US008083770B2 # (12) United States Patent Ruff et al. # (10) Patent No.: US 8,083,770 B2 (45) **Date of Patent:** *Dec. 27, 2011 ### (54) SUTURE ANCHOR AND METHOD (75) Inventors: **Gregory L. Ruff**, Chapel Hill, NC (US); Jeffrey C. Leung, Chapel Hill, NC (US); Andrew Kaplan, Hillsborough, NC (US) (73) Assignee: Quill Medical, Inc. (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 830 days. This patent is subject to a terminal dis- claimer. (21) Appl. No.: 12/119,749 (22) Filed: May 13, 2008 (65) Prior Publication Data US 2008/0234731 A1 Sep. 25, 2008 # Related U.S. Application Data - (62) Division of application No. 10/914,755, filed on Aug. 9, 2004, now Pat. No. 7,371,253, which is a division of application No. 10/216,516, filed on Aug. 9, 2002, now Pat. No. 6,773,450. - (51) Int. Cl. A61B 17/04 (2006.01) ### (56) References Cited ### U.S. PATENT DOCUMENTS 709,392 A 9/1902 Brown 733,723 A 7/1903 Lukens | 789,401 A | 5/1905 | Acheson | |-------------|---------|-------------| | 816,026 A | 3/1906 | Meier | | 879,758 A | 2/1908 | Foster | | 1,142,510 A | 6/1915 | Engle | | 1,248,825 A | 12/1917 | Dederer | | 1,321,011 A | 11/1919 | Cottes | | 1,558,037 A | 10/1925 | Morton | | 1,728,316 A | 9/1929 | Wachenfeldt | | 1,886,721 A | 11/1932 | O'Brien | | 2,094,578 A | 10/1937 | Blumenthal | | | (Con | tinued) | #### FOREIGN PATENT DOCUMENTS BE 1014364 9/2003 (Continued) ### OTHER PUBLICATIONS International Search Report for PCT/US2007/074658 dated Jun. 12, 2007, 3 pages. (Continued) Primary Examiner — Julian Woo (74) Attorney, Agent, or Firm — Angiotech # (57) ABSTRACT A suture anchor is provided for approximating tissue to bone or other tissue. The suture anchor comprises an anchor member to fixedly engage the bone for securing the anchor member relative to the bone. A plurality of sutures are mounted to the proximal end of the anchor member so that the sutures extend outwardly from the anchor member. Each suture has a sharp pointed distal end for penetrating the tissue and a plurality of barbs extending from the periphery and disposed along the length of the body of the suture. The barbs permit movement of the sutures through the tissue in a direction of movement of the pointed end and prevent movement of the sutures relative to the tissue in a direction opposite the direction of movement of the pointed end. At least one pointed distal end of at least one suture comprises a needle. ### 11 Claims, 11 Drawing Sheets | U.S | . PATENT | DOCUMENTS | 4,505,274 | A | 3/1985 | Speelman | |----------------------------|--------------------|-------------------------|------------------------|--------------|-------------------|--------------------------| | | | | 4,510,934 | | 4/1985 | - | | 2,201,610 A
2,232,142 A | | Dawson, Jr.
Schumann | 4,531,522 | | 7/1985 | | | 2,252,142 A
2,254,620 A | 9/1941 | | 4,532,926 | | | O'Holla | | 2,347,956 A | | Lansing | 4,535,772 | | | Sheehan | | 2,355,907 A | 8/1944 | • | 4,548,202 | | 10/1985 | | | 2,421,193 A | 5/1947 | Gardner | 4,553,544
4,610,250 | | 11/1985
9/1986 | | | 2,472,009 A | 5/1949 | Gardner | 4,610,251 | | 9/1986 | | | 2,572,936 A | 10/1951 | . - | 4,635,637 | | | Schreiber | | 2,684,070 A | 7/1954 | | 4,637,380 | | | Orejola | | 2,779,083 A | 1/1957 | | 4,653,486 | A | 3/1987 | • | | 2,814,296 A
2,817,339 A | 11/1957
12/1957 | | 4,669,473 | | | Richards | | 2,866,256 A | 12/1957 | | 4,676,245 | | | Fukuda | | 2,910,067 A | 10/1959 | | 4,719,917 | | | Barrows | | 2,988,028 A | 6/1961 | | 4,741,330 | | | Hayhurst | | 3,003,155 A | 10/1961 | Mielzynski | 4,750,910
4,751,621 | | | Takayanagi
Jenkins | | 3,068,869 A | 12/1962 | Shelden | 4,776,337 | | 10/1988 | _ | | 3,068,870 A | 12/1962 | | 4,832,025 | | 5/1989 | | | 3,123,077 A | | Alcamo | 4,841,960 | | 6/1989 | | | 3,166,072 A | | Sullivan | 4,865,026 | | 9/1989 | | | 3,187,752 A | 6/1965 | | 4,873,976 | A | 10/1989 | Schreiber | | 3,206,018 A
3,209,652 A | 9/1965 | | 4,887,601 | A | 12/1989 | Richards | | 3,209,032 A
3,209,754 A | 10/1965 | Burgsmueller | 4,895,148 | | 1/1990 | _ | | 3,214,810 A | | Mathison | 4,898,156 | | | Gatturna | | 3,221,746 A | 12/1965 | | 4,899,743 | | | Nicholson | | 3,234,636 A | 2/1966 | | 4,900,605 | | | Thorgersen | | 3,273,562 A | 9/1966 | Brown | 4,905,367
4,930,945 | | 5/1990
6/1990 | Pinchuk | | 3,352,191 A | 11/1967 | Crawford | 4,932,962 | | 6/1990 | | | 3,378,010 A | 4/1968 | Codling | 4,946,468 | | 8/1990 | | | 3,385,299 A | | Le Roy | 4,948,444 | | 8/1990 | | | 3,494,006 A | | Brumlik | 4,950,258 | | 8/1990 | | | 3,525,340 A | 8/1970 | | 4,950,285 | \mathbf{A} | 8/1990 | Wilk | | 3,527,223 A | 9/1970 | | 4,968,315 | \mathbf{A} | 11/1990 | Gatturna | | 3,545,608 A
3,570,497 A | $\frac{12}{1970}$ | Lemole | 4,976,715 | | 12/1990 | | | 3,586,002 A | 6/1971 | | 4,981,149 | | 1/1991 | | | 3,608,095 A | 9/1971 | | 4,994,073 | | 2/1991 | _ | | 3,608,539 A | 9/1971 | | 4,997,439 | | 3/1991 | | | 3,646,615 A | 3/1972 | | 5,002,550
5,002,562 | | 3/1991 | Oberlander | | 3,683,926 A | 8/1972 | Suzuki | 5,002,302 | | 4/1991 | | | 3,700,433 A | 10/1972 | | 5,007,922 | | 4/1991 | | | 3,716,058 A | | Tanner, Jr. | 5,026,390 | | 6/1991 | | | 3,720,055 A | | deMestral | 5,037,422 | | 8/1991 | Hayhurst | | 3,825,010 A | | McDonald | 5,041,129 | \mathbf{A} | 8/1991 | Hayhurst | | 3,833,972 A
3,845,641 A | 11/1974 | Brumlik
Waller | 5,046,513 | | 9/1991 | Gatturna | | 3,847,156 A | 11/1974 | | 5,047,047 | | 9/1991 | | | 3,918,455 A | 11/1975 | | 5,053,047 | | | Yoon | | 3,951,261 A | 4/1976 | - | 5,084,063 | | | Korthoff | | 3,981,051 A | 9/1976 | Brumlik | 5,089,010
5,101,968 | | | Korthoff
Henderson | | 3,981,307 A | 9/1976 | Borysko | 5,101,908 | | | Granger | | 3,985,138 A | 10/1976 | | 5,102,421 | | | Anspach, Jr. | | 3,985,227 A | 10/1976 | | 5,103,073 | | | Danilov | | 4,006,747 A | | Kronenthal | 5,112,344 | | 5/1992 | | | 4,008,303 A | 2/1977 | | 5,123,911 | A | 6/1992 | Granger | | 4,027,608 A
4,043,344 A | 8/1977 | Arbuckle | 5,123,913 | A | 6/1992 | Wilk | | D246,911 S | | Bess, Jr. | 5,123,919 | | 6/1992 | | | 4,069,825 A | | Akiyama | 5,127,413 | | 7/1992 | | | 4,073,298 A | | Le Roy | 5,133,738 | | | Korthoff | | 4,137,921 A | | Okuzumi | 5,141,520 | | 8/1992 | | | 4,198,734 A | 4/1980 | Brumlik | 5,147,382
5,156,788 | | | Gertzman
Chesterfield | | 4,204,541 A | 5/1980 | Kapitanov | 5,176,692 | | 1/1993 | | | 4,204,542 A | 5/1980 | | 5,179,964 | | 1/1993 | | | 4,259,959 A | 4/1981 | | 5,192,274 | | | Bierman | | 4,300,424 A | 11/1981 | | 5,192,302 | A | 3/1993 | Kensey | | 4,311,002 A | | Dipalma
Stokes | 5,192,303 | \mathbf{A} | 3/1993 | Gatturna | | 4,313,448 A
4,316,469 A | 2/1982
2/1982 | Kapitanov | 5,197,597 | \mathbf{A} | 3/1993 | Leary | | 4,317,451 A | | Cerwin | 5,207,679 | A | 5/1993 | Li | | 4,428,376 A | | Mericle | 5,207,694 | A | 5/1993 | Broome | | 4,430,998 A | 2/1984 | | 5,217,486 | A | 6/1993 | | | 4,434,796 A | | Karapetian | 5,217,494 | | | Coggins | | 4,454,875 A | 6/1984 | - | 5,222,508 | | | Contarini | | 4,467,805 A | | Fukuda | 5,222,976 | | 6/1993 | | | 4,492,075 A | 1/1985 | | 5,224,946 | | | Hayhurst | | 4,493,323 A | 1/1985 | Albright | 5,242,457 | A | 9/1993 | Akopov | | | | | | | | | | 5,246,441 A | 9/1993 | Ross | 5,716,35 | 8 A | 2/1998 | Ochoa | |-------------|---------|---------------|----------|------|---------|---------------| | 5,249,673 A | 10/1993 | Sinn | 5,716,37 | 6 A | 2/1998 | Roby | | 5,258,013 A | | Granger | 5,722,99 | | | Colligan | | 5,263,973 A | 11/1993 | ب ا | 5,723,00 | | | Gordon | | 5,269,783 A | 12/1993 | | 5,725,55 | | | Gatturna | | , , | | | , , , | | | | | 5,282,832 A | 2/1994 | | 5,728,11 | | 3/1998 | | | 5,292,326 A | 3/1994 | | 5,741,27 | | | Gordon | | 5,306,288 A | 4/1994 | Granger | 5,763,41 | 1 A | 6/1998 | Edwardson | | 5,306,290 A | 4/1994 | Martins | 5,765,56 | 0 A | 6/1998 | Verkerke | | 5,320,629 A | 6/1994 | Noda | 5,779,71 | 9 A | 7/1998 | Klein | | 5,330,488 A | | Goldrath | 5,782,86 | | 7/1998 | | | 5,330,503 A | 7/1994 | | 5,807,40 | | 9/1998 | | | , , | | | | | | | | 5,336,239 A | | Gimpelson | 5,807,40 | | | Brauker | | 5,341,922 A | | Cerwin | 5,810,85 | | 9/1998 | | | 5,342,376 A | 8/1994 | Ruff | 5,814,05 | 1 A | 9/1998 | Wenstrom, Jr. | | 5,342,395 A | 8/1994 | Jarrett | 5,843,08 | 7 A | 12/1998 | Jensen | | 5,352,515 A | 10/1994 | Jarrett | 5,843,17 | 8 A | 12/1998 | Vanney | | 5,354,271 A | 10/1994 | | 5,863,36 | | 1/1999 | - | | 5,354,298 A | 10/1994 | | 5,884,85 | | 3/1999 | | | , , | | | _'' | | | | | 5,358,511 A | | Gatturna | 5,887,59 | | | LoCicero, III | | 5,372,146 A | 12/1994 | | 5,891,16 | | | Schervinsky | | 5,374,268 A | 12/1994 | Sander | 5,893,85 | 6 A | 4/1999 | Jacob | | 5,374,278 A | 12/1994 | Chesterfield | 5,895,39 | 5 A | 4/1999 | Yeung | | 5,380,334 A | 1/1995 | Torrie | 5,895,41 | 3 A | 4/1999 | Nordstrom | | 5,391,173 A | 2/1995 | Wilk | 5,897,57 | 2. A | 4/1999 | Schulsinger | | 5,395,126 A | | Tresslar | 5,899,91 | | | Carter | | , , | | | | | | | | 5,403,346 A | | Loeser | 5,916,22 | | 6/1999 | - | | 5,411,523 A | 5/1995 | | 5,919,23 | | | Lemperle | | 5,414,988 A | 5/1995 | Di Palma | 5,921,98 | 2 A | 7/1999 | Lesh | | 5,417,691 A | 5/1995 | Hayhurst | 5,925,07 | 8 A | 7/1999 | Anderson | | 5,425,746 A | 6/1995 | Proto | 5,931,85 | 5 A | 8/1999 | Buncke | | 5,425,747 A | 6/1995 | | 5,935,13 | | | McJames, II | | 5,437,680 A | 8/1995 | | 5,938,66 | | 8/1999 | , | | | | | | | | | | 5,450,860 A | | O'Connor | 5,950,63 | | 9/1999 | | | 5,451,461 A | | Broyer | 5,954,74 | | 9/1999 | | | 5,462,561 A | 10/1995 | | 5,968,09 | | 10/1999 | | | 5,464,427 A | 11/1995 | Curtis | 5,972,02 | 4 A | 10/1999 | Northrup, III | | 5,472,452 A | 12/1995 | Trott | 5,984,93 | 3 A | 11/1999 | Yoon | | 5,478,353 A | 12/1995 | Yoon | 5,993,45 | 9 A | 11/1999 | Larsen | | 5,480,403 A | 1/1996 | | 6,001,11 | _ | 12/1999 | | |
5,480,411 A | 1/1996 | | 6,012,21 | | | Esteves | | , , | | | , , , | | | _ | | 5,484,451 A | | Akopov | 6,015,41 | | | Tormala | | 5,486,197 A | 1/1996 | | 6,024,75 | | 2/2000 | | | 5,494,154 A | 2/1996 | Ainsworth | 6,027,52 | 3 A | 2/2000 | Schmieding | | 5,500,000 A | 3/1996 | Feagin | 6,039,74 | 1 A | 3/2000 | Meislin | | 5,500,991 A | 3/1996 | Demarest | 6,056,77 | 8 A | 5/2000 | Grafton | | 5,520,084 A | 5/1996 | Chesterfield | 6,063,10 | 5 A | 5/2000 | Totakura | | 5,520,691 A | | Branch | 6,074,41 | | 6/2000 | | | 5,522,845 A | | | 6,076,25 | | | Shikakubo | | , , | | Wenstrom, Jr. | , , , | | | | | 5,531,760 A | | Alwafaie | 6,083,24 | | | Lubbers | | 5,531,761 A | 7/1996 | | 6,102,94 | | | Gordon | | 5,531,790 A | 7/1996 | Frechet | 6,106,54 | 4 A | 8/2000 | Brazeau | | 5,533,982 A | 7/1996 | Rizk | D433,75 | 3 S | 11/2000 | Weiss | | 5,536,582 A | 7/1996 | Prasad | 6,146,40 | 6 A | 11/2000 | Shluzas | | 5,540,705 A | 7/1996 | | 6.146.40 | | 11/2000 | | | 5,540,718 A | | Bartlett | 6,149,66 | | 11/2000 | | | 5,546,957 A | 8/1996 | | 6,163,94 | | 12/2000 | | | 5,554,171 A | | | , , | | | | | , , | | Gatturna | 6,165,20 | | 1/2000 | | | 5,566,822 A | | Scanlon | 6,168,63 | | 1/2001 | | | 5,571,175 A | 11/1996 | | 6,174,32 | | 1/2001 | • | | 5,571,216 A | | Anderson | 6,183,49 | 9 B1 | 2/2001 | Fischer | | 5,573,543 A | 11/1996 | Akopov | 6,187,09 | 5 B1 | 2/2001 | Labrecque | | 5,584,859 A | 12/1996 | - | 6,206,90 | 8 B1 | 3/2001 | . • | | 5,601,557 A | | | 6,235,86 | | 5/2001 | . • | | 5,626,590 A | 5/1997 | | 6,241,74 | | 6/2001 | | | | | | | | | | | 5,632,753 A | | Loeser | 6,251,14 | | | Schwartz | | 5,643,288 A | | Thompson | 6,264,67 | | 7/2001 | | | 5,643,295 A | 7/1997 | Yoon | 6,267,77 | | 7/2001 | Mulhauser | | 5,643,319 A | 7/1997 | Green | 6,270,51 | 7 B1 | 8/2001 | Brotz | | 5,647,874 A | 7/1997 | Hayhurst | 6,315,78 | | 11/2001 | Roby | | 5,649,939 A | | Reddick | 6,319,23 | | | Andrulitis | | , , | | | / / | | | | | 5,653,716 A | 8/1997 | | 6,334,86 | | | Redmond | | 5,662,714 A | 9/1997 | Charvin | 6,387,36 | | 5/2002 | Gruskin | | 5,669,935 A | 9/1997 | Rosenman | 6,388,04 | 3 B1 | 5/2002 | Langer | | D386,583 S | 11/1997 | Ferragamo | 6,395,02 | | 5/2002 | • | | , | | Cooper 606/2 | , , | | 9/2002 | • | | | | - | | | | | | 5,697,976 A | | | 6,443,96 | | | | | 5,702,462 A | | Oberlander | 6,463,71 | | 10/2002 | • | | 5,709,692 A | 1/1998 | Mollenauer | 6,471,71 | 5 B1 | 10/2002 | Weiss | | -
- | 0 (5 0 0 5 | _ | |---|--------------------|----------------------|---|---------|---------------------------------------|-------------------|------------|-------------------|-------------------------| | , , | 11/2002 | _ | | | , | 12,214 | | | Peterson | | , , | 11/2002 | | | | , | 25,403 | | | | | 6,491,701 B2
6,494,898 B1 | 12/2002
12/2002 | | | | , | 25,413
32,107 | | 11/2006 | Grigoryants
Peterson | | 6,495,127 B1 | | • | | | | 38,441 | | | | | , , | 1/2003 | | | | , | 41,302 | | | _ | | 6,506,190 B1 | | | | | , | 44,401 | | | Yamamoto | | 6,511,488 B1 | | | | | , | 44,412 | | 12/2006 | | | 6,514,265 B2 | 2/2003 | Но | | | 7,1 | 44,415 | B2 | 12/2006 | Del Rio | | 6,527,795 B1* | 3/2003 | Lizardi | | 606/232 | 7,1 | 50,757 | B2 | 12/2006 | Fallin | | 6,551,343 B1 | | Tormala et al. | | | | - | | | Schuldt-Hempe | | 6,554,802 B1 | | | | | · · · · · · · · · · · · · · · · · · · | , | | 1/2007 | | | 6,565,597 B1 | | Fearnot | | | , | 60,312 | | 1/2007 | | | 6,592,609 B1 | | Bonutti
Nolcon | | | · · · · · · · · · · · · · · · · · · · | 66,570
72,595 | | 1/2007 | | | 6,596,296 B1
6,599,310 B2 | 7/2003 | Nelson
Leung | | | , | 72,615 | | 2/2007
2/2007 | Morriss | | 6,607,541 B1 | | Gardiner | | | / | 86,262 | | 3/2007 | | | 6,610,078 B1 | | Bru-Magniez | | | , | 95,634 | | | Schmieding | | 6,613,059 B2 | | Schaller | | | , | 11,088 | | | Grafton | | 6,613,254 B1 | 9/2003 | Shiffer | | | 7,2 | 14,230 | B2 | 5/2007 | Brock | | 6,616,982 B2 | | Merrill | | | , | 17,744 | | | Lendlein | | 6,623,492 B1 | | Berube | | | / | 25,512 | | | Genova | | 6,626,930 B1 | 9/2003 | | | | / | 26,468 | | 6/2007 | | | 6,641,592 B1
6,641,593 B1 | 11/2003 | | | | , | 32,447
44,270 | | 7/2007 | Gellman | | 6,645,226 B1 | 11/2003 | | | | , | 79,612 | | 10/2007 | | | , , | 11/2003 | | | | · · · · · · · · · · · · · · · · · · · | 97,142 | | 11/2007 | | | , , | | Anderson | | | · · · · · · · · · · · · · · · · · · · | 22,105 | | | | | , , | | Hayhurst | | | , | 71,253 | | 5/2008 | | | 6,689,153 B1 | 2/2004 | Skiba | | | 7,5 | 13,904 | B2 | 4/2009 | Sulamanidze | | 6,702,844 B1 | | Lazarus | | | , | 14,095 | | 4/2009 | | | 6,712,830 B2 | 3/2004 | | | | , | 82,105 | | 9/2009 | | | 6,716,234 B2 | | Grafton | | | , | 01,164 | | 10/2009 | | | 6,720,402 B2
6,726,705 B2 | | Langer
Peterson | | | | 524,487
011187 | | 12/2009
8/2001 | Pavenik | | 6,746,443 B1 | 6/2004 | | | | | 018599 | | | D'Aversa | | 6,746,458 B1 | 6/2004 | | | | | 039450 | | 11/2001 | | | 6,749,616 B1 | | | | | 2001/00 | 044637 | A1 | 11/2001 | Jacobs | | 6,773,450 B2* | | _ | • | 606/232 | 2001/00 | 051807 | A1 | 12/2001 | | | 6,783,554 B2 | | | | | | 051815 | | 12/2001 | - . | | 6,814,748 B1 | | | | | | 007218 | | | | | 6,818,010 B2
6,838,493 B2 | | Eichhorn
Williams | | | | 022861
029066 | | 2/2002
3/2002 | Foerster | | 6,848,152 B2 | | | | | | 069617 | | 6/2002 | | | 6,852,825 B2 | | | | | | 077448 | | 6/2002 | • | | , , | 2/2005 | | | | 2002/00 | 077631 | A1 | | Lubbers | | 6,860,891 B2 | | Schulze | | | 2002/00 | 095164 | A1 | 7/2002 | Andreas | | 6,860,901 B1 | | _ | | | | 099394 | | 7/2002 | | | 6,877,934 B2 | 4/2005 | | | | | 111641 | | | Peterson | | 6,881,766 B2
6,893,452 B2 | 4/2005
5/2005 | | | | | 111688
138009 | | | Cauthen
Brockway | | 6,905,484 B2 | | Buckman | | | | 151980 | | 10/2002 | • | | 6,911,035 B1 | | | | | | 173807 | | 11/2002 | | | 6,911,037 B2 | | | | | | 173822 | | 11/2002 | _ | | 6,913,607 B2 | 7/2005 | Ainsworth | | | 2002/01 | 179718 | A1 | 12/2002 | Murokh | | , | 7/2005 | | | | | | | 1/2003 | _ | | 6,923,819 B2 | 8/2005 | | | | | 040795 | | 2/2003 | | | 6,945,980 B2 | 9/2005 | ~ . | | | | 041426 | | | Genova | | / / | 11/2005
11/2005 | | | | | 065360
065402 | | 4/2003
4/2003 | Jacobs
Anderson | | , , | 12/2005 | .~ | | | | 069602 | | 4/2003 | | | 6,981,983 B1 | | | | | | 074021 | | | Morriss | | 6,984,241 B2 | | | | | | 074023 | | 4/2003 | | | 6,986,780 B2 | 1/2006 | Rudnick | | | 2003/00 | 078604 | A1 | | - | | 6,991,643 B2 | | Saadat | | | | 088270 | | | Lubbers | | | | Kurtz, Jr. | | | | 097150 | | 5/2003 | | | 7,021,316 B2 | 4/2006 | | | | | 105489 | | | Eichhorn | | 7,033,379 B2
7,033,603 B2 | | Peterson
Nelson | | | | 149447
158604 | | | Morency
Cauthen, III | | 7,033,003 B2
7,037,984 B2 | | Lendlein | | | | 167072 | | | Oberlander | | 7,048,748 B1 | | Üstüner | | | | 203003 | | 10/2003 | | | 7,056,331 B2 | | Kaplan | | | | 204195 | | 10/2003 | | | 7,056,333 B2 | 6/2006 | - | | | | 229361 | | 12/2003 | | | 7,057,135 B2 | 6/2006 | Li | | | 2003/02 | 236550 | A 1 | 12/2003 | Peterson | | 7,070,610 B2 | 7/2006 | Im | | | 2003/02 | 236551 | A 1 | 12/2003 | Peterson | | 7,081,135 B2 | 7/2006 | | | | | | | 1/2004 | | | 7,083,637 B1 | | | | | | 010276 | | | | | 7,083,648 B2 | 8/2006 | | | | | 015187 | | | Lendlein | | 7,107,090 B2 | 9/2006 | Salisbury, Jr. | | | 2004/00 | 024420 | Al | 2/2004 | Lubbers | | | | | | | | | | | | | 2004/0028655 A1 | | | | | | |---|--|---|--
--|--| | 0004/000054 44 | 2/2004 | Nelson | 2006/0122608 A1 | 6/2006 | Fallin | | 2004/0030354 A1 | 2/2004 | Leung | 2006/0135994 A1 | 6/2006 | Ruff | | 2004/0039415 A1 | | Zamierowski | 2006/0135995 A1 | 6/2006 | | | 2004/0059377 A1 | | Peterson | 2006/0133333 ATT | 6/2006 | | | | | | | | | | 2004/0059378 A1 | | Peterson | 2006/0193769 A1 | 8/2006 | | | 2004/0060409 A1 | 4/2004 | Leung | 2006/0194721 A1 | 8/2006 | Allen | | 2004/0060410 A1 | 4/2004 | Leung | 2006/0200062 A1 | 9/2006 | Saadat | | 2004/0068293 A1 | 4/2004 | . • | 2006/0207612 A1 | 9/2006 | Jackson | | 2004/0068294 A1 | 4/2004 | | 2006/0207612 711
2006/0229671 A1 | 10/2006 | _ | | | | | | | | | 2004/0088003 A1 | 5/2004 | | 2006/0235445 A1 | 10/2006 | | | 2004/0093023 A1 | 5/2004 | Allen | 2006/0235447 A1 | 10/2006 | Walshe | | 2004/0093028 A1 | 5/2004 | Ruff | 2006/0235516 A1 | 10/2006 | Cavazzoni | | 2004/0098051 A1 | 5/2004 | Fallin | 2006/0241658 A1 | 10/2006 | Cerundolo | | 2004/0106949 A1 | 6/2004 | | 2006/0249405 A1 | 11/2006 | _ | | | | | | | | | 2004/0138683 A1 | | Shelton | 2006/0253126 A1 | 11/2006 | • | | 2004/0153153 A1 | 8/2004 | _ | 2006/0257629 A1 | | Lendlein | | 2004/0167572 A1 | 8/2004 | Roth | 2006/0258938 A1 | 11/2006 | Hoffman | | 2004/0167575 A1 | 8/2004 | Roby | 2006/0272979 A1 | 12/2006 | Lubbers | | 2004/0193191 A1 | | Starksen | 2006/0276808 A1 | 12/2006 | Arnal | | 2004/0193217 A1 | | Lubbers | 2006/0282099 A1 | 12/2006 | _ | | | | | | | | | 2004/0193257 A1 | 9/2004 | | 2006/0286289 A1 | | Prajapati | | 2004/0226427 A1 | 11/2004 | | 2006/0287675 A1 | | Prajapati | | 2004/0237736 A1 | 12/2004 | Genova | 2006/0287676 A1 | 12/2006 | Prajapati | | 2004/0254609 A1 | 12/2004 | Esplin | 2006/0293710 A1 | 12/2006 | Foerster | | 2004/0260340 A1 | 12/2004 | • | 2007/0005109 A1 | | | | 2004/0265282 A1 | 12/2004 | | 2007/0005105 711
2007/0005110 A1 | | Collier | | | | \mathbf{c} | | | | | 2004/0267309 A1 | 12/2004 | | 2007/0021779 A1 | | Garvin | | 2005/0004601 A1 | 1/2005 | - | 2007/0027475 A1 | 2/2007 | Pagedas | | 2005/0004602 A1 | 1/2005 | - | 2007/0038249 A1 | 2/2007 | Kolster | | 2005/0033324 A1 | 2/2005 | | 2007/0065663 A1 | 3/2007 | | | 2005/0033367 A1 | 2/2005 | | 2007/0088391 A1 | | McAlexander | | | | - | | | | | 2005/0034431 A1 | 2/2005 | | 2007/0135840 A1 | | Schmieding | | 2005/0038472 A1 | 2/2005 | Furst | 2007/0135843 A1 | 6/2007 | Burkhart | | 2005/0059984 A1 | 3/2005 | Chanduszko | 2007/0151961 A1 | 7/2007 | Kleine | | 2005/0065533 A1 | 3/2005 | Magen | 2007/0156175 A1 | 7/2007 | Weadock | | 2005/0070959 A1 | | Cichocki, Jr. | 2007/0167958 A1 | | Sulamanidze | | 2005/0080455 A1 | | Schmieding | 2007/0187861 A1 | | Genova | | | | | | | | | 2005/0085857 A1 | | Peterson | 2007/0208355 A1 | | Ruff | | 2005/0096698 A1 | 5/2005 | Lederman | 2007/0208377 A1 | 9/2007 | Kaplan | | 2005/0106211 A1 | 5/2005 | Nelson | 2007/0219587 A1 | 9/2007 | Accardo | | 2005/0113936 A1 | 5/2005 | Brustad | 2007/0224237 A1 | 9/2007 | Hwang | | 2005/0119694 A1 | 6/2005 | | 2007/0225642 A1 | | Houser | | 2005/0125020 A1 | 6/2005 | | 2007/0225761 A1 | | | | | | | | 9/2007 | • | | 2005/0125034 A1 | | Cichocki, Jr. | 2007/0227914 A1 | 10/2007 | Cerwin | | | ~/^^ | Cials a alsi In | | 10/000 | | | 2005/0125035 A1 | 6/2005 | Cichocki, Jr. | 2007/0233188 A1 | 10/2007 | Hunt | | 2005/0125035 A1
2005/0149064 A1 | | Peterson | 2007/0233188 A1
2007/0239206 A1 | | | | 2005/0149064 A1 | 7/2005 | Peterson | 2007/0239206 A1 | 10/2007 | Shelton, IV | | 2005/0149064 A1
2005/0149118 A1 | 7/2005
7/2005 | Peterson
Koyfman | 2007/0239206 A1
2007/0257395 A1 | 10/2007
11/2007 | Shelton, IV
Lindh | | 2005/0149064 A1
2005/0149118 A1
2005/0154255 A1 | 7/2005
7/2005
7/2005 | Peterson
Koyfman
Jacobs | 2007/0239206 A1
2007/0257395 A1
2007/0282247 A1 | 10/2007
11/2007
12/2007 | Shelton, IV
Lindh
Desai | | 2005/0149064 A1
2005/0149118 A1
2005/0154255 A1
2005/0171561 A1 | 7/2005
7/2005
7/2005
8/2005 | Peterson
Koyfman
Jacobs
Songer | 2007/0239206 A1
2007/0257395 A1
2007/0282247 A1
2008/0004603 A1 | 10/2007
11/2007
12/2007
1/2008 | Shelton, IV
Lindh
Desai
Larkin | | 2005/0149064 A1
2005/0149118 A1
2005/0154255 A1 | 7/2005
7/2005
7/2005
8/2005 | Peterson
Koyfman
Jacobs | 2007/0239206 A1
2007/0257395 A1
2007/0282247 A1 | 10/2007
11/2007
12/2007 | Shelton, IV
Lindh
Desai
Larkin | | 2005/0149064 A1
2005/0149118 A1
2005/0154255 A1
2005/0171561 A1 | 7/2005
7/2005
7/2005
8/2005 | Peterson
Koyfman
Jacobs
Songer
Zamierowski | 2007/0239206 A1
2007/0257395 A1
2007/0282247 A1
2008/0004603 A1 | 10/2007
11/2007
12/2007
1/2008
1/2008 | Shelton, IV
Lindh
Desai
Larkin
Schena | | 2005/0149064 A1
2005/0149118 A1
2005/0154255 A1
2005/0171561 A1
2005/0177190 A1
2005/0182444 A1 | 7/2005
7/2005
7/2005
8/2005
8/2005
8/2005 | Peterson Koyfman Jacobs Songer Zamierowski Peterson | 2007/0239206 A1
2007/0257395 A1
2007/0282247 A1
2008/0004603 A1
2008/0009838 A1
2008/0009888 A1 | 10/2007
11/2007
12/2007
1/2008
1/2008
1/2008 | Shelton, IV
Lindh
Desai
Larkin
Schena
Ewers | | 2005/0149064 A1
2005/0149118 A1
2005/0154255 A1
2005/0171561 A1
2005/0177190 A1
2005/0182444 A1
2005/0182445 A1 | 7/2005
7/2005
7/2005
8/2005
8/2005
8/2005
8/2005 | Peterson Koyfman Jacobs Songer Zamierowski Peterson Zamierowski | 2007/0239206 A1
2007/0257395 A1
2007/0282247 A1
2008/0004603 A1
2008/0009838 A1
2008/0009888 A1
2008/0009902 A1 | 10/2007
11/2007
12/2007
1/2008
1/2008
1/2008 | Shelton, IV Lindh Desai Larkin Schena Ewers Hunter | | 2005/0149064 A1
2005/0149118 A1
2005/0154255 A1
2005/0171561 A1
2005/0177190 A1
2005/0182444 A1
2005/0182445 A1
2005/0197699 A1 | 7/2005
7/2005
7/2005
8/2005
8/2005
8/2005
9/2005 | Peterson Koyfman Jacobs Songer Zamierowski Peterson Zamierowski Jacobs | 2007/0239206 A1
2007/0257395 A1
2007/0282247 A1
2008/0004603 A1
2008/0009838 A1
2008/0009888 A1
2008/0009902 A1
2008/0027273 A1 | 10/2007
11/2007
12/2007
1/2008
1/2008
1/2008
1/2008 | Shelton, IV Lindh Desai Larkin Schena Ewers Hunter Gutterman | | 2005/0149064 A1
2005/0149118 A1
2005/0154255 A1
2005/0171561 A1
2005/0177190 A1
2005/0182444 A1
2005/0182445 A1
2005/0197699 A1
2005/0199249 A1 | 7/2005
7/2005
7/2005
8/2005
8/2005
8/2005
9/2005
9/2005 | Peterson Koyfman Jacobs Songer Zamierowski Peterson Zamierowski Jacobs Karram | 2007/0239206 A1
2007/0257395 A1
2007/0282247 A1
2008/0004603 A1
2008/0009838 A1
2008/0009888 A1
2008/0009902 A1
2008/0027273 A1
2008/0027486 A1 | 10/2007
11/2007
12/2007
1/2008
1/2008
1/2008
1/2008
1/2008 | Shelton, IV Lindh Desai Larkin Schena Ewers Hunter Gutterman Jones | | 2005/0149064 A1
2005/0149118 A1
2005/0154255 A1
2005/0171561 A1
2005/0177190 A1
2005/0182444 A1
2005/0182445 A1
2005/0197699 A1
2005/0199249 A1
2005/0203576 A1 | 7/2005
7/2005
7/2005
8/2005
8/2005
8/2005
9/2005
9/2005
9/2005 | Peterson Koyfman Jacobs Songer Zamierowski Peterson Zamierowski Jacobs Karram Sulamanidze | 2007/0239206 A1
2007/0257395 A1
2007/0282247 A1
2008/0004603 A1
2008/0009838 A1
2008/0009888 A1
2008/0009902 A1
2008/0027273 A1
2008/0027486 A1
2008/0046094 A1 | 10/2007
11/2007
12/2007
1/2008
1/2008
1/2008
1/2008
1/2008
2/2008 | Shelton, IV Lindh Desai Larkin Schena Schena Ewers Hunter Gutterman Jones Han | | 2005/0149064 A1
2005/0149118 A1
2005/0154255 A1
2005/0171561 A1
2005/0177190 A1
2005/0182444 A1
2005/0182445 A1
2005/0197699 A1
2005/0199249 A1
2005/0203576 A1
2005/0209542 A1 | 7/2005
7/2005
7/2005
8/2005
8/2005
8/2005
9/2005
9/2005
9/2005
9/2005 | Peterson Koyfman Jacobs Songer Zamierowski Peterson Zamierowski Jacobs Karram Sulamanidze Jacobs | 2007/0239206 A1
2007/0257395 A1
2007/0282247 A1
2008/0004603 A1
2008/0009838 A1
2008/0009888 A1
2008/0009902 A1
2008/0027273 A1
2008/0027486 A1
2008/0046094 A1
2008/0058869 A1 | 10/2007
11/2007
12/2007
1/2008
1/2008
1/2008
1/2008
1/2008
2/2008
3/2008 | Shelton, IV Lindh Desai Larkin Schena Ewers Hunter Gutterman Jones Han Stopek | | 2005/0149064 A1
2005/0149118 A1
2005/0154255 A1
2005/0171561 A1
2005/0177190 A1
2005/0182444 A1
2005/0182445 A1
2005/0197699 A1
2005/0199249 A1
2005/0203576 A1 | 7/2005
7/2005
7/2005
8/2005
8/2005
8/2005
9/2005
9/2005
9/2005 | Peterson Koyfman Jacobs Songer Zamierowski Peterson Zamierowski Jacobs Karram Sulamanidze Jacobs | 2007/0239206 A1
2007/0257395 A1
2007/0282247 A1
2008/0004603 A1
2008/0009838 A1
2008/0009888 A1
2008/0009902 A1
2008/0027273 A1
2008/0027486 A1
2008/0046094 A1 | 10/2007
11/2007
12/2007
1/2008
1/2008
1/2008
1/2008
1/2008
2/2008
3/2008 | Shelton, IV Lindh Desai Larkin Schena Schena Ewers Hunter Gutterman Jones Han | | 2005/0149064 A1
2005/0149118 A1
2005/0154255 A1
2005/0171561 A1
2005/0177190 A1
2005/0182444
A1
2005/0182445 A1
2005/0197699 A1
2005/0199249 A1
2005/0203576 A1
2005/0209542 A1 | 7/2005
7/2005
7/2005
8/2005
8/2005
8/2005
9/2005
9/2005
9/2005
9/2005
9/2005 | Peterson Koyfman Jacobs Songer Zamierowski Peterson Zamierowski Jacobs Karram Sulamanidze Jacobs | 2007/0239206 A1
2007/0257395 A1
2007/0282247 A1
2008/0004603 A1
2008/0009838 A1
2008/0009888 A1
2008/0009902 A1
2008/0027273 A1
2008/0027486 A1
2008/0046094 A1
2008/0058869 A1 | 10/2007
11/2007
12/2007
1/2008
1/2008
1/2008
1/2008
1/2008
2/2008
3/2008
3/2008 | Shelton, IV Lindh Desai Larkin Schena Ewers Hunter Gutterman Jones Han Stopek | | 2005/0149064 A1
2005/0149118 A1
2005/0154255 A1
2005/0171561 A1
2005/0177190 A1
2005/0182444 A1
2005/0182445 A1
2005/0197699 A1
2005/0199249 A1
2005/0203576 A1
2005/0209542 A1
2005/0209612 A1 | 7/2005
7/2005
7/2005
8/2005
8/2005
8/2005
9/2005
9/2005
9/2005
9/2005
10/2005 | Peterson Koyfman Jacobs Songer Zamierowski Peterson Zamierowski Jacobs Karram Sulamanidze Jacobs Nakao | 2007/0239206 A1
2007/0257395 A1
2007/0282247 A1
2008/0004603 A1
2008/0009838 A1
2008/0009888 A1
2008/0009902 A1
2008/0027273 A1
2008/0027486 A1
2008/0046094 A1
2008/0058869 A1
2008/0066764 A1 | 10/2007
11/2007
12/2007
1/2008
1/2008
1/2008
1/2008
1/2008
2/2008
3/2008
3/2008
3/2008 | Shelton, IV Lindh Desai Larkin Schena Ewers Hunter Gutterman Jones Han Stopek Paraschac | | 2005/0149064 A1
2005/0149118 A1
2005/0154255 A1
2005/0171561 A1
2005/0177190 A1
2005/0182444 A1
2005/0182445 A1
2005/0197699 A1
2005/0199249 A1
2005/0203576 A1
2005/0209542 A1
2005/0209612 A1
2005/0234510 A1
2005/0240220 A1 | 7/2005
7/2005
7/2005
8/2005
8/2005
8/2005
9/2005
9/2005
9/2005
9/2005
10/2005
10/2005 | Peterson Koyfman Jacobs Songer Zamierowski Peterson Zamierowski Jacobs Karram Sulamanidze Jacobs Nakao Zamierowski Zamierowski Zamierowski | 2007/0239206 A1
2007/0257395 A1
2007/0282247 A1
2008/0004603 A1
2008/0009838 A1
2008/0009902 A1
2008/0027273 A1
2008/0027486 A1
2008/0046094 A1
2008/0058869 A1
2008/0066764 A1
2008/0066765 A1
2008/0066766 A1 | 10/2007
11/2007
12/2007
1/2008
1/2008
1/2008
1/2008
1/2008
2/2008
3/2008
3/2008
3/2008
3/2008 | Shelton, IV Lindh Desai Larkin Schena Ewers Hunter Gutterman Jones Han Stopek Paraschac Paraschac Paraschac | | 2005/0149064 A1
2005/0149118 A1
2005/0154255 A1
2005/0171561 A1
2005/0177190 A1
2005/0182444 A1
2005/0182445 A1
2005/0197699 A1
2005/0199249 A1
2005/0203576 A1
2005/0209542 A1
2005/0209612 A1
2005/0234510 A1
2005/0240220 A1
2005/0240224 A1 | 7/2005
7/2005
7/2005
8/2005
8/2005
8/2005
9/2005
9/2005
9/2005
9/2005
10/2005
10/2005 | Peterson Koyfman Jacobs Songer Zamierowski Peterson Zamierowski Jacobs Karram Sulamanidze Jacobs Nakao Zamierowski Zamierowski Zamierowski | 2007/0239206 A1
2007/0257395 A1
2007/0282247 A1
2008/0004603 A1
2008/0009838 A1
2008/00099888 A1
2008/0009902 A1
2008/0027273 A1
2008/0027486 A1
2008/0046094 A1
2008/0058869 A1
2008/0066764 A1
2008/0066765 A1
2008/0066766 A1
2008/0066767 A1 | 10/2007
11/2007
12/2008
1/2008
1/2008
1/2008
1/2008
1/2008
2/2008
3/2008
3/2008
3/2008
3/2008
3/2008 | Shelton, IV Lindh Desai Larkin Schena Ewers Hunter Gutterman Jones Han Stopek Paraschac Paraschac Paraschac Paraschac | | 2005/0149064 A1
2005/0149118 A1
2005/0154255 A1
2005/0171561 A1
2005/0177190 A1
2005/0182444 A1
2005/0182445 A1
2005/0197699 A1
2005/0199249 A1
2005/0203576 A1
2005/0209542 A1
2005/0209612 A1
2005/0234510 A1
2005/0240220 A1
2005/0240224 A1
2005/0240224 A1
2005/0267531 A1 | 7/2005
7/2005
7/2005
8/2005
8/2005
8/2005
9/2005
9/2005
9/2005
10/2005
10/2005
10/2005
10/2005 | Peterson Koyfman Jacobs Songer Zamierowski Peterson Zamierowski Jacobs Karram Sulamanidze Jacobs Nakao Zamierowski Zamierowski Zamierowski Wu Ruff | 2007/0239206 A1
2007/0257395 A1
2007/0282247 A1
2008/0004603 A1
2008/0009838 A1
2008/0009902 A1
2008/0027273 A1
2008/0027486 A1
2008/0046094 A1
2008/0058869 A1
2008/0066764 A1
2008/0066765 A1
2008/0066766 A1
2008/0066767 A1
2008/0066767 A1
2008/0077181 A1 | 10/2007
11/2007
12/2008
1/2008
1/2008
1/2008
1/2008
2/2008
3/2008
3/2008
3/2008
3/2008
3/2008
3/2008 | Shelton, IV Lindh Desai Larkin Schena Ewers Hunter Gutterman Jones Han Stopek Paraschac Paraschac Paraschac Paraschac Jones | | 2005/0149064 A1
2005/0149118 A1
2005/0154255 A1
2005/0171561 A1
2005/0177190 A1
2005/0182444 A1
2005/0182445 A1
2005/0197699 A1
2005/0199249 A1
2005/0203576 A1
2005/0209542 A1
2005/0209612 A1
2005/0234510 A1
2005/0234510 A1
2005/0240220 A1
2005/0240224 A1
2005/0240224 A1
2005/0267531 A1
2005/0267532 A1 | 7/2005
7/2005
7/2005
8/2005
8/2005
9/2005
9/2005
9/2005
9/2005
10/2005
10/2005
10/2005
12/2005 | Peterson Koyfman Jacobs Songer Zamierowski Peterson Zamierowski Jacobs Karram Sulamanidze Jacobs Nakao Zamierowski Zamierowski Wu Ruff Wu | 2007/0239206 A1
2007/0257395 A1
2007/0282247 A1
2008/0004603 A1
2008/0009838 A1
2008/0009902 A1
2008/0027273 A1
2008/0027486 A1
2008/0046094 A1
2008/0058869 A1
2008/0066764 A1
2008/0066765 A1
2008/0066766 A1
2008/0066767 A1
2008/0066767 A1
2008/0077181 A1
2008/008/113 A1 | 10/2007
11/2007
12/2007
1/2008
1/2008
1/2008
1/2008
1/2008
2/2008
3/2008
3/2008
3/2008
3/2008
3/2008
3/2008
3/2008
3/2008 | Shelton, IV Lindh Desai Larkin Schena Ewers Hunter Gutterman Jones Han Stopek Paraschac Paraschac Paraschac Paraschac Paraschac Stopek Paraschac Paraschac | | 2005/0149064 A1
2005/0149118 A1
2005/0154255 A1
2005/0171561 A1
2005/0177190 A1
2005/0182444 A1
2005/0182445 A1
2005/0197699 A1
2005/0199249 A1
2005/0203576 A1
2005/0209542 A1
2005/0209612 A1
2005/0234510 A1
2005/0240220 A1
2005/0240224 A1
2005/0267531 A1
2005/0267532 A1
2005/0277984 A1 | 7/2005
7/2005
7/2005
8/2005
8/2005
8/2005
9/2005
9/2005
9/2005
9/2005
10/2005
10/2005
10/2005
12/2005
12/2005 | Peterson Koyfman Jacobs Songer Zamierowski Peterson Zamierowski Jacobs Karram Sulamanidze Jacobs Nakao Zamierowski Zamierowski Wu Ruff Wu Long | 2007/0239206 A1
2007/0257395 A1
2007/0282247 A1
2008/0004603 A1
2008/0009838 A1
2008/0009902 A1
2008/0027273 A1
2008/0027486 A1
2008/0046094 A1
2008/0058869 A1
2008/0066764 A1
2008/0066765 A1
2008/0066766 A1
2008/0066767 A1
2008/0066767 A1
2008/0082113 A1
2008/0082129 A1 | 10/2007
11/2007
12/2007
1/2008
1/2008
1/2008
1/2008
1/2008
2/2008
3/2008
3/2008
3/2008
3/2008
3/2008
3/2008
3/2008
4/2008 | Shelton, IV Lindh Desai Larkin Schena Ewers Hunter Gutterman Jones Han Stopek Paraschac Paraschac Paraschac Paraschac Stopes Bishop Jones | | 2005/0149064 A1
2005/0149118 A1
2005/0154255 A1
2005/0171561 A1
2005/0177190 A1
2005/0182444 A1
2005/0182445 A1
2005/0197699 A1
2005/0199249 A1
2005/0203576 A1
2005/0209542 A1
2005/0209612 A1
2005/0234510 A1
2005/0234510 A1
2005/0240220 A1
2005/0240224 A1
2005/0240224 A1
2005/0267531 A1
2005/0267532 A1 | 7/2005
7/2005
7/2005
8/2005
8/2005
9/2005
9/2005
9/2005
9/2005
10/2005
10/2005
10/2005
12/2005 | Peterson Koyfman Jacobs Songer Zamierowski Peterson Zamierowski Jacobs Karram Sulamanidze Jacobs Nakao Zamierowski Zamierowski Wu Ruff Wu Long | 2007/0239206 A1
2007/0257395 A1
2007/0282247 A1
2008/0004603 A1
2008/0009838 A1
2008/0009902 A1
2008/0027273 A1
2008/0027486 A1
2008/0046094 A1
2008/0058869 A1
2008/0066764 A1
2008/0066765 A1
2008/0066766 A1
2008/0066767 A1
2008/0066767 A1
2008/0077181 A1
2008/008/113 A1 | 10/2007
11/2007
12/2007
1/2008
1/2008
1/2008
1/2008
1/2008
2/2008
3/2008
3/2008
3/2008
3/2008
3/2008
3/2008
3/2008
3/2008 | Shelton, IV Lindh Desai Larkin Schena Ewers Hunter Gutterman Jones Han Stopek Paraschac Paraschac Paraschac Paraschac Paraschac Bishop Jones | | 2005/0149064 A1
2005/0149118 A1
2005/0154255 A1
2005/0171561 A1
2005/0177190 A1
2005/0182444 A1
2005/0197699 A1
2005/0199249 A1
2005/0203576 A1
2005/0209542 A1
2005/0209612 A1
2005/0234510 A1
2005/0240220 A1
2005/0240224 A1
2005/0240224 A1
2005/0267531 A1
2005/0267532 A1
2005/0277984 A1
2005/0283246 A1 | 7/2005
7/2005
7/2005
8/2005
8/2005
8/2005
9/2005
9/2005
9/2005
9/2005
10/2005
10/2005
10/2005
12/2005
12/2005
12/2005 | Peterson Koyfman Jacobs Songer Zamierowski Peterson Zamierowski Jacobs Karram Sulamanidze Jacobs Nakao Zamierowski Zamierowski Wu Ruff Wu Long Cauthen | 2007/0239206 A1
2007/0257395 A1
2007/0282247 A1
2008/0004603 A1
2008/0009838 A1
2008/0009902 A1
2008/0027273 A1
2008/0027486 A1
2008/0046094 A1
2008/0058869 A1
2008/0066764 A1
2008/0066765 A1
2008/0066766 A1
2008/0066767 A1
2008/0066767 A1
2008/0082113 A1
2008/0082129 A1 | 10/2007
11/2007
12/2007
1/2008
1/2008
1/2008
1/2008
1/2008
2/2008
3/2008
3/2008
3/2008
3/2008
3/2008
3/2008
3/2008
4/2008
4/2008
4/2008 | Shelton, IV Lindh Desai Larkin Schena Ewers Hunter Gutterman Jones Han Stopek
Paraschac Paraschac Paraschac Paraschac Jones Bishop Jones Jones | | 2005/0149064 A1
2005/0149118 A1
2005/0154255 A1
2005/0171561 A1
2005/0177190 A1
2005/0182444 A1
2005/0197699 A1
2005/0199249 A1
2005/0203576 A1
2005/0209542 A1
2005/0209542 A1
2005/0209612 A1
2005/0234510 A1
2005/0240220 A1
2005/0240220 A1
2005/0240224 A1
2005/0267531 A1
2005/0267532 A1
2005/0277984 A1
2005/0277984 A1
2005/0283246 A1
2006/0020272 A1 | 7/2005
7/2005
7/2005
8/2005
8/2005
8/2005
9/2005
9/2005
9/2005
9/2005
10/2005
10/2005
10/2005
12/2005
12/2005
12/2005
12/2005 | Peterson Koyfman Jacobs Songer Zamierowski Peterson Zamierowski Jacobs Karram Sulamanidze Jacobs Nakao Zamierowski Zamierowski Wu Ruff Wu Long Cauthen Gildenberg | 2007/0239206 A1
2007/0257395 A1
2007/0282247 A1
2008/0004603 A1
2008/0009838 A1
2008/0009902 A1
2008/0027273 A1
2008/0027486 A1
2008/0046094 A1
2008/0058869 A1
2008/0066764 A1
2008/0066765 A1
2008/0066766 A1
2008/0066767 A1
2008/0066767 A1
2008/0077181 A1
2008/0082113 A1
2008/0082113 A1
2008/0082129 A1
2008/0086169 A1
2008/0086170 A1 | 10/2007
11/2007
12/2008
1/2008
1/2008
1/2008
1/2008
1/2008
3/2008
3/2008
3/2008
3/2008
3/2008
3/2008
3/2008
4/2008
4/2008
4/2008 | Shelton, IV Lindh Desai Larkin Schena Ewers Hunter Gutterman Jones Han Stopek Paraschac Paraschac Paraschac Paraschac Stopes Dones Bishop Jones Jones Jones Jones | | 2005/0149064 A1
2005/0149118 A1
2005/0154255 A1
2005/0171561 A1
2005/0177190 A1
2005/0182444 A1
2005/0197699 A1
2005/0199249 A1
2005/0203576 A1
2005/0209542 A1
2005/0209612 A1
2005/0234510 A1
2005/0234510 A1
2005/0240220 A1
2005/0240220 A1
2005/0240224 A1
2005/0267531 A1
2005/0267532 A1
2005/0277984 A1
2005/0283246 A1
2006/0020272 A1
2006/0030884 A1 | 7/2005
7/2005
7/2005
8/2005
8/2005
8/2005
9/2005
9/2005
9/2005
9/2005
10/2005
10/2005
10/2005
12/2005
12/2005
12/2005
12/2005
12/2005
12/2005 | Peterson Koyfman Jacobs Songer Zamierowski Peterson Zamierowski Jacobs Karram Sulamanidze Jacobs Nakao Zamierowski Zamierowski Wu Ruff Wu Long Cauthen Gildenberg Yeung | 2007/0239206 A1
2007/0257395 A1
2007/0282247 A1
2008/0004603 A1
2008/0009838 A1
2008/00099888 A1
2008/0027273 A1
2008/0027486 A1
2008/0027486 A1
2008/0046094 A1
2008/0058869 A1
2008/0066764 A1
2008/0066765 A1
2008/0066766 A1
2008/0066767 A1
2008/0066767 A1
2008/0077181 A1
2008/0082113 A1
2008/0082113 A1
2008/0086169 A1
2008/0086170 A1
2008/0086170 A1
2008/0086170 A1 | 10/2007
11/2007
12/2007
1/2008
1/2008
1/2008
1/2008
1/2008
2/2008
3/2008
3/2008
3/2008
3/2008
3/2008
3/2008
3/2008
4/2008
4/2008
4/2008
4/2008
5/2008 | Shelton, IV Lindh Desai Larkin Schena Ewers Hunter Gutterman Jones Han Stopek Paraschac Paraschac Paraschac Paraschac Stopes Bishop Jones Jones Jones Jones Stopek | | 2005/0149064 A1
2005/0149118 A1
2005/0154255 A1
2005/0171561 A1
2005/0177190 A1
2005/0182444 A1
2005/0197699 A1
2005/0199249 A1
2005/0203576 A1
2005/0209542 A1
2005/0209542 A1
2005/0209612 A1
2005/0234510 A1
2005/0240220 A1
2005/0240220 A1
2005/0240224 A1
2005/0267531 A1
2005/0267532 A1
2005/0267532 A1
2005/0277984 A1
2005/0277984 A1
2005/0283246 A1
2006/0030884 A1
2006/0030884 A1 | 7/2005
7/2005
7/2005
8/2005
8/2005
8/2005
9/2005
9/2005
9/2005
9/2005
10/2005
10/2005
10/2005
12/2005
12/2005
12/2005
12/2005
12/2006
2/2006 | Peterson Koyfman Jacobs Songer Zamierowski Peterson Zamierowski Jacobs Karram Sulamanidze Jacobs Nakao Zamierowski Zamierowski Wu Ruff Wu Long Cauthen Gildenberg Yeung Sulamanidze | 2007/0239206 A1
2007/0257395 A1
2007/0282247 A1
2008/0004603 A1
2008/0009838 A1
2008/0009902 A1
2008/0027273 A1
2008/0027486 A1
2008/0058869 A1
2008/0058869 A1
2008/0066764 A1
2008/0066765 A1
2008/0066766 A1
2008/0066767 A1
2008/0066767 A1
2008/0077181 A1
2008/0082113 A1
2008/0082113 A1
2008/0082129 A1
2008/0086169 A1
2008/0086170 A1
2008/0086170 A1
2008/0132943 A1 | 10/2007
11/2007
12/2007
1/2008
1/2008
1/2008
1/2008
1/2008
2/2008
3/2008
3/2008
3/2008
3/2008
3/2008
3/2008
3/2008
4/2008
4/2008
4/2008
4/2008
5/2008 | Shelton, IV Lindh Desai Larkin Schena Ewers Hunter Gutterman Jones Han Stopek Paraschac Paraschac Paraschac Paraschac Stopes Jones Jones Jones Jones Jones Stopek Maiorino | | 2005/0149064 A1
2005/0149118 A1
2005/0154255 A1
2005/0171561 A1
2005/0177190 A1
2005/0182444 A1
2005/0197699 A1
2005/0199249 A1
2005/0203576 A1
2005/0209542 A1
2005/0209542 A1
2005/0209612 A1
2005/0234510 A1
2005/0234510 A1
2005/0240220 A1
2005/0240224 A1
2005/0267531 A1
2005/0267532 A1
2005/0267532 A1
2005/0277984 A1
2005/0277984 A1
2005/0283246 A1
2006/0030884 A1
2006/0030884 A1
2006/0036266 A1
2006/0036266 A1 | 7/2005
7/2005
7/2005
8/2005
8/2005
8/2005
9/2005
9/2005
9/2005
9/2005
10/2005
10/2005
10/2005
12/2005
12/2005
12/2005
12/2005
12/2006
2/2006
2/2006
3/2006 | Peterson Koyfman Jacobs Songer Zamierowski Peterson Zamierowski Jacobs Karram Sulamanidze Jacobs Nakao Zamierowski Zamierowski Wu Ruff Wu Long Cauthen Gildenberg Yeung Sulamanidze Priewe | 2007/0239206 A1
2007/0257395 A1
2007/0282247 A1
2008/0004603 A1
2008/0009838 A1
2008/00099888 A1
2008/0027273 A1
2008/0027486 A1
2008/0046094 A1
2008/0058869 A1
2008/0066764 A1
2008/0066765 A1
2008/0066765 A1
2008/0066767 A1
2008/0066767 A1
2008/0077181 A1
2008/0082113 A1
2008/0082113 A1
2008/0082129 A1
2008/0086170 A1
2008/0086170 A1
2008/0132943 A1
2008/0195147 A1 | 10/2007
11/2007
1/2008
1/2008
1/2008
1/2008
1/2008
1/2008
3/2008
3/2008
3/2008
3/2008
3/2008
3/2008
3/2008
4/2008
4/2008
4/2008
4/2008
4/2008
6/2008
8/2008 | Shelton, IV Lindh Desai Larkin Schena Ewers Hunter Gutterman Jones Han Stopek Paraschac Paraschac Paraschac Paraschac Jones Bishop Jones Jones Jones Jones Stopek Maiorino Stopek | | 2005/0149064 A1
2005/0149118 A1
2005/0154255 A1
2005/0171561 A1
2005/0177190 A1
2005/0182444 A1
2005/0197699 A1
2005/0199249 A1
2005/0203576 A1
2005/0203576 A1
2005/0209542 A1
2005/0209612 A1
2005/0234510 A1
2005/0234510 A1
2005/0240220 A1
2005/0240220 A1
2005/0267531 A1
2005/0267531 A1
2005/0267532 A1
2005/0277984 A1
2005/0277984 A1
2005/0277984 A1
2006/0030884 A1
2006/0030884 A1
2006/0036266 A1
2006/0036266 A1
2006/0058799 A1 | 7/2005
7/2005
7/2005
8/2005
8/2005
8/2005
9/2005
9/2005
9/2005
9/2005
10/2005
10/2005
10/2005
12/2005
12/2005
12/2005
12/2006
2/2006
2/2006
3/2006
3/2006 | Peterson Koyfman Jacobs Songer Zamierowski Peterson Zamierowski Jacobs Karram Sulamanidze Jacobs Nakao Zamierowski Zamierowski Wu Ruff Wu Long Cauthen Gildenberg Yeung Sulamanidze Priewe Elson | 2007/0239206 A1
2007/0257395 A1
2007/0282247 A1
2008/0004603 A1
2008/0009838 A1
2008/0009902 A1
2008/0027273 A1
2008/0027486 A1
2008/0058869 A1
2008/0066764 A1
2008/0066765 A1
2008/0066766 A1
2008/0066767 A1
2008/0066767 A1
2008/0082113 A1
2008/0082113 A1
2008/0082129 A1
2008/0086169 A1
2008/0086170 A1
2008/0086170 A1
2008/0132943 A1
2008/0195147 A1
2008/0195147 A1
2008/0195147 A1
2008/0208358 A1 | 10/2007
11/2007
1/2008
1/2008
1/2008
1/2008
1/2008
1/2008
3/2008
3/2008
3/2008
3/2008
3/2008
3/2008
3/2008
3/2008
4/2008
4/2008
4/2008
4/2008
4/2008
4/2008
8/2008 | Shelton, IV Lindh Desai Larkin Schena Ewers Hunter Gutterman Jones Han Stopek Paraschac Paraschac Paraschac Paraschac Sishop Jones Bishop Jones Jones Jones Stopek Maiorino Stopek Bellamkonda | | 2005/0149064 A1
2005/0149118 A1
2005/0154255 A1
2005/0171561 A1
2005/0177190 A1
2005/0182444 A1
2005/0197699 A1
2005/0199249 A1
2005/0203576 A1
2005/0209542 A1
2005/0209542 A1
2005/0209612 A1
2005/0234510 A1
2005/0234510 A1
2005/0240220 A1
2005/0240224 A1
2005/0267531 A1
2005/0267532 A1
2005/0267532 A1
2005/0277984 A1
2005/0277984 A1
2005/0283246 A1
2006/0030884 A1
2006/0030884 A1
2006/0036266 A1
2006/0036266 A1 | 7/2005
7/2005
7/2005
8/2005
8/2005
8/2005
9/2005
9/2005
9/2005
9/2005
10/2005
10/2005
10/2005
12/2005
12/2005
12/2005
12/2005
12/2006
2/2006
2/2006
3/2006 | Peterson Koyfman Jacobs Songer Zamierowski Peterson Zamierowski Jacobs Karram Sulamanidze Jacobs Nakao Zamierowski Zamierowski Wu Ruff Wu Long Cauthen Gildenberg Yeung Sulamanidze Priewe Elson | 2007/0239206 A1
2007/0257395 A1
2007/0282247 A1
2008/0004603 A1
2008/0009838 A1
2008/00099888 A1
2008/0027273 A1
2008/0027486 A1
2008/0046094 A1
2008/0058869 A1
2008/0066764 A1
2008/0066765 A1
2008/0066765 A1
2008/0066767 A1
2008/0066767 A1
2008/0077181 A1
2008/0082113 A1
2008/0082113 A1
2008/0082129 A1
2008/0086170 A1
2008/0086170 A1
2008/0132943 A1
2008/0195147 A1 | 10/2007
11/2007
1/2008
1/2008
1/2008
1/2008
1/2008
1/2008
3/2008
3/2008
3/2008
3/2008
3/2008
3/2008
3/2008
4/2008
4/2008
4/2008
4/2008
4/2008
6/2008
8/2008 | Shelton, IV Lindh Desai Larkin Schena Ewers
Hunter Gutterman Jones Han Stopek Paraschac Paraschac Paraschac Paraschac Sishop Jones Bishop Jones Jones Jones Stopek Maiorino Stopek Bellamkonda | | 2005/0149064 A1
2005/0149118 A1
2005/0154255 A1
2005/01771561 A1
2005/0182444 A1
2005/0182445 A1
2005/0197699 A1
2005/0199249 A1
2005/0203576 A1
2005/0209542 A1
2005/0209542 A1
2005/0209612 A1
2005/0234510 A1
2005/0234510 A1
2005/0240220 A1
2005/0240220 A1
2005/0267531 A1
2005/0267531 A1
2005/0267532 A1
2005/0277984 A1
2005/0277984 A1
2005/0283246 A1
2006/0030884 A1
2006/0030884 A1
2006/0036266 A1
2006/0058574 A1
2006/0058799 A1
2006/0058844 A1 | 7/2005
7/2005
8/2005
8/2005
8/2005
9/2005
9/2005
9/2005
9/2005
10/2005
10/2005
10/2005
12/2005
12/2005
12/2005
12/2005
12/2006
3/2006
3/2006
3/2006 | Peterson Koyfman Jacobs Songer Zamierowski Peterson Zamierowski Jacobs Karram Sulamanidze Jacobs Nakao Zamierowski Zamierowski Wu Ruff Wu Long Cauthen Gildenberg Yeung Sulamanidze Priewe Elson White | 2007/0239206 A1
2007/0257395 A1
2007/0282247 A1
2008/0004603 A1
2008/0009838 A1
2008/0009902 A1
2008/0027273 A1
2008/0027486 A1
2008/0046094 A1
2008/0058869 A1
2008/0066764 A1
2008/0066765 A1
2008/0066766 A1
2008/0066767 A1
2008/0066767 A1
2008/0077181 A1
2008/0082113 A1
2008/0082113 A1
2008/0082129 A1
2008/0086169 A1
2008/0086170 A1
2008/0086170 A1
2008/0132943 A1
2008/0195147 A1
2008/0195147 A1
2008/0208358 A1
2008/0208358 A1 | 10/2007
11/2007
1/2008
1/2008
1/2008
1/2008
1/2008
1/2008
2/2008
3/2008
3/2008
3/2008
3/2008
3/2008
3/2008
4/2008
4/2008
4/2008
4/2008
4/2008
4/2008
4/2008
4/2008
4/2008
5/2008
8/2008
9/2008 | Shelton, IV Lindh Desai Larkin Schena Ewers Hunter Gutterman Jones Han Stopek Paraschac Paraschac Paraschac Paraschac Jones Bishop Jones Jones Jones Jones Stopek Maiorino Stopek Bellamkonda Kelly | | 2005/0149064 A1
2005/0149118 A1
2005/0154255 A1
2005/0171561 A1
2005/0182444 A1
2005/0182445 A1
2005/0197699 A1
2005/0199249 A1
2005/0203576 A1
2005/0209542 A1
2005/0209542 A1
2005/0209612 A1
2005/0234510 A1
2005/0234510 A1
2005/0240220 A1
2005/0240220 A1
2005/0267531 A1
2005/0267531 A1
2005/0267532 A1
2005/0267532 A1
2005/0277984 A1
2005/0277984 A1
2005/0283246 A1
2006/0030884 A1
2006/0030884 A1
2006/0036266 A1
2006/0036266 A1
2006/0058799 A1
2006/0058844 A1
2006/0058844 A1 | 7/2005
7/2005
8/2005
8/2005
8/2005
9/2005
9/2005
9/2005
9/2005
10/2005
10/2005
10/2005
12/2005
12/2005
12/2005
12/2005
12/2006
3/2006
3/2006
3/2006
3/2006 | Peterson Koyfman Jacobs Songer Zamierowski Peterson Zamierowski Jacobs Karram Sulamanidze Jacobs Nakao Zamierowski Zamierowski Wu Ruff Wu Long Cauthen Gildenberg Yeung Sulamanidze Priewe Elson White Allen | 2007/0239206 A1
2007/0257395 A1
2007/0282247 A1
2008/0009838 A1
2008/00099838 A1
2008/0009902 A1
2008/0027273 A1
2008/0027486 A1
2008/0058869 A1
2008/0058869 A1
2008/0066765 A1
2008/0066766 A1
2008/0066767 A1
2008/0066767 A1
2008/0082113 A1
2008/0082113 A1
2008/0082129 A1
2008/0086169 A1
2008/0086170 A1
2008/0086170 A1
2008/0132943 A1
2008/0132943 A1
2008/0195147 A1
2008/0208358 A1
2008/0208358 A1
2008/0215072 A1
2008/0221618 A1 | 10/2007
11/2007
1/2008
1/2008
1/2008
1/2008
1/2008
1/2008
2/2008
3/2008
3/2008
3/2008
3/2008
3/2008
3/2008
4/2008
4/2008
4/2008
4/2008
4/2008
4/2008
5/2008
5/2008
8/2008
9/2008 | Shelton, IV Lindh Desai Larkin Schena Ewers Hunter Gutterman Jones Han Stopek Paraschac Paraschac Paraschac Paraschac Paraschac Stopes Jones Jones Jones Jones Jones Stopek Maiorino Stopek Bellamkonda Kelly Chen | | 2005/0149064 A1
2005/0149118 A1
2005/0154255 A1
2005/0171561 A1
2005/0182444 A1
2005/0182445 A1
2005/0197699 A1
2005/0199249 A1
2005/0203576 A1
2005/0209542 A1
2005/0209612 A1
2005/0234510 A1
2005/0234510 A1
2005/0240220 A1
2005/0240220 A1
2005/0267531 A1
2005/0267531 A1
2005/0267532 A1
2005/0267532 A1
2005/0277984 A1
2005/0283246 A1
2005/0283246 A1
2006/0030884 A1
2006/0030884 A1
2006/0036266 A1
2006/0036266 A1
2006/0058799 A1
2006/0058844 A1
2006/0058844 A1
2006/0058844 A1 | 7/2005
7/2005
7/2005
8/2005
8/2005
8/2005
9/2005
9/2005
9/2005
9/2005
10/2005
10/2005
10/2005
12/2005
12/2005
12/2005
12/2005
12/2005
12/2006
3/2006
3/2006
3/2006
3/2006
3/2006 | Peterson Koyfman Jacobs Songer Zamierowski Peterson Zamierowski Jacobs Karram Sulamanidze Jacobs Nakao Zamierowski Zamierowski Wu Ruff Wu Long Cauthen Gildenberg Yeung Sulamanidze Priewe Elson White Allen Allen | 2007/0239206 A1
2007/0257395 A1
2008/0004603 A1
2008/0009838 A1
2008/0009902 A1
2008/0027273 A1
2008/0027486 A1
2008/0046094 A1
2008/0058869 A1
2008/0066765 A1
2008/0066765 A1
2008/0066767 A1
2008/0066767 A1
2008/0082113 A1
2008/0082113 A1
2008/0082129 A1
2008/0086170 A1
2008/0086170 A1
2008/0132943 A1
2008/0195147 A1
2008/0195147 A1
2008/0208358 A1
2008/0208358 A1
2008/0221618 A1
2008/0221618 A1
2008/0221618 A1 | 10/2007
11/2007
12/2007
1/2008
1/2008
1/2008
1/2008
1/2008
2/2008
3/2008
3/2008
3/2008
3/2008
3/2008
3/2008
3/2008
4/2008
4/2008
4/2008
4/2008
4/2008
4/2008
4/2008
4/2008
4/2008
9/2008
9/2008
9/2008 | Shelton, IV Lindh Desai Larkin Schena Ewers Hunter Gutterman Jones Han Stopek Paraschac Paraschac Paraschac Paraschac Sishop Jones Jones Jones Jones Jones Stopek Maiorino Stopek Bellamkonda Kelly Chen Leung | | 2005/0149064 A1
2005/0149118 A1
2005/0154255 A1
2005/0171561 A1
2005/0182444 A1
2005/0182445 A1
2005/0197699 A1
2005/0199249 A1
2005/0203576 A1
2005/0209542 A1
2005/0209542 A1
2005/0209612 A1
2005/0234510 A1
2005/0234510 A1
2005/0240220 A1
2005/0240220 A1
2005/0267531 A1
2005/0267532 A1
2005/0267532 A1
2005/0277984 A1
2005/0283246 A1
2005/0283246 A1
2006/0030884 A1
2006/0030884 A1
2006/0036266 A1
2006/0058799 A1
2006/0058799 A1
2006/0058844 A1
2006/0058844 A1
2006/0064115 A1
2006/0064116 A1
2006/0064116 A1 | 7/2005
7/2005
8/2005
8/2005
8/2005
9/2005
9/2005
9/2005
9/2005
10/2005
10/2005
10/2005
12/2005
12/2005
12/2005
12/2005
12/2006
3/2006
3/2006
3/2006
3/2006 | Peterson Koyfman Jacobs Songer Zamierowski Peterson Zamierowski Jacobs Karram Sulamanidze Jacobs Nakao Zamierowski Zamierowski Wu Ruff Wu Long Cauthen Gildenberg Yeung Sulamanidze Priewe Elson White Allen Allen | 2007/0239206 A1
2007/0257395 A1
2007/0282247 A1
2008/0009838 A1
2008/00099838 A1
2008/0009902 A1
2008/0027273 A1
2008/0027486 A1
2008/0058869 A1
2008/0058869 A1
2008/0066765 A1
2008/0066766 A1
2008/0066767 A1
2008/0066767 A1
2008/0082113 A1
2008/0082113 A1
2008/0082129 A1
2008/0086169 A1
2008/0086170 A1
2008/0086170 A1
2008/0132943 A1
2008/0132943 A1
2008/0195147 A1
2008/0208358 A1
2008/0208358 A1
2008/0215072 A1
2008/0221618 A1 | 10/2007
11/2007
1/2008
1/2008
1/2008
1/2008
1/2008
1/2008
2/2008
3/2008
3/2008
3/2008
3/2008
3/2008
3/2008
4/2008
4/2008
4/2008
4/2008
4/2008
4/2008
5/2008
5/2008
8/2008
9/2008 | Shelton, IV Lindh Desai Larkin Schena Ewers Hunter Gutterman Jones Han Stopek Paraschac Paraschac Paraschac Paraschac Sishop Jones Jones Jones Jones Jones Stopek Maiorino Stopek Bellamkonda Kelly Chen Leung | | 2005/0149064 A1
2005/0149118 A1
2005/0154255 A1
2005/0171561 A1
2005/0182444 A1
2005/0182445 A1
2005/0197699 A1
2005/0199249 A1
2005/0203576 A1
2005/0209542 A1
2005/0209612 A1
2005/0234510 A1
2005/0234510 A1
2005/0240220 A1
2005/0240220 A1
2005/0267531 A1
2005/0267531 A1
2005/0267532 A1
2005/0267532 A1
2005/0277984 A1
2005/0283246 A1
2005/0283246 A1
2006/0030884 A1
2006/0030884 A1
2006/0036266 A1
2006/0036266 A1
2006/0058799 A1
2006/0058844 A1
2006/0058844 A1
2006/0058844 A1 | 7/2005
7/2005
8/2005
8/2005
8/2005
9/2005
9/2005
9/2005
9/2005
10/2005
10/2005
10/2005
12/2005
12/2005
12/2005
12/2005
12/2006
3/2006
3/2006
3/2006
3/2006
3/2006
3/2006 | Peterson Koyfman Jacobs Songer Zamierowski Peterson Zamierowski Jacobs Karram Sulamanidze Jacobs Nakao Zamierowski Zamierowski Wu Ruff Wu Long Cauthen Gildenberg Yeung Sulamanidze Priewe Elson White Allen Allen | 2007/0239206 A1
2007/0257395 A1
2008/0004603 A1
2008/0009838 A1
2008/0009902 A1
2008/0027273 A1
2008/0027486 A1
2008/0046094 A1
2008/0058869 A1
2008/0066765 A1
2008/0066765 A1
2008/0066767 A1
2008/0066767 A1
2008/0082113 A1
2008/0082113 A1
2008/0082129 A1
2008/0086170 A1
2008/0086170 A1
2008/0132943 A1
2008/0195147 A1
2008/0195147 A1
2008/0208358 A1
2008/0208358 A1
2008/0221618 A1
2008/0221618 A1
2008/0221618 A1 | 10/2007
11/2007
12/2007
1/2008
1/2008
1/2008
1/2008
1/2008
2/2008
3/2008
3/2008
3/2008
3/2008
3/2008
3/2008
3/2008
4/2008
4/2008
4/2008
4/2008
4/2008
4/2008
4/2008
4/2008
4/2008
4/2008
1/2008
1/2008
1/2008 | Shelton, IV Lindh Desai Larkin Schena Ewers Hunter Gutterman Jones Han Stopek Paraschac Paraschac Paraschac Paraschac
Sishop Jones Jones Jones Jones Jones Stopek Maiorino Stopek Bellamkonda Kelly Chen Leung | | 2005/0149064 A1 2005/0149118 A1 2005/0154255 A1 2005/0171561 A1 2005/0177190 A1 2005/0182444 A1 2005/0197699 A1 2005/0199249 A1 2005/0203576 A1 2005/0209542 A1 2005/0209542 A1 2005/0209612 A1 2005/0209612 A1 2005/0240220 A1 2005/0240220 A1 2005/0240224 A1 2005/0267531 A1 2005/0267532 A1 2005/0267532 A1 2005/0277984 A1 2005/0277984 A1 2005/0283246 A1 2006/0030884 A1 2006/0030884 A1 2006/0036266 A1 2006/0036266 A1 2006/0058574 A1 2006/0058574 A1 2006/0058844 A1 2006/0058844 A1 2006/0058844 A1 2006/0064115 A1 2006/0064116 A1 2006/0064127 A1 2006/0079935 A1 | 7/2005
7/2005
8/2005
8/2005
8/2005
9/2005
9/2005
9/2005
9/2005
10/2005
10/2005
10/2005
12/2005
12/2005
12/2005
12/2005
12/2005
12/2006
3/2006
3/2006
3/2006
3/2006
3/2006
3/2006
3/2006 | Peterson Koyfman Jacobs Songer Zamierowski Peterson Zamierowski Jacobs Karram Sulamanidze Jacobs Nakao Zamierowski Zamierowski Wu Ruff Wu Long Cauthen Gildenberg Yeung Sulamanidze Priewe Elson White Allen Fallin Kolster | 2007/0239206 A1 2007/0257395 A1 2008/0004603 A1 2008/0009838 A1 2008/0009902 A1 2008/0027273 A1 2008/0027486 A1 2008/0027486 A1 2008/0058869 A1 2008/0066764 A1 2008/0066765 A1 2008/0066766 A1 2008/0066767 A1 2008/0082113 A1 2008/0082113 A1 2008/0082113 A1 2008/0082149 A1 2008/0086169 A1 2008/0086170 A1 2008/0086170 A1 2008/0132943 2008/0208358 A1 2008/0208358 A1 | 10/2007
11/2007
12/2007
1/2008
1/2008
1/2008
1/2008
1/2008
2/2008
3/2008
3/2008
3/2008
3/2008
3/2008
3/2008
3/2008
4/2008
4/2008
4/2008
4/2008
4/2008
4/2008
4/2008
4/2008
1/2008
1/2008
1/2008
1/2008 | Shelton, IV Lindh Desai Larkin Schena Ewers Hunter Gutterman Jones Han Stopek Paraschac Paraschac Paraschac Paraschac Paraschac Sishop Jones Jones Jones Jones Jones Jones Stopek Maiorino Stopek Bellamkonda Kelly Chen Leung Yeung Sulamanidze | | 2005/0149064 A1 2005/0149118 A1 2005/0154255 A1 2005/0171561 A1 2005/0182444 A1 2005/0182445 A1 2005/0197699 A1 2005/0199249 A1 2005/0203576 A1 2005/0209542 A1 2005/0209542 A1 2005/0209612 A1 2005/0234510 A1 2005/0240220 A1 2005/0240220 A1 2005/0267531 A1 2005/0267532 A1 2005/0267532 A1 2005/0267532 A1 2005/0267532 A1 2005/0267532 A1 2005/0267534 A1 2005/0267534 A1 2006/0030884 A1 2006/0030884 A1 2006/0036266 A1 2006/0036266 A1 2006/0058574 A1 2006/0058799 A1 2006/0058844 A1 2006/0058844 A1 2006/0064115 A1 2006/0064116 A1 2006/0064127 A1 2006/0079935 A1 2006/0079935 A1 2006/0079935 A1 | 7/2005
7/2005
8/2005
8/2005
8/2005
9/2005
9/2005
9/2005
9/2005
10/2005
10/2005
10/2005
12/2005
12/2005
12/2005
12/2005
12/2006
3/2006
3/2006
3/2006
3/2006
3/2006
3/2006
4/2006 | Peterson Koyfman Jacobs Songer Zamierowski Peterson Zamierowski Jacobs Karram Sulamanidze Jacobs Nakao Zamierowski Zamierowski Wu Ruff Wu Long Cauthen Gildenberg Yeung Sulamanidze Priewe Elson White Allen Allen Fallin Kolster Eremia | 2007/0239206 A1 2007/0257395 A1 2008/0004603 A1 2008/0009838 A1 2008/0009902 A1 2008/0027273 A1 2008/0027486 A1 2008/0046094 A1 2008/0058869 A1 2008/0066764 A1 2008/0066765 A1 2008/0066766 A1 2008/0066767 A1 2008/0082113 A1 2008/0082113 A1 2008/0082129 A1 2008/0086170 A1 2008/0086170 A1 2008/0086170 A1 2008/0132943 A1 2008/0132943 A1 2008/0132943 A1 2008/0195147 A1 2008/0195147 A1 2008/0208358 A1 2008/0208358 A1 2008/0208358 A1 2008/0208358 A1 2008/0215072 A1 2008/0215072 A1 2008/0221618 A1 2008/0234731 A1 2008/0248216 A1 2008/0262542 A1 2008/0281338 A1 | 10/2007
11/2007
12/2007
1/2008
1/2008
1/2008
1/2008
1/2008
2/2008
3/2008
3/2008
3/2008
3/2008
3/2008
3/2008
4/2008
4/2008
4/2008
4/2008
4/2008
4/2008
4/2008
4/2008
1/2008
1/2008
1/2008
1/2008
1/2008 | Shelton, IV Lindh Desai Larkin Schena Ewers Hunter Gutterman Jones Han Stopek Paraschac Paraschac Paraschac Paraschac Paraschac Sishop Jones Jones Jones Jones Jones Stopek Maiorino Stopek Bellamkonda Kelly Chen Leung Yeung Sulamanidze Wohlert | | 2005/0149064 A1 2005/0149118 A1 2005/0154255 A1 2005/0171561 A1 2005/0182444 A1 2005/0182445 A1 2005/0197699 A1 2005/0199249 A1 2005/0203576 A1 2005/0209542 A1 2005/0209542 A1 2005/0209612 A1 2005/0234510 A1 2005/0240220 A1 2005/0240224 A1 2005/0267531 A1 2005/0267532 A1 2005/0267532 A1 2005/0267532 A1 2005/0267532 A1 2005/0267532 A1 2005/0267534 A1 2005/0267534 A1 2005/0267534 A1 2005/0267535 A1 2006/0030884 A1 2006/0036266 A1 2006/0036266 A1 2006/0058574 A1 2006/0058574 A1 2006/0058844 A1 2006/0058844 A1 2006/0058844 A1 2006/0064115 A1 2006/0064116 A1 2006/0064116 A1 2006/00685016 A1 2006/0085016 A1 2006/0089525 A1 | 7/2005
7/2005
8/2005
8/2005
8/2005
9/2005
9/2005
9/2005
9/2005
10/2005
10/2005
10/2005
12/2005
12/2005
12/2005
12/2005
12/2006
3/2006
3/2006
3/2006
3/2006
3/2006
3/2006
4/2006
4/2006
4/2006 | Peterson Koyfman Jacobs Songer Zamierowski Peterson Zamierowski Jacobs Karram Sulamanidze Jacobs Nakao Zamierowski Zamierowski Wu Ruff Wu Long Cauthen Gildenberg Yeung Sulamanidze Priewe Elson White Allen Allen Fallin Kolster Eremia Mamo | 2007/0239206 A1 2007/0257395 A1 2008/0004603 A1 2008/0009838 A1 2008/0009902 A1 2008/0027273 A1 2008/0027486 A1 2008/0046094 A1 2008/0058869 A1 2008/0066764 A1 2008/0066765 A1 2008/0066766 A1 2008/0066767 A1 2008/0082113 A1 2008/0082113 A1 2008/0082113 A1 2008/0086169 A1 2008/0086170 A1 2008/0086170 A1 2008/0086170 A1 2008/0132943 2008/0208358 A1 2008/0215072 | 10/2007
11/2007
12/2007
1/2008
1/2008
1/2008
1/2008
1/2008
2/2008
3/2008
3/2008
3/2008
3/2008
3/2008
3/2008
4/2008
4/2008
4/2008
4/2008
4/2008
4/2008
4/2008
4/2008
1/2008
1/2008
1/2008
1/2008
1/2008
1/2008 | Shelton, IV Lindh Desai Larkin Schena Ewers Hunter Gutterman Jones Han Stopek Paraschac Paraschac Paraschac Paraschac Jones Bishop Jones Jones Jones Stopek Maiorino Stopek Bellamkonda Kelly Chen Leung Yeung Sulamanidze Wohlert Nawrocki | | 2005/0149064 A1 2005/0149118 A1 2005/0154255 A1 2005/0171561 A1 2005/0182444 A1 2005/0182445 A1 2005/0197699 A1 2005/0199249 A1 2005/0203576 A1 2005/0209542 A1 2005/0209542 A1 2005/0209612 A1 2005/0234510 A1 2005/0240220 A1 2005/0240220 A1 2005/0267531 A1 2005/0267532 A1 2005/0267532 A1 2005/0267532 A1 2005/0267532 A1 2005/0267534 A1 2005/0267534 A1 2006/0030884 A1 2006/0030884 A1 2006/0036266 A1 2006/0036266 A1 2006/0058799 A1 2006/0058799 A1 2006/0058799 A1 2006/0058799 A1 2006/0064115 A1 2006/0064116 A1 2006/0064116 A1 2006/0069525 A1 2006/0089525 A1 2006/0089672 A1 | 7/2005
7/2005
8/2005
8/2005
8/2005
9/2005
9/2005
9/2005
9/2005
10/2005
10/2005
10/2005
12/2005
12/2005
12/2005
12/2005
12/2006
3/2006
3/2006
3/2006
3/2006
3/2006
3/2006
4/2006
4/2006
4/2006
4/2006 | Peterson Koyfman Jacobs Songer Zamierowski Peterson Zamierowski Jacobs Karram Sulamanidze Jacobs Nakao Zamierowski Zamierowski Wu Ruff Wu Long Cauthen Gildenberg Yeung Sulamanidze Priewe Elson White Allen Allen Fallin Kolster Eremia Mamo Martinek | 2007/0239206 A1 2007/0257395 A1 2008/0004603 A1 2008/0009838 A1 2008/0009902 A1 2008/0027273 A1 2008/0027486 A1 2008/0046094 A1 2008/0046764 A1 2008/0066765 A1 2008/0066766 A1 2008/0066767 A1 2008/0066767 A1 2008/007181 A1 2008/0082113 A1 2008/0082113 A1 2008/0082149 A1 2008/0082149 A1 2008/0082149 A1 2008/0082149 A1 2008/0082149 A1 2008/0082140 A1 2008/0132943 2008/0208358 A1 2008/0215072 | 10/2007
11/2007
12/2007
1/2008
1/2008
1/2008
1/2008
1/2008
3/2008
3/2008
3/2008
3/2008
3/2008
3/2008
3/2008
4/2008
4/2008
4/2008
4/2008
4/2008
4/2008
4/2008
4/2008
1/2008
10/2008
10/2008
10/2008
11/2008
11/2008 | Shelton, IV Lindh Desai Larkin Schena Ewers Hunter Gutterman Jones Han Stopek Paraschac Paraschac Paraschac Paraschac Paraschac Stopes Jones Jones Jones Jones Stopek Maiorino Stopek Bellamkonda Kelly Chen Leung Yeung Sulamanidze Wohlert Nawrocki Hunter | | 2005/0149064 A1 2005/0149118 A1 2005/0154255 A1 2005/0171561 A1 2005/0182444 A1 2005/0182445 A1 2005/0197699 A1 2005/0199249 A1 2005/0203576 A1 2005/0209542 A1 2005/0209542 A1 2005/0209612 A1 2005/0234510 A1 2005/0240220 A1 2005/0240224 A1 2005/0267531 A1 2005/0267532 A1 2005/0267532 A1 2005/0267532 A1 2005/0267532 A1 2005/0267532 A1 2005/0267534 A1 2005/0267534 A1 2005/0267534 A1 2005/0267535 A1 2006/0030884 A1 2006/0036266 A1 2006/0036266 A1 2006/0058574 A1 2006/0058574 A1 2006/0058844 A1 2006/0058844 A1 2006/0058844 A1 2006/0064115 A1 2006/0064116 A1 2006/0064116 A1 2006/00685016 A1 2006/0085016 A1 2006/0089525 A1 | 7/2005
7/2005
8/2005
8/2005
8/2005
9/2005
9/2005
9/2005
9/2005
10/2005
10/2005
10/2005
12/2005
12/2005
12/2005
12/2005
12/2006
3/2006
3/2006
3/2006
3/2006
3/2006
3/2006
4/2006
4/2006
4/2006
4/2006 | Peterson Koyfman Jacobs Songer Zamierowski Peterson Zamierowski Jacobs Karram Sulamanidze Jacobs Nakao Zamierowski Zamierowski Wu Ruff Wu Long Cauthen Gildenberg Yeung Sulamanidze Priewe Elson White Allen Allen Fallin Kolster Eremia Mamo | 2007/0239206 A1 2007/0257395 A1 2008/0004603 A1 2008/0009838 A1 2008/0009902 A1 2008/0027273 A1 2008/0027486 A1 2008/0046094 A1 2008/0058869 A1 2008/0066764 A1 2008/0066765 A1 2008/0066766 A1 2008/0066767 A1 2008/0082113 A1 2008/0082113 A1 2008/0082113 A1 2008/0086169 A1 2008/0086170 A1 2008/0086170 A1 2008/0086170 A1 2008/0132943 2008/0208358 A1 2008/0215072 |
10/2007
11/2007
12/2007
1/2008
1/2008
1/2008
1/2008
1/2008
2/2008
3/2008
3/2008
3/2008
3/2008
3/2008
3/2008
4/2008
4/2008
4/2008
4/2008
4/2008
4/2008
4/2008
4/2008
1/2008
1/2008
1/2008
1/2008
1/2008
1/2008 | Shelton, IV Lindh Desai Larkin Schena Ewers Hunter Gutterman Jones Han Stopek Paraschac Paraschac Paraschac Paraschac Paraschac Stopes Jones Jones Jones Jones Stopek Maiorino Stopek Bellamkonda Kelly Chen Leung Yeung Sulamanidze Wohlert Nawrocki Hunter | | 2005/0149064 A1 2005/0149118 A1 2005/0154255 A1 2005/0171561 A1 2005/0182444 A1 2005/0182445 A1 2005/0197699 A1 2005/0199249 A1 2005/0203576 A1 2005/0209542 A1 2005/0209542 A1 2005/0209612 A1 2005/0240220 A1 2005/0240220 A1 2005/0267531 A1 2005/0267531 A1 2005/0267532 A1 2005/0267532 A1 2005/0267532 A1 2005/0267534 A1 2005/0267534 A1 2005/0267534 A1 2005/0267535 A1 2006/0030884 A1 2006/0030884 A1 2006/0036266 A1 2006/0036266 A1 2006/0036266 A1 2006/0058574 | 7/2005
7/2005
8/2005
8/2005
8/2005
9/2005
9/2005
9/2005
9/2005
10/2005
10/2005
10/2005
12/2005
12/2005
12/2005
12/2005
12/2006
3/2006
3/2006
3/2006
3/2006
3/2006
3/2006
3/2006
3/2006
3/2006
3/2006
3/2006
3/2006
3/2006
3/2006
3/2006
3/2006
3/2006
3/2006
3/2006
3/2006
3/2006
3/2006
3/2006
3/2006 | Peterson Koyfman Jacobs Songer Zamierowski Peterson Zamierowski Jacobs Karram Sulamanidze Jacobs Nakao Zamierowski Zamierowski Wu Ruff Wu Long Cauthen Gildenberg Yeung Sulamanidze Priewe Elson White Allen Allen Fallin Kolster Eremia Mamo Martinek Kaplan | 2007/0239206 A1 2007/0257395 A1 2007/0282247 A1 2008/0004603 A1 2008/0009838 A1 2008/0009902 A1 2008/0027273 A1 2008/0027486 A1 2008/0046094 A1 2008/0058869 A1 2008/0066765 A1 2008/0066766 A1 2008/0066767 A1 2008/0066767 A1 2008/0082113 A1 2008/0082113 A1 2008/0082129 A1 2008/0086170 A1 2008/0086170 A1 2008/0132943 A1 2008/0132943 A1 2008/0132943 A1 2008/0132943 A1 2008/0132943 A1 2008/0215072 A1 2008/0215072 A1 2008/0234731 A1 2008/0234731 A1 2008/0248216 2008/02560 A1 2009/0012560 A1 2009/0018577 A1 | 10/2007
11/2007
12/2007
1/2008
1/2008
1/2008
1/2008
1/2008
3/2008
3/2008
3/2008
3/2008
3/2008
3/2008
3/2008
4/2008
4/2008
4/2008
4/2008
4/2008
4/2008
4/2008
4/2008
1/2008
10/2008
10/2008
10/2008
11/2009
1/2009 | Shelton, IV Lindh Desai Larkin Schena Ewers Hunter Gutterman Jones Han Stopek Paraschac Paraschac Paraschac Paraschac Jones Bishop Jones Jones Jones Stopek Maiorino Stopek Bellamkonda Kelly Chen Leung Yeung Sulamanidze Wohlert Nawrocki Hunter Leung | | 2005/0149064 A1 2005/0149118 A1 2005/0154255 A1 2005/0171561 A1 2005/0182444 A1 2005/0182445 A1 2005/0197699 A1 2005/0199249 A1 2005/0203576 A1 2005/0209542 A1 2005/0209542 A1 2005/0209612 A1 2005/0234510 A1 2005/0240220 A1 2005/0240220 A1 2005/0267531 A1 2005/0267532 A1 2005/0267532 A1 2005/0267532 A1 2005/0267532 A1 2005/0267534 A1 2005/0267534 A1 2006/0030884 A1 2006/0030884 A1 2006/0036266 A1 2006/0036266 A1 2006/0058799 A1 2006/0058799 A1 2006/0058799 A1 2006/0058799 A1 2006/0064115 A1 2006/0064116 A1 2006/0064116 A1 2006/0069525 A1 2006/0089525 A1 2006/0089672 A1 | 7/2005
7/2005
8/2005
8/2005
8/2005
9/2005
9/2005
9/2005
9/2005
10/2005
10/2005
10/2005
12/2005
12/2005
12/2005
12/2005
12/2006
3/2006
3/2006
3/2006
3/2006
3/2006
3/2006
3/2006
3/2006
3/2006
3/2006
3/2006
3/2006
3/2006
3/2006
3/2006
3/2006
3/2006
3/2006
3/2006
3/2006
3/2006
3/2006
3/2006
3/2006 | Peterson Koyfman Jacobs Songer Zamierowski Peterson Zamierowski Jacobs Karram Sulamanidze Jacobs Nakao Zamierowski Zamierowski Wu Ruff Wu Long Cauthen Gildenberg Yeung Sulamanidze Priewe Elson White Allen Allen Fallin Kolster Eremia Mamo Martinek | 2007/0239206 A1 2007/0257395 A1 2008/0004603 A1 2008/0009838 A1 2008/0009902 A1 2008/0027273 A1 2008/0027486 A1 2008/0046094 A1 2008/0046764 A1 2008/0066765 A1 2008/0066766 A1 2008/0066767 A1 2008/0066767 A1 2008/007181 A1 2008/0082113 A1 2008/0082113 A1 2008/0082149 A1 2008/0082149 A1 2008/0082149 A1 2008/0082149 A1 2008/0082149 A1 2008/0082140 A1 2008/0132943 2008/0208358 A1 2008/0215072 | 10/2007
11/2007
12/2007
1/2008
1/2008
1/2008
1/2008
1/2008
3/2008
3/2008
3/2008
3/2008
3/2008
3/2008
3/2008
4/2008
4/2008
4/2008
4/2008
4/2008
4/2008
4/2008
4/2008
1/2008
10/2008
10/2008
10/2008
11/2008
11/2008 | Shelton, IV Lindh Desai Larkin Schena Ewers Hunter Gutterman Jones Han Stopek Paraschac Paraschac Paraschac Paraschac Jones Bishop Jones Jones Jones Stopek Maiorino Stopek Bellamkonda Kelly Chen Leung Yeung Sulamanidze Wohlert Nawrocki Hunter Leung | | 2009/0076543 A1 3/2009 Maiorino | WO WO03103733 12/2003 | |---|--| | 2009/0099597 A1 4/2009 Isse | WO WO03103972 12/2003 | | 2009/0107965 A1 4/2009 D'Agostino
2009/0112259 A1 4/2009 D'Agostino | WO WO2004014236 2/2004
WO WO2004020520 4/2004 | | 2009/0112237 A1 4/2009 D Agostino
2009/0200487 A1 8/2009 Maiorino | WO WO2004020320 4/2004 WO WO2004030704 4/2004 | | 2009/0210006 A1 8/2009 Cohen | WO WO2004030705 4/2004 | | 2009/0226500 A1 9/2009 Avelar | WO WO2004112853 12/2004 | | 2009/0248066 A1 10/2009 Wilkie | WO WO2006005144 1/2006 | | 2009/0248067 A1 10/2009 Maiorino
2009/0248070 A1 10/2009 Kosa | WO WO2006061868 6/2006
WO WO2006082060 8/2006 | | 2009/0248070 A1 10/2009 Rosa
2009/0250356 A1 10/2009 Kirsch | WO WO2000082000 8/2000
WO WO2006099703 9/2006 | | 2009/0259233 A1 10/2009 Bogart | WO WO2007053812 5/2007 | | 2009/0259251 A1 10/2009 Cohen | WO WO2007133103 11/2007 | | 2009/0287245 A1 11/2009 Ostrovsky | WO WO2007145614 12/2007 | | 2009/0299407 A1 12/2009 Yuan | WO WO2009068252 6/2009 | | 2009/0299408 A1 12/2009 Schuldt-Hempe 2009/0306710 A1 12/2009 Lindh, Sr. | WO WO2009087105 7/2009
WO WO2010052007 5/2010 | | 2010/0023055 A1 1/2010 Rousseau | WO WOZU10032007 3/2010 | | 2010/0023033 A1 1/2010 Rousseau
2010/0057123 A1 3/2010 D'Agostino | OTHER PUBLICATIONS | | 2010/0063540 A1 3/2010 Maiorino | | | 2010/0071833 A1 3/2010 Maiorino | International Search Report for PCT/US2008/060127 dated Sep. 23, | | 2010/0087855 A1 4/2010 Leung | 2008, 5 pages. | | 2010/0101707 A1 4/2010 Maiorino | International Search Report for PCT/US2008/0064921 dated Nov. | | 2010/0140115 A1 6/2010 Kirsch | 19, 2008, 3 pages. | | 2010/0294103 A1 11/2010 Genova
2010/0294104 A1 11/2010 Genova | International Search Report for PCT/US2008/075849 dated Mar. 18, | | 2010/0294104 A1 11/2010 Genova
2010/0294105 A1 11/2010 Genova | 2009, 4 pages. | | 2010/0294106 A1 11/2010 Genova | Singapore Search Report for Singapore Patent Application No. | | 2010/0294107 A1 11/2010 Genova | 200702625-5 dated Nov. 26, 2008, 7 pages. | | 2010/0298878 A1 11/2010 Leung et al. | Singapore Search Report for Singapore Patent Application No. | | 2010/0298879 A1 11/2010 Leung et al. | 200702350-0 dated Nov. 26, 2008, 6 pages. | | 2010/0313723 A1 12/2010 Genova | Singapore Search Report for Singapore Patent Application No. | | 2010/0313729 A1 12/2010 Genova | 200703688-2 dated Nov. 26, 2008, 7 pages. | | 2010/0313730 A1 12/2010 Genova
2010/0318122 A1 12/2010 Leung et al. | European Search Report for EP07015905.8 dated Oct. 23, 2007, 2 | | 2010/0318122 A1 12/2010 Leung et al.
2011/0009902 A1 1/2011 Leung et al. | pages. | | 2011/0009902 At 1/2011 Leang et al. | European Search Report for EP10000629.5. dated Mar. 10, 2010, 4 | | FOREIGN PATENT DOCUMENTS | pages. | | CN 2640420 9/2004 | European Search Report for EP10011871.0 dated Dec. 3, 2010, 2 | | DE 1810800 6/1970 | pages. | | DE 3227984 7/1982 | European Search Report for EP10011868.6 dated Dec. 6, 2010, 2 | | DE 4302895 8/1994 | pages. | | DE 19618891 4/1997 | European Search Report for EP10186592.1 dated Jan. 19, 2011, 2 | | DE 19833703 2/2000
DE 102005004317 6/2006 | pages. | | EP 0329787 8/1989 | Mason, M.L., "Primary and secondary tendon suture. A discussion of | | EP 0325767 5/1991 | the significance of technique in tendon surgery", Surg Gynecol | | EP 0576337 12/1993 | Obstet 70 (1940). | | EP 0632999 1/1995 | McKee, G.K., "Metal anastomosis tubes in tendon suture", The Lan- | | EP 0612504 11/1997 | cet, May 26, 1945, 659-660. | | EP 0826337 3/1998 | Mansberger, et al., "A New Type Pull-Out Wire for Tendon Surgery: | | EP 0839499 5/1998
EP 0913123 5/1999 | A Preliminary Report", Department of Surgery, University Hospital | | EP 0913123 3/1999
EP 1075843 2/2001 | and University of Maryland School of Medicine, Baltimore, Mary- | | FR 2619129 2/1989 | land, Received for Publication May 10, 1951, pp. 119-121. | | FR 2693108 1/1994 | Jennings et al., "A new technique in primary tendon repair", Surg | | GB 267007 3/1927 | Gynecol Obstet Nov. 1952;95(5):597-600. | | GB 1091282 11/1967 | Bunnell, S., "Gig pull-out suture for tendons", J Bone Joint Surg Am. | | GB 1428560 3/1976 | Jul. 1954;36-A(4):850-1. | | GB 1506362 4/1978
JP 354116419 9/1979 | Verdan, Claude, "Primary Repair of Flexor Tendons", Journal of | | JP 354116419 9/1979
JP 63288146 11/1988 | Bone and Joint Surgery Jun. 1960; 42(4):647-657. | | JP 03288140 11/1988
JP 01113091 5/1989 | Potenza, Austin, "Tendon Healing Within the Flexor Digital Sheath | | JP 0960600 12/1999 | in the Dog: An Experimental Study", Journal of Bone & Joint Surgery | | JP 11332828 12/1999 | Jan. 1962; 44A(1):49-64. | | KR 6013299 A 2/2006 | Pulvertaft, "Suture Materials and Tendon Junctures", American Jour- | | NZ 501224 3/2002 | nal of Surgery Mar. 1965; 109:346-352. | | NZ 531262
6/2002 | Buncke, Jr., H.J. et al., "The suture repair of one-millimeter vessels, | | RU 1745214 7/1992
RU 1752358 8/1992 | micro-vascular surgery", Report of First Conference; Oct. 6-7, 1966; | | RU 1732338 8/1992
RU 2139690 10/1999 | pp. 24-35 (esp. p. 34), USA. | | WO WO9606565 3/1996 | McKenzie, A.R., "An Experimental Multiple Barbed Suture for the | | WO WO9852473 11/1998 | Long Flexor Tendons of the Palm and Fingers", Journal of Bone and | | WO WO9921488 5/1999 | Joint Surgery 1967; 49B(3): 440-447. Zolton, Janes, "Cigatrix Optimie: Techniques for Ideal Would Heal | | WO WO9905477 11/1999 | Zoltan, Janos, "Cicatrix Optimia: Techniques for Ideal Would Heal-ing", English language edition University Park Press, Baltimore, | | WO WO0051658 9/2000
WO WO03001979 1/2003 | 1977: Chapter 3: pp. 54-55. | 1977:Chapter 3; pp. 54-55. Han, Hongtao et al., "Mating and Piercing Micromechanical Structures for Surface Bonding Applications", Proceedings of the 1991 WO WO WO WO03001979 WO03017850 WO03045255 1/2003 3/2003 6/2003 Micro Electro Mechanical Systems (MEMS >91), An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots, Feb. 1991, pp. 253-258. Malina, Martin et al., "Endovascular AAA Exclusion: Will Stents With Hooks and Barbs Prevent Stent-Graft Migration", Journal Endovascular Surgery 1998(5): 310-317. Boenisch, U.W. et al., "Pull-our strength and stiffness of meniscal repair using absorbable arrows or Ti-Cron vertical and horizontal loop sutures", American Journal of Sports Medicine, Sep.-Oct. 1999, pp. 626-631, vol. 27, Issue 5. Sulamanidze, MD, M.A., et al., "Management of Facial Rhytids by Subcutaneous Soft Tissue Dissection", International Journal of Cosmetic Surgery and Aesthetic Dermatology, vol. 2(4), 2000, pp. 255-259. Rofin-Baasel, "Laser Marking on Plastic Materials", 2001.RB50.0, Rofin-Baasel Inc. 2001, 2 pages. Semenov, G. M. et al., "Surgical Suture", 2001, pp. 12-13 and 92-98, Piter, Saint Petersburg. Sulamanidze, M.A. et al., "Facial lifting with Aptos threads", International Journal of Cosmetic Surgery and Aesthetic Dermatology, 2001, pp. 1-8, No. 4. Dattillo, Jr., Philip Paul, "Medical Textile: Application of an Absorbable Barbed Bi-Directional Surgical Suture", Journal of Textile and Apparel, Technology and Management, vol. 2(2), Spring 2002, pp. 1-5. Lendlein, Andreas et al., "Biodegradable, Elastic Shape-Memory Polymers for Potential Biomedical Applications", Science vol. 296; May 31, 2002, pp. 1673-1676. Leung, J. et al., "Barbed, Bi-directional Medical Sutures: Biomechanical Properties and Wound Closure Efficacy Study", 2002 Society for Biomaterials 28th Annual Meeting Transactions, 1 page. Sulamanidze, MD, M.A., et al., "Removal of Facial Soft Tissue Ptosis with Special Threads", Dermatol Surg 2002; 28; pp. 367-371. Lendlein, Andreas et al., "Shape-Memory Polymers", Angew, Chem. Int. Ed. 2002, 41, 2034-2057. Sulamanidze, MD, M.A., et al., "Clinical aspects of bloodless facelift using APTOS filaments", A.V. Vishnevsky Institute of Surgery, Bol=shaya Serpukhovskaya ul., 27, 113811 Moscow, Russia, (2002):24-34. Sulamanidze, MD, M.A., et al., "Morphological foundations of facelift using APTOS filaments", Bolshaya Serpukhovskaya ul., 27, 113811 Moscow, Russia, (2002): 19-26. Dattillo, Jr., Philip Paul, et al., "Tissue Holding Performance of Knotless Absorbable Sutures", 2003 Society for Biomaterials 29th Annual Meeting Transactions, p. 101. Ingle, Nilesh P. et al., "Mechanical Performance and Finite Element Analysis of Bi-directional Barbed Sutures", Master of Science in Textile Technology & Management at North Carolina State University Aug. 2003, 126 pages. Kuniholm, Jonathan Fairbank, et al., "Automated Knot Tying for Fixation in Minimally Invasive, Robot Assisted Cardiac Surgery", Master of Science in Mechanical & Aerospace Engineering at North Carolina State University May 2003, 71 pages. Leung, J. et al., "Barbed Bi-directional Surgical Sutures: In Vivo Strength and Histopathology Evaluations", 2003 Society for Biomaterials 29th Annual Meeting Transactions, p. 100. Li, Yang Yang, et al., "Polymer Replicas of Photonic Porous Silicon for Sensing and Drug Delivery Applications", Science vol. 299; Mar. 28, 2003, pp. 2045-2047. Leung, Jeffrey C. et al., "Barbed, Bi-Directional Surgical Sutures", International Conference & Exhibition on Healthcare & Medical Textiles, Jul. 8-9 2003; 1-8. Szarmach, Robin et al., "An Expanded Surgical Suture and Needle Evaulation and Selection Program by a Healthcare Resource Management Group Purchasing Organization", Journal of Long-Term Effects of Medical Implants 2003; 13(3); 155-170. Ingle, Nilesh P et al., "Barbed Suture Anchoring Strength: Applicability to Dissimilar Polymeric Materials", College of Textiles, North Carolina State University, 7th World Biomaterials Congress 2004, 1 page. Leung, J. et al., "Performance Enhancement of a Knotless Suture via Barb Geometry Modifications", 7th World Biomaterials Congress 2004, 1 page. Wu, Woffles, "Barbed Sutures in Facial Rejuvenation", Aesthetic Surgery Journal 2004(24): 582-587. Quill Medical, Inc., "Quill Medical's Novel-Self-Anchoring Surgical Suture Approved for Sale in Europe", Press Release; Research Triangle Park, N.C., May 10, 2004, 1 page. Buckley, Patrick R., "Actuation of Shape Memory Polymer using Magnetic Fields for Applications in Medical Devices", Master of Science in Mechanical Engineering at the Massachusetts Institute of Technology Jun. 2003, 144 pgs. Quill Medical, Inc., "Barbed sutures, wrinkle filters give patients more innovative, non-surgical options", Press Release of Program presented at American Society of Plastic Surgeons annual scientific meeting; Philadelphia, Oct. 9, 2004, 3 pages. Leung, J. et al., "Barbed Suture Technology: Recent Advances", Medical Textiles 2004, Advances in Biomedical Textiles and Healthcare Products, Conference Proceedings, IFAI Expo 2004, Oct. 26-27, 2004, Pittsburgh, PA., pp. 62-80. Quill Medical, Inc., "Quill Medical, Inc. Receives FDA Clearance for First-in-Class Knot-Less Self-Anchoring Surgical Suture", Press Release; Research Triangle Park, N.C., Nov. 4, 2004, 1 page. Surgical Specialties Corporation, "Wound Closure Catalog"; Summer 2005, 5 pages. Rodeheaver, G.T. et al., "Barbed Sutures for Wound Closure: In Vivo Wound Security, Tissue Compatibility and Cosmesis Measurements", Society for Biomaterials 30th Annual Meeting Transactions, 2005, 2 pages. Belkas, J. S. et al., "Peripheral nerve regeneration through a synthetic hydrogel nerve tube", Restorative Neurology and Neuroscience 23 (2005) 19-29. Ingle, Nilesh P et al., "Testing the Tissue-holding Capacity of Barbed Sutures", College of Textiles, North Carolina State University, Fiber Science, The Next Generation Oct. 17-19, 2005, New Jersey Institute of Technology, Newark, NJ, 4 pages. Liu, Changdeng et al., "Shape Memory Polymer with Improved Shape Recovery", Mater. Res. Soc. Symp. Proc. vol. 855E, 2005 Materials Research Society, pp. W4.7.1-W4.7.6. De Persia, Raúl et al., "Mechanics of Biomaterials: Sutures After the Surgery", Applications of Engineering Mechanics in Medicine, GED-University of Puerto Rico, Mayaguez May 2005, p. F1-F27. Scherman, Peter et al., "Sutures as longitudinal guides for the repair of nerve defects-Influence of suture numbers and reconstruction of nerve bifurcations", Restorative Neurology and Neuroscience 23 (2005) 79-85. Sulamanidze, MD, M.A., et al., "Soft tissue lifting in the mid-face: old philosophy, new approach-internal stitching technique (APTOS Needle)", Plastic and Aesthetic Surgery Clinic Total Sharm, Moscow, Russia, (2005):15-29. Bacci, Pier Antonio, "Chirurgia Estetica Mini Invasiva Con Fili Di Sostegno", Collana di Arti, Pensiero e Scienza; Minelli Editore—2006; 54 pgs. Bellin, I. et al., "Polymeric triple-shape materials", Proceedings of the National Academy of Sciences of the United States of America Nov. 28, 2006; 2103(48):18043-18047. Delorenzi, C.L., "Barbed Sutures: Rationale and Technique", Aesthetic Surg J. Mar. 26, 2006(2): 223-229. Gross, Alex, "Physician perspective on thread lifts", Dermatology Times Feb. 27, 2006(2): 2 pages. Khademhosseini, Ali et al., "Nanobiotechnology Drug Delivery and Tissue Engineering", Chemical Engineering Progress 102:38-42 (2006). Murtha et al., "Evaluation of a Novel Technique for Wound Closure Using A Barbed Suture", Journal of the American Society of Plastic Surgeons 2006; 117(6); 1769-1780. Ruff, Gregory, "Technique and Uses for Absorbable Barbed Sutures", Aesthetic Surgery Journal Sep./Oct. 2006; 26:620-628. Behl, Marc et al., "Shape-Memory Polymers", Materials Today Apr. 2007; 10(4); 20-28. Kaminer, M. et al., "ContourLiftTM: A New Method of Minimally Invasive Facial Rejuvenation", Cosmetic Dermatology Jan. 2007; 20(1): 29-35. Kelch et al., "Shape-memory Polymer Networks from Olio[(0-hydroxycaproate)-co-glycolate]dimethacrylates and Butyl Acrylate with Adjustable Hydrolytic Degradation Rate", Biomacromolecules 2007;8(3):1018-1027. Maitland et al., "Prototype laser-activated shape memory polymer foam device for embolic treatment of aneurysms", Journal of Biomedical Optics May/Jun. 2007;12(3): pp. 030504-1 to 030504-3. Moran et al., "Bidirectional-Barbed Sutured Knotless Running Anastomosis v Classic van Velthovan in a Model System", Journal of Endourology Oct. 2007; 21(10); 1175-1177. Mullner, "Metal Foam Has a Good Memory", Dec. 18, 2007 Original story at http://www.physorg.com/news117214996.html>. Paul, Malcolm D. and Rui Avelar, "Quill™ SRS Techniques & Procedures a Novel Approach to Soft Tissue Approximation", Canada, Angiotech Pharmaceuticals, Inc., First Edition 82007: 20 pages. Paul, Malcolm D. and Rui Avelar, "QuillTM SRS Techniques & Procedures a Novel Approach to Soft Tissue Approximation", Canada, Angiotech Pharmaceuticals, Inc., Second Edition ⁸2008: 20 pages. Paul, Malcolm D. and Rui Avelar, "QuillTM SRS Techniques &
Procedures a Novel Approach to Soft Tissue Approximation", Canada, Angiotech Pharmaceuticals, Inc., Third Edition 2009, ⁸ 2007-2009: 27 pages. Paul, Malcolm D. and Rui Avelar, "QuillTM SRS Techniques & Procedures a Novel Approach to Soft Tissue Approximation", Canada, Angiotech Pharmaceuticals, Inc., Fourth Edition 2010, ⁸ 2007-2010: 27 pages. Dahlin, Lars, "Techniques of Peripheral Nerve Repair", Scandinavian Journal of Surgery 97: 310-316, 2008. Madduri, Srinivas, et al., "Neurotrophic factors release from nerve conduits for peripheral axonal regeneration", European Cells and Materials vol. 16; Suppl. 1 (2008), p. 14. Nie, Zhihong and Kumacheva, Eugenia, "Patterning surfaces with functional polymers", Nature Materials vol. 7(2008): 277-290. Paul, Malcolm D., "Using Barbed Sutures in Open/Subperiosteal Midface Lifting", Aesthetic Surgery Journal 2006(26): 725-732. Richert, Ludovic, et al., "Surface Nanopatterning to Control Cell Growth", Advanced Materials 2008(15): 1-5. Tan Ee Lim et al., "A wireless, passive strain sensor based on the harmonic response of magnetically soft materials", Smart Materials and Structures 17 (2008): p. 1-6. Villa, Mark T. et al., "Barbed Sutures: A Review of Literature", Plastic and Reconstructive Surgery; Mar. 2008; vol. 121, No. 3; pp. 102e-108e. Demyttenaere, Sebastian V. et al., "Barbed Suture for Gastrointestinal Closure: A Randomized Control Trial", Surgical Innovation; vol. 16, No. 3; Sep. 2009; pp. 237-242. Einarsson, Jon I. et al., "Barbed Suture, now in the toolbox of minimally invasive gyn surgery", OBG Management; vol. 21, No. 9; Sep. 2009; pp. 39-41. Paul, Malcolm D., "Bidirectional Barbed Sutures for Wound Closure: Evoluation and Applications", Journal of the American College of Certified Wound Specialists (2009) 1, 51-57. Sulamanidze, Marlen et al., "APTOS Suture Lifting Methods: 10 Years of Experience", Clin Plastic Surg 36 (2009); pp. 281-306. Ingle, N. P. et al., "Optimizing the tissue anchoring performance of barbed sutures in skin and tendon tissues", Journal of Biomechanics 43 (2010); pp. 302-309. International Search Report for PCT/US2002/027525 dated Dec. 9, 2002, 3 pages. European Search Report for EP107006258.3 dated May 4, 2007, 4 pages. US 6,447,535, 09/2002, Jacobs (withdrawn) US 6,503,260, 01/2003, Schaller (withdrawn) * cited by examiner ### SUTURE ANCHOR AND METHOD #### **CROSS-REFERENCES** This application is a divisional application of patent application Ser. No. 10/914,755, filed Aug. 9, 2004, and issued as U.S. Pat. No. 7,371,253 on May 13, 2008, which is a divisional of application Ser. No. 10/216,516, filed Aug. 9, 2002, and issued as U.S. Pat. No. 6,773,450 on Aug. 10, 2004, the contents of both of which are incorporated here by reference. ### BACKGROUND This invention relates generally to a device and method for anchoring tissue within a body and, more particularly, to a 15 suture anchor for use in surgical procedures requiring attachment of tissue, such as ligaments, tendons and the like, to other, preferably harder or more fibrous, tissue, such as a bone surface. Suture anchors are used in surgical procedures wherein it is 20 necessary for a surgeon to attach tissue to the surface of bone, for example, during joint reconstruction and ligament repair or replacement. Suture anchors generally comprise an anchor portion for fixed attachment to the bone, and a suture portion extending from the anchor portion used to connect the tissue 25 to the bone. The anchor portion is often a generally cylindrical body having a sharp pointed end. An impact tool is typically used for driving the pointed end of the anchor into the bone. The outer surface of the anchor portion may be barbed or serrated to prevent the suture anchor from being withdrawn 30 from the bone. The outer surface of the anchor portion could also be threaded and a driver, turned by a conventional drill, used to seat the threaded anchor portion into the bone. The anchor portion may also be fitted into a hole formed in the bone. With the anchor portion securely in the bone, the suture portion is used for securing the tissue to the bone. The procedure typically involves passing a needle with the suture attached through the tissue. The tissue is advanced along the suture and tension is applied to the suture to draw the tissue 40 tightly against the bone. The needle is removed and the tissue is secured against the bone by knotting the ends of the suture extending from the tissue. The knot is brought down to the surface of the tissue and tightened sufficiently to secure the tissue and bone in close approximation to promote reattachment and healing. A sliding retainer is sometimes used with the suture to pin the tissue against the bone. There are other conventional suture anchors for attaching tissue to bone. For example, the anchor portion could take other forms including a staple which is driven into the bone 50 surface with the suture positioned between the staple legs and the staple web fixing the suture to the bone surface. Also, a pair of closely-spaced holes can be drilled in the bone for passing the suture into one hole and out the other. However, these procedures are often difficult to perform, particularly in 55 areas with limited access, such as deep wounds. Further, conventional methods for approximating tissue to bone using a suture are difficult and inefficient because the procedure requires manipulation of the suture for securing the tissue in place. This is a time-consuming part of most surgical 60 procedures, particularly in microsurgery and endoscopic surgery where there is insufficient space to properly manipulate the suture. For the foregoing reasons, there is a need for an improved suture anchor for use in surgical procedures. The new suture 65 anchor should eliminate the need for tying the suture to hold the tissue against the bone or other tissue surface. The method 2 for using the suture anchor in surgical applications should allow a surgeon to approximate tissue to the bone or tissue surface in an efficient manner. A particularly useful new suture anchor would be used in surgical applications where space is limited such as microsurgery, endoscopic surgery or arthroscopic surgery. #### **SUMMARY** According to the present invention, a suture anchor is provided for approximating tissue to bone or other tissue. The suture anchor comprises an anchor member adapted to fixedly engage the bone for securing the anchor member relative to the bone. The anchor member has a distal end and a proximal end. A plurality of sutures are mounted to the proximal end of the anchor member so that the sutures extend outwardly from the anchor member. Each suture has a sharp pointed distal end for penetrating the tissue and a plurality of barbs extending from the periphery and disposed along the length of the body of the suture. The barbs permit movement of the sutures through the tissue in a direction of movement of the pointed end and prevent movement of the sutures relative to the tissue in a direction opposite the direction of movement of the pointed end. At least one pointed distal end of at least one suture comprises a needle. Also according to the present invention, a suture anchor is for approximating tissue to bone or other tissue. The suture anchor comprises an anchor member having a distal end and a proximal end. The anchor member is adapted to fixedly engage the bone to secure the anchor member relative to the bone. A plurality of sutures are mounted to the proximal end of the anchor member so that the sutures extend outwardly from the anchor member. Each suture has a sharp pointed 35 distal end for penetrating the tissue and a plurality of barbs extending from the periphery of the body of the suture. The barbs permit movement of the sutures through the tissue in a direction of movement of the pointed end and prevent movement of the sutures relative to the tissue in a direction opposite the direction of movement of the pointed end. At least one pointed distal end of at least one suture comprises a needle. Means are provided for mounting the sutures to the proximal end of the anchor member, the suture mounting means including a portion of the body of the anchor member which defines an opening in the proximal end of the anchor member for accepting the sutures. # BRIEF DESCRIPTION OF DRAWINGS For a more complete understanding of the present invention, reference should now be had to the embodiments shown in the accompanying drawings and described below. In the drawings: FIG. 1 is a perspective view of an embodiment of a suture anchor according to the present invention; FIG. 2 is a perspective view of another embodiment of a suture anchor including a plurality of barbed sutures according to the present invention; FIG. 3 is a side elevation view of an ankle with a portion of the outer layer of tissue cut-away to schematically show a torn Achilles tendon; FIGS. **4-6** are schematic views of an embodiment of a method according to the present invention for reattaching the Achilles tendon to bone; FIGS. 7-10 are perspective views of a method for joining two ends of a severed tendon according to the present invention; FIGS. 11-13 are perspective, side and top plan views, respectively, of the suture pattern generated by the method shown in FIGS. 7-10; FIGS. **14-17** are perspective views of another method for joining two ends of a severed tendon according to the present invention; FIGS. 18 and 19 are perspective and side elevation views, respectively, of the suture pattern generated by the method shown in FIGS. 14-17; and FIGS. 20 and 21 are side and rear elevation views, respectively, of the ankle shown in FIG. 3 with the torn Achilles tendon reattached to the bone using the suture anchor and method shown in FIGS. 7-13 according to the present invention. #### DESCRIPTION As used herein, the term "tissue" includes tendons, ligaments, cartilage, muscle, skin, organs, and other soft tissue.
The term "bone" includes bone, cartilage, tendon, ligament, 20 fascia, and other connective or fibrous tissue suitable for anchor for a suture. Certain other terminology is used herein for convenience only and is not to be taken as a limitation on the invention. For example, words such as "upper," "lower," "left," "right," 25 "horizontal," "vertical," "upward," and "downward" merely describe the configuration shown in the FIGs. It is understood that the components may be oriented in any direction and the terminology, therefore, should be understood as encompassing such variations unless specified otherwise. Referring now to the drawings, wherein like reference numerals designate corresponding or similar elements throughout the several views, there is shown in FIG. 1 a suture anchor for use according to the present invention and generally designated at 30. The suture anchor 30 includes an anchor 35 portion 32 and a suture portion 34. The anchor portion 32 comprises an elongated body 36 having a distal pointed tip 38 which serves as a leading end of the suture anchor 30 when the suture anchor is inserted into bone. A blind bore 40, or opening, is formed at the proximal end 41 of the anchor portion 32. A crossbar 42 integral with the anchor body 36 spans the opening 40 for threadably receiving the suture portion 34 at the proximal end of the anchor portion 32. The anchor portion 32 is shown as having a circular cross-section, although other cross-sectional shapes could be utilized without departing from the present invention. As shown in FIG. 1, ridges 44, or barbs, may be formed on the outer surface of the anchor portion 32 which allow movement of the anchor portion 32 through bone in one direction but which resist the withdrawal of the anchor portion 32 after the anchor 50 portion has been implanted in the bone. As described above, the anchor portion 32 is driven into the bone surface, pointed tip 38 first, by impact against the proximal end 41, or by turning as when the anchor portion 32 is threaded (not shown). The anchor portion 32 can also be 55 disposed into a hole bored in the bone, in which case insertion can be accomplished with direct pressure or gentle tapping on the proximal end 41 of the anchor portion 32. The ridges 44 on the surface of the anchor body 36 grasp the bone rendering the anchor portion 32 substantially irremovable from the bone. 60 Tension on the suture portion 34 enhances this effect. The suture portion 34 of the suture anchor 30 has an elongated body 46 and a plurality of barbs 48 disposed along the length of the body 46. First and second ends 50, 52 of the suture body 46 terminate in points 54, 56 for penetrating 65 tissue. The body 46 of the suture portion 34 is, in one embodiment, circular in cross section. Suitable diameters for the 4 body 46 range from about 0.001 mm to about 5.0 mm. The body 46 of the suture portion 34 could also have a non-circular cross-sectional shape which would increase the surface area of the body 46 and facilitate the formation of multiple barbs 48. The length of the suture portion 34 can vary depending on several factors, including the desired surgical application, the type of tissue to be approximated to the bone, the location of the bone, and the like. A suture portion 34 of proper length is selected for achieving suitable results in a particular application. The plurality of barbs **48** is axially-spaced along the body 46 of the suture portion 34. The barbs 48 are oriented in one direction facing toward the first end 50 of the suture body 46 for a first portion 58 of the length of the suture portion 34 and in an opposite direction facing the second end **52** of the suture body 46 for a second portion 60 of the suture portion 34. The point on the suture body 46 where the barbs 48 change direction is preferably positioned adjacent the crossbar 42 at the proximal end of the anchor body 36. The barbs 48 are yieldable toward the body 46. The barbs 48 on each portion 58, 60 of the suture body 46 are oriented so as to allow movement of the suture portion 34 through the tissue in one direction along with the corresponding end 50, 52 of the suture portion 34. The barbs 48 are generally rigid in an opposite direction to prevent the suture body 46 from moving in the tissue in the opposite direction. The barbs 48 can be arranged in any suitable pattern, for example, in a helical pattern as shown in FIG. 1. The number, configuration, spacing and surface area of the barbs 48 can vary depending upon the tissue in which the suture portion **34** is used, and depending on the composition and geometry of the suture body 46. The proportions of the barbs 48 may remain relatively constant while the overall length and spacing of the barbs 48 are determined by the tissue being approximated to the bone. For example, if the suture portion 34 is intended to be used in tendon, the barbs 48 can be made relatively short and more rigid to facilitate entry into this rather firm, fibrous tissue. If the suture portion **34** is intended for use in soft tissue, such as fat, the barbs 48 can be made longer and spaced farther apart to increase the holding ability in the soft tissue. Moreover, the ratio of the number of barbs 48 on the first portion 58 of the suture body 46 to the number of barbs 48 on the second portion 60, and the lengths of each portion 58, 60, can vary depending on the surgical application and needs. The surface area of the barbs 48 can also vary. For example, fuller-tipped barbs 48 can be made of varying sizes designed for specific surgical applications. For joining fat and relatively soft tissues, larger barbs 48 are desired, whereas smaller barbs 48 are more suited for collagen-dense tissues. There are also situations where a combination of large and small barbs 48 within the same structure will be beneficial such as when the suture portion 34 is used in the repair of tissue with differing layered structures. Use of the combination of large and small barbs 48 with the same suture portion 34 wherein barb 48 sizes are customized for each tissue layer will ensure maximum anchoring properties. The barbs 48 may be formed on the surface of the suture body 46 according to any suitable method, including cutting, molding, and the like. The preferred method is cutting with acute angular cuts directly into the suture body 46 with the cut portions pushed outwardly and separated from the body 46. The depth of the barbs 48 formed in the suture body 46 depends on the diameter of the suture material and the depth of cut. Embodiments of a suitable cutting device for cutting a plurality of axially spaced barbs 48 on the exterior of suture filaments are shown and described in U.S. patent application Ser. No. 09/943,733, entitled "Method Of Forming Barbs On A Suture And Apparatus For Performing Same", which was filed on Aug. 31, 2001, the contents of which are hereby incorporated by reference. This cutting device utilizes a cutting bed, a cutting bed vise, a cutting template, and a blade assembly to perform the cutting. When operated, the cutting device has the ability to produce a plurality of axially spaced barbs 48 in the same or random configuration and at different angles in relation to each other. Various other suitable methods of cutting the barbs 48 have been proposed including the use of a laser. The barbs 48 could also be cut manually. However, manually cutting the barbs 48 is labor intensive, decreases consistency, and is not cost effective. The suture portion 34 could also be formed by injection molding, extrusion, stamping and the like. Barbed sutures suitable for use according to the methods of the present invention are described in U.S. Pat. No. 5,342, 376, entitled "Inserting Device for a Barbed Tissue Connector", U.S. Pat. No. 6,241,747, entitled "Barbed Bodily Tissue Connector", and U.S. Pat. No. 5,931,855. The contents of 20 U.S. Pat. Nos. 5,342,376, 5,931,855 and 6,241,747 are hereby incorporated by reference. The suture portion 34 is attached to the proximal end of the anchor portion 32. As seen in FIG. 1, the suture portion 34 is threaded around the crossbar **42** on the anchor body **36**. It is 25 understood that the suture portion 34 may be attached to the anchor portion 32 in a number of ways, including inserting the end of the suture body 46 into the bore 40 formed in the proximal end of the anchor body 36 and securing the suture body 46 in place with a set screw, rivet, or the like, or, wherein 30 the material of the anchor portion 32 is metal, by swaging or crimping. The anchor portion 32 and suture portion 34 could also be formed in one piece in the manufacturing process. However, the preferred attachment of the suture portion 34 is as shown in FIG. 1 since this arrangement allows a simple, 35 secure threading of a double-ended suture portion 34 during manufacture or prior to use. Moreover, as seen in FIG. 2, the user may selectively attach several suture portions **34** to the anchor portion 32 depending upon the surgical application. Suitable material for the body 46 of the suture portion 34 is 40 available in a wide variety of monofilament suture material. The particular suture material chosen depends on strength and flexibility requirements. In one embodiment, the material for the suture body 46 is flexible and substantially nonresilient so that the shape of an inserted suture portion **34** will be 45 determined by the path of insertion and the surrounding tissue. In some applications, however, it may be desirable for at least a portion of the suture body 46 to have sufficient dimensional stability to assume a substantially rigid configuration during use and sufficient resiliency to return to a predeter- 50 mined position after deflection therefrom. The portions of the ends 50, 52 of the suture body 46 adjacent the points 54, 56 may be formed of a material sufficiently stiff to enable the points 54, 56 to penetrate tissue in which the suture
portion 34 is used when a substantially axial force is applied to the body 55 **46**. Variations in surface texture of the suture body **46** can impart different interaction characteristics with the tissue. The ends **50**, **52** of the suture portion **34** may be straight (FIG. **1**) or curved (FIG. **2**). In one embodiment, the ends **50**, **52** of the suture portion **34** may be surgical needles secured at each end of the suture portion **34** so that the body **46** extends between the shank ends of the two needles. The needles are preferably constructed of stainless steel or other surgical-grade metal alloy. The needles may be secured to the suture body **46** by means of adhesives, crimping, swaging, or the like, or the joint may be formed by heat shrinkable tubing. A detachable connection may also be employed such that the 6 needles may be removed from the suture body **46** by a sharp tug or pull or by cutting. The length of the needles is selected to serve the type of tissue being repaired so that the needles can be completely removed leaving the suture body **46** in the desired position within the tissue. The suture anchor 30 of the present invention can be formed of a bioabsorbable material which allows the suture anchor 30 to be absorbed by the body over time. Bioabsorbable material is particularly useful in arthroscopic surgery and procedures. Many compositions useful as bioabsorbable materials can be used to make the suture anchor 30. Generally, bioabsorbable materials are thermoplastic polymers. Selection of the particular material is determined by the desired absorption or degradation time period which depends upon the anticipated healing time for the subject of the procedure. Biodegradable polymers and co-polymers range in degradation time from about one month to over twenty-four months. They include, but are not limited to, polydioxanone, polylactide, polyglycolide, polycaprolactone, and copolymers thereof. Other copolymers with trimethylene carbonate can also be used. Examples are PDS II (polydioxanone), Maxon (copolymer of 67% glycolide and 33% trimethylene carbonate), and Monocryl (copolymer of 75% glycolide and 25% caprolactone). Germicides can also be incorporated into the suture anchor 30 to provide long lasting germicidal properties. Alternatively, either the anchor portion 32 or the suture portion 34 of the suture anchor 30 can be formed from non-absorbable material such as, for example, nylon, polyethylene terephthalate (polyester), polypropylene, and expanded polytetrafluoroethylene (ePTFE). The suture body 46 can also be formed of metal (e.g. steel), metal alloys, or the like. Titanium is a preferred material when the anchor portion 32 is to remain permanently in the bone. A suitable anchor portion 32 for use according to the present invention is available from Mitek Products of Norwood, Mass. Alternatively, the anchor portion 32 can also be a rigid barbed structure made from thick monofilament suture material with barbs suitable for anchoring in bone. In use in an orthopedic surgical procedure, the anchor portion 32 of the suture anchor 30 of the present invention is inserted into bone. Once the anchor portion 32 is fixed in place, the suture portion 34 extends outwardly from the anchor portion 32 and the bone for surgical suturing to tissue to be approximated to the bone. The tissue is brought into position over the suture anchor 30 site. The point 54 at one end 50 of the suture portion 34 is inserted into the tissue such that the point 54 pierces the tissue and the barbs 48 on the portion 58 of the suture body 46 corresponding to the one end 50 yield toward the body **46** to facilitate movement of the suture body as it is drawn through the tissue in the direction of insertion. The point **56** at the other end **52** of the suture portion **34** is also inserted into the tissue and advanced through the tissue in like manner. The tissue is then advanced along the suture portions **58**, **60** within the tissue to close the gap between the tissue and the bone. The barbs **48** of the suture body **46** grasp the surrounding tissue and maintain the tissue in position adjacent to the bone during healing. The leading ends 50, 52 of the suture body 46 protruding from the tissue are then cut and discarded. According to the present invention, a surgical procedure using the suture anchor 30 is provided for approximating a torn Achilles tendon to bone for reattachment and healing. It is understood that the applicants do not intend to limit the suture anchor 30 and method of the present invention to only the reattachment of the Achilles tendon. Referring to FIG. 3, a human foot 70 is shown with a portion of the outer layer 72 of skin and tissue cutaway to schematically show the Achilles tendon 74 tom away from the heel bone 76. In this embodiment of the present invention, the user, such as a surgeon, selects a suture anchor 30 (FIG. 4) having a suture portion 34 of sufficient length and having curved ends 50, 52 which, in one embodiment, as noted above may be surgical needles. As seen in FIG. 4, the surgeon begins by inserting the suture anchor 30 into the heel bone 76. The first and second portions 58, 60 of the elongated suture portion 34 extend from the anchor portion 32. Next the surgeon inserts the first end 50 (FIG. 5), or surgical needle, into the free end of the Achilles tendon 74 and pushes the needle 50 through the tendon 74 along a selected curvilinear path until the point **54** at the first end of the needle **50** extends from an exit point 78 at the periphery of the tendon 74 longitudinally spaced from the end of the tendon. The surgeon grips the needle 50 and pulls the needle out of the tendon 74 for drawing the first portion 58 of the suture body 46 through the tendon 74 leaving a length of the first portion 58 of the suture body **46** in the tendon **74** between the end of the tendon and 20 the exit point 78, as seen in FIG. 6. These steps are repeated with the second portion 60 of the suture body 46 beginning with insertion into the end of the tendon 74. Methods according to the present invention useful in binding together partially or completely severed tendons, or other 25 internal tissue repairs requiring considerable tensile strength, are suitable for use in attaching tissue to bone. One such method for joining two ends 82, 84 of a tendon 80 is shown in FIGS. 7-10. Referring to FIG. 7, the surgeon begins by inserting a first end 92 of a two-way barbed suture 90, which may 30 comprise a straight or curved surgical needle, into one end 82 of the tendon 80 and pushing the needle 92 through the tendon 80 along a selected curvilinear path until the point 94 of the needle 92 extends from an exit point 96 in the periphery of the tendon 80 longitudinally spaced from the one end 82 of the 35 tendon 80. The first needle 92 is gripped and pulled out of the tendon 80 for drawing a first portion 98 of the suture 90 through the tendon 80 leaving a length of the first portion 98 of the suture 90 in the tendon end 82 between the end of the tendon 80 and the exit point 96. As seen in FIG. 7, these steps 40 are repeated with a second portion 100 of the suture 90 at the other end 84 of the tendon 80, wherein a second end 93 of the suture 90 is inserted into the tendon end 84 and advanced along a selected curvilinear path to an exit point 97 longitudinally spaced from the end **84** of the tendon **80**. The second 45 end 93 of the suture 90 projecting from the exit point 97 is gripped and pulled out of the tendon 80 for drawing the second portion 100 of the suture 90 through the tendon 80 and leaving a length of the second portion 100 of the suture 90 in the tendon end **84** (FIG. **8**). Referring now to FIG. 8, a second suture 90a is introduced into the ends 82, 84 of the tendon 80. The first needle 92a of the second suture 90a is inserted into the one end 82 of the tendon 80 and pushed through the tendon along a selected curvilinear path until the needle 92a extends from an exit 55 point 96a in the periphery of the tendon 82 substantially co-located with the first exit point 96 of the first portion 98 of the first suture 90. These steps are repeated with the second portion 100a of the second suture 90a at the other end 84 of the tendon 80 such that the exit point 97a in the periphery of 60 the end of the tendon 84 is substantially co-located with the first exit point 97 of the second portion 100 of the first suture 90. The needles 92a, 93a of the second suture 90a are pulled out of the tendon 80 for drawing the first and second portions 98a, 100a, respectively, of the second suture 90a through the 65 tendon 80 leaving a length of the second suture 90a in the tendon 80 between the exit points 96a, 97a. 8 As shown in FIG. 9, the surgeon reinserts the first needle 92 of the first suture 90 into the periphery of the one end 82 of the tendon 80 at an entry point 102 immediately adjacent the exit point 96 and pushes the needle 92 along a selected curvilinear path until the point 94 of the needle 92 exits the same side of the tendon 82 at an exit point 104 that is longitudinally spaced from the entry point 102. It is understood that the surgeon could use the exit point 96 as the entry point 102 for the needle 92 if desired. The surgeon pulls the needle 92 out of the tendon 82 for drawing the first portion 98 of the suture 90 through the tendon 82. The surgeon may then reinsert the needle 92 into the tendon 82 at an entry point (not shown) immediately adjacent the exit point 104 and push the needle 92 along a selected curvilinear path and out of the same side of the tendon **82** at an exit point (not shown) longitudinally spaced from the previous entry point. It is understood that the surgeon makes as many passes as deemed necessary in a "wave-like" pattern for holding the end 82 of the tendon, or as the length or thickness of the tendon 82 allows, and removes the remaining
length of the first portion 98 of the suture 90. The surgeon repeats the steps described above with the first portion 98a of the second suture 90a (FIG. 10) by reinserting the needle 92a into the tendon 82 at an entry point 102a adjacent the exit point 96a, crossing over the first portion 98 of the first suture 90, and pushing the needle 92a along a selected curvilinear path until the needle 92a emerges from an exit point 104a in the periphery of the tendon 82 substantially co-located with the second exit point 104 of the first portion 98 of the first suture 90. In this manner, the surgeon advances longitudinally along the end 82 of the tendon 80 with the first portion 98a of the second suture 90a in a "wave-like" pattern which generally mirrors that of the first portion 98 of the first suture 90. The previous steps are repeated at the other end 84 of the tendon 80 with the second portions 100, 100a of the first suture 90 and second suture 90a. The pattern of the second portions 100, 100a of the sutures 90, 90a in the second end 84 of the tendon 80 generally mirrors that of the first portions 98, 98a of the sutures in the first end 82 of the tendon 80. Thus, the exit points and entry points of the first and second sutures 90, 90a are substantially co-located. The ends 82, 84 of the tendon 80 are brought together by pushing the tendon ends along the sutures while maintaining tension on the free ends 92, 92a, 93, 93a of the sutures 90, 90a. The barbs 48 maintain the sutures 90, 90a in place and resist movement of the tendon ends 82, 84 away from this position. The needles along with remaining lengths of the suture portions 98, 98a, 100, 100a are cut and discarded. FIGS. 11-13 show the suture pattern resulting from use of the above-described method of the present invention. It is understood that we do not intend to limit ourselves to the depth or length of the suture paths shown in the FIGs. as the amount of tissue grasped by each pass, which is related to the depth of the suture path into the tissue and the length of the pass from entry point to exit point, may be determined by the surgeon based on a number of factors including the tissue to be joined. Another method according to the present invention for joining two ends 82, 84 of a tendon 80 which is suitable for use in attaching tissue to bone is shown in FIGS. 14-17. Referring to FIG. 14, the surgeon begins by inserting the first end 92 of a two-way barbed suture 90, which may comprise a straight or curved surgical needle, into one end 82 of the tendon 80 and pushing the needle 92 through the tendon 82 along a selected curvilinear path until the point 94 of the needle 92 extends from an exit point 96 in the periphery of the tendon 82 longitudinally spaced from the one end 82 of the tendon. The first needle 92 is gripped and pulled out of the tendon 82 for drawing the first portion 98 of the suture 90 through the tendon 80 leaving a length of the first portion 98 of the suture in the tendon 80 between the tendon end 82 and the exit point 96. As seen in FIG. 14, these steps are repeated with the second portion 100 of the suture 90 at the other end 84 of the tendon 80. That is, a second end 93 of the suture 90 is inserted into the tendon end 84 and advanced along a selected curvilinear path to an exit point 97 longitudinally spaced from the end 84 of the tendon 80. The exit point 97 of the second needle 93 is on the opposite side of the tendon 80 from the first exit point 96 of the first portion 98 of the suture 90. The second end 93 of the suture 90 projecting from the exit point 97 is gripped and pulled out of the tendon 80 for Referring now to FIG. 15, a second suture 90a is introduced into the ends 82, 84 of the tendon 80. The first needle 20 92a of the second suture 90a is inserted into the end 82 of the tendon 80 and pushed through the tendon along a selected curvilinear path until the needle 92a extends from an exit point 96a in the periphery of the tendon 82 substantially co-located with the first exit point **96** of the first portion **98** of 25 the first suture 90. These steps are repeated with the second portion 100a of the second suture 90a at the other end 84 of the tendon 80 such that the exit point 97a in the periphery of the end of the tendon **84** is substantially co-located with the first exit point 97 of the second portion 100 of the first suture 30 90. The needles 92a, 93a of the second suture 90a are pulled out of the tendon 80 for drawing the first portion 98a and second portion 100a of the second suture 90a through the tendon 80 leaving a length of the second suture 90a in the tendon 80 between the exit points 96a, 97a. drawing the second portion 100 of the suture 90 through the tendon 80 and leaving a length of the second portion 100 of the suture 90 in the tendon end 84 (FIG. 15). As shown in FIG. 16, the surgeon reinserts the second needle 92a into the periphery of the one end 82 of the tendon 80 at an entry point 102a immediately adjacent the exit point **96***a* and pushes the needle **92***a* along a selected curvilinear path until the point **94***a* of the needle **92***a* exits the opposite 40 side of the tendon 82 at an exit point 104a that is longitudinally spaced from the entry point 102a. It is understood that the surgeon could use the first exit point 96a as the entry point 102a for the needle 92a if desired. The surgeon pulls the needle 92a out of the tendon 82 for drawing the first portion 45 98a of the suture 90a through the tendon 82. The surgeon may then reinsert the needle 92a into the tendon 82 at an entry point (not shown) immediately adjacent the exit point 104a and push the needle 92a along a selected curvilinear path and out of the opposite side of the tendon 82 at an exit point (not 50 shown) longitudinally spaced from the previous entry point. It is understood that the surgeon makes as many passes in a "side-to-side" pattern as deemed necessary for holding the end 82 of the tendon 80, or as the length or thickness of the tendon end **82** allows, and removes the remaining length of 55 the first portion 98a of the second suture 90a. With each pass, the longitudinal distance between the entry point and exit point decreases. The surgeon repeats these steps with the second portion 100a of the second suture 90a at the other 84 of the tendon 80. The second end 93a of the suture 90a is 60 inserted into the other end 84 of the tendon 80 at an entry point 106a immediately adjacent the first exit point 97a and advanced along a selected curvilinear path to an exit point **108***a* opposite and longitudinally spaced from the entry point 106a. The second portion 100a of the second suture 90a is 65 drawn through the tendon 80 leaving a length of the second portion 100a of the suture 90a in the tendon (FIG. 17). **10** The surgeon repeats the steps described above with the first portion 98 and second portion 100 of the first suture 90 at the ends 82, 84 of the tendon 80. As seen in FIG. 17, the needle 92 at the end of the first portion 98 is inserted into the tendon end 82 at an entry point 102 adjacent the exit point 96 and pushed along a selected curvilinear path until the needle 92 emerges from an exit point 104 in the periphery of the tendon 82 substantially co-located with the second exit point 104a of the first portion 98a of the second suture 90a. In this manner, the surgeon advances longitudinally along the end 82 of the tendon 80 with the first portion 98 of the first suture 90 in a "side-to-side" pattern which generally mirrors that of the first portion 98a of the second suture 90a. Similar steps are taken with the second portion 100 of the first suture 90 in the other end 84 of the tendon 80. The pattern of the first suture 90 and second suture 90a, as well as the respective first portions 98, 98a and second portions 100, 100a of the sutures 90, 90a, generally mirror one another. The exit points and entry points of the sutures are substantially co-located. The ends 82, 84 of the tendon 80 are brought together by pushing the tendon ends along the sutures while maintaining tension on the free ends of the sutures 90, 90a. The barbs 48 maintain the sutures 90, 90a in place and resist movement of the tendon ends 82, 84 away from this position. The needles, along with remaining lengths of the sutures, are cut and discarded. FIGS. 18 and 19 show the suture pattern using the above-described method of the present invention. It is understood that more sutures may be used in any of the methods of the present invention. The number of sutures used depends on the size, caliber, and length of the tendon to be repaired. Large tendons will require more than two sutures whereas one may suffice for very small tendons. Tendon repair with two sutures according to the present invention exhibits equivalent or better holding power than conventional techniques. Moreover, tendons repaired according to the methods of the present invention maintain their original configuration, profile, contour, and form better when subject to stretching forces. Other methods of tendon repair suitable for use according to the present invention are shown and described in U.S. patent application Ser. No. 09/896,455, entitled "Suture Method", which was filed on Jun. 29, 2001, the contents of which are hereby incorporated by reference. FIGS. 20 and 21 are two views of the Achilles tendon 74 reattached to the heel bone 76 to promote healing according to the present invention using the suture method shown in FIGS. 7-13. The tendon 74 and bone 76 will, over time, grow together. The present invention provides a compact and easy to use suture anchor and method for reattaching tissue, such as tendons and ligaments, to bone or other connective tissue. The curvilinear placement paths of the suture portion, as contrasted with linear insertion, provide substantially increased biomechanical strength for approximating tissue and bone, or the ends of tendon. The barbed
suture portion permits tissue to be approximated and held snug during suturing with less slippage of the suture in the wound. The barbs spread out the holding forces evenly thereby significantly reducing tissue distortion. The suture anchor is useful in endoscopic and arthroscopic procedures and microsurgery. Since knots do not have to be tied, arthroscopic knot tying instruments are unnecessary. If there is an accidental breakage of the barbed suture, the wound is minimally disturbed whereas, with conventional sutures, dehiscence would occur. Although the present invention has been shown and described in considerable detail with respect to only a few exemplary embodiments thereof, it should be understood by those skilled in the art that we do not intend to limit the invention to the embodiments since various modifications, omissions and additions may be made to the disclosed embodiments without materially departing from the novel teachings and advantages of the invention, particularly in light of the foregoing teachings. For example, the methods of the present invention can be used with a suture anchor alone as a two-way barbed suture. Accordingly, we intend to cover all such modifications, omissions, additions and equivalents as may be included within the spirit and scope of the invention as defined by the following claims. The invention claimed is: - 1. A suture anchor for approximating tissue and bone, the suture anchor comprising: - an anchor member having a distal end and a proximal end, the anchor member adapted to fixedly engage the bone to secure the anchor member relative to the bone; and - a plurality of sutures mounted to the proximal end of the anchor member so that the sutures extend outwardly from the anchor member, each suture having a sharp pointed distal end for penetrating the tissue and a plurality of barbs extending from the periphery and disposed along the length of the body of the suture, the barbs permitting movement of the sutures through the tissue in a direction of movement of the pointed end and preventing movement of the sutures relative to the tissue in a direction opposite the direction of movement of the pointed end, wherein at least one pointed distal end of at least one suture comprises a needle. - 2. The suture anchor as recited in claim 1, wherein the distal end of the anchor member is pointed for driving into the bone. - 3. The suture anchor as recited in claim 1, wherein the anchor member comprises a plurality of barbs extending from the periphery of the body of the anchor member, the barbs permitting movement of the anchor member through the bone in a direction of movement of the distal end and preventing movement of the relative to the bone in a direction opposite the direction of movement of the distal end. - 4. The suture anchor as recited in claim 1, further comprising means for mounting the sutures to the proximal end of the anchor member. 12 - 5. The suture anchor as recited in claim 1, wherein the suture anchor is formed from a material that is absorbed by the body after a predetermined period of time. - 6. The suture anchor as recited in claim 1, wherein the suture anchor is formed from a material that is not absorbed by the body. - 7. The suture anchor as recited in claim 1, wherein the anchor member is formed from a material that is absorbed by the body after a predetermined period of time. - 8. The suture anchor as recited in claim 1, wherein the anchor member is formed from a material that is not absorbed by the body. - 9. The suture anchor as recited in claim 1, wherein the sutures are formed from a material that is absorbed by the body after a predetermined period of time. - 10. The suture anchor as recited in claim 1, wherein the sutures are formed from a material that is not absorbed by the body. - 11. A suture anchor for approximating tissue and bone, the suture anchor comprising: - an anchor member having a distal end and a proximal end, the anchor member adapted to fixedly engage the bone to secure the anchor member relative to the bone; - a plurality of sutures mounted to the proximal end of the anchor member so that the sutures extend outwardly from the anchor member, each suture having a sharp pointed distal end for penetrating the tissue and a plurality of barbs extending from the periphery of the body of the suture, the barbs permitting movement of the sutures through the tissue in a direction of movement of the pointed end and preventing movement of the sutures relative to the tissue in a direction opposite the direction of movement of the pointed end, wherein at least one pointed distal end of at least one suture comprises a needle; and - means for mounting the sutures to the proximal end of the anchor member, wherein the suture mounting means includes a portion of the body of the anchor member, which defines an opening in the proximal end of the anchor member for accepting the sutures. * * * *