12 United States Patent

US008095503B2

(10) Patent No.: US 8.095.503 B2

Holland et al. 45) Date of Patent: Jan. 10, 2012
(54) ALLOWING CLIENT SYSTEMS TO 5,655,152 A * 8/1997 Ohnishi et al. 710/36
INTERPRET HIGHER-REVISION DATA gagggagg? i : 2/// gg’; EOW?—II‘E et &J[l* e g (1) éggg
787, amilton etal.
STRUCTURES IN STORAGE SYSTEMS 5,920,725 A * T7/1999 Maetal. ...l 717/171
5,944,783 A * 8/1999 Nietenocoeevvvvinnennn, 709/202
(75) Inventors: Mark C. Holland, Pittsburgh, PA (US); 5,973,731 A * 10/1999 Schwab 348/161
Denis M. Serenyi, Palo Alto, CA (US) 6,014,696 A * 1/2000 Arakietal. 709/219
6,584,520 B1* 6/2003 Cowartetal. 710/68
(73) Assignee: Panasas, Inc., Sunnyvale, CA (US) 6,931,450 B2* &/2005 Howardetal. 709/229
2002/0078239 Al* 6/2002 Howard etal. 709/245
(*) Notice: Subject to any disclaimer, the term of this 2903/ 0065866 "iﬂ © 42003 Spencer ... 710/306
patent is extended or adjusted under 35 * cited by examiner
U.S.C. 154(b) by 2972 days.
(21) Appl. No.: 10/372,346 Primary Examiner — Syling Yen
_ (74) Attorney, Agent, or Firm — Morgan, Lewis & Bockius
(22) Filed: Feb. 21, 2003 [1P
(65) Prior Publication Data
US 2004/0003055 A1 Jan. 1, 2004 (57) ABSTRACT
Related U.S. Application Data A method for allowing client computers 1n a distributed
0\ Provisional annlication No. 60/368.785. filed on M object-based data storage system to interpret higher revision
(60) Provisional application No. 60/368,735, filed on Mar. data structures. In one embodiment, clients request layout
%?" dZOOi prlo ; 18218(1)1;1 application No. 60/372,042, maps of objects to be accessed tfrom respective storage man-
0 OILAPL 14, ' agers 1n the system and then construct and execute directed
(51) Int.Cl acyclic graphs (DAGQG) to accomplish desired 1/0O operations
GOE?F }7/30 (2006.01) for data access. When a client computer running an older
(52) US.CL ... 707/620;°707/610; 707/611; 707/613; SOfm‘?‘re 'revision ijo’ not able to interpret a particular data
707/617: 707/618: 707/624: 707/626: 707/634- organization supplied by the storage manager that was
707/635: 707/636: 707/637: 707/638: 707/661: designed after that client’s software was 1nstalled, the client
| 707/675; 709/ 13;; 709/226; 700 /24§ sends to the storage manager a description of the desired data
(58) Field of Classification Search 709/229; access operation. The storage manager, in turn, interl?rets a
711/206 data layout scheme for a client on a per-access basis and
See application file for complete search history. returns to that client a DAG containing a data structure that
describes the sequence of I/O operations necessary to effect
(56) References Cited the data access. The client can then execute the storage man-

U.S. PATENT DOCUMENTS

ager-supplied DAG to carry out the data access.

5,355,453 A * 10/1994 Rowetal.cc...oooiet. 709/219
5,630,007 A * 5/1997 Kobayashietal. 386/113 5> Claims, 2 Drawing Sheets
I
FM SM B I '/10
SAM SAM RM
\ \ 14 - 16 - 18
NETWORK 28 >

[24 /26

SAM SAM

OBD PM

Windows Linux
Client Client

U.S. Patent Jan. 10, 2012 Sheet 1 of 2 US 8,095,503 B2

i
"
14 \16

NETWORK

24 26 12 22
i [h [wh [
' Windows ""‘:I: Lmux II ﬂ

Client Cllent
-
— -

FM. ' SM i RM l PM

30 SAM | RpC

\ Bt

32
NETWORK 28
24 K26 /12
SAM I SAM OBD [
- -
Windows II Linux I:| —
Chent Client -

U.S. Patent

Jan. 10, 2012 Sheet 2 of 2 US 8,095,503 B2

34

Server supplies the
] requested map
36

Yes

Chient computer requests a
‘map” from a server

-

contains
object layout
information

Can client No

P

Client compulter interprets
the map to compute
physical disk locations for

data access

— ik

interpret the map?

Wy

Chent sends a description
of desired I/O operations to
the server
46

'

% '

Server constructs the DAG

Client constructs a directed
acyclic graph (DAG)

using client-supphed
description and object
layout map information

48

42

v

| Server sends the DAG to
the clhient

. - s

Client executes the DAG to
perform I/O operations needed [———
for the desired data access

F1G. 3

US 8,095,503 B2

1

ALLOWING CLIENT SYSTEMS TO
INTERPRET HIGHER-REVISION DATA
STRUCTURES IN STORAGE SYSTEMS

REFERENCE TO RELATED APPLICATTONS

This application claims priority benefits of prior filed co-
pending and commonly-owned U.S. provisional patent appli-
cations Ser. No. 60/368,785, filed on Mar. 29, 2002 and Ser.
No. 60/372,042, filed on Apr. 12,2002, the disclosures ol both
of which are incorporated herein by reference 1n their entire-
ties.

BACKGROUND

1. Field of the Invention

The present invention generally relates to data storage sys-
tems and methods, and, more particularly, to a method for
allowing client computers 1n a distributed object-based data
storage system to interpret higher revision data structures.

2. Description of Related Art

In a distributed data storage system, servers and client
computers may interact with each other and with data storage
disks or other system agents 1n a pre-defined manner. For
example, client computers may read from or write 1nto the
storage disks various types of data including, for example,
normal application-specific data or redundant information
being stored for fault tolerance. Generally speaking, the client
computers execute various application and operating sofit-
ware resident thereon to accomplish the desired data process-
ing tasks. The software resident 1 a client computer’s
memory may have been designed at a particular time 1n the
past. Therefore, as more advanced or newer versions of the
client and server software become available, there appears a
point 1n time when a client computer running an older soft-
ware revision may not be able to interpret a particular data
organization that was shipped (e.g., as part of a newer server
solftware configuration) after that client’s software was
installed. Thus, 1t 1s desirable to devise a mechanism that
allows an old client (1.e., a client running an older version of
soltware) to access data and information stored 1n a newer
format 1n the storage system. Such a mechanism allows an
older client to effectively operate 1n a newer server or system
environment, thereby reducing the need to spend time,
money, and effort to replace or upgrade older client machines
every time a new or upgraded server or storage configuration
1s 1nstalled as part of the data storage network 1n an organi-
zation.

SUMMARY

In one embodiment, the present invention contemplates a
method of accessing data 1n an object-based data storage
system 1ncluding a first computer and a second computer. The
method includes: the first computer obtaining a data access
map from the second computer, wherein the data access map
contains information to be interpreted by the first computer to
perform the data access; the first computer interpreting the
data access map so as to determine a {irst set of operations
needed to be performed by the first computer for accessing the
data; and the first computer performing the first set of opera-
tions and a second set of operations to access the data.

In an object-based data storage system including a plurality
of client computers and a server computer, wherein each of
the plurality of client computers 1s configured to perform a
corresponding data access to a storage disk 1n the data storage
system, the present invention further contemplates a method

5

10

15

20

25

30

35

40

45

50

55

60

65

2

ol accessing data in the storage disk. The method comprises:
cach of the plurality of client computers constructing a cor-
responding directed acyclic graph (DAG), wherein each the
corresponding DAG 1dentifies a sequence for arespective first
set of operations needed to be performed by corresponding,
client computer for the corresponding data access; and each
of the plurality of client computers executing the correspond-
ing DAG to perform the respective first set of operations in the
sequence for the corresponding data access.

In a still further embodiment, the present invention con-
templates a method of accessing data 1n an object-based data
storage system. The method comprises: receiving a request
from a requester describing a data access operation needed to
be performed by the requester to access the data in the data
storage system; constructing a directed acyclic graph (DAG)
in response to the request using information contained 1n a
data access map corresponding to the data access to be per-
formed by the requester, wherein the DAG identifies a
sequence ol I/0 operations for the data access operation
needed to be performed by the requestor to access the data;
sending the DAG to the requester; and configuring the
requestor to execute the DAG to perform the I/O operations in
the sequence so as to access the data.

According to present invention, 1n a method for allowing
client computers 1n a distributed object-based data storage
system to interpret higher revision data structures, when a
client computer running an older soitware revision 1s not able
to interpret a particular data organization supplied by the
storage manager that was designed after that client’s software
was 1nstalled, the client sends to the storage manager a
description of the desired data access operation (e.g., a data
read operation, a data write operation, etc.). The storage man-
ager, 1n turn, interprets a data layout scheme for the client on
a per-access basis and returns to that client a DAG containing
a data structure that describes the sequence of I/O operations
necessary to effect the data access. The client can then execute
the storage manager-supplied DAG to carry out the data
access. Such a mechanism allows an older client to effectively
operate 1n a newer server or system environment, without the
need to upgrade or replace the older client machine.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are included to pro-
vide a further understanding of the invention and are incor-
porated 1n and constitute a part of this specification, illustrate
embodiments of the invention that together with the descrip-
tion serve to explain the principles of the invention. In the
drawings:

FIG. 1 1llustrates an exemplary network-based file storage
system designed around Object Based Secure Disks (OBSDs
or OBDs);

FIG. 2 illustrates an implementation where various man-
agers shown individually 1n FIG. 1 are combined 1n a single
binary file; and

FIG. 3 shows an exemplary flowchart depicting how a
client 1n the distributed object-based data storage systems 1n
FIGS. 1 and 2 interprets newer data structures according to
one embodiment of the present invention.

DETAILED DESCRIPTION

Retference will now be made in detail to the preferred
embodiments of the present invention, examples of which are
illustrated 1n the accompanying drawings. It 1s to be under-
stood that the figures and descriptions of the present invention
included herein 1llustrate and describe elements that are of

US 8,095,503 B2

3

particular relevance to the present invention, while eliminat-
ing, for purposes of clarity, other elements found 1n typical
data storage systems or networks.

It 1s worthy to note that any reference 1n the specification to
“one embodiment” or “an embodiment” means that a particu-
lar feature, structure or characteristic described 1n connection
with the embodiment 1s included in at least one embodiment
of the mvention. The appearances of the phrase “in one
embodiment” at various places 1n the specification do not
necessarily all refer to the same embodiment.

FI1G. 1 illustrates an exemplary network-based file storage
system 10 designed around Object Based Secure Disks (OB-
SDs or OBDs) 12. The file storage system 10 1s implemented
via a combination of hardware and software units and gener-
ally consists of managers 14, 16, 18, and 22, OBDs 12, and
clients 24, 26. It 1s noted that FIG. 1 illustrates multiple
clients, OBDs, and managers—i.¢., the network entities—
operating in the network environment. However, for the ease
of discussion, a single reference numeral 1s used to refer to
such entity either individually or collectively depending on
the context of reference. For example, the reference numeral
“12” 1s used to refer to just one OBD or a group of OBDs
depending on the context of discussion. Similarly, the refer-
ence numerals 14-22 for various managers are used inter-
changeably to also refer to respective servers for those man-
agers. For example, the reference numeral “14” 1s used to
interchangeably refer to the software file managers (FM) and
also to their respective servers depending on the context. It 1s
noted that each manager 1s an application program code or
soltware running on a corresponding server. The server func-
tionality may be implemented with a combination of hard-
ware and operating software. For example, each server in
FIG. 1 may be a Windows N'T® server. Thus, the file system
10 1n FIG. 1 1s an object-based distributed data storage system
implemented 1n a client-server configuration.

The network 28 may be a LAN (Local Area Network),
WAN (Wide Area Network), MAN (Metropolitan Area Net-
work), SAN (Storage Area Network), wireless LAN, or any
other suitable data communication network including a TCP/
IP (Transmission Control Protocol/Internet Protocol) based
network (e.g., the Internet). A client 24, 26 may be any com-
puter (e.g., a personal computer or a workstation) electrically
attached to the network 28 and running appropriate operating
system software as well as client application software
designed for the system 10. FIG. 1 illustrates a group of
clients or client computers 24 running on Microsoft Win-
dows® operating system, whereas another group of clients 26
are running on the Linux® operating system. The clients 24,
26 thus present an operating system-integrated file system
interface. The semantics of the host operating system (e.g.,
Windows®, Linux®, etc.) may preferably be maintained by
the file system clients. The clients may run various applica-
tions including, for example, routine database applications
(e.g., an Oracle®-based application), complicated scientific
data processing applications, word processors (e.g., a
Microsoit® Word application), etc.

The manager (or server) and client portions of the program
code may be written in C, C™7, or in any other compiled or
interpreted language suitably selected. The client and man-
ager software modules may be designed using standard sofit-
ware tools including, for example, compilers, linkers, assem-
blers, loaders, bug tracking systems, memory debugging
systems, etc.

In one embodiment, the manager soitware and program
codes running on the clients may be designed without knowl-
edge of a specific network topology. In that case, the software
routines may be executed 1n any given network environment,

10

15

20

25

30

35

40

45

50

55

60

65

4

imparting software portability and tlexibility in storage sys-
tem designs. However, 1t 1s noted that a given network topol-
ogy may be considered to optimize the performance of the
soltware applications running on it. This may be achieved
without necessarily designing the software exclusively tai-
lored to a particular network configuration.

FIG. 1 shows a number of OBDs 12 attached to the network
28. An OBSD or OBD 12 1s a physical disk drive that stores
data files 1n the network-based system 10 and may have the
tollowing properties: (1) 1t presents an object-oriented 1nter-
face rather than a sector-based interface (wherein each
“block™ on a disk contains a number of data “sectors™) as 1s
available with traditional magnetic or optical data storage
disks (e.g., a typical computer hard drive); (2) it attaches to a
network (e.g., the network 28) rather than to a data bus or a
backplane (1.¢., the OBDs 12 may be considered as first-class
network citizens); and (3) 1t enforces a security model to
prevent unauthorized access to data stored thereon.

The fundamental abstraction exported by an OBD 12 1s that
of an “object,” which may be defined as a variably-sized
ordered collection of bits. Contrary to the prior art block-
based storage disks, OBDs do not export a sector iterface
(which guides the storage disk head to read or write a particu-
lar sector on the disk) at all during normal operation. Objects
on an OBD can be created, removed, written, read, appended
to, etc. OBDs do not make any information about particular
disk geometry visible, and implement all layout optimiza-
tions internally, utilizing lower-level information than can be
provided through an OBD’s direct interface with the network
28. In one embodiment, each data file and each file directory
in the file system 10 are stored using one or more OBD
objects.

In a traditional networked storage system, a data storage
device, such as a hard disk, 1s associated with a particular
server or a particular server having a particular backup server.
Thus, access to the data storage device 1s available only
through the server associated with that data storage device. A
client processor desiring access to the data storage device
would, therefore, access the associated server through the
network and the server would access the data storage device
as requested by the client.

On the other hand, 1n the system 10 1llustrated 1n FIG. 1,
cach OBD 12 communicates directly with clients 24, 26 on
the network 28, possibly through routers and/or bridges (not
shown). The OBDs, clients, managers, etc., may be consid-
ered as “nodes” on the network 28. In system 10, no assump-
tion needs to be made about the network topology (as noted
hereinbelore) except that each node should be able to contact
every other node 1n the system. The servers (e.g., servers 14,
16, 18, ctc.) 1n the network 28 merely enable and facilitate
data transfers between clients and OBDs, but the servers do
not normally implement such transfers.

In one embodiment, the OBDs 12 themselves support a
security model that allows for privacy (1.e., assurance that
data cannot be eavesdropped while 1n flight between a client
and an OBD), authenticity (1.e., assurance of the identity of
the sender of a command), and integrity (i.e., assurance that
in-thght data cannot be tampered with). The authenticity
determination may be capability-based, whereas the privacy
and integrity portions of the security model may be imple-
mented using network-level encryption and/or digital sign-
ing. A manager grants a client the right to access the data
storage (1n one or more OBDs) by 1ssuing to 1t a “capability.”
Thus, a capability 1s a token that can be granted to a client by
a manager and then presented to an OBD to authorize service.
Clients may not create their own capabilities (this can be

US 8,095,503 B2

S

assured by using known cryptographic techniques), but rather
receive them from managers and pass them along to the
OBDs.

A capability 1s simply a description of allowed operations.
A capability may be a set of bits (1°s and 0’s) placed 1n a
predetermined order. The bit configuration for a capability
may specily the operations for which that capability 1s valid.
Thus, there may be a “read capability,” a “write capability,” a
“set-attribute capability,” etc. Every command sent to an
OBD may need to be accompanied by a valid capability of the
appropriate type. A manager may produce a capability and
then digitally sign 1t using a cryptographic key that 1s known
to both the manager and the appropriate OBD, but unknown
to the client. The client will submit the capability with its
command to the OBD, which can then verify the signature
using 1ts copy of the key, and thereby confirm that the capa-
bility came from an authorized manager (one who knows the
key) and that 1t has not been tampered with 1n flight. An OBD
may 1tself use cryptographic techniques to confirm the valid-
ity of a capability and reject all commands that fail security
checks. Thus, capabilities may be cryptographically “sealed”
using “keys” known only to one or more of the managers
14-22 and the OBDs 12.

Logically speaking, various system “agents™ (i.e., the cli-
ents 24, 26, the managers 14-22, and the OBDs 12) are 1inde-
pendently-operating network entities. Day-to-day services
related to individual files and directories are provided by file
managers (FM) 14. The file manager 14 1s responsible for all
file- and directory-specific states. The file manager 14 cre-
ates, deletes and sets attributes on entities (1.€., files or direc-
tories) on clients’ behalf. When clients want to access other
entities on the network 28, the file manager performs the
semantic portion of the security work—i.e., authenticating
the requester and authorizing the access—and 1ssuing capa-
bilities to the clients. File managers 14 may be configured
singly (i.e., having a single point of failure) or i1n failover
configurations (e.g., machine B tracking machine A’s state
and 1f machine A fails, then taking over the administration of
machine A’s responsibilities until machine A 1s restored to
service).

The primary responsibility of a storage manager (SM) 16 1s
the aggregation of OBDs for performance and fault tolerance.
A system administrator (e.g., a human operator or software)
may choose any layout or aggregation scheme for a particular
object. The SM 16 may also serve capabilities allowing cli-
ents to perform their own I/0O to aggregate objects (which
allows a direct flow of data between an OBD and a client). The
storage manager 16 may also determine exactly how each
object will be laid out—i.e., on what OBD or OBDs that
object will be stored, whether the object will be mirrored,
striped, parity-protected, etc. This distinguishes a “virtual
object” from a “physical object”. One virtual object (e.g., a
file or a directory object) may be spanned over, for example,
three physical objects (1.e., OBDs).

The storage access module (SAM) 1s a program code mod-
ule that may be compiled 1nto the managers as well as the
clients. The SAM generates and sequences the OBD-level
operations necessary to implement system-level I/O (input/
output) operations, for both simple and aggregate objects.

The mnstallation of the manager and client software to inter-
act with OBDs 12 and perform object-based data storage 1n
the file system 10 may be called a “realm.” The realm may
vary 1n size, and the managers and client software may be
designed to scale to the desired installation size (large or
small). A realm manager 18 1s responsible for all realm-global
states. That 1s, all states that are global to a realm state are
tracked by realm managers 18. A realm manager 18 maintains

10

15

20

25

30

35

40

45

50

55

60

65

6

global parameters, notions of what other managers are oper-
ating or have failed, and provides support for up/down state
transitions for other managers. A performance manager 22
may run on a server that 1s separate from the servers for other
managers (as shown, for example, 1n FIG. 1) and may be
responsible for monitoring the performance of the file system
realm and for tuning the locations of objects in the system to
improve performance. The program codes for managers typi-
cally communicate with one another via RPC (Remote Pro-
cedure Call) even 11 all the managers reside on the same node
(as, Tor example, 1n the configuration 1n FIG. 2).

A further discussion of various managers shown 1n FIG. 1
(and FIG. 2) and their functionality 1s provided on pages
11-15 inthe co-pending, commonly-owned U.S. patent appli-
cation Ser. No. 10/109,998, filed on Mar. 29, 2002, titled
“Data File Migration from a Mirrored RAID to a Non-Mir-
rored XOR-Based RAID Without Rewriting the Data”,
whose disclosure at pages 11-15 1s incorporated by reference
herein 1n 1ts entirety.

FIG. 2 illustrates one implementation 30 where various
managers shown individually in FIG. 1 are combined 1n a
single binary file 32. FIG. 2 also shows the combined file
available on a number of servers 32. In the embodiment
shown 1 FIG. 2, various managers shown individually 1n
FIG. 1 are replaced by a single manager software or execut-
able file that can perform all the functions of each individual
file manager, storage manager, etc. It 1s noted that all the
discussion given hereinabove and later hereinbelow with ret-
erence to the file storage system 10 1n FIG. 1 equally applies
to the file storage system embodiment 30 illustrated in FIG. 2.
Theretfore, additional reference to the configuration in FI1G. 2
1s omitted throughout the discussion, unless necessary.

Every object stored on an OBD may have an associated set
of attributes. Some of the major attributes for an object
include: (1) a device_ID i1dentifying, for example, the OBD
storing that object and the file and storage managers manag-
ing that object; (2) an object-group_ID 1dentifying the object
group containing the object 1n question; and (3) an object_ID
containing a number randomly generated (e.g., by a storage
manager) to 1dentify the object 1n question. For example, the
values for the {device_ID, object-group_ID, object_ID} trip-
let for an object may be {SM #3, object-group #29, object
#6003 }. Itis noted that, in one embodiment, each {device_ID,
object-group_ID, object_ID} triplet must be unique in the
realm. In other words, even 1I two objects have the same
object_ID, they cannot have the same values for the corre-
sponding {device_ID, object-group_ID, object_ID} triplets.
It 1s noted that other object attributes may include a value
identifying the time of creation of the object, and a pointer or
flag indicating whether the object 1s a parent object (e.g., a
sub-directory object) or a child object (e.g., a file object).

In one embodiment, the storage manager 16 creates and
maintains a layout map for files and directories to be stored in
the system 10. Every file or directory may have a unique
layout map associated with it, and the layout map for a file/
directory may reside on one or more OBDs 12. The layout
map for a file/directory describes how that file/directory 1s
arranged on the disks (1.e., OBDs 12). In one embodiment, the
layout of an object may be selected on a file-by-file basis. A
layout map may contain the following: (1) the file storage
layout scheme (e.g., RAID-1, RAID-3, etc.) for files in a
directory object; (2) the number and identities of disk(s)
(OBDs) used to store the file or directory object; (3) the object
identifiers used to identily each object (e.g., file/directory
object) or a component object (1f the object 1s an aggregate
object) stored on each OBD; and (4) any other layout-specific
information.

US 8,095,503 B2

7

FIG. 3 shows an exemplary flowchart depicting how a
client 24, 26 1n the distributed object-based data storage sys-
tems 1n FIGS. 1 and 2 interprets newer data structures accord-
ing to one embodiment of the present invention. Initially, at
block 34, when a client computer 24, 26 (i.e., a software
running on the client computer) wishes to access data (e.g.,
through a data read or write operation) 1n the system 10, the
client first requests a “map” from 1ts corresponding SM 16. In
response to the client’s request, the SM 16 supplies the
requested map to the client (block 36). The map, as supplied
by the SM 16, includes a layout map of the object containing,
the relevant data or portion of the data (block 37). Thus, as
noted before, the server-supplied layout map describes the
technique and the parameters that were used to place the data
in a file or directory object onto one or more OBDs 12. For
example, a layout map may describe that the data-containing
object 1s stored 1n a RAID-3 layout, using 10 physical disks
(1.e., OBDs 12). In other words, the layout map supplied by
the SM 16 may describe only the static information about the
layout of an object.

After the client receives the map from the storage manager,
the client may first need to determine whether the client can
interpret the map, 1.e., whether the data structure or organi-
zation contained in the map 1s of a version or revision that 1s
interpretable by the client as indicated at the decision block 38
in FIG. 3. If the client determines that 1t can interpret the map,
the client uses the information in the map to compute physwal
disk locations that pertain to the particular data access (e.g.,
data read operation, a data write operation, etc.) the Chent
wishes to perform (block 40). For example, if the client
wishes to write 100 bytes at a byte offset of 1024 into a file
object, the client first uses the SM-supplied map to compute
the disk or disks the client may need to contact for the desired
write operation, and also to compute the object oflsets on
those disks that the client may need to update during the data
write operation. In one embodiment, each client 24, 26 1n the
distributed object-based data storage system 10 (or 30) is
configured to construct a directed acyclic graph (DAG) based
on the mformation contained 1n the layout map received from
the corresponding SM 16 (block 42). The DAG may uniquely
identify the complete sequence of I/O operations (e.g., disk
access, data transmission, confirmation of data delivery, etc.)
to be performed by the client to accomplish the desired data
access (e.g., a data read operation, a data write operation,
ctc.). The DAG may also 1dentily the dependency constraints
between two or more 1/O operations in the sequence of 1/O
operations. After constructing the DAG, the client may
execute the DAG using a generic DAG execution engine to
carry out the IO operations needed for the desired data access
(block 44). The software for the DAG execution engine may
be coded or designed 1n a network-specific manner to adapt to
the particular network configuration or architecture.

At the decision block 38 1n FIG. 3, 1t may, however, be
possible that the client cannot interpret the map supplied by
the SM as, for example, 1n a situation where the map was
produced by a storage manager that 1s of anewer revision than
that of the client. For example, the storage manager may
employ newer mechanisms or data structures for arranging
data (normal data and/or redundant data for fault tolerance)
on OBDs. One solution to this problem may be to ask the
storage manager to proxy the desired I/O operation(s), 1.e.,
the client sends 1ts data (e.g., 1n a data write operation) to the
SM and then the SM performs the required I/O operation(s)
on the client’s behalf. This solution, however, may lead to
excessive load on the SM and that can severely degrade the
overall system performance. For example, in the proxy
approach, during a data write operation, the data will need to

10

15

20

25

30

35

40

45

50

55

60

65

8

transit the network twice—once from the client to the server,
and then from the server to one or more OBDs—instead of
only once had the client been able to directly write into the
OBDs.

In one embodiment, another solution to the problem of
client’s 1nability to interpret higher-revision data structure or
data organization 1s provided as depicted in FIG. 3. In that
embodiment, as shown at block 46, when the client discovers
that 1t cannot interpret the map supplied by the newer SM, the
client 24, 26 sends to the SM 16 a description of the data
access operation (e.g., a dataread operation to object X, a data
write operation to object Y, etc.) that the client wishes to
perform on a given object (file/directory) to accomplish the
desired data read/write operation. The client may simply
execute an RPC against the storage manager 16. The client
may send exactly the same information to the SM 16 as 1t
would send 1f the SM were going to proxy the operation,
except that here the client does not send or expect data with 1ts
request to the SM 16. The client may simply send to the SM
16 the information such as, for example, the object_ID,
whether the access 1s a read or a write, the offset into the
object at which to read or write, and the number of bytes to
read or write. Although not relevant here, 1t 1s however noted
that various other requests (e.g., get-attributes, set-attributes,
etc.) related to access to the data storage may also be sent 1n
this manner.

Using that object-specific layout information created and
maintained therein along with the mnformation about client-
requested data access operation, the SM 16 constructs the
necessary DAG (block 48) and then sends the DAG to the
client (block 50). The DAG 1dentifies the complete sequence
of I/O operations (e.g., disk access, transmission of data,
confirmation of data delivery, etc.) to be performed to effect
the desired data access operation. The client can then interpret
the SM-supplied DAG directly and execute that DAG to per-
form the required 1/0 operation(s) itself (block 44).

Thus, as a client 24, 26 can interpret a DAG and execute it
using a generic execution engine—even when the client 1s of
an older revision than that of the server (or SM 16)—it 1s
almost always possible for the server to construct a DAG that
1s interpretable by the client. This SM-constructed DAG
approach 1s preferably used when the SM 1s of a newer revi-
sion than that of the client as discussed herein. It 1s noted,
however, that the SM-constructed DAG approach may still
remain less elficient than the case where the client can 1tself
interpret the DAG. But, the SM-constructed DAG approach
may be far more efficient than the proxy solution discussed
hereinabove because the data to be read or written does not
need to transit the network twice (as 1s the case 1n the proxy
solution) and because the load on the storage manager 1s kept
low.

It 1s noted that various managers (e.g., file managers 14,
storage managers 16, etc.) shown and described with refer-
ence to FIG. 1, and the program code implemented to operate
the system 10 1n FIG. 1 may reside on a computer-readable,
tangible storage medium (e.g., acompact disc, an optical disc,
a magnetic storage medium such as a computer hard drive,
etc.) allowing ease of software portability and system man-
agement. The program code on the storage medium can be
executed by a computer system processor and upon execu-
tion, the program code may cause the processor to perform
various operations described hereinabove with reference to
individual components (e.g., managers) constituting the pro-
gram code. Similarly, a client application (e.g., any of the
client applications 24, 26 in FIG. 1) can also be stored on a
computer-readable data storage medium and executed there-
from.

US 8,095,503 B2

9

The foregoing describes a method for allowing client com-
puters 1n a distributed object-based data storage system to
interpret higher revision data structures. In such a system,
clients are directly responsible for reading and writing all

10

said first computer executing said DAG to perform said
second set of operations 1n said sequence.

2. The method of claim 1, wherein said data access map

includes a layout map describing how one or more objects to

data, both normal data and redundant information (for fault 5 be accessed during said data access are stored 1n said data

tolerance). In one embodiment, clients request layout maps of
objects to be accessed from respective storage managers 1n
the system and then construct and execute directed acyclic
graphs (DAG) to accomplish desired I/O operations for data
access. As time passes, newer mechanisms or solutions, for
example, for arranging redundant information or store other
data on the OBDs may be employed with newer revisions of
storage manager software. Thus, a client computer running an
older solftware revision may not be able to interpret a particu-
lar data organization that was designed after that client’s
soltware was 1nstalled. In order for allowing an old client to
access data stored 1n a new format, a network service may be
devised wherein a storage manager can interpret a data layout
scheme for a client on a per-access basis and return to that
client a DAG containing a data structure that describes the
sequence ol I/O operations necessary to effect a data access.
The client can then execute the storage manager-supplied
DAG to carry out the data access.

While the invention has been described 1n detail and with
reference to specific embodiments thereot, 1t will be apparent
to one skilled 1n the art that various changes and modifications
can be made therein without departing from the spint and
scope thereof. Thus, it 1s intended that the present invention
cover the modifications and variations of this invention pro-
vided they come within the scope of the appended claims and
their equivalents.

The mvention claimed 1s:

1. A method of accessing data 1n an object-based data
storage system including a first computer and a second com-
puter, said method comprising:

said first computer obtaining a data access map from said

second computer, wherein said data access map contains
information to be interpreted by said first computer to
perform said data access;

said first computer interpreting said data access map so as

to determine a first set of operations needed to be per-
formed by said first computer for accessing said data;
and

said first computer performing said first set of operations

and a second set of operations to access said data
wherein said first computer performing said second set of
operations includes:

said first computer constructing a directed acyclic graph

(DAG) after interpreting said information 1n said data
access map, wherein said DAG 1dentifies a sequence for
said second set of operations needed to be performed by
said first computer for accessing said data; and

10

15

20

25

30

35

40

45

50

storage system, and wherein said layout map contains at least
one of the following:

a {irst information about a storage layout scheme for said
one or more objects;

a second mnformation about which one or more of a plural-
ity of storage disks in said data storage system are used
to store said one or more objects; and

a third information about the number of disks from said
plurality of storage disks that are used to store said one or
more objects.

3. The method of claim 1, wherein said first computer
performing said first set of operations includes at least one of
the following:

said first computer computing, using said data access map,
one or more physical disk locations 1n one or more of a
plurality of storage disks 1n said data storage system that
need to be accessed for said data access; and

said first computer further computing one or more byte
offsets for accessing said data in said one or more of said
plurality of storage disks.

4. In an object-based data storage system including a plu-
rality of client computers and a server computer, wherein
cach of said plurality of client computers 1s configured to
perform a corresponding data access to a storage disk 1n said
data storage system, a method of accessing data in said stor-
age disk comprising:

cach of said plurality of client computers constructing a
corresponding directed acyclic graph (DAG), wherein
cach said corresponding DAG 1dentifies a sequence for a
respective first set of operations needed to be performed
by corresponding client computer for said correspond-
ing data access; and

cach of said plurality of client computers executing said
corresponding DAG to perform said respective first set
ol operations 1n said sequence for said corresponding
data access.

5. The method of claim 4, further comprising;

cach of said plurality of client computers obtaining a
respective data access map from said server computer,
wherein each said respective data access map contains
information to be interpreted by a corresponding client
computer to determine a respective second set ol opera-
tions needed to be performed by said client computer as
part of said corresponding data access; and

cach of said plurality of client computers performing said
respective second set of operations.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

