refers to the threshold change
in susceptibility above which a pathogen is classed as having
reduced susceptibility for a particular drug. Drug “resis-
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tance”, as used herein, pertains to the capacity of resistance,
sensitivity, susceptibility or effectiveness of the drug against
the pathogen.

There has been recent debate regarding the relevance of
some cut-off values currently 1n use. For example, for viral
infections, certain groups currently use technical cut-off val-
ues, which are usually the same value for each drug-tested and
are determined not by clinical criteria but, for example, by the
assay variability seen on repetitive testing of a single wild
type standard virus. By repeatedly runming a test with the
standard reference virus, the reproducibility of the test 1s
measured and a cut-off 1s set at this level, (e.g., a 2.5-fold
increase 1n IC. ). This provides a cut-oif that depends largely
on the analytical performance of the assay. This approach
suifers from the limitation that 1t does not consider the popu-
lation-based variation 1 drug responsiveness. In addition,
such an approach does not account for different responsive-
ness towards different drug regimens. The limitations of set-
ting a single cut-oif for all available drugs 1n this way 1s that
it tells the clinician very little about the significance of any
change i1n susceptibility reported by a test. Indeed, some
virological cut-oif values are clearly out of line with known
response data. For example, indications of low level resis-
tance to non-nucleotide reverse transcriptase inhibitors
(NNRTIs) does not lead to blunted responses to drugs in
previously untreated individuals (Harrigan et al., Bacheler et
al., 4th International Workshop on HIV Drug Resistance and
Treatment Strategies, Sitges, Spain. Abstr. (2000)). Other
assays have cut-off values that are primarily based on the
reproducibility of the assay, are the same for each drug, or are
not related to whether a drug might work against the pathogen
in clinical practice and are, therefore, rather arbitrary.

Methods have already been described to develop more
meaningful, biologically relevant cut-off values for drugs
used 1n HIV therapy. For example, Virco measured the IC.,
values for 1solates from 1,000 untreated patients as well as
many thousands of samples of HIV-1 with no resistance
mutations. The average and the range of susceptibility were
calculated for each drug. The cut-oils were then set at two
standard deviations above the mean. This statistical term
means that a test result falling above the cut-oif can be said to
be above the normal susceptible range with 97.5% confidence
(Harrigan et al. World-wide vanation in HIV-1 phenotypic
susceptibility 1n untreated individuals: biologically relevant
values for resistance testing. 2001. AIDS 13:1671-1677).
Since the susceptibility of untreated and un-mutated virus
varied considerably from drug to drug, the predicted biologi-
cal cut-offs are different for each drug.

The use of biological cut-oifs has changed the amount of
resistance being reported for HIV. For example, the biological
cut-oif values for the dideoxynucleoside analogues are lower
than the cut-offs used previously and, in a study of 5,000
random clinical samples, revealed a higher and more realistic
incidence of resistance. Conversely, the cut-oifs for the non-
nucleoside reverse transcriptase inhibitors are higher than
those previously used.

However, although the biological cut-oif values are a vast
improvement to the arbitrary cut-oils used previously, there
are still disparities between these predicted thresholds and the
observed fold-resistance above which a clinical response 1s
actually reduced. There 1s thus a great need for a method that
can establish cut-oil fold change resistance values that are
clinically-relevant.

The present invention provides a solution to these prob-
lems, 1n the form of new methods for assessing the impact of
pre-existing variations in drug susceptibility, whether natu-
rally occurring or selected by previous drug exposure, on
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treatment response in order to establish clinically relevant
cut-oif values for phenotypic or genotypic resistance tests.

SUMMARY OF THE INVENTION

According to the mvention, there 1s provided a diagnostic
method for estimating for a patient the treatment response of
a disease caused by a pathogen to a drug, the method com-
prising:
comparing the fold change resistance value of the pathogen
infecting the patient to a clinical cut-oil value which is the
fold change resistance value at which a clinically relevant
variation of clinical response 1s observed;
wherein the clinical cut-oif value 1s established by modelling,
the clinical response of a population of patients treated with
the drug to the disease caused by the pathogen as a function of
the fold change resistance of the pathogen infecting the
patients.

According to the ivention, a threshold fold-resistance 1s
established, above which a disease 1s classified as being resis-
tant to a drug 1n a clinical context. The method models treat-
ment response of the pathogen causing the disease to a par-
ticular drug as a function of baseline pathogen load, baseline
resistance, baseline activity of co-administered drugs tar-
geted to the pathogen and treatment history. By “baseline
pathogen load™ 1s meant the pathogen load of the patient
measured at the start of treatment by the drug. By “baseline
told change resistance™ 1s meant the fold change resistance to
the candidate drug exhibited by the pathogen infecting the
patient at the start of treatment. By “baseline activity of co-
administered drugs targeted to the pathogen™ 1s meant the
activity against the pathogen of each drug administered 1n
combination with the drug for which the treatment response 1s
being modeled. By “treatment history” 1s meant the previous
drug exposure of the patient (and therefore, the pathogen).

In a preferred embodiment, the cut-oil value 1s determined
as a Tunction of treatment response data in treated subjects,
considering baseline pathogen load, baseline fold change
resistance, baseline activity of co-administered drugs tar-
geted to the pathogen, and treatment history.

This method thus provides a prediction of clinical outcome
at different levels of baseline resistance. According to this
methodology, treatment outcome (drop 1n pathogen load and
response rate) 1s modeled by drug as a function of baseline
fold change resistance as determined by reference to a system
that measures drug resistance phenotype or predicts drug
resistance phenotype from pathogen genotype (such as Vir-
tualPhenotype®, Virco). The models take into account effects
of co-administered drugs, baseline pathogen load and,
optionally, treatment history 1n order to avoid any bias 1ntro-
duced by 1imbalances of clinically-important characteristics.
From the model, a prediction of outcome can be made at
different levels of the baseline fold change resistance of the
pathogen.

Using this methodology, fold change resistance values
obtained by comparison of genotype with phenotype (for
example, VirtualPhenotype®) are linked with clinical out-
come. This 1s a unique approach; other research groups use
different approaches whereby particular mutations or actual
phenotype results are linked with clinical outcome.

The methodology of the invention i1s advantageous over
those currently used. For example, conventional approaches
do not fully account for the population-based variability 1n
drug sensitivity. In the present method, the population may
include treatment naive and treatment experienced patients,
and may be a mixed population which 1s not restricted to, for
example, a single gender, age, race or sexual behaviour.
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The method of the invention also accounts for the different
responsiveness 1n a population towards different drugs. The
drug-specific clinical cut-oif values determined by this
approach are more reliable parameters 1n estimating resistant
over sensitive strains of pathogen.

The method also allows clinical cut-oils established using
the method to be re-calculated depending on the type of
population studied, 1.e. a paediatric population may have a
different clinical cut-off for a particular drug than the adult
population for the same drug.

Of particular importance, this methodology allows the
determination of clinical cut-offs for all marketed drugs 1n a
uniform, scientific manner on a substantial database using
data derived from response to combination therapy. Currently
available cut-oils are determined by reference to a limited
amount of data and may be inconsistent as they are deter-
mined using different approaches.

According to the imvention, clinical cut-off values are
established by modeling the clinical response of a population
of patients treated with the drug to the disease caused by a
particular pathogen as a function of the fold change resistance
of the pathogen infecting the patients. The fold change resis-
tance for a pathogen may be established using methods
known 1n the art. Briefly, the sensitivity of a patient sample for
a particular drug 1s compared with the sensitivity of a refer-
ence sample for that same drug. This may be done by a)
determining the sensitivity of a patient sample for the drug; b)
determining the sensitivity of a reference sample for the drug;
and ¢) determining the patient fold change resistance from the
quotient of the sensitivity obtained in step a) over the sensi-
tivity obtained in b). Examples of preferred methods for per-
forming these steps are described in detail 1n co-pending
applications W0O01/79540 and WO002/33402. Equivalent
methods will be apparent to the person of skill in the art.

In a preferred embodiment of the invention, the cut-oif fold
change resistance value 1s calculated by reference to the log of
the pathogen load drop. In such a method, a linear regression
analysis 1s preferably performed using a set of treatment
response data from subjects harbouring the pathogen,
wherein the log pathogen load drop LogPL drop,, for the
pathogen infecting a patient 1, 1s modelled as the sum of all of
the individual contributions for factors that influence patho-
gen load drop, according to the following equation:

LogPLdrop,=po+p; Log(BaselinePL,)+p, (PSS, )+,
(1/FC,)+e,;

In this equation, BaselinePL, represents the pathogen load
of the patient measured at the start of treatment by the drug.

PSS, 1s a phenotypic sensitivity score representing the
number of active drugs in the background treatment regimen
for the patient, excluding the drug whose contribution to
treatment response 1s being modelled.

FC, 1s a baseline fold change resistance.

3, 1s the intercept.

3, 1s a coellicient representing the increase in log pathogen
load drop per unit increase of the log of the BaselinePL,. In the
case of HIV and HCYV infection, baseline PL. 1s readily quan-
tified by validated commercial assays.

3, 1s a coellicient indicating the increase in log pathogen
load drop per unit increase of the number of sensitive drugs 1n
the background treatment regimen.

35 1s a coellicient indicating the increase 1n log pathogen
load drop per unit increase of the inverse of FC.. The value of
this coelficient 1s part of the output of the described model.

€., 1s an error term which represents the difference between
the modelled prediction and the experimentally determined
measurement.
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The coetlicients 1n the linear regression model may be
calculated using a computer analysis package such as PROC

LIFEREG. PROC LIFEREG 1s a procedure within the SAS

(Statistical Analysis System) software which performs linear
regression on censored data. By default, the LIFEREG Pro-
cedure computes 1nitial values for the parameters using ordi-
nary least squares (OLS) 1gnoring censoring. The log-likeli-
hood function 1s maximized by means of a ndge-stabilized
Newton-Raphson algorithm.

PSS1, the phenotypic sensitivity score, represents the num-
ber of active drugs in the background treatment regimen for
the patient, as predicted from pathogenic genotype by Virtu-
alPhenotype™ or other algorithms or as measured by actual
phenotype testing. The purpose of this term 1s to allow a
drug-specific value to be extracted from treatment response
data that has been collected for a patient that has received a
combination of drugs. In this way, resistance data relevant
solely to the particular drug under 1mvestigation 1s extracted.
The other drugs are considered the background regimen; this
may be different for different patients. It 1s necessary to
analyze patients with different background regimens together
as there would not be enough data to do a sound analysis
otherwise.

During this analysis 1t has to be taken into account that
different background regimens influence the clinical outcome
in a different way. In order to do this, the activities of back-
ground drugs are summarised, by determiming the number of
active drugs, and thus devising a PSS (preferably judged as
active according to VirtualPhenotype®). The PSS i1s then
included in the model.

In a preferred embodiment, the PSS may be calculated
based on preliminary clinical cut-oils which are determined
as described. The concept of PSS 1s discussed in detail by
DeGruttola et al. (Antiviral Therapy 2000; 5:41-48). In addi-
tion, the concept of continuous PSS as a variation of PSS 1s
discussed by Allison et al. (AIDS 2003, 17:1-9); Katzenstein
et al. (AIDS 2003; 17:821-830); and Haubrich et al.
(“Delavirdine Hypersusceptibility (DLV HS): Virological
Response and Phenotypic Cut-Points—Results from ACTG
359”; 11th Conference on Retroviruses and Opportunistic
Infections held on 8-11 Feb. 2004 1n San Francisco, Calif.,
USA). The PSS may be determined by an iterative process
such that the cut-off value 1s refined to a constant value. In
subsequent 1terations of the model, PSS scores based on
preliminary clinical cut-oils defined in the first iteration of the
model may be utilized.

FC., the baseline fold change, 1s equivalent to baseline fold
change resistance. These terms are used interchangeably
herein. This 1s a patient-specific term and 1s determined based
on a drug susceptibility phenotype test or predicted based on
the genotype of the pathogen infecting a particular patient.
The phenotype exhibited by the pathogen of this genotype
may be predicted in a number of ways; generally, such tech-
niques compare the genotype to phenotype data collected
from a group of patients intfected with a pathogen of similar
genotype. However, this does not change the fact that this fold
change resistance 1s a characteristic of the specific pathogenic
strain infecting an individual patient at baseline.

For example, prediction of baseline fold change resistance
may exploit rules-based or other less direct systems of deter-
mimng the drug resistance phenotype of a pathogen. An
example of a less direct system 1s the Virtual Phenotype
(Virco, Inc.; WOO01/79340). Prediction of baseline fold
change resistance may alternatively use other systems for
determining phenotype from genotype imnformation, such as
neural networks that determine the drug resistance phenotype
ol a pathogen based on its genotypic information (see, for

example, U.S. Pat. No. 7,058,616; WO01/95230. The neural
network may be used to identily mutation(s) or mutation
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patterns that confer resistance to a drug and defines the
genetic basis of drug resistance.

3o, the 1mtercept, 1s the estimated log pathogen load drop
for a reference group 1.¢. a theoretical group of patients with
a baseline pathogen load of one, an infinite fold change resis-
tance and no sensitive drugs 1n the background. The purpose
of this term 1s to improve the model {it. If 1t was not included,
the fitted curve would be forced to pass through the origin
(zero Log PL drop at zero fold change resistance), which
could lead to an unrealistic model.

The error term, €, represents the difference between the
modelled prediction and the experimentally determined mea-
surement 1.¢. the difference between the actual response of the
patient and the predicted response. As more data are added to
the model, additional factors that are relevant to the determi-
nation of clinical cut-oif values will be added. This will
improve the model fit and therefore the error of the prediction
will decrease. All the {3 terms are estimated simultaneously by
minimizing the error term.

In this methodology of this embodiment of the invention,
censoring (pathogen loads beyond the assay range caused by
the detection limits of pathogen load kits) affects the results
and therefore procedures that take censoring into account are
preferably applied. Preferably, censored values are dealt with
by attempting to construct a model that 1s consistent from
extrapolations. This model i1s applicable to any described
methodology. Censored values are thus modelled by replac-
ing the censored value by a maximum likelihood estimation,
assuming knowledge of the standard deviation of the mea-
surement error. For example, censored values may be dealt
with using the PROC LIFEREG pre-programmed procedure
in the statistical analysis package SAS that performs analyses
with censored values.

An advantage of the linear regression method described
above 1s that quantitative data about changes 1n pathogen load
can be studied because pathogen load 1s considered as a
continuous variable. This therefore takes into account the
maximum amount of mnformation present in the data. Esti-
mates are corrected for covariates in the model (for example,
background regimen) and therefore, do not suffer from 1mbal-
ances 1n the covarniates. Conclusions are limited to patients
with covariates that are represented 1n the dataset 1n the clini-
cal response database.

Other baseline characteristics may be added to the linear
regression if relevant, resulting 1n the addition of new terms in
the equation given above. Examples of additional baseline
characteristics include the total duration of the previous treat-
ment, and the time at which treatments were administered.
For example, estimates can be corrected for duration by add-
ing a term [3,(Duration) in the model equation given above.

Furthermore, additional factors may be taken into account,
including sensitivity score per drug class (in addition to the
overall sensitivity score of the background treatment: cPSS),
previous exposure to the drug (naive: Yes or No; naive to
protease 1nhibitors: Yes or No; naive to nucleotide RT Inhibi-
tors: Yes or No; and so on). Further examples will be clear to
those of skill 1n the art.

A quadratic term for the cPSS may be added to the model.

The fold change resistance may be transformed before
putting it into the model. For example, a power transforma-
tion ranging from FC™* to FC' may be performed on the fold
change.

Accordingly, a more general form of the equation pre-
sented above may be expressed as:

LogPLdrop,+Po+pP; Log(BaselinePL,)+p-(cPSS )+pP5
(cPSS ) +B4FCP+Bs(Hs)+ . . . +B.(H,)+e,

wherein p 1s a power transformation (e.g. ranging from -3 to
1)and H to H  are treatment history parameters (e.g. naive to
antiretroviral therapy, naive to NRTI treatment, etc. . . . ) or
parameters describing the background therapy as a function
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of a certain therapeutic class (e.g. the number of active
NRTT’s taken concomitantly with the drug under investiga-
tion).

An example of characteristics of analysis datasets (8 week
outcome) for individual drugs are 1n the following form:

Range (Drug)

Median Baseline Viral Load (log)
Median background cPSS

# regimens 1ncluding the drug

% from cohort data

% with no resistance mutations

3.32 (TDF)-4.71 (boosted
1.34 (ddC)-2.58 (LPV/1)
24 (unboosted APV)-1531 (3TC)
21% (unboosted APV)-83% (ddl-EC)
14.5% (boosted APV)-75% (EFV)

W)

As stated above, the clinical cut-offs determine the fold

change resistance with a dimimshed predicted clinical
response to drug. In an alternative to merely classifying
pathogens as sensitive or resistant, the method of this aspect
ol the invention preferably incorporates three classifications,
namely “sensitive”, associated with maximum response to
drug therapy, “intermediate”, associated with reduced, but
still significant response to drug therapy, and “‘resistant”,
associated with little if any response to drug therapy. For
example, by one set of definitions relevant for HIV response,
“sensitive” may be classified as a predicted pathogen load
drop of more than about 0.6 logs, “intermediate resistance™
may be classified as a predicted pathogen load drop of
between about 0.2 and about 0.6 logs and “resistant” may be
classified as a predicted pathogen load drop of less than about
0.2 logs. In another set of definitions, “sensitive” may be
classified as a predicted pathogen load drop of between about
0.5 logs and 1.0 logs. Cut-oiis calculated using these defini-
tions are highly dependant on covariates.

In a further preferred embodiment of the invention, the
cut-oil fold change resistance value 1s calculated by reference
to the probability of the pathogen being susceptible to treat-
ment by the drug for the patient, herein termed Prob of suc-
cess. In such a method, Prob of success 1s preferably calcu-
lated by performing a logistic regression analysis using data
from a clinical response dataset, wherein Prob of success 1s
modelled according to the following equation:

Po + p1Log(BaselinePl;) +
v ( Ba(PSS) + B3 (1/ FC) ]
1 +exp \
Bo + B Log(BaselinePl;) +
k( P2(PSS;) + B3(1/ FC;) ] ;

Prob of success =

The terms 1n the equation are the same as those described
above for the embodiment of the invention described above.

This method of logistic regression does not suifer from the
censoring problem described above for the linear regression
model. Furthermore, the probability of success 1s an intuitive
way of iterpreting clinical outcome. One disadvantage 1s
that by classitying the pathogen load into successes and fail-
ures, part of the information of the continuous variable patho-
gen load 1s lost.

Estimates may also be corrected for covanates as for linear
regression.

Again, like the method of the first described embodiment
of the invention, the method of second described embodiment
also preferably incorporates the three classifications, sensi-
tive, intermediate resistant and resistant. On the basis that the
maximum eifect 1s defined as the treatment effect at a fold
change resistance of approximately 1 fold change or the fold
change demonstrated by wild type wviral 1solates from
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patients, and the mimmimum effect 1s defined as the treatment
elfect at a very high fold ehange resistance (1.e. when the
curve reaches a plateau) the “eflect range " 1s the difference
between the maximum effect and the minimum effect. The
maximum eifect may be defined as the treatment effect at fold
change resistance of between about 0.7 and about 1.2 fold
change resistance.

Preferably, a “sensitive” genotype 1s classified as a pre-
dicted treatment efiect of more than about 78-83% of the
elfect range. Preferably, “intermediate resistant™ 1s classified
as a predicted treatment etflect of between about 15-25% and
about 75-85% of the effect range. Preferably, “resistant™ 1s
classified as a predicted treatment effect of less than about
15-25% of the effect range. Cut-offs calculated using this
method are less dependent on covanates than the method
described earlier which uses predicted pathogen load drops.
However, the ell

ect range will vary for different covariates.

With this approach, two cutoils per drug are identified: a
“lower” cutofl which represents the fold change at which the
response begins to be lost, and an “upper” cutoil which rep-
resents the fold change at which the response 1s essentially
gone.

The lower and upper cutoils may be defined as the fold
change with expected log viral load drops of =0.6 and =0.2

respectively.

The lower and upper cutoils may be defined as the fold
change associated with an expected 20% and 80% decrease
respectively of the reference activity of the drug within the
regimen.

Accordingly, a first definition (definition 1) of lower and
upper cutolfs are the fold changes with expected log viral load
drops of =0.6 and =0.2 respectively.

A second definition (definition 2) of the lower and higher
cutolfs are the fold changes associated with an expected 20%
and 80% decrease respectively of the reference activity of the
drug within the regimen.

A third definition (definition 3) of the cut-oif 1s the fold
change that most optimally distinguished between patients
with successtul and unsuccessiul treatments.

In one embodiment of the invention, definition 1 1s applied
for Tenofovir on a population taking two active drugs besides
tenofovir and with a baseline Log(V1) of 4, gives an predicted
drop 1n log viral load of —0.6 at fold change 3.73.

I1 definition 2 1s applied on the linear regression model, the
predicted drop 1n log viral load may be —1.48 at fold change
1, and -0.28 at the maximum fold change. Therefore the

effect range may be —0.28+1.48=1.2.20% of this eflect range
was observed at fold change 5 (and this value was considered
as the upper clinical cut-off value). 80% of the effect range
was observed at fold change 1.25 (and this value was consid-
ered as the lower clinical cut-oif value).

For this embodiment, when the FC of patient 1s 0.8 (below
the lower clinical cut-oil), a normal clinical response 1s pre-
dicted. If the FC of the patient 1s 2 (above the lower clinical
cut-oil and below the upper clinical cut-oit), a reduced clini-
cal response 1s predicted. If the FC 1s 7 (above the clinical
cut-oil), then the clinical response 1s predicted as being mini-
mal.

In an embodiment when definition 2 1s applied, and the
logistic model 1s used for tenofovir, a lower cut-off at 1.2 FC
and a higher cut-off at 3.81 FC are determined.

-

T'he following table depicts a number of embodiments of
the invention for tenofovir for a population with 2 active drugs
in the regimen and a baseline Log(VL) of 4.
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Linear Logistic Classification
Definition of Regression Regression Tree
Clinical Lower Higher Lower Higher Lower Higher
cut-off Population  Properties of the subgroup CO CO CO CO CO CO

Definition 1  Subgroup 1 PSS =2, baseline Log (VL) =4 3.73 >assay
limit
Subgroup 2 PSS =0, baseline Log (VL) =4 1.68 3.8
Subgroup 3 PSS =2, baseline Log (VL) =3 >assay  >assay

[imut limuit
Overall NA NA
Definition 2 Subgroup 1 PSS =2, baseline Log (VL) =4 1.25 5
Subgroup 2 PSS =0, baseline Log (VL) =4 1.25 5
Subgroup 3 PSS =2, baseline Log (VL) =3 1.25 5
Overall 1.25 5
Definition 3 Subgroup 1 PSS =2, baseline Log (VL) =4 1. 5
Subgroup 2 PSS =0, baseline Log (VL) =4 5
Subgroup 3 PSS =2, baseline Log (VL) =3 5
Overall 5

NA: Not Applicable

In a further embodiment, applying definition 1 onthe linear
regression model for patients with a log baseline viral load of
5 and all patients taking two active drugs in addition to d4T
(stavudine), a viral load drop of more than 0.6 log copies/mL 25
tor any fold change o1 d4T 1s predicted. The viral load drop 1s
predicted to be -0.6 logs and -0.2 logs at fold changes 2.6 and
4.0 for patients with a log baseline viral load of 5 and taking
no active drugs in addition to d4T.

In another embodiment, lower and upper cutoffs predicted 3Y
using definition 2 for lopinavir/r are 8 and 69 respectively for
the whole population if viral load 1s modeled using linear
regression, and the lower and upper cutoils are 11 and 64, 10
and 60, and 9 and 38 respectively for populations with log
baseline VL/background PSS of 4/2, 5/0 and 5/2 respectively 39
if the failure rate 1s modeled using logistic regression.

In another embodiment, lower and upper cutoils deter-
mined using definition 2 for boosted saquinavir for the logis-
tic model are 1.7 and 13.2, and 1.7 and 12.9 respectively for
populations with log baseline viral load/phenotypic sensitiv- 49
ity score for the background regimen of 4/2 and 5/0 respec-
tively. In the same circumstances lower and upper cutoifs by
linear regression for saquiavir/r are 1.6 and 12.3 respectively
tor the whole population.

The following table shows anumber of embodiments mod- 45
clled using a preliminary linear regression analysis and defi-
nition 2:

50
VIROLOGIC RESPONSE
Baseline FC for 20% Baseline FC for 80%
REDUCTION of REDUCTION of
DRUG response (lower cutoff) response (upper cutoff)
AZ'T zidovudine 1.8 [1.5-2.5] 17 >
[10-25]
3TC lamivudine 1.1 [1.1-1.2] 2.6
[1.9-4.6]
D4T stavudine 1.3 [1.2-1.4] 3.4
[3.1-3.6] 60
Ddl didanosine 1.3 [1.2-1.9] 3.6
(extended release) [2.8-4.9]
ABC abacavir 1.6 [1.1-2.6] 5.8
[1.7-7.4]
TDF Tenofovir 1.2 [1.1-1.3] 2.5
[1.7-3.8]
IDV indinavir 1.2 [1.1-1.9] 3.4 63
[1.9-16.4]

NA NA NA NA

NA NA NA NA
NA NA NA NA

NA NA NA NA
1.2 3.81 NA NA
1.16 3.36 NA NA

1.17 3.4 NA NA

NA NA NA NA

1.2 3.81 1.15 NA

1.2 3.36 .15 NA

1.2 3.4 .15 NA

1.2 NA .15 NA
-continued

VIROLOGIC RESPONSE

Baseline FC for 20% Baseline FC for 80%
REDUCTION of REDUCTION of
DRUG response (lower cutoil) response (upper cutoff)
IVD/r Indinavir/r 3.5 [1.1-8.4] 25
[1.8-31]
NFEV nelfinavir 1.1 [1.1-1.3] 2.2
[1.7-5.3]
SQV saquinavir 1.1 [1.1-2.1] 2.0
[1.7-18]
SQV/r Saquinavir/r 1.6 [1.3-4.%8] 12
[5.8-27]
AMP amprenavir 1.2 [1.1-2.4] 3.4
[1.7-10.2]
AMP/r amprenavir/r 1.5 [1.2-2.6] 6.8
[3.6-10.53]
LPV/r Lopinavir/r 6.9 [2.1-17.4] 56
[29-67]

The values between brackets in the table are the 90%

confidence limits as determined by bootstrapping.

In another embodiment, lower clinical cutoffs modelled
using defimition 2 after 8 weeks were 1.1 to 1.2 for unboosted
Pls, and upper clinical cutoffs were 2.0-3.4 for unboosted Pls.
Clinical cutoifs for boosted PIs were higher: lower CCO—
1.5-6.9 and upper CCO 6.8-36.

In an example for D4T the linear regression model com-
Prises:

VLdrop = 2.91 — 0.63Log(BaselineVL) — 1.66(FC*°) — 0.99(cPSS) +

0.15(cPSS?) — 0.18(PSS[NRTI) + 0.91(NRTI[naive)).

The coeflicients in the linear regression model were calcu-
lated using PROC LIFEREG.

The NRTI[naive] value represents whether the patient 1s
naive to nucleoside RT inhibitors. If yes, value=1, if no,

value=0. The PSS[NRTI} represents the phenotypic sensitiv-
ity score for NRTIs, 1.e the number of active NRTIs 1n the
background regimen for the patient.

When Log(BaselineVL)=4, lower reference {old
change=0.9 and upper reference fold change=3, cPS5=2, PSS
INRTI]=1 and NRTI[naive]=0, the modelled lower and upper
CCOs are modeled as 1.1 and 2.2 respectively using defini-
tion 2.
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In another example, the linear regression model 1s applied
to an 8 week viral load response and modelled as a function of
baseline phenotypic resistance. The subjects may have a log
baseline viral load=4.0 and a cPSS score for the background
regimen of 2.0.

In a further preterred embodiment of the invention, the
cut-oil fold change resistance value 1s calculated by con-
structing a classification tree 1n order to classity the likelihood
of a patient having an undetectable pathogen load after treat-
ment with a particular drug, as a success or a failure. This
methodology constructs tree-structured rules 1n order to clas-
s11y patients as successes (undetectable pathogen load after
treatment) and failures. For example, for a virus an undetect-
able pathogen load could be defined as a viral load of less than
400 viral copies per ml. Such a classification tree has the
advantage that 1t 1s very visual and easy to interpret, although
it sutiers from the limitation that the decisions do not take into
account the value of certain other relevant parameters. Imbal-
ances for such parameters may therefore influence the deci-
s1on taken for a certain parameter. However, such trees pro-
vide 1nsights mto the importance of several parameters and
this can be helptul in the fitting process of the linear regres-
s1on and logistic regression approaches described above.

The classification tree poses queries, in which the answer
to each query results 1n either the left or the right branch of the
tree being taken at each stage. For example, the first query
may prelferably consider the fold change resistance of the
pathogen genotype to the drug 1n question e.g. 1s fold change
for the drug TDF (tenofovir)<1.33? If yes, the left branch 1s
taken, 11 no the right branch 1s taken. As with the methods of
the aspects of the invention described previously, the other
factors queried include the log baseline pathogen load and the
phenotypic sensitivity score. The numbers at the termini of
the final branches represent the response rate (1=100%
response). Examples of classification trees according to the
invention are provided in FIGS. 84,  and c.

In this embodiment of the invention, the clinical cut-oft 1s
defined as the fold change resistance threshold value that
makes the best distinction between successiul and unsuccess-
tul treatments 1.e. the most suitable value posed 1n the query
that bitfurcates the tree into the left and right branches. The
population 1s thus split mto two subgroups: one with a high
success rate and one with a low success rate. The clinical
cut-oil 1s chosen as the fold change that makes the difference
between the two groups as large as possible.

Preferably, two or all three of the methods of the above-
described embodiments of the mvention are performed for
cach dataset and candidate drug. The clinical cut-oifs can 1n
this manner be calculated for each of the approaches. From
the analysis results, the most approprate values for lower and
higher cut-oils are selected, taking into account the advan-
tages and the disadvantages of the separate approaches. This
selection will only be made 11 the results of the approaches are
consistent or 1f possible inconsistencies can be explained. If
there are unexplained inconsistencies between the results, it
can be concluded that more data need to be gathered before a
clinical cut-off can be determined.

For example, 11 the results of the different approaches are
consistent (preferably clinical cut-oif difference<0.35) then
the predictions are deemed to be consistent. If the results
differ more than that, the disparities need to be explained. For
example, 1 we suppose that the population contains 90%
censored values and the linear regression gives a clinical
cut-oif of 0.9 while the logistic regression gives a clinical
cut-oif of 3.5, then 1n this example the linear regression
results are less reliable because too much correction has to be
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made for censoring and there 1s too little information contrib-
uted by “complete” observations.

The models may be validated using bootstrapping or by
repeating the described steps several times.

Alternatively, the model may be validated by calculating a
concordance mdex (c-index) (Harrell F. E., Lee K. L. and
Mark D. B.—Multivariable prognostic models: 1ssues 1n
developing models, evaluating assumptions and adequacy,
and measuring and reducing errors—Statist. Med. 1996;
15:361-357) which describes how all the models can dis-
criminate between patients with a different response.

This c-index may be calculated on the data set used for
model development and on a further test data set. If the
difference between the two c-indices 1s small, 1t means that
the models donotlose their predictive ability if applied to new
data.

Further factors which may be taken into account when
validating the model are the odds ratios determined using
clinical cutolfs compared to those determined using biologi-
cal cutoils. These ratios represent the odds of being a
responder 1n the group that 1s labeled resistant by the cutoifs
divided by the odds of being a responder 1n the group that is
labeled sensitive by the cutoils. In this way 1t 1s possible to
evaluate how well the cutolls perform on a drug by drug basis.
The further away that the odds ratio 1s from 1, the stronger the
correlation between the resistance class and clinical outcome.
The odds ratio as specified above yield numbers smaller than
1 as the odds of being a responder should be smaller 1n the
higher resistance class. Put another way, the probability of
response will decrease as the resistance increases. Addition-
ally, if the odds ratio for the CCO 1s smaller than the odds ratio
for the BCO, it can be concluded that the CCO 1s stronger
correlated with clinical outcome and therefore gives a better
prediction than the BCO.

It1s also possible to study the difference in response rate for
patients taking 1 active drug more vs. patients taking one
active drug less. This, different type of odds ratio 1s the ratio
of odds of response for people taking more active drugs over
the odds for people taking less active drugs. In this case, the
odds ratio should be >1 as the probability of response will
increase as the number of active drugs taken increases. In this
case, a larger odds ratio indicates a stronger correlation with
clinical outcome. In one dataset, using the CCOs set out on
page 36 herein, the odds ratio for response per additional
active drug added was 3.01 when calculated using clinical
cutoffs, and 2.32 when calculated using biological cutoiis.

A logistic regression model may be used to determine the
odds ratio. The model used 1s the same as the logistic regres-
sion model described above except that the fold change 1n the
model 1s replaced by the resistance class. The coellicient for
the resistance class that 1s obtained from the model 1s the log
(odds ratio). The advantage of using this model 1s that the
odds ratio estimates can be adjusted for the baseline viral load
and the cPSS score of the background regimen.

A number of embodiments are shown in the following table
which gives values for lower and upper cutoifs with confi-
dence intervals modelled using definition 2 and a linear

regression model for several drugs, and validated using C-1n-
dices, and CCO odds ratios.

[l

Modelled Lower Cutoff & Modelled Upper Cutoftf &
Drug 95% Confidence Interval 95% Confidence Interval
AZT 1.9 [1.52-2.76] 14.4 [8.24-21.20]
3TC 1.1 [0.98-1.39] 3.7 [1.71-11.44]
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-continued

Modelled Lower Cutoif & Modelled Upper Cutoif &
Drug 95% Confidence Interval 95% Confidence Interval
D4T 1.1 [1.05-1.12 2.2 [2.05-2.30
DDIE 1.3 [1.07-1.34 3.0 [2.59-2.96
ABC 0.8 [0.75-1.72 1.2 [1.19-5.11
TDF 1.0 [0.97-1.32 2.0 [1.51-2.95
NVP 1.5 [1.40-16.74] 3.2 [2.22-63.06]
EFV 1.8 [1.41-3.74 29.2 [6.46-146.69]
IDV 0.8 [0.77-1.04 2.2 [1.33-7.19]
IDV/r 4.1 [0.77-6.24] 21.2 [1.41-22.86]
APV 0.7 [0.65-0.87 1.4 [1.03-5.55]
APV/r 0.9 [0.80-2.72 6.5 [4.06-16.22]
NV 1.0 [0.97-1.03 1.5 [1.54-2.38]
SQV 0.7 [0.65-2.28 1.0 [1.03-22.61]
SQV/r 1.1 [0.81-5.98 12.0 [4.50-28.85]
LPV/r 10.3 [1.53-17.30] 61.6 [21.92-66.96]

The methods of the invention can be repeated for each
possible drug or therapeutic agent known or suspected to be
assoclated with disease resistance, or towards which a resis-
tance can be expected to appear. As such, according to another
embodiment of the invention, the clinical cut-oifs generated
can be presented as a list of cut-oils against or in respect of
individual drugs or individual therapeutic agents, for each
pathogen.

As used herein, the term “drug” includes, but 1s not limited
to, a pharmaceutical, bactericide, fungicide, antibiotic, or
anticancer, antiviral, anti-bacterial anti-fungal, anti-parasiti-
cal or any other compound or composition that can be used 1n
therapy or therapeutic treatment.

A “patient” may be any organism, particularly a human or
other mammal, suifering from a disease or in need or desire of
treatment for a disease. A patient includes any mammal,
including farm animals or pets, and includes humans of any
age or state of development. A group of patients useful to
establish treatment response as a function of the distribution
of fold change resistances may be as low as 10 to 50 patients,
50 to 500 patients, or, more preferably, will comprise a popu-
lation of 500 or more patients. The distribution fold change
resistances can be a normal distribution (Gaussian distribu-
tion) or can be a non-normal distribution. The non-normal
distribution may be transformed to obtain a normal distribu-
tion.

The patient samples may be from treatment naive or treat-
ment experienced subjects, with or without resistance to one
or more drugs.

As used herein, the term “disease” refers to a disease
caused by infection with a pathogen. The term “pathogen”, as
used herein, 1s used broadly and refers not just to pathogenic
microorganisms, but includes any disease-causing agent.
Examples include bacteria, viruses such as human immuno-
deficiency virus (HIV), hepatitis C (HCV) or hepatitis B
(HBYV), prions, algae, fungi, protozoa and malignant cells.
This invention 1s particularly usetul for viral diseases such as
HIV.

A “patient sample” 1s hereimn defined as any sample
obtained from an individual suifering from or predicted to be
sulfering from a disease caused by a pathogen, and includes
tissues such as blood, serum plasma, urine, saliva, semen,
breast milk, faeces, mucous samples, cells 1n cell culture,
cells which may be further cultured, biopsy samples and so
on. In one embodiment, for a patient infected with HIV, any
biological sample-containing virus may be used. Of this
patient sample, the pathogen itsell may be used or alterna-
tively a protein, or nucleic acid derived from the pathogen.
Preferably, the pathogen 1s a virus, such as a retrovirus. Pret-
erably the biological sample contains a virus chosen from
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HIV, HCV (Hepatitis C Virus) and HBV (Hepatitis B virus).
In another embodiment, for a cancer patient, the patient
sample may contain cells, tissue cells, mutated cells, malig-
nant cells, cancer cells, whole or partial tumours, biopsy
tissue, etc. Preferably, the pathogen 1s a malignant cell. A
“reference sample” 1s defined as a standard laboratory refer-
ence pathogen such as, for example, in the case of HIV, the
HIV LAI IIIB strain. One strain generally used as the refer-
ence “wild type” sequence for HIV 1s HXB2. This viral
genome comprises 9718 bp and has an accession number 1n
Genbank at NCBI M38432 or K03455 (g1 number: 327742).
Reterence or wild type sequences for use 1n the imvention 1n
the field of specific diseases, infections or diseases caused by
specific pathogens can be easily obtained from publicly avail-
able databases.

“Susceptibility” or “sensitivity” to a drug refers to the
capacity of the disease, and/or pathogen to be affected by the
drug. “Resistance” refers to the degree to which the disease
and/or pathogen 1s unafiected by the drug. The sensitivity,
susceptibility or resistance of a disease towards a drug may be
expressed by means of an IC, value. The IC,, value 1s the
concentration at which a given drug results 1n a reduction of
the pathogen’s growth compared to the growth of the patho-
gen 1n the absence of a drug. Resistance of a disease to a drug
may be caused by alterations in phenotype or genotype.
Genotypic alterations include mutations, single nucleotide
polymorphisms, microsatellite variations, and/or epigenetic
variations such as methylation. Phenotypic variations may be
cifected by genotypic variations or by post-translational
modification.

Any method capable of measuring changes in the ability of
a pathogen to grow 1n the presence of a drug(s) can be used 1n
the method of the present invention. Such methods of pheno-
typing include all methods known to persons of skill 1n the art.
Known genotyping methods may also be applicable.

For example, and by way of illustration, methods for phe-
notyping bacteria suitable for use in the present imnvention
include, but are not limited to, measurement of inhibitory
zone diameters (see, €.g., Guoming et al., Sex Transm. Dis. 27
(2): 115-8 (2000)), colorimetric indicator methods (see, e.g.,
Lozano-Chiu et al., Diagn Microbiol Infect Dis. 1998 July;
31(3):417-24), and broth macrodilution method (see, e.g.,
Iwen et al., J. Clin. Microbiol. 34 (7): 1779-83 (1996)).

As an additional illustrative example, methods for pheno-
typing pathogens suitable for use in the present imnvention
include, but are not limited to, plaque reduction assays,
PBMC p24 growth inhibition assays (see, e¢.g., Japour et al.,
Antimicrob Agents Chemother. 1993 May; 37(5):1095-101;
Kusumi et al., J. Virol. 66: 875-885 (1992)), recombinant
virus assays (see, e.g., Kellam & Larder, Antimicrob. Agents
Chemother. 38: 23-30 (1994); and Pauwels et al., 2nd Inter-
national Workshop on HIV Drug Resistance and Treatment
Strategies, Lake Maggiore, Italy. Abstr. 51 (1998)); the use of
GFP as a marker to assess the susceptibility of anti-viral
inhibitors (Marschall et al., Institute of Clin. and Mot. Virol.,
University of ErlangerNuremberg, Schlobgarten, Germany);
and cell culture assays (Hayden et al., N. Eng. J. Med. 321:
1696-702 (1989)).

Though the invention may be used with any phenotype or
genotype measuring test or assay that determines resistance,
the following descriptions are designed to describe further
possible applications of the invention.

In one embodiment, the clinical cut-oif values may be used
in concert with direct phenotype assays, for example, Antivi-
rogram™ (Virco, Inc.; WO 97/27480, U.S. Pat. No. 6,221,
5778). This assay 1s a phenotypic resistance assay that mea-
sures, 1n controlled laboratory conditions, the level of

il
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resistance of the HIV dernived from an individual patient to
cach of the anti-HIV drugs currently available. The resistant
“behaviour” of the virus may be the combined result of the
clfects of many different mutations and the complex interac-
tions between them, including genetic changes that have not
even been 1dentified yet. In other words, it 1s a direct measure
of resistance.

The test provides a quantitative measure of viral resistance
to all the available drugs. This 1s expressed 1n terms of the
IC.,. This 1s then compared to the 1C., for fully sensitive,
non-mutated “wild-type” virus. The resistance of the sampled
virus to each drug 1s then expressed in terms of a fold-change
in 1C., compared to wild type.

The addition of “clinical cut-oiis”, as described 1n this
application, to the report enables physicians to identify the
drug(s) that are no longer clinically active and helps in the
selection of the optimal combination of drugs for the ndi-
vidual patient. In one embodiment, the method of the present
invention concerns a diagnostic tool for determining the resis-
tance of a patient to at least one HIV drug comprising the
climical cut-off fold change resistance value for said at least
one drug as determined herein. The diagnostic tool includes
phenotypic resistance tests such as the Antivirogram®, Vir-
tualPhenotyping® and Phenosense.

The mvention includes methods to deter line resistance
towards HIV compounds such as tenofovir, lopinavir, and
those compounds disclosed 1n W0O99/67417, EP-A-945443
and WQOO00/27825. Other examples of drugs will be well
known to those of skill 1n the art.

In one embodiment the effect of drugs on HBV may be
monitored using technologies such as disclosed by Isom et al.
(WO 99/37821, Delaney et al. Antimicrob. Agents Chemo-
therap. 2001, 45 (6) 1705-1713).

In one embodiment the effect of drugs on HCV towards
therapy may be determined using techniques such as
described by Rice (WO 97/08310, WO 98/39031) and Bar-
thenschlager (EP 1043399).

The primary aim of the invention 1s to predict the resistance
of a disease to a particular drug. In addition, however, the
invention encompasses methods of evaluating currently
applied drugs and thus monitoring these drugs with a view to
assessing the effectiveness of that drug and proposing alter-
native drug(s) or optimizing the drug 1f deemed appropniate.
Such methods mvolve obtaining a sample containing a dis-
case-causing pathogen from a patient, and then performing
the steps described 1n any one or more of the embodiments of
the 1nvention described above.

It will be apparent to the skilled reader that while the
invention has been described 1n the below examples with
respect to viruses, particularly HIV, the present invention has
broad applicability to any disease state where 1t 1s desired to
correlate genotypic information with phenotypic profiles and
assess the threshold at which a fold change resistance is
climcally significant. One skilled 1n the art could readily take
the following discussion of the mvention with the HIV virus
and through the exercise of routine skill apply this invention
to other diseases (such as other viral infections, malignant
cells, cancer, bactenial infections, other pathogens, and the
like) to correlate genotypic information to predict phenotypic
response, assess drug resistance, and eventually develop a
treatment regime of drugs for a particular patient. One skilled
in the art will also know that many virus species comprise
many strains; for instance, HIV comprises HIV-2 1n addition
to HIV-1 and both groups are further divided into groups
(such as groups O and M for HIV-1).

The above methods are diagnostic methods. Further
aspects of the invention provide diagnostic kits for performs-

10

15

20

25

30

35

40

45

50

55

60

65

16

ing any one of the diagnostic methods of the mmvention
described above. The invention further relates to a diagnostic
system as herein described for use 1 any of the above
described methods.

According to yet another embodiment, the present mnven-
tion relates to a diagnostic system for predicting climical
response to a drug of a disease causing pathogen comprising;:
a) means for obtaining a genetic sequence of the disease
producing pathogen; b) means for 1dentifying at least one
mutation in the genetic sequence of the disease producing
pathogen; ¢) genotype database means comprising genotype
entries; d) phenotype database means comprising phenotypes
ol patient fold change response values; ¢) clinical response
database means comprising clinical response to drug treat-
ment data for reference sample patients; 1) correlation means
correlating a genotype entry with a phenotype, where the
genotype entry corresponds with the obtamned genetic
sequence of the disease producing pathogen; g) means for
modeling clinical response to a drug of the disease causing
pathogen by determining whether the patient fold change
response 1s above a cut-oif value, wherein the cut-oif value 1s
determined using the clinical response database means and
comprises the fold change response value at which a clini-
cally relevant diminished clinical response 1s observed; and
h) means for predicting the clinical response to a drug of a
disease by determining whether the patient fold change
response 1s above the cut-oif value.

As described above, the cut-ofl value 1s determined as a
function of treatment response data 1n treated subjects, con-
sidering baseline pathogen load, baseline fold change resis-
tance, baseline activity of co-administered drugs targeted to
the pathogen, and treatment history. The means for predicting
the resistance are preferably computer means.

A still further aspect of the invention relates to a computer
apparatus or computer-based system adapted to perform any
one of the methods of the mnvention described above.

In a preferred embodiment of the invention, said computer
apparatus may comprise a processor means incorporating a
memory means adapted for storing data; means for inputting,
data relating to the genotype exhibited by a particular disease
causing pathogen; and computer software means stored 1n
said computer memory that 1s adapted to perform a method
according to any one of the embodiments of the mvention
described above and output a prediction of the resistance of a
disease causing pathogen toward a drug.

A computer system of this aspect of the mvention may
comprise a central processing unit; an input device for mnput-
ting requests; an output device; amemory; and at least one bus
connecting the central processing unit, the memory, the mnput
device and the output device. The memory should store a
module that 1s configured so that upon receiving a request to
model the response to a drug of a disease causing pathogen, 1t
performs the steps listed in any one of the methods of the
invention described above.

In the apparatus and systems of these embodiments of the
invention, data may be input by downloading the data from a
local site such as amemory or disk drive, or alternatively from
a remote site accessed over a network such as the internet.
Data may be input by keyboard, 1f required.

The generated results may be output 1n any convenient
format, for example, to a printer, a word processing program,
a graphics viewing program or to a screen display device.
Other convenient formats will be apparent to the skilled
reader.

The means adapted to predict the resistance of a disease
causing agent to a drug will preferably comprise computer
software means. As the skilled reader will appreciate, once
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the novel and 1inventive teaching of the invention 1s appreci-
ated, any number of different computer soiftware means may
be designed to implement this teaching.

According to a still further aspect of the invention, there 1s
provided a computer program product for use i conjunction
with a computer, said computer program comprising a com-
puter readable storage medium and a computer program
mechanism embedded therein, the computer program mecha-
nism comprising a module that 1s configured so that upon
receiving a request to predict the resistance of a disease to a
drug, 1t performs the steps listed 1n any one of the methods of
the invention described above.

The invention further relates to systems, computer pro-
gram products, business methods, server side and client side
systems and methods for generating, providing, and transmit-
ting the results of the above methods.

The invention will now be described by way of example
with particular reference to a specific system that implements
the process of the invention. As the skilled reader will appre-
ciate, variations from this specific i1llustrated embodiment are
ol course possible without departing from the scope of the
invention.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1a: Example of the structure of a clinical data base
used 1n the present mvention.

FIG. 1b: Example analysis dataset for d47T.

FI1G. 2a: Example of linear regression curve showing cen-
sored and uncensored observations, where log viral load drop
1s modelled as a function of baseline fold change resistance.

FI1G. 2b: Example of linear regression curve of 8 week viral
load response as a function of baseline phenotypic resistance
for nucleoside(tide) RT inhibitors.

FI1G. 2¢: Example of linear regression curve of 8 week viral
load response as a function of baseline phenotypic resistance
for boosted and unboosted protease inhibitors.

FIG. 2d: Example of change 1n viral load vs. baseline fold
change for the NNRTT of neviripine (NVP).

FIG. 2¢: Example of change 1n viral load vs. baseline fold
change for efavirenz (EFV).

FI1G. 2f: Drug Eftect plotted as % response as a Function of
Baseline Resistance for nucleoside(tide) inhibitors

FI1G. 2¢: Drug Effect plotted as % response as a Function of
Baseline Resistance for boosted and un-boosted Protease
Inhibitors

FIG. 3a: Example of linear regression curve for TNE,
where log viral load drop 1s modelled as a function of baseline
fold change resistance and a first definition of climical cut-off
1s applied.

FI1G. 3b: Example of linear regression curve for d4'T, where
viral load drop 1s modelled as a function of fold change and a
second definition of clinical cut-off 1s applied.

FIG. 4a: Example of linear regression curve for TDF,
where log viral load drop 1s modelled as a function of baseline
fold change resistance and a second definition of clinical
cut-oif 1s applied.

FIG. 4b: Example of lower and upper cutoils determined
using definition 2 for lopinavir/r if viral load 1s modeled using
linear regression.

FI1G. 4¢: Example of lower and upper cutoils determined
using definition 2 for AZT 1f viral load 1s modelled using
linear regression. Curve shows the change 1n viral load vs. the
fold change.
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FIG. 4d: Example of lower and upper cutoils determined
using definition 2 for AZT 1f viral load 1s modelled using
linear regression. Curve shows the % loss of reference
response vs. the fold change.

FIG. Sa: Example of logistic regression curve for TNE,
where probability of failure 1s modelled as a function of
baseline fold change resistance and a second defimition of
clinical cut-off 1s applied.

FIG. 56: Example of lower and upper cutoils determined
using definition 2 for lopinavir/r 1f the failure rate 1s modelled
using logistic regression.

FIG. 6: Example of linear regression curve for TNF, where
log viral load drop 1s modelled as a function of baseline fold
change resistance and a third definition of clinical cut-off 1s
applied.

FIG. 7: Example of logistic regression curve for TNE,
where probability of failure 1s modelled as a function of
baseline fold change resistance and a third definition of clini-

cal cut-oif 1s applied.

FIG. 8a: Example of classification tree for TNF. This gives
results of the same order as the linear and logistic regression
methodologies.

FIG. 8b: Example of classification tree for 3TC.

FIG. 8¢: Example of classification tree for TDF assuming
that the cost of classifying a failed regimen as a success 1s 1.5
times the cost of classifying a successtul regimen as a failure.

FIG. 9: Example of mitial validation of preliminary Virtu-
alPhenotype™ Clinical Cutoifs for nuclesides(tides) and
boosted and unboosted protease mhibitors by bootstrapping
with 90% confidence 1ntervals.

[

il

EXAMPL

(Ll

Process Description of the Determination of Clinical
Cut-Ofts

Step 1: Clinical Data Base and Analysis Data Set

Databases of studies for patients with tenofovir containing
regimens and consisting of patient baseline demographic
characteristics, clinical outcome results with viral load and
resistance data (Fold change), were retrieved and remapped
according to a common structure allowing a meta-analysis.
The structure consisted of baseline sequence, viral load data
set, viral load measurements and sampling dates (for example
viral load within 3 months of starting new regimen and viral
load assessment 8 and/or 24 weeks after beginning new regi-
men), CD4+ data set which contains CD4+ counts and sam-
pling dates, resistance data set containing the fold changes to
different antivirals and sampling dates; patient data set with
patient information such as age, gender, race, treatment his-
tory; treatment data set with drug regimens, start and stop
dates, doses, formulations, frequency of intake, regimen
changes after resistance tests. The structure of such a clinical
data base can be seen 1n FIG. 1a. The following table shows
an example of characteristics of analysis datasets (8 week
outcome) for individual drugs.

Range (Drug)

Median Baseline Viral Load (log)
Median background cPSS

# regimens ncluding the drug

% from cohort data

% with no resistance mutations

3.32 (TDF)-4.71 (boosted IDV)

1.34 (ddC)-2.58 (LPV/r)

24 (unboosted APV)-1551 (3TC)
21% (unboosted APV)-83% (ddI-EC)
14.5% (boosted APV)-75% (EFV)
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FIG. 15 shows an example analysis dataset for d4T. The
viral load response data includes censored (<400 copies/ml)
values. Parameters of the underlying uncensored distribution
were estimated by maximum likelihood estimation 1n SAS
(proc lifereg). The viral load response data are corrected for
baseline viral load and cPSS.

Step 2: Modelling

The clinical outcome results (drop in viral load and
response rate) were modelled as a function of baseline fold
change (FC) as determined by virtual phenotype (see WOO01/
79340 and WO02/33402; also http://www.vircolab.com).
The models applied were linear regression, logistic regres-
sion, and a classification tree. These models also took into
account effects of the concomitant HIV drugs (PSS), baseline
viral load (Baseline Log(V1),) and, optionally, treatment his-
tory 1n order to avoid bias introduced by imbalances of impor-
tant characteristics. From the models, a prediction of clinical
outcome could be made at different levels of the baseline fold
change resistance.

In the linear regression model, the proposed equation was
the following;:

LogVL drop,=p0+p1*Baseline Log(V1).+p2*PSS.+
P3*(1/FC)+E,

where 1 represented the patient, O the intercept, 31, 2 and
33 coetlicients indicated the increase 1n log viral load drop
per unit increase of respectively the baseline log VL, the
number of sensitive drugs in the background regimen and the
inverse of the baseline fold change. €, was arandom error term
indicating the deviation of the patient from the value pre-
dicted by the model. Interactions between all the factors were
evaluated and other baseline characteristics, 1.e treatment his-
tory, were added 1f relevant. After applying the regression
model, the curve as depicted 1n FI1G. 2a was obtained.

Example curves showing linear regression models of 8
week viral load response as a function of baseline phenotypic
resistance are shown in FIGS. 26 and 2¢. The curves shown
are for subjects with a log baseline viral load=4.0 and a cPSS
score for the background regimen of 2.0. FIG. 26 shows
models for nucleoside(tide) RT inhibitors (from top to bottom
at FC=35, the respective curves represent d4T; TDF; ddl, EC;
ABC;3TC and AZT). FIG. 2¢ shows models for boosted and
unboosted protease inhibitors (from top to bottom at FC=10
the respective curves represent: top left graph—NVP and
LPV/r; top right graph—IDV and IDV/r; bottom right
graph—SQV/r and SQV; bottom left graph—APV/r and
APV).

A Tundamental 1ssue with modeling clinical outcome for
non-nucleoside(tide) RT inhibitors 1s that the baseline fold
change may have little effect on treatment response to current
NNRTIs in NNRTI experienced patients. For the NNRTT of
neviripine, polarisation of fold change values 1s observed (see
FIG. 2d). Furthermore, an extremely broad dispersal of fold
change values 1s observed for efavirenz (see FIG. 2e).

In a preferred embodiment of the linear regression model,
more factors are included 1n order to obtain a more refined
prediction of viral load response. These factors include for
example a sensitivity score per drug class in addition to the
overall sensitivity score of the background treatment (cPSS),
previous exposure to the drug (naive (Yes/No), naive to Pls,
naive to NRTT’s, etc. . . . ). Furthermore, 1n the preferred
embodiment, the fold change 1s transformed before inserting
the figures ito the model. The transformation to the fold
change comprises a power-transformation ranging from FC™>
to FC'. In addition, a quadratic term in cPSS is preferably

added.
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Accordingly, a more general form of the equation given
above may be expressed as:

LogPLdrop,=p,+p; Log(BaselinePL.)+p,(cPSS. )+
(PSS +B4(FC) +Bs(Hs)+ . . . +B,(H, )+

wherein p 1s a power transformation (e.g. ranging from -3 to
1)and H to H, are treatment history parameters (e.g. naive to
antiretroviral therapy, naive to NRTI treatment, etc. . . . ) or
parameters describing the background therapy as a function
of a certain therapeutic class (e.g. the number of active
NRTT’s taken concomitantly with the drug under investiga-
tion).

Example curves showing linear regression models as cal-
culated using this model are shown 1n FIGS. 2fand 2g. Here,
the presentation of the data 1s different 1n that the % response
1s plotted, as calculated for the preferred CCO definition,
rather than the viral load drop.

In the logistic regression, the proposed equation was the
following:

(,B.:. + ) Log(BaselineVIL;) + ]
TP Bpss) + A1/ FC)
1 +exp y

(,B.:. + 5 Log(BaselineVL;) + ]
\ /

P2(PSS;) + B3(1/FC)

where 1, 33, and 3 represented the log odds ratio of success
for the corresponding factors in the model. After applying the
logistic regression model, the curves as depicted 1n FIGS. 5a
and 7 were obtained. In the classification trees model, tree-
structured rules were constructed in order to classify patients
in successes (undetectable viral load after treatment) and
failures. The same parameters as for the other techniques
were considered. The tree shown 1n FIG. 8 was obtained after
applying the classification tree model.

When viral load results under the detection limits are
obtained, biases could be introduced 1f the detection limit
values are considered when calculating viral load drops and
using those in the linear regression model. To avoid this,
censoring needed to be taken into account and therefore the
PROC LIFEREG facility in the SAS package was employed.

An advantage of this regression model 1s that 1t takes nto
account the maximum amount of information present in the
data, 1.e. correlating specific clinical responses with specific
Fold changes while the other two models clusters the patients
1in two groups (successes versus failures), thus not taking into
account differences 1n responses within the same group. Esti-
mates are corrected for covanates 1n the model (e.g. back-
ground regimen ) and therefore, they do not sutler from 1mbal-
ances 1n the covarniates. Conclusions are limited to patients
with covariates that are represented 1n the clinical database.

Logistic regression does not suffer from the censoring
problem and the probability of success 1s an ituitive way of
interpreting clinical outcome. However, by binning the viral
load 1nto successes and failures, part of the information of the
continuous variable viral load 1s lost. Estimates are also cor-
rected for covanates as for linear regression.

Classification trees are very visual and easy to interpret, but
they have the disadvantage that the decisions do not take mnto
account the value of other relevant parameters. This implies
that imbalances for other parameters may influence the deci-
sion taken for a certain parameter. However, they provide
insights 1n the importance of several parameters and this can
be helptul in the fitting process of the other approaches. FIGS.
8a, 85 and 8¢ show examples of classification trees. F1G. 85

Prob of success =
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shows a classification tree for 3TC, whilst FIG. 8¢ shows a
classification tree for TDF assuming that the cost of classity-
ing a failed regimen as a success 1s 1.5 times the cost of
classitying a successiul regimen as a failure.

Step 3: Determination of the Clinical Cut-Off.

Clinical responses were predicted in the models developed
in previous step 2. The approach 1s to identily two cutoils per
drug: a “lower” cutoil which represents the fold change at
which the response begins to be lost, and an “upper” cutoif
which represents the fold change at which the response 1s
essentially gone. In order to determine the fold changes at
which climically relevant diminished clinical responses can be
observed, three definitions of clinical cut-offs were consid-
ered:

Definition 1

Sensitive: predicted viral load drop 1s more than 0.6 logs.

Intermediate resistant: predicted viral load drop 1s between
0.2 and 0.6 logs.

Resistant: predicted viral load drop 1s less than 0.2 logs.

The lower and higher cutoifs are defined as the fold change
with expected log viral load drops of =0.6 and =0.2 respec-
tively.

This definition of clinical cut-off addresses the potency of
an entire combination regimen and 1s highly dependent on the
characteristics of the specific patient regimens analysed.

Definition 2

The maximum effect was defined as the treatment effect at
fold change 1, and the minimum effect was defined as the
treatment eflect at a very high fold change (i.e. when the curve
reached a plateau). The effect range was then the difference
between the maximum effect and the minimum effect.

Sensitive: the predicted treatment effect 1s more than 80%
of the effect range.

Intermediate resistant: the predicted treatment effect 1s
between 20% and 80% of the effect range.

Resistant: the predicted treatment effect 1s less than 20% of
the effect range.

The lower and higher cutoils are defined as the fold change
associated with an expected 20% and 80% decrease respec-
tively of the reference activity of the drug within the regimen.

Cutolls obtained using definition 2 do not address the
potency of the entire treatment regimen, but rather give an
estimation of the activity of the drug within the regimen. The
absolute magnitude of the viral load drop depends on specific
covariates.

Definition 3

Definition 3 was a variant of definition 2. The lower cut-off
was defined as the fold change that most optimally distin-
guished patients between successtul and unsuccessiul treat-
ments.

Using defimition 3, breakpoints determined by classifica-
tion trees are applicable only to a subset of patients unless fold
change 1s selected at the first tree node. Classification trees are
casy to iterpret but the cutoils do not indicate the magnitude
of the viral load reduction expected for the whole regimen or
the drug within the regimen. Breakpoints determined by the
linear and the logistic regression models are close to the lower
cutoils as defined by definition 2, except for the boosted
protease inhibitors.
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The methodology was applied for Tenofovir on a popula-
tion taking two active drugs besides tenofovir and with a

baseline Log(V1) of 4.

When we applied definition 1 on the linear regression
model, the observed drop 1n log viral load was -0.6 at fold
change 3.73 (FIG. 3a). No higher cut-oil could be derived as
this population experienced a drop in Log(VL) greater then
0.2 even with a high baseline fold change for tenofovir. This
could be explained by the effect of the active background
regimen in this population.

When we applied definition 2 on the linear regression
model (FIG. 4a), the observed drop 1n log viral load was
—-1.48 at fold change 1, and —0.28 at the assymptotic fold
change. Therefore the effect range was -0.28+1.48=1.2.

20% of this effect range was observed at fold change 5 (and
this value was considered as the upper clinical cut-oif value).

80% of the effect range was observed at fold change 1.25
(and this value was considered as the lower clinical cut-off
value).

To predict the resistance according to this regression
model, we determined whether the patient fold change resis-
tance was above, below, or 1n between the clinical cut-off as
calculated according to definition 2. So, when the FC of
patient was 01 0.8 (below the lower clinical cut-oif), a normal
clinical response was predicted. If the FC of the patient was of
2 (above the lower clinical cut-oif and below the upper clini-
cal cut-oil), a reduced clinical response was predicted. If the
FC was of 7 (above the clinical cut-off), then the clinical
response was predicted as being minimal.

Definition 2 was also applied to the logistic model (FIG.
5a) and this resulted 1n a lower cut-off at 1.2 FC and a higher
cut-oif at 3.81 FC. The results for definition 3 are depicted 1n
FIGS. 6 and 7.

-

I'he Tenofovirresults for the population with 2 active drugs

in the regimen and a baseline Log(VL) of 4 are summarized 1n
the Table below.

From the Table, 1t can be derived that the lower cut-oit for
definition 1s 1.2 and the lhigher cut-oif ranges from 3.81 to 5
for the population of patients taking 2 active drugs besides
tenofovir and with a baseline log(VL) of 4. The variation in
cut-oifs determined by the different definitions 1s a result of
the different intfluence of the covariates such as PSS and log
VL. That is, the influence of the covariates 1s significant when
using definition 1 and less significant when using definition 2.

Definition 1 can only be applied on the linear regression
model. The clinical cut-ofis determined using defimition 1 are
highly dependent on the characteristics of the subpopulation.
This 1s due to the fact that definition 1 describes the potency
of the whole drug regimen while definition 2 1s related only to
the activity of the drug under consideration and its resistance
profile. In other words, the activity of the background regi-
men together with the drug under investigation determines
the viral load drop that the patient will experience and hence
the dependence of the cut-off on the background regimen.
The activity of the background regimen does not change the
resistance profile in a profound way, therefore the clinical
cut-oifs do not vary considerably with the population charac-
teristics.
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Linear Logistic Classification
Definition of Regression Regression Tree
Clinical Lower Higher Lower Higher Lower Higher
cut-off Population  Properties of the subgroup CO CO CO CO CO CO
Definition1  Subgroup 1 PSS =2, baseline Log (VL) =4 3.73 >assay NA NA NA NA
limit
Subgroup 2 PSS =0, baseline Log (VL) =4 1.68 3.8 NA NA NA NA
Subgroup 3 PSS =2, baseline Log (VL) =3 >assay  >assay NA NA NA NA
[imut limuit
Overall NA NA NA NA NA NA
Definition 2 Subgroup 1 PSS =2, baseline Log (VL) =4 1.25 5 1.2 3.81 NA NA
Subgroup 2 PSS =0, baseline Log (VL) =4 1.25 5 1.16 3.36 NA NA
Subgroup 3 PSS =2, baseline Log (VL) =3 1.25 5 1.17 3.4 NA NA
Overall 1.25 5 NA NA NA NA
Definition 3 Subgroup 1 PSS =2, baseline Log (VL) =4 1. 5 1.2 3.81 1.15 NA
Subgroup 2 PSS =0, baseline Log (VL) =4 5 1.2 3.36 .15 NA
Subgroup 3 PSS =2, baseline Log (VL) =3 5 1.2 3.4 15 NA
Overall 5 1.2 NA .15 NA

NA: Not Applicable

Both linear and logistic regression models give similar
results for definition 2. When we applied definition 1 on the
linear regression model for patients with a log baseline viral
load of 5 and all patients taking two active drugs 1n addition to
d4T(stavudine), a viral load drop of more than 0.6 log copies/
ml for any fold change of d4T 1s predicted (FIG. 3b6). The
viral load drop 1s predicted to be —0.6 logs and —-0.2 logs at
fold changes 2.6 and 4.0 for patients with a log baseline viral
load of 5 and taking no active drugs in addition to d4T (see
FIG. 3b).

Lower and upper cutoils determined using definition 2 for
lopinavir/r are shown 1n FIG. 45 as 8 and 69 respectively for
the whole population 11 viral load 1s modeled using linear
regression, while the lower and upper cutoils are 11 and 64,

10 and 60, and 9 and 38 respectively for populations with log
baseline VL/background PSS o1 4/2, 5/0 and 5/2 respectively
if the failure rate 1s modeled using logistic regression (see
FIG. 5b4). The PSS 1s not statistically significant in this
example.

Lower and upper cutoils determined using definition 2 for
boosted saquinavir for the logistic model were 1.7 and 13.2,
and 1.7 and 12.9 respectively for populations with log base-

DRUG

AZT
zidovudine
3TC

lamivudine
DAT

stavudine
ddl

didanosine

25
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35

40

(extended release)

ABC
abacavir
TDF
tenofovir
DV
indinavir
IVD/r
Indmavir/r
NFV
nelfinavir

line viral load/phenotypic sensitivity score for the back-
ground regimen of 4/2 and 5/0 respectively. Lower and upper
cutolls by linear regression for saquiavir/r were 1.6 and 12.3
respectively for the whole population

Lower and upper cutoils determined using definition 2 for

AZ'T are shown 1n FIGS. 4¢ and 44 11 viral load 1s modeled
using linear regression. FIG. 4¢ shows the change 1n viral load
vs. the fold change whilst FIG. 4d shows the % loss of refer-
ence response vs. the fold change.

Further tests with records for >13,000 patients yielded ~
3150 regimens with the required baseline and outcome vari-
ables, ranging from 60 regimens including boosted SQV soft
gel to 1346 including 3TC. Median log baseline viral load
ranged from 3.8 (regimens with tenofovir) to 4.7 (regimens
with boosed indinavir). Median PSS of background regimens
was 2 (range 0-7). The following table shows results of pre-
liminary VirtualPhenotype™ Clinical Cutoifs for nucleoside-
s(tides) and boosted and unboosted protease inhibitors from a
preliminary linear regression analysis. The fold change val-
ues associated with a 20% diminution of virologic response at
8 weeks and an 80% diminution of virologic response com-
pared to the maximal response are shown with a 95% confi-
dence interval in square brackets.

VIRTUALPHENOTYPE ™

PREDICTED FC OF WILD VIROLOGIC RESPONSE

TYPE CLINICAL ISOLATES  20% REDUCTION  80% REDUCTION

0.8 1.8
[1.5-2.5]
0.8 1.1
[1.1-1.2]
0.7 1.3
[1.2-1.4]
1.3
[1.2-1.9]

17
[10-25]
2.6
[1.9-4.6]
3.4
[3.1-3.6]
3.6
[2.8-4.9]

0.6

0.6 1.6
1-2.6]
0.8 1.2
1-1.5]
0.7 1.2
1-1.9]
3.5
1-8.4]
0.9 1.1
1-1.3]

5.8
[1.7-7.4]
2.5
[1.7-3.8]
3.4
[1.9-16.4]
25
[1.8-31]
2.2
[1.7-5.3]
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-continued

VIRTUALPHENOTYPE ™™
PREDICTED FC OF WILD

26

VIROLOGIC RESPONSE

DRUG TYPE CLINICAL ISOLATES
SQV 0.6 1.1
saquinavir [1.1-2.1]
SQV/r 1.6
Saquinavir'r [1.3-4.8]
AMP 0.6 1.2
amprenavir [1.1-2.4]
AMP/r 1.5
amprenavir/r [1.2-2.6]
LPVir 0.8 6.9
Lopinavir/r [2.1-17.4]

Similar values were determined 1n logistic regression mod-
els. While the magnitude of the virologic response for indi-
vidual patients 1s atfected by covariates such as viral load and
PSS, FC values associated with fractions of the effect range
are not.

Further test results showed that the clinical cutoils for 20%
reduced response after 8 weeks were low (1.1 to 1.2 for
unboosted Pls), but higher than Virco type predicted fold
changes for wild type clinical 1solates (0.73 (ABC) to 1.07
(AZT)1Tor NRTIs,0.63 (APV)to 0.87 (NFV) for Pls). Clinical
cutolls for 80% reduced response were 3.4 (APV, IDV) for
unboosted Pls. Clinical cutoifs for boosted Pls were higher:
1.5 (APV/r) for 20% reduction and 6.8 (APV/r) for 80%

reduction. Among the treatment regimens analysed, sensitiv-

ity classes defined by these clinical cutoifs showed different
rates of virologic response (viral load drop of more than 1.0
log for BQL at 8 weeks) to regimens including the drug: 70 to

L, 39 to
68% for fold changes between the upper and lower clinical

92% for fold changes less than the lower clinical cuto

cutoifs, and 18 to 50% for fold changes above the upper
clinical cutoff.

In another example the following linear regression model
1s used for d4'T with clinical cutoil definition 2 when Log
(BaselineVL)=4, lower reference fold change=0.9 and upper
reference fold change=3, cPSS=2, PSS[NRTI]=1 and NRTI

[naive]=0, using the following linear regression:

VLdrop = 2.91 — 0.63Log(BaselineVL) — 1.66(FC") = 0.99(cPSS) +

0.15(cPSS?) — 0.18(PSS[NRTI]) + 0.91(NRTI[naive)).

The NRTI[naive] value represents whether the patient 1s

naive to nucleoside RT inhibitors. If yes, value=1, if no,
value=0. The PSS[NRTI} represents the phenotypic sensitiv-
ity score for NRTIs, 1.e the number of active NRTIs 1n the

background regimen for the patient.
Stage 1: Calculate VL drop at the lower reference FC (drug
1s fully active) and the VL drop at the upper reference FC

(minimal activity of the drug). This leads to a lower VL drop
of -2.94 and an upper VL drop of -2.03.

Stage 2: Calculate VL drop when drug has lost 20% of 1ts
activity and the VL drop when drug has lost 80% of 1ts
activity. This gives values of VL drop=-2.76 for 20% and
—2.21 for 80% loss of activity.
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20% REDUCTION  80% REDUCTION

2.0
[1.7-18]
12
[5.8-27]
3.4
[1.7-10.2]
6.8
[3.6-10.5]
56
[29-67]

Stage 3: Determine Fold change equivalent to VL drop at
20% and 80% loss of activity by 1nserting values for VL drop
into the above equation and calculating FC. This gives FC
values of 1.08 and 2.18. Consequently, the lower and upper
clinical cutoff values for d41 are modeled as 1.1 and 2.2

respectively.

Step 4: Validation of the Cut-Ofifs

The models were validated using bootstrapping and repeat-

ing the steps described above several times. Bootstrapping 1s
a resampling technique 1 which pseudo-populations of the
same size as the original population are created by randomly
drawing samples from the original population. Analysis of
cach of these populations gives a sense of the sampling vari-

ability of the clinical cut-off.

FIG. 9 shows 1nitial validation of preliminary VirtualPhe-
notype™ Clinical Cutoils for nuclesides(tides) and boosted
and unboosted protease inhibitors by bootstrapping with 90%
confidence intervals.

The problem 1s tackled from different points of view 1n
order to assess the robustness of the analysis results. The
clinical cut-oifs obtained could be further refined by adding
more data sets and by taking more characteristics of the
patients into account. The clinical-cutotls obtained could also

be further refined by performing the model on unseen data.

An alternative method of validation of the model includes

calculation of a concordance index (c-index) which describes
how all the models can discriminate between patients with a
different response. This c-index 1s calculated on the data set
used for model development and on a test data set. If the
difference between the two c-indices 1s small, it means that
the models donotlose their predictive ability if applied to new

data. The following table contains information regarding the
validation procedure for each drug tested when modelled
using the preferred embodiment of linear regression which

includes the additional factors of sensitivity drug per class 1n

addition to the overall sensitivity score of the background
treatment and previous exposure to the drug (e.g. naive, naive
to Pls, naive to NRTIs). The test data c-index and the valida-
tion data c-index columns relate to the c-indicies for the
original test data set and the new data set for validation pur-
poses. The modeled lower and upper values of clinical cutoif
are quoted with corresponding confidence intervals.
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Test Data Validation Data Modelled Lower
CCO BCO CCO BCO Cutoff &
Odds Odds Odds Odds Confidence
Drug C-index Ratio Ratio C-index Ratio Ratio Interval
AZT 0.79  0.065 0.107 0.78 0.252 0.316 1.9
[1.52-2.76]
3TC 0.79 0.160 0.202 0.79 0.265 0.284 1.1
[0.98-1.39]
DAT 0.77 0.113 0.239 0.76 0.366 0.377 1.1
[1.05-1.12]
DDIE 0.73  0.219 0379 0.71 0.119 0.159 1.3
[1.07-1.34]
ABC 0.70  0.651 0359 0.69 0.544 0.380 0.8
[0.75-1.72]
TDF 0.71 0.228 0570 0.68 0.226 1.0
[0.97-1.32]
NVP 0.79 0.282 0.290 0.83 0.054 0.054 1.5
[1.40-16.74]
EFV 0.79 0.079 0.099 0.79 0.041 0.042 1.8
[1.41-3.74]
IDV 0.76  0.098 0.194 0.79 0.270 0.59% 0.8
[0.77-1.04]
IDV/r 0.71 0.027 0.122 0.63 0.012 0.03% 4.1
[0.77-6.24]
APV 0.86  0.051 0.061 0.7
[0.65-0.87]
APV/r 0.73  0.005 0.053 0.9
[0.80-2.72]
NFV 0.76  0.177 0291 0.77 1.068 0.93% 1.0
[0.97-1.03]
SQV 0.77 0.332 0431 0.56 0.7
[0.65-2.28]
SQV/r 0.71  0.165 0.249 0.81 0.054 0.080 1.1
[0.81-5.98]
LPV/r 0.70 0.074 0240 0.75 0.002 0.277 10.3
[1.53-17.30]

The columns headed CCO Odds Ratio and BCO Odds

Ratio represent the odds of being aresponder in the group that
1s labeled resistance by the cutoils divided by the odds of
being a responder 1n the group that 1s labeled sensitive by the
cutolils. For example, if there are four non-responders and one
responder 1n the resistant group, and four responders and two
non-responders 1n the sensitive group, the odds of being a
responder 1n the resistant group 1s 1:4=0.25 and the odds of

being a responder 1n the sensitive group 1s 4:2=2. This means
that the odds ratio 1s 0.25/2=0.125. In other words the odds of
being a responder 1n the resistant group are 0.125 times the
odds of being a responder 1n the sensitive group. The further
away that the odds ratio 1s from 1, the stronger the correlation
between the resistance class and clinical outcome.

The separation 1n groups (resistance/sensitive) can be done
based on climical cutoils or biological cutoifs. This means that
odds ratios based on clinical cutoits (CCO) and odds ratios
based on biological cutoffs (BCO) can be compared. If the
odds ratio for the CCO 1s smaller than the odds ratio for the
BCO, 1t can be concluded that the CCO gives a better predic-
tion than the BCO.

In practice, a logistic regression model 1s used to determine
the odds ratio. The model used 1s similar to logistic regression
model described earlier except that the fold change 1n the
model 1s replaced by the resistance class. The coellicient for
the resistance class that 1s obtained from the model 1s the log
(odds ratio). The advantage of using this model 1s that the
odds ratio estimates can be adjusted for the baseline viral load
and the cPSS score of the background regimen. In one dataset,
using the CCOs set out on page 36 herein, the odds ratio for
response per additional active drug added was 3.01 when
calculated using clinical cutoifs, and 2.32 when calculated
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Modelled Upper

Cutoif &
Confidence
Interval

14.4
[8.24-21.20]
3.7
[1.71-11.44]
2.2
[2.05-2.30]
3.0
[2.59-2.96]
1.2
[1.19-5.11]
2.0
[1.51-2.95]
3.2
[2.22-63.06]
29.2
[6.46-146.69]
2.2
[1.33-7.19]
21.2
[1.41-22.86]
1.4
[1.03-5.55]
6.5
[4.06-16.22]
1.5
[1.54-2.38]
1.0
[1.03-22.61]
12.0
[4.50-28.85]
61.6
[21.92-66.96]

using biological cutoils. These odds ratios are ratios of odds
ol response for people taking more active drugs over the odds
for people taking less active drugs. The odds ratio here should
be >1 as the probability of response will increase as the
number of active drugs taken increases. In this case, a larger
odds ratio 1ndicates a stronger correlation with clinical out-
come.

The mvention claimed 1s:

1. A computer-based diagnostic method for estimating for
a patient the treatment response ol a disease caused by a
pathogen to a drug, the method comprising:

a) mputting data related to the genotype exhibited by a

disease causing pathogen to a computer apparatus;

b) determining, by the computer apparatus, the fold change
resistance value of the pathogen infecting the patient;
¢) determining, by the computer apparatus, a clinical cut-
off value which 1s the fold change resistance value at
which a clinically relevant variation of clinical response

1S observed:

wherein the clinical cut-off value 1s established by model-
ing the clinical response of a population of patients
treated with the drug to the disease caused by the patho-
gen as a function of the fold change resistance of the
pathogen infecting the patients;

d) comparing, by the computer apparatus, the fold change
resistance value of the pathogen infecting the patient to
the clinical cut-off value;

¢) calculating, by the computer apparatus, the predicted
treatment response of a disease caused by the pathogen,
and

) outputting the results of the computer-generated esti-
mate of the treatment response.
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2. A method according to claim 1, wherein the cut-ott value
1s determined as a function of treatment response data in

treated subjects, considering baseline pathogen load, baseline
fold change resistance and baseline activity of coadminis-
tered drugs targeted to the pathogen.

3. Amethod according to claim 1, wherein the cut-oif value
1s calculated by reference to the pathogen load drop.

4. A method according to claim 3, wherein the cut-oif value
1s calculated by reference to the log pathogen load drop.

5. A method according to claim 4, wherein the log pathogen
load drop 1s calculated by performing a linear regression
analysis using data from a dataset of treatment response data,
wherein the log pathogen load drop LogPL drop,, for the
pathogen infecting a patient 1, 1s modelled as the sum of all of
the individual contributions for factors that intfluence patho-
gen load drop, according to the following equation:

LogPLdrop,=po+p; Log(BaselinePL,)+p-(PSS,)+[3;
(1/FC))+e,

wherein BaselinePL, represents the pathogen load of the
patient measured at the start of treatment by the drug,

PSS, 1s a phenotypic sensitivity score representing the
number of active drugs in the background treatment
regimen for the patient, excluding the drug whose con-
tribution to treatment response 1s being modelled,

FC. 1s a baseline fold change resistance,
3, 1s the intercept,

3, 1s a coellicient representing the increase 1n log pathogen
load drop per unit increase of the log of the BaselinePL,

3, 1s a coellicient indicating the increase 1n log pathogen
load drop per unit increase of the number of sensitive
drugs 1n the background treatment regimen,

3 1s a coellicient indicating the increase 1n log pathogen
load drop per unit increase of the iverse of FC,,

[l

and wherein the error term, €, represents the difference
between the modelled prediction and the experimentally
determined measurement.

6. A method according to claim 4, wherein the log pathogen
load drop 1s calculated by performing a linear regression
analysis using data from a dataset of treatment response data,
wherein the log pathogen load drop LogPL drop,, for the
pathogen infecting a patient 1, 1s modelled as the sum of all of
the individual contributions for factors that intfluence patho-
gen load drop, according to the following equation:

LogPLdrop,_Po+pP; Log(BaselinePL )+, (cPSS,)+[3;
(PSS +B4FC) +Bs(Hs)+ . . . +B,,(H, 1+

wherein the terms of the equation are the same as those
given 1n claim 5, and additionally, p 1s a power transior-
mation (e.g. ranging from -3 to 1) and H. to H, are
treatment history parameters or parameters describing
the background therapy as a function of a certain thera-
peutic class.

7. A method according to claim 1, wherein the cut-off
response value 1s calculated by reference to the probability of
the pathogen being susceptible to treatment by the drug for
the patient, herein termed Prob of success.

8. A method according to claim 7, wherein Prob of success
1s calculated by performing a logistic regression analysis
using data from a dataset of treatment response data, wherein
Prob of success 1s modelled according to the following equa-
tion:

10

15

20

25

30

35

40

45

50

55

60

65

30

Po + P1Log(BaselinePL;) +
o ( Ba(PSS;) + B3(1/ FC,) ]
1 +exp )
Bo + p Log(BaselinePL;) +
L( P2(P5S;) + p3(1/ FC) ] ;

Prob of success =

wherein BaselinePL, represents the pathogen load of the

patient measured at the start of treatment by the drug,

PSS, 1s a phenotypic sensitivity score representing the

number of active drugs in the background treatment

regimen for the patient, excluding the drug whose con-
tribution to treatment response 1s being modelled,

FC, 1s a baseline fold change resistance,

3, 1s the 1ntercept,

3, 1s a coellicient representing the increase in log pathogen

load drop per unit increase ot the log of the BaselinePL ,

3, 1s a coellicient indicating the increase in log pathogen

load drop per unit increase of the number of sensitive

drugs 1n the background treatment regimen, and

35 1s a coetlicient indicating the increase in log pathogen

load drop per unit increase of the iverse of FC..

9. A method according to claim 1, wherein the cut-oif fold
change resistance value 1s calculated by reference to the like-
lihood of a patient achieving treatment success or failure,
where a definition of success 1s having an undetectable patho-
gen load after treatment with a particular drug, using a clas-
sification tree.

10. A method according to claim 9, wherein the clinical
cut-oif value 1s defined as the fold change resistance threshold
value that makes the best distinction between the population
with successiul treatments and the population with unsuc-
cessiul treatments.

11. A method according to anyone of the preceding claims,
wherein the baseline fold change resistance 1s determined by
comparing the genotype of the disease causing pathogen to
phenotype data collected from a group of patients infected
with a pathogen of similar genotype.

12. A method according to claim 11, wherein the baseline
fold change resistance 1s determined by predicting the drug
resistance phenotype of a pathogen genotype.

13. A method according to claim 1, that incorporates two or
more of the methods of calculating the cut-oif value by

1) reference to the log pathogen load drop wherein the log

pathogen load drop 1s calculated by:

a) performing a linear regression analysis using data
from a dataset of treatment response data, wherein the
log pathogen load drop LogPL drop., for the pathogen
infecting a patient 1, 1s modelled as the sum of all of
the individual contributions for factors that influence
pathogen load drop, according to the following equa-
tion:

LogPLdrop,=po+p; Log(BaselinePL,)+p, (PSS, )+,
(1/FC,)+e,

wherein BaselinePL, represents the pathogen load of
the patient measured at the start of treatment by the
drug,

PSS, 1s a phenotypic sensitivity score representing the
number of active drugs in the background treat-
ment regimen for the patient, excluding the drug
whose contribution to treatment response 1s being
modelled,

FC, 1s a baseline fold change resistance,

3o 1s the mtercept,
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3, 1s a coellicient representing the increase in log
pathogen load drop per unit increase of the log of

the BaselinePL,,

3, 1s a coetlicient indicating the increase 1n log patho-
gen load drop per unit increase of the number of
sensitive drugs 1n the background treatment regi-
men,

35 1s a coellicient indicating the increase 1n log patho-
gen load drop per unit increase of the mverse of
FC,

and wherein the error term, €, represents the difference
between the modelled prediction and the experimen-
tally determined measurement, or

b) performing a linear regression analysis using data
from a dataset of treatment response data, wherein the
log pathogen load drop LogPL. drop,, for the pathogen
infecting a patient 1, 1s modelled as the sum of all of
the individual contributions for factors that influence
pathogen load drop, according to the following equa-
tion:

LogPLdrop, pPs+pP, Log(BaselinePL )+p,(cPSS.)+p;
(PSS +B4FC) +Bs(Hs)+ . . . +B,(H, e,

[

wherein p 1s a power transiormation (e.g. ranging from
—-3to1),and H; to H,_ aretreatment history parameters
or parameters describing the background therapy as a
function of a certain therapeutic class;
or
11) reference to the probability of the pathogen being sus-
ceptible to treatment by the drug for the patient, herein
termed Prob of success wherein Prob of success 1s cal-
culated by performing a logistic regression analysis
using data from a dataset of treatment response data,
wherein Prob of success 1s modelled according to the
following equation:

Prob of success =

exp(fo + p1lLog(BaselinePL;) + £2(PSS5;) + 53(1/FC))
(1 + exp(By + f1Log(BaselinePL;) + B-(PSS;) + B3(1 / FC;)))’

and calculating the cut-off fold change resistance value by
reference to the likelihood of a patient achueving treatment
success or failure, where a definition of success 1s having an
undetectable pathogen load after treatment with a particular
drug, using a classification tree.

14. A method according to claim 1, wherein the disease
causing pathogen 1s obtained from a patient sample chosen
from a blood sample, a biopsy sample, a plasma sample, a
saltva sample, a tissue sample, and a bodily fluid or mucous
sample.
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15. A method according to claim 1, wherein the disease
causing pathogen 1s a virus.

16. A method according to claim 15, wherein the disease
causing virus 1s chosen from HIV, HCV and HBV.

17. A method according to claim 1, wherein the method 1s
performed for a number of candidate drugs so as to provide
information on the predicted fold resistance exhibited by the
pathogen to a spectrum of candidate drugs.

18. A diagnostic method for optimising a drug therapy 1n a
patient, comprising performing a method according to claim
1 for each drug or combination of drugs being considered to
obtain a series of drug resistance phenotypes and therefore
assess the effect of the plurality of drugs or drug combinations
on the pathogen with which the patient 1s infected and select-
ing the drug or drug combination for which the pathogen 1s
predicted to have the lowest fold resistance.

19. A method according to claim 1 further comprising
assessing the efliciency of the patient’s therapy, evaluating a
therapy or optimizing a therapy.

20. A computer-based diagnostic system for predicting
clinical response to a drug of a disease causing pathogen
comprising: a) means for obtaining a genetic sequence of the
disease producing pathogen; b) means for identifying at least
one mutation in the genetic sequence of the disease producing
pathogen; ¢) genotype database means comprising genotype
entries; d) phenotype database means comprising phenotypes
ol patient fold change response values; ¢) clinical response
database means comprising clinical response to drug treat-
ment for reference sample patients; 1) correlation means cor-
relating a genotype entry with a phenotype, where the geno-
type entry corresponds with the obtained genetic sequence of
the disease producing pathogen; g) means for modelling
clinical response to a drug of the disease causing pathogen by
determining whether the patient fold change response 1is
above a cut-oft value, wherein the cut-off value 1s determined
using the climical response database means and comprises the
fold change response value at which a climically relevant
diminished clinical response 1s observed; h) means for pre-
dicting the clinical response to a drug of a disease by deter-
mining whether the patient fold change response 1s above the
cut-oif value; and 1) means for generating an output of the
predicted clinical response to a drug of a disease causing
pathogen.

21. A diagnostic system according to claim 20, wherein the
cut-off value 1s determined as a function of treatment
response data 1n treated subjects, considering baseline patho-
gen load, baseline fold change resistance, baseline activity of
co-administered drugs targeted to the pathogen and treatment
history.
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