US008079031B2
12 United States Patent (10) Patent No.: US 8.079,031 B2
Santhanakrishnan et al. 45) Date of Patent: Dec. 13, 2011
(54) METHOD, APPARATUS, AND A SYSTEM FOR 6,697.935 Bl 2/2004 Borkenhagen et al.
DYNAMICALLY CONFIGURING A 6,721,870 B1* 4/2004 Yochaietal. 711/204
7,073,030 B2* 7/2006 Azevedoetal ... 711/136
PREFETCHER BASED ON A THREAD 7,096,390 B2* 82006 Talcottetal. 714/45
SPECIFIC LATENCY METRIC 7228387 B2 6/2007 Cai et al.
2003/0188226 Al 10/2003 Talcott
(75) Inventors: Geeyarpuram N. Santhanakrishnan, 2004/0268050 Al* 12/2004 Caietal.c.ocevvnennne. 711/137
Hillsboro, OR (US); Michael F. Cole, 2006/0212867 Al* 9/2006 Fieldsetal. 718/100
Eﬂfﬂa?tdn og I({L&SJ)S;)Méfk RO‘:ila“d: FOREIGN PATENT DOCUMENTS
eaverton, ., Ganapati
.« o CN 1276888 A 12/2000
Srinivasa, Portland, OR (US) CN 1540068 11/2004
_ _ EP 0777181 6/1997
(73) Assignee: Intel Corporation, Santa Clara, CA FP 1 783 603 A3 6/2008
(US) W 200405204 A 1/2004
WO W0O-9921081 4/1999
WO W0O-03021438 3/2003

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35 OTHER PUBIICATIONS
U.S.C. 154(b) by 14935 days.

Office Action from foreign counterpart China Patent Application No.

(21) Appl. No.: 11/256,536 200610164123 .4, mailed Dec. 14, 2007, 29 pages (Iranslation
included).
(22) Filed: Oct. 21, 2005 Search Report from foreign counterpart European Patent Application

No. 06255445.6, mailed Apr. 25, 2008, 7 pages.
(65) Prior Publication Data

US 2007/0094453 Al Apr. 26, 2007

(Continued)

Primary Examiner — Meng A An

(51) Int. CL. Assistant Examiner — Blake Kumabe
GO6L 9/46 (2006.01) (74) Attorney, Agent, or Firm — Blakely, Sokoloft, Taylor &
(52) US.CL ..., 718/100; 712/207 Zatman LLP
(58) Field of Classification Search 712/207;
718/100 (57) ABSTRACT
See application file for complete search history. A discussion of a dynamic configuration for a prefetcher 1s

proposed. For example, a thread specific latency metric 1s
calculated and provides dynamic feedback to the software on
a per thread basis via the configuration and status registers.
Likewise, the software can optionally use the information

(56) References Cited

U.S. PATENT DOCUMENTS

gagg ﬁll aggg i) 18? }gg é Eiiomﬂo ett ﬂi: ++++++++++++++++ 7?3?2/ ‘i‘g from the registers to dynamically configure the prefetching
,, : ersonetal. - :
6,453,389 B1* 9/2002 Weinberger et al. 711/137 bEhfa“‘?’r and allgws the S‘?’ﬁ‘flare wfbe;‘ble to both query the
6,456,632 B1* 9/2002 Baumetal. 370/490 performance and contigure the preietcher.
6,560,693 Bl 5/2003 Puzak et al.
6,571,318 B1* 5/2003 Sanderetal. 711/137 18 Claims, 9 Drawing Sheets
| Monitors:
A - 1) Demands only
E' ?_'_'_'_'_'_'.'-_'_'_'_'_'_1.: 2) | aten Cy
X ! 3) Thread-wise
> J Latency
p .| Monitor Configuration/
Cache § n Status Registers
1 _____
A fmeemmeen—nn T S TZ
T I SN Pyt ¥ '
R - —— - It .
e Prefetch fe——: Contig
-+« | Prefetch [Control 2. __| Parameters
Params:
1} Aggresiveness
Enable/Disable

2)
3} Type hint
4)

US 8,079,031 B2
Page 2

OTHER PUBLICATIONS Official Letter and Search Report from foreign counterpart Taiwan

. _ _ Patent Application No. 95138982, mailed Apr. 8, 2011, 3 pages.
Official Letter and Search Report from foreign counterpart Tarwan (Translation not included)

Patent Application No. 95138982, mailed Sep. 7, 2010, 14 pages. Decision on Rejection from foreign counterpart China Patent Appli-

(Iranslation not included). | | cation No. 200610164123 .4, mailed Jan. 8, 2010, 24 pages. (Trans-
First Office Action from foreign counterpart Taiwan Patent Applica- lation included).

titon No. 95138982, mailed Feb. 12, 2010, 11 pages. (Translation not
included). * cited by examiner

U.S. Patent Dec. 13, 2011 Sheet 1 of 9 US 8,079,031 B2

System
Maonitor

lllll

104

L [
lllll
Ll e - -
- +] -
-
- r -
v
» r = =
111111 -
[1
Ll [
- T Ll
-, r - T
rrrrr
-

(PRIOR ART)

¢ Ol

N A e TP RS EREEREREFRAERRA, Aelabelalleleliedeleiilli el et it el e e e————————

SI0INIT
JOVHOLS YLV ANOD YOS AT

1
1
1
ol il ol 2 il mterer mb o micer b
e ey’ '
- ”H.qﬂ_q i] L = L & o =& F 2 - F 1 LT E T T .I.....I."m.'".'.‘ Y ¥ ,

it DHNY

US 8,079,031 B2

&
L’h‘“‘h‘\‘h‘h‘l\'ﬁ'ﬁ“‘lﬁ

Sheet 2 0of 9

(e e gy e

e Y ke o
: . _ wuwxmﬁmm
W&i g6 LASdIHD yppodddi MG HO

L P T P P ey

Dec. 13, 2011

dd| {dd| [m
- | . m
; ! i
e Bid Qid 7 .mm, m e

AR

L A 77
| | A P

.
- g g iy 3

My, L _

vy

U.S. Patent

US 8,079,031 B2

Sheet 3 of 9

Dec. 13, 2011

U.S. Patent

Ty

e T "

SIOIAIG
JOYHOLS YLYG ATOD

= il el e ry———— ..11“

Ao
Nmmﬁﬁm}mx

T

G QIENY

w =M ﬂﬂm xw

ﬁi‘f-r_[t‘t[l Lome gk o b) P g T 3 AT I TN T FFF PN FI R . _ i it T
r L 4 o i 0 3T E F P P FT L) I 4 r r . ..
............) L _1.__ " . .” . ”... ” ' i 2l kel g g -

Bt 00 0 . . O A 28 o gl mmm

S HHAYHEO

850 L38O \E.mm Seidd HOIR

m
m
m

23| 057 | g1 el
sz iz

5
A0 W

BV EDS
mm Hdl 00U

n
L
Ty g g S S Sparfiorlly g g " e oty By 3y e B iy

el wen ekl sk b g g g g

(¥
July adA] (g
a|gesiqg/e|qeus (Z

US 8,079,031 B2

SSaUaAISalbby (|
'SWweled

slajoweled

Sheet 4 of 9

- bijuon

sJo)sibay snjeig
juonelnbijuon

Dec. 13, 2011

9SIM-pealy] (g
fousie (7

Ajuo spuewsaq (|
'SIOJIUOIA

U.S. Patent

10JJU0)
Yoiejeid

IOJIUOA
Aousje

- S - O N N S T T T S T
+

Vv Ol

I =

U.S. Patent Dec. 13, 2011 Sheet 5 of 9 US 8,079,031 B2

SAMPLING A FINITE NUMBER, N, OF A 410
PREDETERMINED TRANSACTION TYPE

RECORDING THE NUMBER OF CYCLES BETWEEN DISPATCH 412
OF THE PREDETERMINED TRANSACTION TYPE AND COMPLETION
1S RECORDED AND ADDING TO A THREAD SPECIFIC ACCUMULATOR

414
DIVIDING THE VALUE OF THE ACCUMULATOR BY N

US 8,079,031 B2

)

S

\&

z

N

_ :91npadojd pus
= (Jpeasyy o) dwnl

M, ‘()1x8}uU02 " peaJy) 8.10)sa.

- ()sJejoweled"ypm—aiempiey aanbijuod

M painbijuod Jo um__woa CICR)

'()sJeyo weted buiziwido pesy) puly
‘()a|npayss— o) peaty; yo1d
() a|npayos~ pealu) sinpasoud

U.S. Patent

G Ol

uolnes||ddy
uny

9Z119)8 We e
yojeleid
9|NPayYdS

SOA

;3INpayos
pes.y]

9JE1S

HEM pesdy]

pE3IY|
MON

(pea.y) Jadjay
10 §/O 10 alempley)

uoljezie welted yowleid (7
Buriojluow Asusie (|

US 8,079,031 B2

Sheet 7 0of 9

Dec. 13, 2011

U.S. Patent

(N peaJy])

10$S800.14
221607 YIN

9 Ol

(2 peaiyy)

108$920.4
221607 puo2ag

(1 peaiyl)

10SS820.4
221607 18114

X

US 8,079,031 B2

Sheet 8 0f 9

2011

b/

Dec. 13

U.S. Patent

¥3TI0HLINOD AHOWIN
FHYMY ONIHOVO

HOSSTNOHd ONIHOVO® @

H3T1T0HINOD AHOWIW
FHVMY ONIHOVI

O149v4 MHOMISN

H3TT0HLNOD AHONWIN
FHYMY ONIHOVI

H0SSIO0Hd ONIHOVI

US 8,079,031 B2

Sheet 9 of 9

Dec. 13, 2011

U.S. Patent

E%.‘i“i‘.ﬂ*:ﬁiaahaa
X

(NCLLYAN M LEN] m (NOLLY LN DY LS
HAHLD M0 HIZATYNY JID0) S30VS53 m | MO MO HIZATNY 90T SIOVCSTA
ONIHOLING W NOLLYLINA WY LN w SNRHOLINO W NOLLYINIWNELONT

el el el ey e o 3 g e
il il el il il il el sl g e g e e ey g e

g oo e v

* F
e waa

X2

il il el el el ..

HAAY T WWIHEAH

L R O O

HAAY T WIS AH

il kgt kg i

SNLLNGY SNILNOY

..........

LHOAENYHL . 180d5NYEL

gl e i e

TOD0LO . m 0L

i ol ke i e

US 8,079,031 B2

1

METHOD, APPARATUS, AND A SYSTEM FOR
DYNAMICALLY CONFIGURING A

PREFETCHER BASED ON A THREAD
SPECIFIC LATENCY METRIC

FIELD OF THE INVENTION

One or more embodiments of the invention relate generally
to the field of instruction/data prefetching. More particularly,
one or more of the embodiments of the mnvention relates to a
method, system, and an apparatus for a software configurable
prefetcher

BACKGROUND OF THE INVENTION

Modern computer systems exhibit a significant bottleneck
between processors and system memory. As a result, a sub-
stantial amount of latency 1s incurred for completion of
memory requests 1ssued by a processor. One technique for
reducing or avoiding latency between the processor and sys-
tem memory 1s the use of data caches. As a result, computer
systems may store requested data within volatile memory
devices, such as cache memory devices. Accordingly, when a
processor requires memory, the processor checks the data
cache to determine whether the data 1s readily available and
gather the data from such temporary memory devices to avoid
the bottleneck that exists between processors and system
memory.

Unfortunately, current computer systems consume an 1nor-
dinate percentage of execution cycles solely ondata cache. As
a result, the program 1s halted until the data can be gathered
from main memory. Unfortunately, substantial cache misses
have a sigmificant detrimental effect on the execution time and
elficiency of user programs. One technique for reducing the
amount of time required to process memory references 1s data
prefetching. Data prefetching refers to a technique which
attempts to predict or anticipate data loads. Once the data
loads are anticipated, the data 1s preloaded or prefetched
within a temporary memory in order to avoid data cache
misses.

Accordingly, traditional instruction on data prefetching
mechanisms focus on requested address patterns. These
prefetch mechanisms aim to accurately predict which
memory lines will be requested 1n the future based on what
has been recently requested. However, prefetching can rap-
1dly increase memory subsystem usage. The relationship
between system memory, access latency and high memory
subsystem usage negatively impacts the prefetching mecha-
nism’s ellectiveness. In some symmetric multiprocessor
(SMP) systems as well as chip multiprocessor (CMP) sys-
tems, aggressive prefetching drives up the memory sub-
system usage, thereby increasing latency to the point that
system performance 1s below non-prefetching levels.

Traditionally, prefetching solutions have either been
implemented 1n hardware or software. For example, hardware
prefetching solutions typically scan for patterns and inserts
prefetch transactions 1n the system (using utilization-based
throttling mechanisms). In contrast, software explicitly gen-
crates prefetches or provides hints to the hardware instruc-
tions or hints inserted into the application. However, both
approaches have severe limitations. Hardware penalizes the
system even 1f the utilization of the system 1s high due to
usetul prefetches, 1n contrast, soltware prefetching, adversely
impacts application portability and has undesirable ISA (In-
struction Set Architecture) effects. Furthermore, as proces-
sors evolve 1mto multi core configurations that support multi-
threading, simultaneous execution of heterogeneous

10

15

20

25

30

35

40

45

50

55

60

65

2

workloads for a multi-threaded computer system exacerbates
the problem. Therefore, present solutions are static and
inflexible and are not based on dynamic system performance.
Furthermore, another limitation 1s an absence of feedback
between hardware and software.

One example of a typical prefetch control block 1s depicted
in FIG. 1. A queue 102 stores a fixed number of cache lines
from the cache 106, the fixed number of cache lines based on
control from the prefetch control block 104. This typical
prefetch control block has several limitations, such as, a fixed
number of cache lines available 1n the queue and the number
of prefetched cache lines does not depend on the number of
threads and type of threads 1n the various applications that are
being executed by the system.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

Subject matter 1s particularly pointed out and distinctly
claimed 1n the concluding portion of the specification. The
claimed subject matter, however, both as to organization and
method of operation, together with objects, features, and
advantages thereol, may best be understood by reference to
the following detailed description when read with the accom-
panying drawings 1n which:

FIG. 1 1s prior art.

FIG. 2 15 a system as utilized by one embodiment of the
claimed subject matter.

FIG. 3 15 a system as utilized by one embodiment of the
claimed subject matter.

FIG. 4A 1s an apparatus as utilized by one embodiment of
the claimed subject matter.

FIG. 4B 1s one embodiment of a method for calculating the
thread specific metric.

FIG. 5 1s a method for a flowchart that represents a soft-
ware’s perspective as utilized by one embodiment of the
claimed subject matter

FIG. 6 depicts a processor that supports multithreading as
utilized by one embodiment of the claimed subject matter.

FI1G. 7 1s a protocol architecture as utilized by one embodi-
ment.

FIG. 8 1s a block diagram of an apparatus for a physical
interconnect for a point to point connection utilized in accor-
dance with the claimed subject matter.

DETAILED DESCRIPTION OF THE INVENTION

In the following description, for purposes of explanation,
numerous details are set forth 1n order to provide a thorough
understanding of the present invention. However, 1t will be
apparent to one skilled 1n the art that these specific details are
not required in order to practice the present invention.

An area of current technological development relates to
improving system performance with prefetching. As previ-
ously described, hardware penalizes the system even if the
utilization of the system 1s high due to usetul prefetches.
Software prefetching, adversely impacts application portabil -
ity and has undesirable ISA (Instruction Set Architecture)
cifects. Furthermore, as processors evolve into multi core
configurations that support multi-threading, simultaneous
execution of heterogeneous workloads for a multi-threaded
computer system exacerbates the problem.

In contrast, this proposal allows for a thread aware hard-
ware preletcher that could be dynamically configured by
soltware. The proposed prefetcher utilizes a parameterized
prefetcher, a thread-wise latency monitor, and configuration
and status registers. This proposal supports one or all of the

US 8,079,031 B2

3

different types of prefetching behaviors, such as, throttling
prefetching when system resource utilization 1s high, task-
specific prefetching profiles, and software-managed
prefetcher adaptation that allows a single thread to have dii-
terent prefetching profiles in different parts of 1ts code. Fur-
thermore, the hardware prefetcher provides dynamic feed-
back to the software on a per thread basis, via the
configuration and status registers. Thus, the software can
optionally use the information from the registers to dynami-
cally configure the prefetching behavior and allows the sofit-
ware to be able to both query the performance and configure
the prefetcher.

FIG. 2 1s a system as utilized by one embodiment of the
claimed subject matter.

In particular, FIG. 2 shows a system where processors,
memory, and input/output devices are interconnected by a
number of point-to-point interfaces.

The system of FIG. 2 may also include several processors,
of which only two, processors 270, 280 are shown for clarity.
Processors 270, 280 may each include a memory controller or
a local memory controller hub (MCH) 272, 282 to connect
with memory 22, 24. In one embodiment, the memories 22
and 24 are DRAM and/or a cache memory. In one embodi-
ment, the cache memory could be any level of cache memory
used by a processor. In one embodiment, processors 270, 280
may exchange data via a point-to-point (PtP) interface 250
using PtP interface circuits 278, 288. Processors 270, 280
may each exchange data with a chipset 290 via individual PtP
interfaces 252, 254 using point to point interface circuits 276,
294, 286, 298. In one embodiment, the processors 270 and
280 would have multiple processor cores. 274, 275 and 284,
285 respectively. However, the claimed subject matter 1s not
limited to each processor having two processor cores. The
embodiment of two processor cores 1s merely one example
and one skilled 1in the art appreciates utilizing a different
number of processor cores for each processor based at least in
part on the die size requirements, processing specifications,
power limitations, etc. . . .

Chipset 290 may also exchange data with a high-perfor-
mance graphics circuit 238 via a high-performance graphics
interface 239.

In one embodiment, each processor may support multi
threading as depicted in connection with FIG. 6.

At least one embodiment of the invention may be located
within the PtP interface circuits within each of the PtP bus
agents of FIG. 2. Other embodiments of the invention, how-
ever, may exist 1n other circuits, logic units, or devices within
the system of FIG. 2. Furthermore, other embodiments of the
invention may be distributed throughout several circuits,
logic units, or devices illustrated 1n FIG. 2.

FIG. 3 1s a system as utilized by one embodiment of the
claimed subject matter.

In particular, FIG. 3 shows a system where processors,
memory, and mput/output devices are interconnected by a
front side bus (FSB).

The system of FIG. 3 may also include several processors,
of which only two, processors 270, 280 are shown for clarity.
In one embodiment, the processors 270 and 280 have a single
processor core. In another embodiment, the processors 270
and 280 have two processor cores, as depicted 1n the figure.
The Processors 270, 280 may each include a memory con-
troller or a local memory controller hub (MCH) 272, 282 to
connect with memory 22, 24. In one embodiment, the memo-
ries 22 and 24 are DRAM and/or a cache memory. In one
embodiment, the cache memory could be any level of cache
memory used by a processor. In one embodiment, processors
2770, 280 may exchange data via a point-to-point (PtP) inter-

10

15

20

25

30

35

40

45

50

55

60

65

4

face 250 using PtP interface circuits 278, 288. Processors
270, 280 may each exchange data with a chipset 290 via a
front side bus. Chipset 290 may also exchange data with a
high-performance graphics circuit 238 via a high-perfor-
mance graphics interface 239.

In one embodiment, each processor may support multi
threading as depicted in connection with FIG. 6. In one
embodiment, one example of a point to point connection 1s
depicted 1n connection with FIGS. 7 and 8.

Furthermore, other embodiments of the invention may be
distributed throughout several circuits, logic units, or devices
illustrated in FIG. 3.

FIG. 4 1s an apparatus as utilized by one embodiment of the
claimed subject matter. The depicted apparatus facilitates an
dynamically configurable and thread aware prefetcher. In one
embodiment, the sub components of the prefetcher are a
parameterized prefetcher, a thread-wise latency monitor, and
configuration/status registers to store the parameters.

As previously discussed, the hardware prefetcher provides
dynamic feedback to the software on a per thread basis, via
the configuration and status registers. Thus, the software can
optionally use the information from the registers to dynami-
cally configure the prefetching behavior and allows the soft-
ware to be able to both query the performance and configure
the prefetcher. FIG. 4 depicts the configuration and status
registers and the software flowchart 1s discussed 1n further
detail 1n connection with the tlowchart of FIG. 5.

The parameterized prefetcher allows for different amounts
of prefetching based on an index value. For example, 1n one
embodiment, a two bit aggressiveness index defines the
amount of prefetching, such as, the number of cache lines to
prefetch. The two bit aggressiveness index ranges from a
binary value of zero that indicates no prefetching to a binary
value of three that indicates maximum prefetching. In this
embodiment, the binary value of three for the index indicates
prefetching up to ten cache lines, the binary value of two
indicates prefetching up to eight cache lines, and the binary
value of one indicates prefetching up to six cache lines. How-
ever, the claimed subject matter 1s not limited to the preceding
two bit index and the number of cache lines for each binary
value. The claimed subject matter allows for different bit
assignments for the aggressiveness index and one skilled 1n
the art appreciates utilizing a different number of prefetching
cache lines for each binary value of the aggressiveness index
based at least 1n part on the die size requirements, processing
specifications, power limitations, efc. . . .

In one embodiment, the amount of cache lines that are
prefetched also depends on the latency monitor metric (cal-
culation of the metric 1s discussed 1n connection with FIG.
4B) that 1s analyzed on a per thread basis.

As previously discussed, the setting of the aggressiveness
index may depend on the latency monitor metric. For
example, one set of registers stores different latency trip
points. The prefetcher will change behavior as the observed
average latency crosses the trip points.

The claimed subject matter 1s not limited to the previous
behaviors for the latency monitor metric. One skilled 1n the art
appreciates utilizing one or all of the different behaviors for
the latency monitor metric to retlect their prefetching profile
or system and cache design.

In one embodiment, the configuration/status registers rep-
resent the mterface of the system. The configuration registers
are used to control the parameterization of the prefetcher. The
prefetcher could be adjusted based on an aggressiveness
index, type of istructions, and the previous time slice analy-
s1s (that 1s discussed 1n connection with FIG. 5). As previ-
ously described, one set of registers stores a number of

US 8,079,031 B2

S

latency trip points. The prefetcher will change behavior as the
observed average latency crosses the trip points.

As previously mentioned, the prefetcher could be adjusted
based on the type of application and whether the application
1s running a majority of tloating point or integer operations. In
one embodiment, the amount of prefetching may be increased
when running a predominant amount of floating point instruc-
tions since floating point instructions are closely connected
and local.

The configuration and status registers provide information
about the system. One such piece of mnformation will be the
average latency as observed by the latency monitor. In one
embodiment, the average latency 1s set to the exact value of
the latency monitor metric. In contrast, for another embodi-
ment, the average latency could be a latency index to repre-
sent a range of latency values. The prefetcher can also provide
information about how well it 1s doing, such as, an efliciency
index (, e.g. a dertvative based on the number of times a
prefetched line 1s actually used).

FI1G. 4B 1s one embodiment of a method for calculating the
thread specific metric. The latency momitor analyzes latency,
(such as, non-prefetcher load), in the system on a per thread
basis and provides feedback to the dynamically adjusted
prefetcher. For example, in one embodiment, the latency
monitor samples a finite number (N) of a predetermined
transaction type (in one embodiment, demand-load transac-
tions), depicted 1n an execution block 410. For each demand-
load transaction, the number of cycles between transaction
dispatch and completion 1s recorded and added to a thread
specific accumulator, depicted 1n an execution block 412.

The claimed subject matter 1s not limited to demand load
transactions. One skilled 1n the art appreciates sampling one
or more different types of instructions to calculate a thread
specific metric.

Subsequently, once all N loads have been sampled, the
value of the accumulator 1s divided by N, depicted in an
execution block 414.

Thus, the resulting value represents average load latency in
the system and this metric could be used to select the number
of cache lines to be prefetched.

There 1s one latency monitor metric per thread and there-
tore the data collected inherently represents the specific char-
acteristics of the given thread. Therefore, the latency moni-
toring metric estimates the average load-to-use time for all
demand accesses for a cache. In one embodiment, the metric
may be done for a particular level in the caching hierarchy or
all levels of the caching hierarchy. In another embodiment,
the metric does not focus only on the accesses that make 1t out
to the system, (“misses’), but considers all demand accesses.

In one embodiment, the logic for calculating the latency
monitor metric could be mm a memory controller, chipset,
processor, or ASIC. In this same embodiment, the logic for
calculating the latency monaitor 1s situated to allow visibility
of the thread processing to facilitate the calculation of the
metric.

FIG. 5 1s a method for a flowchart that represents a soft-
ware’s perspective as utilized by one embodiment of the
claimed subject matter.

The depicted flowchart illustrates how a thread i1s sched-
uled for processing with the ability to parameterize the
prefetcher and perform a time slice analysis. As the new
thread 1s to be processed for scheduling, it enters a wait state.
Subsequently, the new thread 1s scheduled and the prefetcher
1s parameterized according to the previously discussed
latency monitor metric and aggressiveness index that 1s stored
in the configuration and status register (described earlier 1n
connection with FIG. 4).

5

10

15

20

25

30

35

40

45

50

55

60

65

6

At the context switch decision block, a time slice analysis
1s performed. The time slice analysis 1s based at least 1n part
on implementation specific parameters, some embodiments
of which are prefetcher accuracy and load latencies. In addi-
tion, system parameters such as utilizations are also provided
to the operating system. In typical operating system con-
trolled systems, this information can be used by the OS n
order to study the performance of the prefetcher in the par-

ticular time slice. This information 1n association with past
behavior gives the OS an ability to predict the effectiveness of
the prefetcher in the next time slice. The OS can then either
increase the aggressiveness index of the prefetcher during the
next time slice 1n case 1t deems such or decrease it otherwise.
For example, 1f the thread specific metric 1s below a prede-
termined load latency for the system, then the software can
increase the prefetching behavior of the processor to allow for
more cache lines to be prefetched from a cache memory
coupled to the processor 1n the next time slice. Otherwise, 1f
the thread specific metric 1s above a predetermined load
latency for the system, then the soltware can decrease the
prefetching behavior of the processor to allow for less cache
lines to be prefetched from a cache memory coupled to the
processor 1n the next time slice.

As previously discussed, the software 1s able to both query
the performance and configure the prefetcher. This “loop™
ecnables the OS or a runtime-management environment to
employ various prefetching schemes. In one embodiment,
one scheme involves maintaining a thread prefetcher profile.
Under this scheme, a context switch would include changing
the prefetcher profile. This can be done based on performance
data collected from the status registers. Alternatively, the
soltware may use other information 1t has available. In par-
ticular, helper threads can monitor execution of end-user
applications and adjust the prefetcher based on the particular
section of code that 1s being executed.

One example of a software view of the hardware infrastruc-
ture 1s depicted i FIG. S with a coding as follows:

procedure thread_ schedule ()
pick__thread_ to_ schedule();

find_ thread optimizing parameters();

// either profiled or configured
configure__hardware with_parameters();
restore_ thread context();

jump__to_ thread();

end procedure;

FIG. 6 depicts a processor that supports multithreading as
utilized by one embodiment of the claimed subject matter. In
this embodiment, the processor 274 supports multithreading,
which allows a single processor to perform several math-
ematical operations substantially simultaneously. For
example, a multi-thread (MT) processor contains several
independent “logical processors,” or “threads” as depicted.

Also, the claimed subject matter depicted in the previous
Figures may be implemented in soiftware. For example, the
solftware may be stored i an electronically-accessible
medium that includes any mechanism that provides (1.e.,
stores and/or transmits) content (e.g., computer executable
instructions) in a form readable by an electronic device (e.g.,
a computer, a personal digital assistant, a cellular telephone,
or any wireless product). For example, a machine-accessible
medium includes machine-readable storage mediums such as
read only memory (ROM); random access memory (RAM);
magnetic disk storage media; optical storage media; tlash
memory devices; and transitory mediums such as electrical,

US 8,079,031 B2

7

optical, acoustical, wireless, or other form of propagated sig-
nals (e.g., carrier waves, infrared signals, digital signals).
FI1G. 7 1s a high level, simplified abstraction of a protocol
architecture as utilized by one embodiment. The fabric facili-
tates transporting messages from one protocol (caching pro-
cessor agent or caching aware memory controller agent) to
another protocol for a point to point network. For example,
the network fabric adheres to a layered protocol scheme and
may comprise either or all of: a link layer, a physical layer, a
protocol layer, a routing layer, a transport layer. The layers are
depicted 1n connection with FIG. 8. The link layer facilitates
the mitialization of the link, the protocol defines the cache
coherence, the routing and transport layers facilitate different
system configurations and are optional. The layered protocol
scheme 1s not limited to the depicted layers since different
system configurations may select to use some or all of the
depicted layers. The fabric facilitates transporting messages
from one protocol (home or caching agent) to another proto-
col for a point to point network. In one aspect, the figure
depicts a cache coherence protocol’s abstract view of the
underlying network.
FIG. 8 1s a block diagram of an apparatus for a physical
interconnect utilized 1n accordance with the claimed subject
matter. In one aspect, the apparatus depicts a physical layer
for a cache-coherent, link-based interconnect scheme for a
processor, chipset, and/or 10 brnidge components. For
example, the physical interconnect may be performed by each
physical layer of an integrated device. Specifically, the physi-
cal layer provides communication between two ports over a
physical mterconnect comprising two uni-directional links.
Specifically, one unidirectional link 304 from a first transmait
port 350 of a first integrated device to a first receiver port 350
of a second integrated device. Likewise, a second uni-direc-
tional link 306 from a first transmit port 350 of the second
integrated device to a first receiver port 350 of the first inte-
grated device. However, the claimed subject matter 1s not
limited to two uni-directional links. One skilled 1n the art
appreciates the claimed subject matter supports any known
signaling techniques, such as, bidirectional links, etc.
Although the claimed subject matter has been described
with reference to specific embodiments, this description 1s not
meant to be construed 1n a limiting sense. Various modifica-
tions of the disclosed embodiment, as well as alternative
embodiments of the claamed subject matter, will become
apparent to persons skilled 1n the art upon reference to the
description of the claimed subject matter. It 1s contemplated,
therefore, that such modifications can be made without
departing from the spirit or scope of the claimed subject
matter as defined 1n the appended claims.
What is claimed 1s:
1. An apparatus comprising:
a sample logic to sample a finite number (N) of operations
of a predetermined transaction type of a thread, wherein
the logic includes
a counter to count a number of cycles between a dispatch
of each of the N operations of the predetermined
transaction type and a completion of each of the N
operations of the predetermined transaction type, and

a thread specific accumulator to add the number of
cycles between the dispatch of each the N operations
of the predetermined transaction type and the comple-
tion of each of the N operations predetermined trans-
action type to generate a value of a total number of
cycles between the dispatch of the N operations of the
predetermined transaction type and the completion
the N operations of the predetermined transaction
type; and

10

15

20

25

30

35

40

45

50

55

60

65

8

a calculation logic to calculate a thread specific metric for
the thread-by dividing the value generated by the thread
specific accumulator by N, wherein the thread specific
metric 1s used to set a pre fetch aggressiveness index for
the processor and a plurality of latency trip points,
wherein prefetching for the processor will change
accordingly for each of the plurality of trip points.

2. The apparatus of claim 1 wherein the thread specific
metric represents an average load latency of a system that
incorporates the processor.

3. The apparatus of claim 1 wherein the thread specific
metric 1s calculated for a predetermined level of cache that 1s
coupled to the processor.

4. The apparatus of claim 1 wherein the thread specific
metric 1s calculated for all demand accesses of a system that
incorporates the processor.

5. The apparatus of claim 1 wherein the processor has a first
processor core and a second processor core, both the first and
second processor cores to support execution of multiple
threads.

6. The apparatus of claim 1 wherein the thread specific
metric 1s to be stored 1into a configuration and status register to
allow an operating system software the ability to configure
the prefetch aggressiveness index.

7. An article of manufacture:

a machine-readable storage medium having a plurality of
machine readable instructions stored thereon, wherein
when the 1nstructions are executed by a system that has
at least one processor and a cache memory that supports
execution of multiple threads performs a method com-
prising;:
analyzing a thread specific metric during a context

switch; and
prefetching a number of lines from the cache memory,
the number of lines based at least 1n part on the thread
specific metric, wherein the thread specific metric
represents an average load latency of the system and 1s
used to set a plurality of latency trip points, wherein
the prefetching will change accordingly for each of
the plurality of trip points.

8. The article of manufacture of claim 7 wherein the num-
ber of lines prefetched 1s more than were prefetched prior to
the context switch 1f the thread specific metric 1s below a
predetermined load latency for the system.

9. The article of manufacture of claim 7 wherein the num-
ber of lines prefetched 1s more than were prefetched prior to
the context switch if the thread specific metric 1s above a
predetermined load latency for the system.

10. The article of manufacture of claim 7 wherein the
article of manufacture 1s an operating system or a managed
runtime environment.

11. A processor comprising:

an execution resource to execute a plurality of threads, the
processor to prefetch a number of cache lines from a
cache memory, the number of cache lines to be deter-
mined by a thread specific metric;

a sample logic to sample a finite number (N) of operations
of a predetermined transaction type of a thread;

a counter to count a number of cycles between a dispatch of
cach of the N operations of the predetermined transac-
tion type and a completion of each of the N operations of
the predetermined transaction type;

a thread specific accumulator to add the number of cycles
counted for each of the N operations between the dis-
patch of the predetermined transaction type and the

US 8,079,031 B2

9

completion of the predetermined transaction type for
cach executed thread to generate total value of cycles;
and

calculation logic to calculate a thread specific metric for
the thread by dividing the value generated by the thread
specific accumulator by N, wherein the thread specific
metric 1s used to set a pre fetch aggressiveness index for
the processor and a plurality of latency trip points,
wherein prefetching for the processor will change
accordingly for each of the plurality of trip points.

12. The processor of claim 11 wherein the predetermined

transaction type 1s a demand load instruction.

13. The processor of claim 11 wherein the processor sup-

ports execution of multiple threads with at least a first logical
processor and a second logical processor.

14. The processor of claim 11 wherein the processor sup-

ports a layered protocol iterface to communicate with other
integrated devices.

15. A system comprising:
a dynamic random access memory; and
at least one processor, coupled to the dynamic random
access memory, the processor including execution
resources to support execution of a plurality of mstruc-
tion threads concurrently, wherein the processor
includes
a pre-fetching control block to prefetch a number of
cache lines from a cache memory coupled to the pro-
cessor, based at least 1n part on a thread specific met-
ric,
a sample logic to sample a finite number (N) of opera-
tions of a predetermined transaction type of a thread,
a counter to count a number of cycles between a dispatch
of each of the N operations of the predetermined
transaction type and a completion of each of the N
operations of the predetermined transaction type,
a thread specific accumulator to store add the number of
cycles counted for each of the N operations between

5

10

15

20

25

30

35

10

the dispatch of the predetermined transaction type and
the completion of the predetermined transaction type
for each executed thread to generate total value of
cycles, and
calculation logic to calculate a thread specific metric for
the thread by dividing the value generated by the
thread specific accumulator by N, wherein the thread
specific metric 1s used to set a pre fetch aggressiveness
index for the processor and a plurality of latency trip
points, wherein prefetching for the processor will
change accordingly for each of the plurality of trip
points.
16. The system of claim 15 further comprising an intertace

that supports a layered protocol that allows the processor to
communicate with the dynamic random access memory.

17. The system of claim 15 wherein the processor has at

least a first processor core and a second processor core.

18. A method comprising:
calculating a thread specific metric for a predetermined
transaction type of an executed thread, by
for each operation of the predetermined transaction type
executed 1n the thread.,
counting a number of cycles between a dispatch of the
operation of the predetermined transaction type
and a completion of the operation of the predeter-
mined transaction type,
storing the number of cycles, and
dividing the number of cycles by the number of opera-
tions of the predetermined transaction type executed
in the thread
to generate a thread specific metric; and
prefetching a number of cache lines, the number of cache
lines based at least 1n part on the thread specific metric,
wherein the number of cache lines to prefetch 1s defined
by an aggressiveness index value and a plurality of
latency trip points set by the thread specific metric.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

