US008073905B2
a2y United States Patent (10) Patent No.: US 8.073.905 B2
Ozzie et al. 45) Date of Patent: Dec. 6, 2011
(54) METHOD AND APPARATUS FOR 6,148,383 A * 11/2000 Mickaetal. .................. 711/162
MAINTAINING CONSISTENCY OF A o e 1h oot aone /
SHARED SPACE ACROSS MULTIPLE OR65500 B2 372005 Zhamg I 71476
ENDPOINTS IN A PEER-TO-PEER 6,889,229 Bl 5/2005 Wong et al.
COLLABORATIVE COMPUTER SYSTEM 6,898,642 B2  5/2005 Chafle et al.
7,587,467 B2* 9/2009 Hesselinketal. ............ 709/214
(75) Inventors: Jack E. Ozzie, Redmond, WA (US); 388% 8123"11;2 i: gi 3882 Ehomil?ﬂ(tl **************** ; (1)% ? (1):;’
. 1 CSS5C11 clal. ............
Raymond E. Ozzie, Redmond, WA 2006/0031558 Al* 2/2006 Ortegaetal. .............. 709/232
(US); Ransom L. Richardson. 2008/0195689 Al* 82008 Newport etal. .............. 709/201
Somerville, MA (US)
FOREIGN PATENT DOCUMENTS
(73) Assignee: Microsoft Corporation, Redmond, WA WO WO 01/06364 A2 1/2001
(US) * cited by examiner
(*) Notice: Subject to any disclaimer, the term of this | |
patent 1s extended or adjusted under 35 Primary Examiner — Faruk Hamza
U.S.C. 154(b) by 735 days. (74) Attorney, Agent, or Firm — Woll, Greenfield & Sacks,
P.C.

(21)  Appl. No.: 11/821,495

(22) Filed: Jun. 22, 2007 (57) ABSTRACT

In a peer-to-peer collaboration system, deltas containing data

(65) Prior Publication Data change commands are organized 1n a persistent data structure
US 2007/0255787 Al Nov. 1, 2007 called a delta log. The delta log 1s organized into blocks,
which are the largest division 1n the delta log. In turn, blocks

Related U.S. Application Data contain groups, groups contain chains and chains contain

deltas. Delta blocks are used to implement priority deltas that
are used to limit the collection of data change commands that
must be transferred. Within a block the deltas are organized
by groups, each of which 1s a set of deltas organized into
chains. The delta group 1n used to determine which deltas to

(62) Davision of application No. 10/279,7835, filed on Oct.
24, 2002, now Pat. No. 7,340,502.

(51) Int.Cl.

Go6l 15/16 (2006.01) purge. The chains are ordered by increasing creator 1D of the

(52) US.CL ..o, 709/204; 709/205; 709/223 endpoint that created the chain. Organizing the delta log in
(58) Field of Classification Search .......... 709/204-207, this fashion allows the log to be “walked” to detect conver-
709/217-219, 223 gence problems. To achieve causality-preservation, each

See application file for complete search history. delta has a list of dependencies representing other deltas that

_ must be executed betore the current delta can be executed.

(56) References Cited The dynamics manager uses the ability to do (execute) and

undo commands to perform roll back and roll forward opera-

J.5. PAIENT DOCUMENTLS tions on deltas 1n order to achieve convergence.
5,170,480 A 12/1992 Mohan et al.
5,787,262 A 7/1998 Shakib et al.

5,806,075 A * 9/1998 Jametal. ...........cooooiiiiiinn, 1/1 14 Claims, 26 Drawing Sheets

\, COMMUNICATIONS 406 COMMUNICATIONS 402
MANAGER \ MANAGER 410 /
OUTBOUND —» INBOUND ~ ——§— 411

MESSAGE QUEUE MESSAGE QUEUE

406 — 408

- 446
M4~ SECURITY MANAGER SECURITY MANAGER
420
422
I | ™ I
DYNAMICS MANAGER | 23 R DYNAMICS MANAGER
XML DOCUMENT T~ ¢  XMLDOCUMENT|
418 420 INBOUND 424
[ DISSEMINATOR ELEMENT 428 DELTA QUEUE |
| PENDING DELTAS |
438 434 ELEMENT
TOuL DELTA LOG ELEMENT TOOL
440 DELTA HOLDER
442 ELEMENT
DISSEMINATOR
NT
COMPONENT s DELTA LOG ELEME

ENGINE p| DATA 92 A8~ paa ENGINE 436
430 | MODEL MODEL



U.S. Patent Dec. 6, 2011

100

Sheet 1 of 26

US 8,073,905 B2

FIG. 1 (PRIOR ART)




(LYV d0IYd)
¢ DIA

US 8,073,905 B2

8¢C

Sheet 2 of 26

Dec. 6, 2011

U.S. Patent

oL7 7 HIOVNYW
222 JOVHOLS

dIOVNVIN 0cce

SNOILVIOINNINNOO _
JIOVNVIA
SOINVNAQJ

ALIHNO3S -=

. HIOVNVW
0tc ALIAILOV

9¢C

INIONJ

1001

GOC

14804

d4OVNVIA

30VdS AIIVHS “che
HIOUNYN ) oLz
ALIIN3Al  /

HYIOVYNVYW IN & 80¢

—]

ﬂ TANTY J0Vd4dLNI
00c = ER

90¢

N\ vec



U.S. Patent Dec. 6, 2011 Sheet 3 of 26 US 8.073.905 B2

300 START

DYNAMICS MANAGER
302 CREATES DELTA

TOOL ADDS DATA
CHANGE COMMANDS

304 TO DELTA

DELTA IS COMMITTED

BY TOOL
306
l STAMP DELTA WITH
INSERTION POINT
308
EXECUTE COMMANDS
IN DELTA
310

ADD DELTA TO DELTA

LOG
312

FIG. 34



U.S. Patent

Dec. 6, 2011 Sheet 4 of 26

316

STORE DEPENDENCIES
318 IN DELTA

l—S‘TORE SECURITY INFO
2o | IN DELTA

320
ENQUEUE DELTA TO
DISSEMINATOR
322 -
SECURE DELTA
SECURED DELTA
SERIALIZED
324
DELTA FORWARDED
TO COMMUNICATIONS
326 MANAGER
328 —  FINISH

US 8,073,905 B2




@\
oo .
r pOId
s ANIONI mm%oﬁ; ._,wm%oz aNioNg | UeY
S 9eP B 1 A 4 >
')
P
-
- A ININOJWOD
INIW313 9071 VL1130 444 O LININISSIC
< ¥3AT0H V1130 O — — :
- I INIW313 907 V1130
- 1001 INGW313 ] vey  8ey =
g Sv1730 ONIONId a w
h I r -
g 3N3N0 ¥113d 8y | INIWI13 HOLYNIWISSIA | _
TAY B OUNNOGBNI m YA ] 8Ly

_ ININND0QA TWX | INIWND0QA TNIX
= HIOVNYIN SOINVYNAC YIOVNYW SOINYNAC
gl
v *
m Ty -

HIOVNY ALIMNO3S IOVNYWALNOZS)

9Ly ._ * P

IN3ND JOVSSIN 80 T 3n3no 3ovssan 90%
L1t ONNOEGNI | @Ombzm |
/ 01+ HIOVYNYNA , HIOYNYI N
20 SNOILYDINNWINOD 90 SNOILYDINNNOD

00¥

U.S. Patent



US 8,073,905 B2

Sheet 6 of 26

Dec. 6, 2011

U.S. Patent

005G

$ OIA

<|2qQ:5;
<[ b= a1 =0 00S:0> a0G
<joq:b/>
<> 0lLS
<puin:6/>

<laddeipzplooay ./
<PJOo2a¥u0issnIsIqQ.H/>
<Sjuawayoeny/>
<Alojoangaseys:.b>
</..=T14N9snN .=aiapio4 Aojaaqiuanind:bs
<o98J] b/
</OpPOND31] .0>
<39l] :b>
<Alopaageleys:b>
<Sjuawiyoev>
<Apog/>
<IX9 | Yory:B/>
<sunyeiedixa 6>
</w= SOBL ,0,=HBIS .0.=1401Y ,0.=427 .2LS0¥P . L L,=Sbeld ,0.,=1S4d . L.=PuUT ,0,=9J0j2g ,1.,=9Seg ,0,=loYV unyesedixs 6>
<sunyeledixa) .b>
<SUNYIUO{IX3 | :DBf> __
</u0.=H&1S ,09€569,=9ZIS ,,=TdN3U7 .0¥0£86.=sbel4 .BIQ II°YS SW.=92.4 ,1.=PU3 ,..666666-,=40[00 UuNyiuo4ixa | 6>
<SuNHiuoJixa i :b>
<, W= X8 LUDIY:D>
<Apog>

<. 18208, =AIPI003Y ,|-.=aIbunqissnoiraldg  ,L-.=aqnualed ,L-,=QRusiegmaN" ,.=Agpauipon
H6PIGEL6E9910L.=PBYIPON  ,0.=PBBYS| ,DAAZXIgSIAUINXIaGNIMYILUA LuDezZage )/ Alluap|aacolb =T NAgpaieal)d
Jycuosuey, zAgpajess) 649G L6E8310L.=pajeal)

. AJua uoIssnasIp e si siY] ,=199lqng | 0,=u02}9il4 , | -,=diSiusuyoeny ,,=SaWeNIusLUIYyIeNY plooauoissnosiq:b>

<, 18/%/08CY.=AIp1009Y J1addeIpApI009y: 5>
<, SUbUFIogPI0IDY/

100 | "uoissnasiq 1oliwbgsy/ siwenewgyiyzxejeloqngazegqls/Jauieluon|oo | .= 14 nauibul  pusiwonppy,=puewiwo’ puin:6> 805
<.0'0'0'1,=UOISIBA ,£10049€2/.642183308E/82£2.=P3S .2.=d9 JOAVEDYS.=HD [9Q:6> 1403°;
<.==VAMNINGVYVNYYYVOY,=SA8X8Y ,,=8U0Q 1901:04  70c

T Sk maa A . L A _ i




009

US 8,073,905 B2

Sheet 7 of 26

Dec. 6, 2011

U.S. Patent

9 OIA

<|8Q7:6/>

<fubu=AM WAL W= 09S6> L gng

<0(.b/>
<pW:b/>
</.9bedinejeq.=qlebed .pDI0SALAeNMN1dIg, =qjws}} ,£,=puewiwo) pupwwo):b>
<NpwH:b>

< pw).b>
</, JOANUNIAQONOM+Z,=aH8sSN ., =8WeN|IN4 ,0,=PUBLiWOo) puBLIWO):b>
<Npw:bs>

919

<Spun:b/>
<pw.by>
<Wwd]:6/>
</9CLu=A w2 B1a=X XSUIN D>
<fu82 ba=A b1 2u=X XSHOA D>
<, JOANUNTAQONOM+Z.=AHOSN ,,L.=ABIBOS ,.1.,=X3]e0S
J0.=UONRI0Y ,2.= AW 0.=DIBpURH ,0.=81A1SUsd .6666666-.=10100)uU8d
LPOIOSAZAGEMNIAIg.=a1W8Y] ,8666666-,=1010D1I14 .ZZEGYS 10ZE0200Z,.=81eq Wa)|.b>
<.9bedinejaq,= qjebed , L -,=xepuj ,auibugpedyo}eys/jool
‘pedydjeys -z bAwpygsgwnnibBidogbowgggoeorgzpgaxas
f18UIju0DI00 |, =TNauIbuy 7z, =puewwo) pwn:b>

p—

7L9

</, JOANUNIASOHDM+Z.=QHBS( ,YGWosuey,=sweN}jn4
Lauibugpeduoieyg/joo] ‘pedyoieng z bAwpugsguinpfibbidoghbowggqoeorgzpgexas

A%

flauiejuonoo | =TdneuIbugy 0,=puewwo) pu:6>

018

<Spwin:b>
<.0'0°0'}.=UCISIBA ,Z21L0049622542183308¢€282£2.=b8S

Z.=dD .1000/3138E4EYBZSSOP0LEYS 200002002501 £22519£98225.=b8Sda(] XIABBAMAX.=HD 18(:0> —
<., ATNGSA0dGNONYL,=S8S , ==YHMIANAYYVYNVYVYYVOY.=8A8)8Y ,.=auo( |80 1:0x:

809

— ¥09
— ¢09




US 8,073,905 B2

00L

<eleqaulbug:b/>
</Se}eqpuUNoqu). >

51d3:b>
1 101BUNUBSSI(]: D>

</SUOIIEOIJIIONIOBUUOISI(>
BOP (] O>

Sheet 8 of 26

“iPIHI18q:b>

<ualedNpwn:b/>
</npwN:b>
<ualednpwn:b>
</NPWH:-O>
</sjogpaxo0|g:b>
<.l Z.=ewlsiepn ,0'0'0° Lu=UOISIBA ,.=[2dpa¥oeun ,8026E¥S2L L LOL.=9sIndid3ise] elegauibuy:b>

Dec. 6, 2011

U.S. Patent

¢cl
Vi

8.
91L
14 VA
cll
ObZ

80L
90/
14074
40)A



US 8,073,905 B2

Sheet 9 of 26

Dec. 6, 2011

U.S. Patent

008

<Spwn:bH/=
<pwn):b/>
<2NieAp[BlH/>
<IX31 Yory:by>
<sunyeledixa | :b/>
</w=S9€1 ,0.,=HEelS ,0,=bry ,,0,=Uo7
< LG0P¥.LL LL=sbeld ,0,=1811d .61.=PUT ,0.=810)8g ,|.=9seg .0.=19)V unyeiedixa] 6>
<sunyeledixa]:b>
<SUNYIUOHIXa | :H/>
</u0.=HE}S .098GG9,=9ZIS ,,,=TdNHuiq
.0Y0£86.=sbe|d ,01a 1IsYS S.=2284 .61.=PU3 ,L666666-,=10|0D unyjuo4ixay :b>
<sunyuo4ixa | :b>
<,APOQ e sey }} MON,=1X2 | X | yd1y:b>
<ONEAPICIS>
<,2Ae0.¥1 90832203 2.,=P31SON .0.=PION .29226+0¥9910L.=PayIpoy ,Apog,=sweNp|ol
.1 261906Ev/eregiuauodwo) /aulbug)aspioday/|oo ] "uoissnosigiighwbeasy /s
Jwenewgyiyzxenelogngazegqis/iauiejuon|oo | . =
T¥NBuIbug ,pial419g, =sWeNpUBLLILWIOY) P B>
</.£G695389£09V09¢€3,.=P31S8N .,0.=PION .G1 L26¥0V99101L.=P3YIpon ,'108lgns
pabueyd ue yum Ajua uoIssnoasip e st siyl .=oneApield Joslgng,=sweNp|aid
.1 261 906¢€P/ereqiuauodwo) /auibu3lagpI00aYy/|00 ] "uoissnasiq ighwbesy  siwe
newgylygxepelogngazegqic/iaulejuoioo] =
TYNaulbug .pidl4leg,=aweNpUBLIWOD pw):B>
AmUEO”@V
<.0'0°0'L.,=UOISIOA ,810049€22642183308¢€282£2.=b3S .2.=d9 JAAVEDTS.=4D 19Q:6>
<.==VHMIEANGVYVVNVVYVYVOV.=SAaMoY ,,=2uoq [2Q7:6>




US 8,073,905 B2

Sheet 10 of 26

Dec. 6, 2011

U.S. Patent

008

<jaq1.6/>
<fubu=/\M QML .=QIY 093:6>
<|9q.6/>
<PWH:6/>
<an|eAPIaI4PIO/>
<IX3 | yory:6/>
<sunyetedixa | :b/>
</w=S0e] .0.=HEeiS
.0.=34B1Y ,0.=¥91.2150vv . L L.=sbeld ,0.=1s41d ,1.,=pul ,0.=9l0jeg ,}.,=8seg ,0.=layy unyeledixa] :6>
<sunyeiedixa| :b>
<SUNMIUO{1x8 | .6/>
</.0,=HBIS ,09£G5G9,=9ZIS
W= THMIUT .01 0€86.=S6€]4 .ObIQ 184S SN.=998d ,1.=PU3 ..66666 -,=100D) UNYuo41xa | B>
<SUNMIUO4IX3 | ;B>
< . =IX9| X8| Uoir:6>
<aneApP|aI4pPIO>
<.G1226v0¥9910L.,=PaipPO| ,0.=MONPISI4S| NPWO:D>
</.-K1jua uoISSNOSIp € S| m_ﬁ.. aneAPRIHPIO L£6228€0¥99101.=PaYIPON ,0.=MONPISI4S| NPWD:D>

\\\ »&




006

US 8,073,905 B2

Sheet 11 of 26

Dec. 6, 2011

U.S. Patent

Vé OIA

<d19eq:b/>
<uyolxg:b/>
“18C171.6>
16>
190>
<,0000904/£65£+592A03£9908.=A10Ie8ID uyDeQg:b>
<uyoeq:b/>
126>
190>
“1e]:b>
<,00000321Q9£660315036833L.=QN01ea1] uygaa:b>
<,69¢.=loqunN ,8//.62822¢S10L.=dwiauoq dig|aq:b>

<diny|eq:b/>
<uynieq:b/>

19 7:6>

<,000096€££3/£¥962¢8/8¢4/¥93.=QHoieal) uydeQg:b>
<,89¢€.=19qWnNN ,,09/08L+/£G10L.=8wWil]suoq di9|eq:b>

<un=OPUNON ,0/&,=WnNAIOUBIH .1 00096££3/£¥962828E4/¥93.=basIag Mgleq:b>

<, P =WNNAIDINd 91 €,=WNNAIDUSY 7| L,=WNANXIGISNS ,L.=SAdZD .¥S L.=WNNXIgaARY boeq:b>

cL6

016
806

906
06

¢06



006

US 8,073,905 B2

<boeq:b/>
<11912Q:b/>
<dieq.b/>
<uyniaq:b/>
“1Q1.6>
<,0000v08¥£54229A51vSg1004.,=a1oieald uydeg:b>
<uyleq:b/>
16>
<,000000vYQ06109v4€31 L 466 L.=qHoyes1d uyoeq:b>
<, /€, =lequnN diole(:b>

Sheet 12 of 26

<,m=OPUNON ,} /€.=wWnNNd1OYBIH ,1000AQ0VVA061L08VY4E3L L466L.=baS1oQ ¥1g19Q: D>
<q|g12Q:b/>
<dio8q:6/>
<uyniaq:b/>
186>
196>
191 7:b>
<,000094G16..¥9628/8¢4.¥93.=aHoiea1d uydeq:o>
<uyniaq:br>
19 7:b>
<,0000£22824.v24VEV46264+S.=aHoiea1d uyoeqg:b>

Dec. 6, 2011

- 916

<.,0/€.,=1equnN di9}seq:b>

U.S. Patent

Vi6



U.S. Patent Dec. 6, 2011 Sheet 13 of 26 US 8,073,905 B2

START 1000
1002
SERIALIZED DELTA
RECEIVED
1004
DE-SERIALIZE DELTA
1008
1006
N PEND AND

SOURCE ENDPOINT

ACTIVE? STORE DELTA

1010
INTEGRITY CHECK DELTA

1014
1012

INTEGRITY CHECK

DASSED? DISCARD DELTA

1016

1018

FIG. 104




U.S. Patent Dec. 6, 2011 Sheet 14 of 26 US 8,073,905 B2

1020 1022

ATTEMPT TO DECRYPT

DELTA 1024
1026
CHECK AND ASSIMILATE
DELTA DEPENDENCIES
1030
1028
ALL DEPENDENCIES HOLD DELTA
ASSIMILATED?
Y
1032
ASSIMILATE DELTA
1034

ASSIMILATE DELTA

DEPENDENTS

FIG. 10B

1036 FINISH




U.S. Patent Dec. 6, 2011 Sheet 15 of 26 US 8,073,905 B2

1100 - START

1102 —{ OPEN DEPENDENCIES
(INCLUDING PREVIOUS
DELTA FROM CREATOR)

1104

ALL DEPENDENCIE
PROCESSED?

1106

GET NEXT DELTA FROM

DEPENDENCIES

NEXT DELTA
ASSIMILATED?

1110 -

1114
1112 1116

B

FlG. 114



U.S. Patent

Dec. 6, 2011 Sheet 16 of 26

1118

1120

1126

ATTEMPT TO ASSIMILATE
DELTA

1128

PENDING DELTA
ASSIMILATED?

N

1130 — FINISH ’

FIG. 11B

1124

US 8,073,905 B2




US 8,073,905 B2

0021

&

g

1= <Ip|HIeqQ:b/>

3 <diop|H:6/>

y—

= “1eq.6>

= <,1000019249V209294500V+aS.=deq diop|H:b>

g <d19p|H:6/>
“Ind1d3:6>

186>

— 186>

& <,0000000000000v2€433260€z.=deq diop|H:6>

o <Ip|HI2q:.b>

2

=

U.S. Patent

8021

90c\}
P0cl
c0cl



U.S. Patent Dec. 6, 2011 Sheet 18 of 26 US 8,073,905 B2

START

GENERATE FETCH REQUEST
AT ENDPOINT A 1302

1300

SEND FETCH REQUEST TO
ENDPOINT B 1304

1306 1308

ETCH REQUES
SEQ. =FETCH

RESPONSE SEQ.

FORWARD REQUESTED
DELTAS TO ENDPOINT A

INCREMENT FETCH
RESPONSE SEQUENCE
NUMBER

SEND UPDATE MESSAGE TO
ENDPOINT A

1312

——
UPDATE FETCH REQUEST

| SEQ. IN ENDPOINT A

FINISH

1314

FIG. 13




Vvl OIA

00%1 /

US 8,073,905 B2

An-OODONMNDmmF@@DOD:“D_: u.DE“Q#MMw ——E-p”o&w _-NNIH

m dioind 00007020 L O9EVYY0G.=I0)AU] ,,000000000000.€2086156Q0000000000.=dIH
S ,85.=NOH .IG}1061ZXp1(g.1 . uunpgpSAnAIg662Ds L BUY/ARU 8A00I0" | seudDy//.ddp,=
— THNe2IAS(Q L 0000795689970, 1 D9EVV0S.=Pluones)
w ©udbpajosbuwnwAAyaISXGSiguUlRyIXEP//-AlllUSP|aA00ID, =THN0RIU0) 1dT:6> o017 L
7> | <}d3:6/>
’»
</,}00000.£9Y08¥0.Q1D9EVYV0S0+000000.=dIH J01e8.i):0> aLb1

| </,1000026£3135+020} D9EYV0S4E£000000.=dIH J01e810:0> - 9L¥l
- | </, 1000YB0V4.LL5Y02A1 D98 VYY0S6£000000.=dIH J01ea.0:0> %4
S </.1000}4¥€8185+02Q}+09€VY0S5.E000000.=dIH 1048170 454!
< </,G,=Q1N1se1,,8000200V 2L 0v0.01 D98 YVY0S0£000000.=dIH 10jeai):b> 0Lyl
< </uE.=01NISeT . 1000/ V02029702 A1 D9EVYVY0S . 2000000.=dIH J0}eai):b> 3011
- <,0000¥0.Q109EVV0S.=aIN .L.=9181S

1.=9dS ..000000000000201Y8900%.283' 000000000000V Y40 1L 2943500 0000000000007v2E Y400 1L886.=
| sbay ,/z.=di9ind , 1 000002.£9v09+0.Q 1L D98 YV0S0H000000.=dIH

| F9.=NOH .eusizexaoyxwgoizAbzedyool Aemgs 1gowqa
| nauaacoib L aeudol):ddp, = THNe01A8Q ,1SH 4, =pjuoiieal)
DagesubxnbgpimayBggsbbsinyByqxqesaangs//:Ajuapeacoit, =y nioeuo) 1d3:6> _l 01

<,2000QV V8245503V 0£2Z3vez.=sdagN sid3:b> zovi

U.S. Patent



US 8,073,905 B2

Sheet 20 of 26

Dec. 6, 2011

U.S. Patent

qrvi "DIA

|

<$1d3:6/>|

<1d3:6/>
<Sleabpud:6/>
1907:6>

<S|p(1bpud:b>

Y b R

A-DDOO.@WNWG«“—OD Pmmmﬁnam: -N:“mwmuw :m wﬂﬂwam |

,000000000000¥72EV-400188500000000.=dIH .0.=NOH ..=TdNB3IA8Q 8114, =pjuohess) ,,=THMoejued d3:6>
</.00008¥c620V8LlL v.=0IN ,}.,=°1€1S .LG.=DdS ,000000000
000001 V¥8900%283"000000000000v¥¥4010843€£02°000000000000428205A8AYV1LD 000000000000¥¥2EV40A1849G.=

sbay ,0000¥020 1 D9EYY0SG.=I0NAU| ,00000000000097S6.0V8EZ L ¥00000000.=dIH|
59.=NOH .S9A06z6nemagnplbggaybwidgorl zugexznbyamxyjeu aaooib geuy/-ddp,=|

THN201A8(Q , L000Y60Y 4.2 2GY0/01LD9EVV0G.=PluonEal)
L06uduwllZirbIgAPYZSbega A Mb, 1628z 1 Aljusplarcolb, =Ty nioeuo) 1d3:6>

<d3:.6/>
</,0000.63418%12£209615600000000000.=dIH 101e81]:6>
</,00000Zv¥¥2Zy2£.08615600000000000.=dIH J01e81).6>
</,000090//881¥/£/08615600000000000.=dIH 01e31D:6>
</ubu=CIMISET 00006098V DZ9.£.209615600000000000,.=dIH Jo)eas):b>
</.000087599¢E¥2€/.Q9615600000000000.=dIH J0)ea1):6>
</ Cw=WNNANS ,1,=Q1NISET 0000 ¥£S2500/ 520961 5600000000000.=dIH J01E81D:6>

1444
cehl



U.S. Patent

Dec. 6, 2011 Sheet 21 of 26

1500 START

WALK BACK IN DELTA LOG
AND EXAMINE EACH DELTA

DELTA EXECUTED?

1506

ROLLBACK DELTA

ALL NEW DELTAS
EXAMINED?

/ 1502

US 8,073,905 B2

FIG. 154




U.S. Patent Dec. 6, 2011 Sheet 22 of 26 US 8,073,905 B2

1514

1516 [
WALK DELTA LOG AND
EXAMINE EACH DELTA
1518
N
DELTA ROLLED BACK?
1522
1520 Y
T N
ROLLFORWARD DELTA
1524 Y
' DECRYPT NEW DELTA
' EXECUTE NEW DELTA
1528
N ROLLFORWARD

COMPLETE?

15630

FIG. 15B



91 OIA

0091

US 8,073,905 B2

<|18q1:6/>
</093:6>
<joq:b/>
S <dionpwH:b/>
I <[oaN:6/>
~ </,0,.=2NEAPISIIPIO 0, =M3NPISIS| NPWD:b>
2 </u€6.29E0¥99101.=PBYIPON . |.=8N[EAPIBIS
= .PEIYS| ~=3WeNpeld .1 261 906€/ereqiusuodwo) /ouibuziasps
039 /IO0 ] "UOISSNOSI(Y _©.JE Umwv_ Jsddeneuigi! chmtm.—on NJQAZEQq1E /A2Ulejuonjoo | =
THNRUIbUT  pPloid19S,=dWEeNpPUBWIWON) pw):D>
_ <,w=340(0 , 195/ VP 612000000024+ 0049€2.264/2183308€.8.£Z.=PlIeQ JAAYE0GS,=4D 19AN:b>
v </NpwH:b>
—
™ <dionpwH:b>
< </, 1Z61906E.=AIPI008Y ,1,=8NnjeA ,suibu3jegp.
M 009y /|00 ] "uoissnosiq19iiwbgsy / siwenewgpiyzxepefogngqazegqic/iauiejuon|oo | , =

THdN3uIbul 0601 55E2.=USBHIXSUOD ,pPUBLILLODPEIYNY B, =pUBIWOYD pw):6>
<,0'0°'0" .,=UOISIBA
.20000000/10049€2/.64.183308¢/.8.¢2.=ba8ans ,.=ss!Ap} ..2.=d9 JAAYEQAS,=HD [2Q:b>
_ <,,=ouoq |1eg:6>

9091 ¢091

U.S. Patent

P09l



U.S. Patent Dec. 6, 2011 Sheet 24 of 26 US 8,073,905 B2

1700 START

LOCATE INDEPENDENT

DELTAS
1702
1704 —
COMPARE PRIORITIES
1706
HIGHER PRIORITY?
1710
1708 ASSIMILATE NEW
BEGIN NEW BLOCK DELTA IN EXISTING
BLOCK
1712

RE-ASSIMILATE

INDEPENDENT DELTAS

1714 FINISH

FIG. 17



U.S. Patent

Dec. 6, 2011 Sheet 25 of 26

1800 ——  START

1802 BROADCAST
ENDPOINT PULSES

1804
COMPARE HIGHEST
GROUP NUMBERS
1806 IDENTIFY GROUP
PENDING FOR PURGE
1808

ENDPOINTS PURGE
ALL GROUPS UP TO
MINIMUM OF GROUPS
PENDING FOR PURGE

1810 FINISH

FIG. 16

US 8,073,905 B2



US 8,073,905 B2

Sheet 26 of 26

9061

Dec. 6, 2011

U.S. Patent

8E61

MIN

61 ODIA

0L61L

Q3dLO03INNOOSIA

8061

8C61L

9161

ONILOANNOOSIA

b g

JAILDV
€iol

061l

vZ61 Vo

0261

8161

¢Col

WOO' c061

431



US 8,073,905 B2

1

METHOD AND APPARATUS FOR
MAINTAINING CONSISTENCY OF A
SHARED SPACE ACROSS MULTITPLE

ENDPOINTS IN A PEER-TO-PEER
COLLABORATIVE COMPUTER SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit as a divisional applica-
tion of U.S. patent application Ser. No. 10/279,785 filed on
Oct. 24, 2002 and entitled “METHOD AND APPARATUS
FOR MAINTAINING CONSISTENCY OF A SHARED
SPACE ACROSS MULTIPLE ENDPOINTS IN A PEER-
TO-PEER COLLABORATIVE COMPUTER SYSTEM,”

which 1s incorporated herein by reference in 1ts entirety.

FIELD OF THE INVENTION

The ivention relates to peer-to-peer collaborative com-
puter systems that directly exchange command and data
blocks 1n order to maintain consistency of a shared space
among the collaborators.

BACKGROUND OF THE INVENTION

Collaboration involves the ability for each member 1n a
group of members, called “collaborators” to automatically
transmit information to, and receive information from, other
collaborators 1n the group. In order to facilitate such collabo-
ration, various systems have been developed that allow such
information to be transmitted between personal computer
systems, communication appliances or other communication
devices, including handheld and wireless devices. Collec-
tively, these devices will be referred to a “computers” in this
description.

Computer-based collaboration may occur locally among
users connected to, or operating with, one computer or server.
Alternatively, collaboration may occur over a network, such
as the Internet, wherein each of the users i1s located at a
computer connected to the network. A server may also be
connected to the network. Several collaboration models are
currently being implemented as networked computer col-
laboration systems. One of these models 1s a client-server
model 1n which all collaborators are connected, via the net-
work, to a central server. Information generated by each col-
laborator 1s sent over the network to the server that then
broadcasts the information back over the network to each
other collaborator. Another model 1s a “peer-to-peer” model
in which direct connections are established over the network
between each of the collaborator computers. Information
generated by each collaborator 1s then sent directly to each
other collaborator. In such a system, the collaborators com-
municate 1n a private “virtual” shared space.

In both of these models, there are several methods by which
information 1s transierred between collaborators. For
example, 1n a client-server system, data that 1s being collabo-
ratively modified may be stored on the server. Then, each
collaborator that wants to modify the data sends a command
to the server to effect a change 1n the server data. The server
modifies 1ts copy of the data and then sends information
representing a “view” of the modified data to all collabora-
tors, so that each collaborator can display the data locally.

A central data repository 1s not possible in a peer-to-peer
collaboration system because no collaborator acts as a server.
Thus, 1n such systems, each collaborator has a local copy of
the data being collaboratively modified. In order to change the

5

10

15

20

25

30

35

40

45

50

55

60

65

2

data, a collaborator generates a data change request that is
forwarded to each other collaborator. The incoming data
change requests are then used by each collaborator to modity
its local data copy.

The latter type of collaboration system 1s described 1n
detail 1n U.S. patent application Ser. No. 09/357,007 entitled
METHOD AND APPARATUS FOR ACTIVITY-BASED
COLLABORATION BY A COMPUTER SYSTEM
EQUIPPED WITH A COMMUNICATIONS MANAGER,
filed Jul. 19, 1999 by Raymond E. Ozzie, Kenneth G. Moore,
Robert H. Myhill and Brian M. Lambert; U.S. patent appli-
cation Ser. No. 09/356,930 entitled METHOD AND APPA-
RATUS FOR ACTIVITY-BASED COLLABORATION BY
A COMPUTER SYSTEM EQUIPPED WITH A DYNAM-
ICS MANAGER, filed Jul. 19, 1999 by Raymond E. Ozzie
and Jack E. Ozzie; U.S. patent application Ser. No. 09/356,
148 entitled METHOD AND APPARATUS FOR PRIORI-
TIZING DATA CHANGE REQUESTS AND MAINTAIN-
ING DATA CONSISTENCY IN A DISTRIBUTED
COMPUTER SYSTEM EQUIPPED FOR ACTIVITY-
BASED COLLABORATION, filed Jul. 19, 1999 by Ray-
mond E. Ozzie and Jack E. Ozzie and U.S. patent application
Ser. No. 09/588,195 entitled METHOD AND APPARATUS
FOR EFFICIENT MANAGEMENT OF XML DOCU-
MENTS, filed Jun. 6, 2000 by Raymond E. Ozzie, Kenneth G.
Moore, Ransom L.. Richardson and Edward J. Fischer.

In this collaboration system, each collaborator has a pro-
gram called an “activity™, that 1s operable 1n his or her com-
puter. The activity program contains a tool that responds to
user interactions by generating data change commands.
These data change commands are provided to a data-change
engine that maintains the local data copy by performing the
changes to the data requested by the data change commands.
The commands are 1nserted into a container called a “delta™
and deltas are distributed from one collaborator to another by
a program called a communications manager.

When a peer-to-peer collaboration system 1s used over a
network, special considerations must be addressed. A major
consideration 1s network latency. In particular, when a delta 1s
transmitted over the network to a group of other collaborators,
it may reach some collaborators sooner than others due to
unequal transit times over the network. Since all collaborators
send and recetve deltas “asynchronously™, the requests may
be received by ditferent collaborators in different orders. This
can potentially create a problem because the correct execu-
tion of some commands may depend on other commands
having been previously executed. In order to ensure that the
local data copies remain consistent, the collaboration system
must preserve causality. Specifically, causality demands that,
when a current data change command received from a first
collaborator 1s executed by a second collaborator, the second
collaborator will have executed all previous data change com-
mands that the first collaborator had executed when the cur-
rent data change command was created.

Another condition that must be satisfied 1s convergence.
Convergence ensures that when all collaborators have
executed the same set of operations, the final execution order
of data change commands by all collaborators 1s the same. In
the collaboration system described in the atorementioned
patent applications, a special program 1n each computer
called a dynamics manager recerves and interprets the deltas
generated in that computer and received by that computer
from other computers 1n order to preserve causality and to
ensure convergence.

Another potential problem 1n a peer-to-peer system con-
cerns collaborators entering and leaving the collaboration
group during an on-going session by disconnecting their




US 8,073,905 B2

3

computers from the network or powering down the comput-
ers. Since the integrity of a collaborator’s local data copy

depends on recerving data change commands from other col-
laborators and correctly interpreting these commands, col-
laborators who leave a collaboration session will need either
a complete current copy of the local data or a collection of
data change commands that were transmitted by other col-
laborators during their absence 1n order to restart their system.
In many cases, the copy of the local data and the collection of
data change commands can be quite large resulting 1n a
lengthy startup delay for a collaborator entering an ongoing
collaboration session.

SUMMARY OF THE INVENTION

In accordance with the principles of the invention, deltas
are organized 1n a persistent data structure called a delta log.
The delta log 1s organized into blocks, which are the largest
division 1n the delta log. In turn, blocks contain groups,
groups contain chains and chains contain deltas. Delta blocks
are used to implement priority deltas that are used to limit the
collection of data change commands that must be transferred.
Within a block the deltas are organized by groups, each of
which 1s a set of deltas organized into chains. The delta group
in used to determine which deltas to purge. The chains are
ordered by increasing creator ID of the endpoint that created
the chain. Organizing the delta log in this fashion keeps the
deltas 1n a consistent order on all endpoints. This makes 1t
possible to “walk’” the delta log to achieve convergence on all
endpoints.

To achieve causality-preservation, each delta has a list of
dependencies representing other deltas that must be executed
betore the current delta can be executed. The dynamics man-
ager uses the ability to do (execute) and undo commands to
perform roll back and roll forward operations on deltas in
order to achieve convergence.

In order to prevent the delta log from growing too large, a
purging technique in accordance with the principles of the
invention uses endpoint pulses transmitted between the end-
points 1n a shared space. Each endpoint includes 1n an end-
point pulse mformation identifying a delta group that it 1s
willing to purge (based on the highest group that each end-
point has acknowledged receiving). Then, all endpoints purge
deltas 1n groups selected by comparing the groups that the
endpoints have declared that they are willing to purge.

In accordance with another embodiment, special deltas
called priority deltas are used to control the execution order-
ing of independent deltas. For example, a delta inviting an
endpoint to a shared space can be a priority delta so that deltas
independent with the invite delta do not cause a rollback
necessary to achieve convergence and, therefore, 1t 1s not
necessary to send the contents of the entire delta log to a new
invitee.

In accordance with yet another embodiment, special deltas
called asynchronous deltas are used to transmit large files
without blocking the transmission of other deltas during the
file transfer process. Asynchronous deltas are arranged so that
they do not have other deltas that are dependent on them.
Accordingly, endpoints do not need to wait until processing
of an asynchronous delta 1s finished 1n order to transmit other
deltas.

In accordance with yet another embodiment, persistent
data 1s kept representing the state of all endpoints 1n the
shared space. Deltas are only sent to active endpoints and the
processing of imbound deltas depends on the state of the
endpoint that sent the delta. These states support the 1imple-
mentation of membership changes, such as mvite and unin-

10

15

20

25

30

35

40

45

50

55

60

65

4

vite, 1n a decentralized and secure fashion. In addition, 1t 1s
possible to suspend an 1nactive endpoint in the shared space to
allow portions of the delta log to be purged.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and further advantages of the mvention may be
better understood by referring to the following description in
conjunction with the accompanying drawings in which:

FIG. 1 1s a block schematic diagram of an 1llustrative prior
art collaboration system on which the invention can be used.

FIG. 2 1s a more detailed block schematic diagram of an
illustrative prior art computer system running collaboration
soltware used to implement the system shown in FIG. 1.

FIGS. 3A and 3B, when placed together, form a tlowchart
that 1llustrates the steps 1n processing a delta on the endpoint
that created the delta 1n accordance with the principles of the
invention.

FIG. 4 15 a block schematic diagram 1llustrating the major
dynamics manager components involved 1n the generation,
transmission and reception processing of deltas.

FIG. § 1s a diagram 1illustrating an XML data structure that
represents a typical delta with one data change command and
no undo information.

FIG. 6 1s a diagram 1llustrating the XML data structure that
represents a typical delta with two data change commands
and undo information for both commands.

FIG. 7 1s a diagram 1llustrating the structure of a persistent,
XML document that represents deltas and delta processing
structures 1n a dynamics manager.

FIGS. 8 A and 8B, when placed together, form a diagram of
an XML data structure of a delta that contains two creation
nested deltas, both of which have undo information.

FIGS. 9A and 9B, when placed together, form a diagram of
an XML data structure of a delta log that holds deltas during
processing.

FIGS. 10A and 10B, when placed together, form a flow-
chart illustrating the steps in a process for recerving and
processing a delta at an endpoint.

FIGS. 11A and 11B, when placed together, form a flow-
chart that illustrates the steps 1n a process of assimilating a
new delta.

FIG. 12 1s a diagram showing an XML data structure of a
delta holder that holds deltas during processing.

FIG. 13 1s a flowchart showing the steps of an illustrative
process for limiting over-fetching during the processing of a
delta.

FIGS. 14A and 14B, when placed together, form a diagram
representing an XML data structure for storing endpoint
information.

FIGS. 15A and 15B, when placed together, form a flow-
chart that 1llustrates the steps in a process of executing a new
delta.

FIG. 16 1s a diagram showing an 1llustrative XML data
structure of an 1dentity disseminated delta.

FIG. 17 1s a flowchart showing the steps of an illustrative
process for assimilating priority deltas.

FIG. 18 1s a flowchart showing the steps of an illustrative
process for purging delta logs.

FIG. 19 1s a schematic diagram representing endpoint
states and transitions between the endpoint states for an end-
point.

DETAILED DESCRIPTION

FIG. 1 illustrates, 1n a very schematic form, a peer-to-peer
collaboration system 100 1n which collaborating computers



US 8,073,905 B2

S

are connected to each other by a network 110, such as the
Internet. Although various networks can be used with such a
system, 1n the discussion below, the network 110 1s assumed
to be the Internet. In this system, the collaborating computer
systems constitute peer units 102-108, and communications
through the Internet 110 can be directed from one peer unit to
another, without intermediaries. Each peer unit 102-108 can
be implemented as a personal computer or other form of
network-capable device, such as a set top box or hand-held
device.

Peer-to-peer communications can be made directly
between peer units. For example, peer unit 102 may commu-
nicate directly with peer units 104, 106 and 108, as indicated
schematically by dotted links 112, 116 and 114, respectively.
In a similar manner, peer unit 104 can connect to units 108 and
106 via connections 120 and 118, respectively. Finally, units
106 and 108 can communicate over connection 122. A col-
laboration system such as that shown in FIG. 1 1s available

from Groove Networks, Inc., 100 Cummings Center, Suite
535Q, Beverly, Mass. 01915 and 1s described 1n detail 1n the

Groove™ Platform Development Kit which 1s available from
Groove Networks, Inc. In the discussion below, the collabo-
ration system will be assumed to be such a system. However,
it will be apparent to those skilled in the art that other col-
laboration systems could also be used with the present inven-
tion.

In this collaboration system, a program called an “activity™
1s resident 1n each collaborating computer system, commu-
nication appliance or other network-capable device. The
activity allows a shared, focused task, such as, for example, a
“chat”, gaming, or business application, to be performed 1n
collaboration with other, remotely-located collaborators.
This collaboration involves shared and mutual activities
between individuals and small groups in private shared
spaces. Each shared space 1s an instantiation of one or more
activities operable on each of the collaborating computers of
members of that shared space.

In the system, participants or members of a shared space
access the system by opening “accounts” that are associated
with “endpoints.” Since an individual collaborator may
access the system via more than one device, an endpoint 1s
defined as a unique combination of an individual and a device.
Each endpoint stores an individual, local copy of the shared
space data.

Each activity includes one or more tools, each of which
interacts with a collaborator, for example, by recerving mouse
and keyboard events, and initiates data change requests 1n
response to the iteractions. These data change requests are
used locally and sent to other members of the shared space.
Each activity also includes one or more data-change engines,
separate from the tools, for maintaiming the local copy of the
shared space data pursuant to a common data model. The data
model 1s, for example, activity-specific, and preferably the
same over all members of the shared space. Each collaborat-
ing computer also includes a dynamics manager, that exam-
ines data change requests generated locally and received from
other shared space members and coordinates the execution of
the local and other data change requests and directs the data-
change engine to make the requested changes to the local
copy of data.

FIG. 2 shows, 1n more detail, the internal architecture 200
of the collaboration system as implemented on one of the peer
units 102-108, such as, for example, peer unit 102. The col-
laboration system on peer unit 102 includes a framework 202,
at least one shared space 204 instantiating one or more activi-
ties 205, and a user interface 206.

10

15

20

25

30

35

40

45

50

55

60

65

6

The framework 202 can provide a platform for servicing a
number of shared spaces, of which shared space 204 1s shown.
The framework 202 preferably 1s of modular construction,
with an application programming interface (API) on which
the activities run and through which they communicate with
framework components. The framework 202 includes a user
interface manager 208, an identity manager 210, a shared
space manager 212, an activity manager 214, a storage man-
ager 216, a dynamics manager 220, and a communications
manager 222.

The user interface (UIl) manager 208 1s responsible for
managing shared services for a number of user interface
controllers (not separately shown). The Ul manager 208 man-
ages the graphical layout of activity screen displays within
panes ol a display window, and otherwise provides a desired
“look and feel” for the user interface. The Ul manager 208
also manages activity navigation (for example, go to, next,
previous, etc.) and maintains a navigation history.

The 1dentity manager 210 1s responsible for maintaining an
“1dentity” for each shared space member. An 1dentity 1s the
name, and corresponding uniform resource locator (URL), by
which each user 1s known by others. Individual users may
have one or many 1dentities. The identity manager 210 main-
tains a record or table, 1n the local storage of the identities.
The 1dentity manager 210 can also maintain a record or table
of URLs for the shared space members and their correspond-
ing device URLs. Alternatively, a separate member manager
can be implemented.

The shared space manager 212 1s responsible for managing,
cach of the shared spaces 204 that may be opened on the peer
unit 102. Each shared space 204 1s an instantiation of one or
more activities. Each shared space 204 has a corresponding
activity manager 214.

Each activity manager 214 1s responsible for (a) adding
new activities to a shared space, (b) opening existing activities
in a shared space, and (¢) updating shared space activities.
Each activity 1s defined by an activity “template” that defines
the 1nitial activity configuration for a shared space and 1s a
persistent representation of the tool and engine components
comprising the activity. In order to create an activity template,
a soltware developer may write a tool or adapt an existing tool
and engine for use within the framework. For example, an
activity template can be distributed as shrink-wrapped soft-
ware or downloaded over the Internet to peer unit 102 from a
remote server. Activity components can be regarded as Web
documents and are represented persistently via URLs. The
activity template 1tself preferably has a URL, which allows
for tracking activity design changes. The activity template
can be a single activity template or an activity collection
template. A single activity template pertains to only one activ-
ity, such as “chat”. An activity collection template pertains to
a collection of activities, such as “chat and outline”.

To add a new activity, the activity manager 214 1s provided
by the means described above with the URL of a template for
the new activity. In order to open the new activity or an
existing activity, the activity manager opens the template,
extracts the template information (such as component URLSs)
and propagates the information into the shared space. A col-
laborator may add additional activities to the shared space
204 as needed. After being added, an activity 1s “part of” the
shared space and visible to all shared space members and each
shared space member has an activity template for the shared
space available on his or her peer unit.

Each shared space, such as shared space 204 has a tag to
identify 1ts corresponding activity manager 214 and to bind
the activity manager with data associated with the activity.
Preferably, the data 1s located 1n a document in the local




US 8,073,905 B2

7

memory and each document has a local registry linked to 1t
with tag names maintained 1n the registry to express a map-
ping (reference pointers or associations) in an extensible,
platform-independent way, between the document and 1its
corresponding shared space.

Each activity, such as activity 205, includes a tool, such as
tool 224 and an engine, such as engine 226. The tool 224, in
conjunction with the user interface 206, allows an activity to
interact with a collaborator. For example, the tool may receive
user interface events, such as keyboard or mouse events,
generated when the user interacts with the user interface 206.
In response to such user interface events, the tool 224 may
make data change requests to i1ts corresponding engine 226.
Tool 224 also implements APIs for interacting with back-
ground services.

The engine 226 1s responsible for maintaiming and chang-
ing the data that supports the shared space 204 and/or results
from user interaction obtained through the tool 224. It
responds to data change requests from tool 224 by returning
to the tool 224 commands necessary to implement the data
change requests. Under the direction and control of the
dynamics manager 220, the engine 226 can make changes to
the shared space data copy that 1s stored locally under control
ol the storage manager 216. When these changes are made,
the engine 226 asynchronously generates data change notifi-
cations. The tool 224 can subscribe to the engine 226 to
receive these data change notifications so that the tool 224 can
update the user interface asynchronously when the data
changes occur.

The dynamics manager 220 receives local data change
commands from the tool 224 and receives data change com-
mands from other collaborating computers, via communica-
tion manager 222 from a network connection 228. These
commands may be encrypted for transmission between col-
laborators and the dynamics manager 220 can use security
manager 230 to decrypt the commands. Dynamics manager
220 makes decisions on which commands to implement 1n
order to maintain synchronization among all collaborators
and forwards these commands to engine 226 1n order to cause
engine 226 to make changes to the local data copy.

During operation the collaborative system 200 obtains a
member’s 1dentity from the identity manager 210 and opens a
shared space manager 212. The system 200 then requests that
the shared space manager 212 open a shared space 1dentified
via a URL and create an activity manager 214. Once created,
the activity manager 214 opens an activity, typically by using
the activity’s URL to 1dentily the activity. Then, the collabo-
ration system 200 1s ready for members to use the shared
space to perform the shared, focused tasks offered by the
particular activity.

As previously mentioned, data change requests generated
by the engine 226 are placed into a container called a “delta™
that 1s used to send to the data change requests to other
collaborators. In the illustrative collaboration system, a delta
1s an atomic unit of change 1n a shared space and 1s the only
way to make shared space changes that atfect multiple end-
points. The dynamics manager 220 in each endpoint 1s
responsible for making sure that the data change commands
in each delta are correctly executed so that the ordering of the
data change commands 1s consistent on multiple endpoints 1n
a shared space. In order to do this, the dynamics manager 220
works with various engines 226 to execute and “undo” data
change commands.

The dynamics manager provides a number of frameworks
that handle various services necessary to ensure the afore-
mentioned causality preservation and convergence. These

10

15

20

25

30

35

40

45

50

55

60

65

8

frameworks include a Command Execution framework, an
Advise framework, a Distribution framework and a Delta Log
management framework.

To achieve causality-preservation each delta has a list of
dependencies representing other deltas that must be executed
betore the current delta can be executed. The dynamics man-
ager uses the ability to do (execute) and undo commands to
perform roll back and roll forward operations on deltas in
order to achieve convergence. If two endpoints A and B 1nde-
pendently generate and execute deltas DA and DB, respec-
tively, and send the deltas to the other endpoint, then one
endpoint will have to “rollback™ 1ts delta execution 1n order
for both endpoints to converge. For example, on endpoint A,
delta DA will be executed betfore delta DB 1s received. On
endpoint B, delta DB will be executed before delta DA 1s
received. In order to ensure convergence, one endpoint will
need to rollback. If the correct execution order determined by
the dynamics manager 1s Do(DA) Do(DB), then endpoint B
will need to perform a rollback. The order of operations on B
will be: Do(DB) Undo(DB) Do(DA) Do(DB). Thus, the final
order of execution will be the same on both endpoints.

As part of the command execution framework, the dynam-
ics manager 220 also provides handling for exceptions that
occur when commands are executed. The dynamics manager
220 also provides APIs to allow tools to execute user level
undo and redo operations. The dynamics manager 220 uses
the same undo and redo implementation used by rollback and
rollforward operations to support the user undo and redo
operations.

The dynamics manager also places restrictions on opera-
tion that can be performed by engines as part of do and undo
methods. In particular, the engines can not call any higher
level components (such as views) during these methods. In
order to help engines implement view noftifications, the
dynamics manager 220 provides an asynchronous notifica-
tion service in connection with “advise” elements. These
clements are provided to the dynamics manager 220 and the
dynamics manager 220 then asynchronously notifies any
entity that 1s registered to recerve those notifications. The
notifications are also used for the notification of events other
than the execution of a command.

The dynamics manager 220 1s further responsible for guar-
anteeing that deltas are sent and received by all active end-
points 1n the shared space. In order to do this, the dynamics
manager 220 maintains contact information for all endpoints
in the space. Deltas that are executed locally are also dissemi-
nated to all members of the space to be executed on other
endpoints. Typically, the communications network between
endpoints 1s not fully reliable and, thus, the dynamics man-
ager 220 1s responsible for re-transmitting deltas that may
have been lost during transmission. The dynamics manager
220 uses the dependencies on deltas to detect when deltas are
missing. The dynamics manager 220 also periodically sends
pulses when there have been changes in the shared space.
Like deltas, the pulses contain dependencies that can be used
to detect missing deltas.

Once the dynamics manager 220 detects that a delta 1s
missing, 1t normally attempts to fetch the missing delta from
one or more other endpoints 1n the shared space. The deltas
are stored 1n a data structure called a delta log 1n each end-
point so that other endpoints can normally satisiy the request
and resend the missing delta. The dynamics manager 220 also
exposes an mterface to allow others to disseminate informa-
tion to the endpoints 1n a shared space.

The dynamics manager 220 maintains the aforementioned
delta log that contains all of the deltas that have been executed
in the space. The log 1s kept for three reasons: the deltas may




US 8,073,905 B2

9

need to be rolled back to ensure convergence, the deltas may
need to be fetched by another endpoint and the deltas may be
undone or redone by the user. The dynamics manager 220
detects when a delta no longer needs to be kept for any of
these reasons. At that time, the dynamics manager 220 may
remove the delta from the delta log 1n a process called purg-
ing. In order for the dynamics manager 220 to detect that 1t no
longer needs a delta, it must receive pulses from all of the
other endpoints. If an endpoint doesn’t send a pulse for pre-
determined time period, the dynamics manager 220 may
decide that the endpoint 1s a “laggard.” A laggard endpoint 1s
defined as an endpoint that appears to have lost connection
with the shared space. Generally, 1t 1s desirable to temporarily
remove such an endpoint from the space so that its deltas can
be purged from the delta log in order to reduce the size of the
delta log. If other endpoints also decide that an endpoint 1s a
laggard, then the laggard endpoint 1s disconnected from the
shared space. If the laggard endpoint becomes active 1n the
shared space again, 1t will need to receive a new copy of the
space from one of the active endpoints.

There are several steps involved 1n the process of creating
and executing data change commands 1n deltas, and many
components of the collaborative system are involved in this
process. FIGS. 3A and 3B, when placed together, form a
flowchart that 1llustrates the major steps involved 1n creating
a delta and inserting the delta into a shared space. This tlow-
chart 1s described in connection with FI1G. 4 that i1llustrates the
major components involved 1n the process, including compo-
nents at the source endpoint from which the delta 1s generated
and a destination endpoint to which the delta 1s sent.

The process starts 1n step 300 and proceeds to step 302
where a dynamics manager, such as manager 420, in a source
endpoint 400 (the endpoint that creates the delta) creates a
delta at the request of a tool 418. The dynamics manager 420
represents the delta using XML code. A newly created delta 1s
an empty container for data change commands. The structure
of a typical delta varies depending of the type of delta, the
number of commands contained in the delta and whether
“undo” mnformation allowing the commands to be “undone™
1s present. FIG. 5 shows the basic XML code structure of a
delta 500 with one command and no undo information and
FIG. 6 shows the basic XML code structure of a delta 600
with two commands and undo information for both com-
mands. In accordance with typical XML structure, this XML
code consists of a plurality of hierarchical elements that are
nested with each other. Each element may have attributes
associated with 1t and specific content. All the XML code 1s 1n
a namespace where “g” stands for the URL “urn:groove.net”.

The L.Del element 502, 602 1s a local delta element and has
attributes that are relevant to the local endpoint only. For that
reason this delta element 1s not sent to other endpoints when
the deltas 1s sent to other endpoints. It has several attributes.
Attributes are only included 1n an element 11 they are relevant
so not all attributes are shown in FIGS. 5 and 6. The LDel
element 502, 602 attributes include an AssPrevGenDel
attribute that 1s set when the delta 1s associated with a previous
delta for undo purposes (that i1s the deltas will be undone
together). The BlkDel attribute this 1s set when this delta has
the highest priority 1n the current block. The DeltalToRedolP
attribute 1s set on a redo delta. It 1s set to the msertion point of
the delta that 1s being redone. The DoFError attribute 1s set
when there was an error the last time the delta was executed.

The Done attribute 1s set when the delta has been executed
on the endpoint. It doesn’t exist 1f the delta has not been
executed. The Redone attribute 1s set when the delta has been
undone and then redone. The ReKeys attribute contains key
information for the delta that 1s used 1n encrypting the delta to

5

10

15

20

25

30

35

40

45

50

55

60

65

10

send to other endpoints. It only exists on the endpoint that 1s
the creator of the delta. The SenderUID attribute 1s set to the
unmque ID of the sender endpoint on deltas that were recerved
as the result of a fetch request by the dynamics manager 420.

The Ses attribute 1s the delta session used 1in undo and redo
operations. It only exists on the endpoint that generated the
delta. The Undo attribute 1s set when the delta 1s an undo delta.
The UndoError attribute 1s set when there was an error the last
time an attempt was made to undo the delta. The Undone
attribute 1s set when a delta has been undone. The URL
attribute stores a URL if one was specified for the delta. This
URL 1s used as the message URL and allows the dynamics

manager to support delta progress notifications.
The content of the LLDel element 502, 602 include the Del

element 504, 604 and the SEC element 506, 606. The Del
Element 504, 604 1s the delta element that 1s sent to other
endpoints. Note that only the command element (or com-
mands element) 1s disseminated. Any command undo 1nfor-
mation 1s not disseminated. The Sec element 506, 606 1s the
security element where the security manager 414 can store
delta-specific security mformation.

The attributes of the Del element 504, 604 include an
AddEpt attribute that 1s set when this delta adds an endpoint
to the shared space. An AddNewEpt attribute 1s set when this
delta adds a new endpoint to the shared space. This attribute
1s only used when an account space 1s imported on a new
device. A CR attribute holds the contflict region of the delta
that 1s set when the delta 1s created. Deltas that have different
contlictregions do not require a consistent order of execution.
Deltas with no conflict region contlict with all other deltas.
The CR attribute contains a string and an empty string 1ndi-
cates that the delta will contlict with all other deltas. If two
different regions are set on the same delta, then the conflict
string 1s set to empty so that the delta will contlict with all
other deltas. Typically, each tool has a unique conflict region
that 1t sets on a delta. However, system tools, such as the
security manager and member manager do not set a conflict
region so that their deltas contlict with all other deltas. This 1s
important because any tool may access the data 1n the system
tools.

A DepSeq attribute 1s the set of dependency sequences of
the delta. This may not exist i1f the only dependencies are
implicit. Dependencies are described 1n more detail below.

A Gp attribute 1s the group number of the delta. A PurNot
attribute 1s set when an engine that created one of the com-
mands 1n the delta needs to be notified when the delta 1s
purged. A Seq attribute holds a sequence number of the delta
as described below. A Version attribute holds the version of
the dynamics manager 420 that created the delta.

The content of the Del element 504, 604 includes a com-
mand element 508, if there 1s only one command, or a com-
mands element 608 11 there 1s more than one command. The
command element 508 1s followed by a content section that
includes the command content and the commands element
608 1s followed by a content section that includes command
elements 610, 612 for each command 1n the delta. If the delta
has only one command, the command element 508 will be a
direct child of the delta element. It the delta has multiple
commands, they will be contained 1n the commands element
608, which i1s a direct child of the delta. Cmd elements 508,
610 and 612 ecach represent a command 1n the delta. The
content and most of the attributes of these elements are set by
the engine that created the command. The attributes include
an EngineURL attribute that 1s set to the URL of the engine
that created the command. A PurNot attribute 1s set when the
engine that created the command requires notification when
the command 1s purged.




US 8,073,905 B2

11

If there 1s no undo information for the command an empty
comment “<!--->" 510 1s used as a placeholder. If there 1s
undo information, a CmdU element 614, 616 holds command
undo information for one of the commands 1n the delta. The
content and attributes on this element are set by the engine
that executed the command.

When a delta 1s created, 1t 1s a unattached, or unparented,
XML code fragment within a larger, persistent, XML docu-
ment 440 that represents deltas 1n the dynamics manager 420.
A typical XML representation of the document 440 1s shown
in FIG. 7. The XML document 700 includes an EngineData
clement 702 that 1s the root element for the dynamics manager
document. The contents of this element include a number of
other elements. These include a BlockedDels element 704
that 1s the parent for any deltas that are blocked. This element
1s used as a parent for any messages that are blocked. It
contains an EptPul element that holds a pulse element from a
different element and a LocalDel element that represents a
delta including information specific to the local endpoint. A
CmdU element 706 serves as a read-only empty command
undo element. It 1s used as the undo element for all commands
that do not have explicit undo information. The attributes and
content of the CmdU element are specific to the engine that
executes the command.

At times the dynamics manager 420 may create CmdU
clements that are later determined to be supertluous. These
CmdU elements are stored in CmdUParent elements for
tuture use. For example, CmdUParent elements 708 and 710
are used as parents for extra CmdU elements. A DelHIdr
clement 712 1s used to represent a data structure called a
“delta holder” 442. This structure 1s described 1n more detail
below. Similarly, the DellLog element 714 represents a data
structure called a “delta log™ 438. It 1s also covered 1n detail
below.

A DisconnectNotifications element 716 1s used as a tem-
porary parent for incoming disconnect notifications. A Dis-
seminator element 718 1s used to represent elements that are
waiting to be sent to other endpoints or “disseminated.” This
structure 1s also described 1n detail below. An Epts element
720 1s used to represent endpoints 1n the shared space. It 1s
described in more detail below. An InboundDeltas element
722 1s used as a temporary queue for incoming messages to
the dynamics manager 420 and 1s described below. It contains
a Del element representing the part of a delta common to all
endpoints, a DisNtly element that holds a disconnect notifi-
cation from a different endpoint, a EptPul element that holds
a pulse element from a different element and a LocalDel
clement that represents a delta including information specific
to the local endpoint.

The attributes of the EngineData element 702 include a
Blocked attribute that holds insertion point of a delta that
caused the dynamics manager 420 to enter a blocked state. A
BlockedCount attribute holds the count of the number of
times dynamics manager 420 has been blocked. A Divergent
attribute 1s set when the dynamics manager 420 for a shared
space 1s divergent from other members of the shared space.
The attribute 1s set to a string representing the reason for the
divergence. A LastEptPulse attribute holds the time that the
local endpoint last sent a pulse message. A PurgingDisabled
attribute 1s set when purging 1s disabled. A UnackedDel
attribute 1s set when there exists a delta that hasn’t been
acknowledged by a pulse. As will be discussed 1n detail
below, these last three attributes are used when the delta log,
mentioned above 1s periodically purged. A PingSeq attribute
holds a sequence number indicating the last time a relay
server was contacted. An Uninvited attribute 1s set when the
local endpoint has been uninvited from the space. A Version

10

15

20

25

30

35

40

45

50

55

60

65

12

attribute holds the version of the dynamics manager data
model. Finally, a Watermark attribute 1s used to keep the local
cached state consistent with persistent state by detecting
when transactions are aborted.

This persistent XML document 440 1s maintained by a
storage manager 216. A storage manager 216 that 1s suitable
for use with the present invention 1s described in detail 1n the
alorementioned U.S. patent application Ser. No. 09/388,195.
In addition to creating the persistent XML representation 440,
the dynamics manager 420 creates a COM object represent-
ing the delta. The latter object implements a number of 1nter-
faces that the tool 418 can use to add commands to the delta
and to set properties of the delta.

Creating a delta also automatically creates a transaction 1n
a transaction database that 1s associated with the shared space
(not shown). Transactions provide an exclusive method of
accessing the shared space database and make it possible to
completely undo any changes that were started as a result of
a particular delta. A transaction will be aborted 1f the delta that
created 1t 1s aborted or if any errors occur during delta execu-
tion. The transaction 1s committed 11 the delta 1s commutted
and successiully executed.

Next, 1 step 304, the tool 418 adds one or more data
change commands to the delta container, either directly or
through the use of “creation nested” deltas, as described
below. A command 1s a unit of change created and executed
by an engine, such as engine 430, and a delta 1s a grouping of
commands with the intention that all those commands are
always executed together. Therefore, a delta 1s “atomic™ in the
sense that all of the commands in the delta are executed or
none are executed. There 1s one exception to this rule that
occurs during the handling of exceptions during command
execution and 1s discussed below.

The interfaces on the COM object that 1s created with, and
represents, the delta allow commands to be added to the delta.
A command 1s added by using the dynamics manager 420 to
create an empty command XML element (a Cmd element)
within the aforementioned XML fragment that represents the
delta within the XML delta document. At the time that the
delta 1s created, the dynamics manager 420 must be provided
with a bindable URL of an engine, such as engine 430 that
will later execute the command. Although only one engine
430 1s shown 1n FIG. 4, 1t will be understood by those skilled
in the art that a plurality of engines may be present. In the
description that follows, engine 430 will be used to refer to all
of these engines. This URL 1s a unique name of that engine so
that the dynamics manager can find the engine later when 1t 1s
needed. The aforementioned EngineURL attribute 1s set on
the applicable XML command element. The creator of the
delta can then add any attributes and content that will be
required to execute the command. For example, an engine
that implements a sketchpad will have commands to draw
objects. 11 the user draws an object on the sketchpad, a com-
mand will be created with attributes that describe the shape,
color and location of the object. When this command 1is
executed, both on the source endpoint that created the delta
and on remote destination endpoints, the changes 1n the com-
mand will be applied to the data model 432 associated with
the engine 430.

An alternative way to add commands to a delta 1s by *“cre-
ation nested” deltas. Creation nested deltas provide an easy
way to combine components to build more complex tools. For
example, a tool could use a number of other components that
could be other tools. When the user takes an action 1n the tool,
that tool creates a delta container. The tool then calls the other
components to add commands to the delta container. Instead
of directly adding commands to the delta, a tool can create




US 8,073,905 B2

13

another delta and add this new delta to the first delta. Because
the creation of this delta 1s nested within the creation of
another delta, 1t 1s called a creation nested delta. For example,

a set of steps during the creation of a delta could be:
Delta 1 Created

Command A added

Delta 2 Created (this 1s creation nested)

Command B Created

Delta 2 Commutted

Command C added
Delta 1 Commuatted
The XML structure of a delta 800 that contains two creation
nested deltas, both of which have undo information 1s shown
in FIGS. 8 A and 8B, when placed together. A creation nested
delta has the same elements as a standard delta with some
changes to the command element. For example, a Nested
attribute 1n the Cmd element 1s set if the command was
created as part of a creation nested delta. The Nested attribute
1s set to the ID of the creation nested delta. In addition, a NOrd
attribute 1s set on the Cmd element to the ordinal of the
command within the nested delta.

When a creation nested delta 1s committed as described
below, any commands in the delta are executed, just as they
would be for a non-nested delta. However, 1nstead of storing,
the delta 1n a delta log 438 after the commands are executed,
the dynamics manager 420 instead automatically adds the
commands and undo information to the beginning of the
containing delta. If the containing delta 1s aborted, the cre-
ation nested delta commands are also aborted. It the contain-
ing delta 1s committed, the creation nested commands have
already been executed and are not executed again. Note that
commands 1n the final containing delta are 1n the order that
they are executed. Because they are not executed until the
delta that contains them i1s executed, the execution order of the
commands 1in Delta 1 above 1s B,A.C.

When a tool, such as tool 418, has completed adding com-
mands to the delta, the tool 418 can either commit or abort the
delta in step 306. Ifthe delta s aborted, none of the commands
1s executed and the transaction that was started when the delta
was created 1s also aborted. Because nothing turther happens
in that case, 1t will be assumed that the delta 1s commutted in
step 306. When a delta 1s committed, the remaining steps
actually execute the commands 1n the local endpoint and
disseminate the delta and 1ts commands to the destination
endpoints. The transaction that was started when the delta was
created 1s not committed until after the delta has been
executed and queued for dissemination.

Next, 1n step 308, the dynamics manager 420 determines
where the newly commutted delta will be inserted 1nto a delta
log 438. The delta log 1s an XML data structure that1s actually
part of the XML document 440 1n the dynamics manager 420.
The structure has a typical XML code structure such as that
shown 1n FIGS. 9A and 9B, when placed together.

The delta log XML structure 1s comprised of several ele-
ments including a DellLog element 902 that represents the
delta log. The DellLog eclement 902 has several attributes
including a Need'ToDelete attribute that 1s set when there are
groups that have been purged but not deleted yet. A PenGrp-
Num attribute holds the number of the highest group that 1s
pending for purge, that1s that has been declared as eligible for
purging. A PurGrpNum attribute holds the number of the
highest group that has been purged.

The DelLog element 902 also includes other elements as its
contents. These include one or more DelBlk elements 904 and
922, each of which represents a block of deltas. Delta blocks
are used to implement priority deltas as described below.
Within a block, the deltas are organized by group. Each block

10

15

20

25

30

35

40

45

50

55

60

65

14

will have a content element for each group from the first group
in the block to the highest group 1n the block, event if the
group contains no deltas within the block.

Each DelBlk element, for example element 904, contains
one or more DelGrp elements 906, 910 and 914, cach of
which represents a group of deltas. A delta group 1s a set of
deltas organized into chains. There 1s one XML element for
cach chain within a group. The chains are ordered by increas-
ing creator ID ofthe endpoint that created the chain. A DelGrp
clement 906 can have two attributes: a DoneTime attribute
that holds the time at which the next group was created and a
Number attribute that holds the number of the group.

Each DelGrp element, for example, element 906, contains
one or more DelChn elements 908 representing a chain of
deltas. Each DelChn element 908 has a CreatorID attribute
that holds the 1D of the creator of the chain. Each DelChn
element 908 contains one or more [LLDelChn elements 910,
cach of which represents a delta.

Every position 1n the delta log 438 has a unique address,
called an “insertion point.” A new delta 1s always 1nserted at
the end of the delta log 438 and, consequently, 1n order to
insert anew delta, the insertion point corresponding to the end
of the delta log 438 must be determined. In one embodiment,
cach 1nsertion point consists of the combination of a group
number, a creator ID, and a sequence number. In turn, the
creator 1D consists of a combination of an endpoint ID and a
random number creator ID. The endpoint ID 1s a combination
(for example, a hash) of the device URL and the contact URL
of the endpoint and 1s a unique identifier of the endpoint.
Every time an endpoint opens a shared space, the endpoint 1s
assigned a new random number creator ID. The creator ID 1s
intended to prevent collisions from occurring during the
isertion of a new delta into the delta log with deltas created
by the same endpoint. These collisions might occur in cases of
a system crash, or a re-invitation to a shared space, which
causes the endpoint to lose 1ts internal record of previous
deltas 1t had created.

Once the creator ID has been determined, the group num-
ber can be determined. In the particular embodiment under
discussion and as set forth above, the delta log 438 collects
deltas into chains and chains into groups. A chain consists of
a deltas created by the same creator up to a predetermined
maximum number of deltas. In order to determine the group
number, the dynamics manager 420 first determines whether
the newly committed delta can be added to the last chain
being formed, that 1s, whether the chain contains deltas from
the creator and there are less than the maximum number of
deltas already on the chain. If the delta can be added to this
last chain, the group number 1s the number of the group that
contains the last chain. If the delta cannot be added, a new
chain must be created.

Next, a determination must be made whether the new chain
can be created 1n the current group, or 1if a new group must be
created. In accordance with the embodiment, within each
group, the chains must be 1n increasing order by creator ID.
Because the insertion point for the new delta must be at the
end of the delta log 438, the creator ID for the new delta must
be compared with the creator ID of the last chain 1n the delta
log. IT 1t 1s greater, then the new chain can be added to the last
group and the number of that group 1s the group number for
the delta.

Otherwise, a new group needs to be created. The new
group, and the new delta, will have a number one greater than
the previous group. Finally, the sequence number 1s deter-
mined. The first delta created by a creator has a sequence
number of “1”. Each subsequent delta created will have a
sequence number of one greater than the previous delta.




US 8,073,905 B2

15

Taken together, the creation ID and the sequence number 1s
a number called a “delta sequence.” The group number 1s
concatenated with the delta sequence to produce the insertion
point. To make indexing easier, the group number and
sequence are stored as separate attributes on the delta.

In step 308, the mnsertion point 1s “stamped” on the delta by
including the calculated value in the delta attributes, but the
delta 1s not actually 1inserted into the delta log 438 at this time.
The msertion point must be included 1n the delta because
certain special commands, such as adding a member to the
shared space, use the delta insertion point. It would be theo-
retically possible to actually put the delta 1n the correct place
in the delta log 438 at this point, but that would make the
“undo delta” command much more difficult to implement.

After the insertion point i1s stamped, 1 step 310, the
dynamics manager 420 executes the commands 1n the delta
(this process 1s called “executing the delta”.) In order to
perform this step, the dynamics manager 420 1terates over all
of the command elements and opens the attribute containing
the bindable URL of the engine that is to execute the com-
mand. The dynamics manager 420 then binds to that engine—
this process takes the URL and finds the engine that 1s asso-
ciated with that URL. Once the dynamics manager 420 has
located the engine (for example, engine 430), it calls the
engine 430 to execute the command. In addition to providing
the engine 430 with the command element describing the
command, the dynamics manager 420 also provides an empty
command undo element to the engine 430. The engine 430
can use this element to store any information that may be
needed subsequently to undo, or reverse the execution, of the
command. If the engine 430 adds information to the com-
mand undo element, the element 1s stored in the delta. For
performance reasons, 11 the engine 430 doesn’t store any
information in the undo element, then the dynamics manager
420 uses an empty comment as a place holder for the undo
clement 1n the delta.

The steps performed 1n executing a command depend on
the engine executing the command and the command being,
executed. An engine 430 will execute the command and apply
any changes to its persistent data model 432. Engine 430 may
also create “advises™ that asynchronously notify 1t that the
change has been made. Often 1t will add undo 1information to
the command undo element, which undo information may be
necessary 1f the command must be undone 1n the future. Each
engine 430 can also perform an access control check to make
sure that the creator of the delta has the permission to perform
this command. This check 1s done on each endpoint before the
command 1s executed. If the any endpoint does not have
permission, then the engine 430 can throw an exception that
1s handled as described below.

In addition, the engine 430 can create execution nested
deltas. An execution nested delta 1s created during the execu-
tion ol commands 1n another delta. Execution nested deltas
are similar to creation nested deltas, except that they are
created while the commands 1n the containing delta 1s being
executed instead of when the containing delta 1s being cre-
ated. When creation nested deltas are executed, as discussed
above, commands and undo information are added to the
containing delta. However, when execution nested deltas are
executed, the commands they contain and any undo informa-
tion for those contained commands are stored in the undo
information of the containing delta.

Creation nested deltas are only created on the endpoint 400
that creates the delta and the commands in them are then
automatically executed on all endpoints that execute the con-
taining delta. In contrast, execution nested deltas are typically
created on all endpoints that execute the containing delta. The

10

15

20

25

30

35

40

45

50

55

60

65

16

commands 1n them are not disseminated, so they may need to
be generated on each endpoint that executes the containing
delta. Executing the delta may have different effects on dii-
ferent endpoints, for example because of differences in the
role of the member executing the delta. In these cases, the
undo information may be different and execution nested del-
tas may not need to be created or may be different. Access
control checks are not done 1n execution nested deltas since
the check by the containing delta suifices.

When a delta 1s undone, the dynamics manager 420 waill
undo any execution nested deltas before 1t undoes the com-
mand that caused the execution nested deltas to be created.

Exceptions that occur during command execution are
handled by the dynamics manager 420. Exception handling in
the case when the delta 1s being executed on the endpomt 400
that created 1t 1s straightforward. The exception 1s thrown to
the tool 430 that 1s trying to commut the delta. Care must be
taken that any changes already made as part of this delta are
undone. In order to make sure that these changes are undone,
the dynamics manager 420 creates a “transaction” around the
execution of each command. If an exception occurs during the
execution of the command, then the transaction around that
command 1s aborted. This latter process will undo any
changes that were made as a result of the partial execution of
the command.

Thereatter, the dynamics manager 420 calls other appro-
priate engines to undo any other commands that had already
been executed as part of the delta. These calls allow the
engines to undo any information that 1s not part of the shared
space and, consequently, won’t be automatically undone
when the dynamics manager 420 aborts the transaction con-
taining the entire delta. In addition to the transaction around
the execution of each command, the dynamics manager 420
executes each delta within a transaction. After the engines
have been called to undo any successiully executed com-
mands, the dynamics manager 420 aborts this latter transac-
tion as well. This transaction ensures that any changes in the
shared space that were made as part of the delta and are not
correctly undone will be automatically undone. Once the
dynamics manager 420 has ensured that the changes made as
part of the delta that had the exception are undone, 1t throws
the original error back to the tool 430 that was attempting to
commit the delta.

After execution, 1n step 312, the dynamics manager 420
adds the new delta into the delta log 438. This step 1s straight-
forward since the dynamics manager 420 has already deter-
mined the correct insertion point for the delta in step 308. The
process then proceeds, via oif-page connectors 314 and 316,
to step 318.

As previously described, an important property of a col-
laboration system 1s “causality” which demands that, when a
current data change command received from a first collabo-
rator 1s executed by a second collaborator, the second col-
laborator will have executed all previous data change com-
mands that the first collaborator had executed when the
current data change command was created. One of the major
properties provided by the dynamics manager 420 1s “prior
execution.” In particular, the dynamics manager 420 ensures
that an endpoint will not execute a delta unless 1t has already
executed all deltas that had been executed by the creator of the
delta when the delta was created. In order ensure prior execu-
tion, each delta has dependencies stored in 1t 1n step 318.

Delta dependencies describe all previous deltas that have
been executed on the endpoint that created the delta. For
example, consider the following transaction that occurs 1n
five steps:

1) endpoint A creates delta Al.




US 8,073,905 B2

17

2) endpoint A creates delta A2.

3) after recerving delta A2, endpoint B creates delta B1.

4) after recerving delta B1, endpoints A and B simultaneously
create deltas A3 and B2.

5) after receiving deltas A3 and B2, endpoint C creates delta

Cl.

In this situation, for each delta, such as delta A2, 2 1s the
sequence number and A 1s intended as a shorthand notation
for the creation ID as described above. Thus, the notation A2
represents the delta sequence. “Simultaneous” creation
means that endpoint A creates delta A3 before recerving delta
B2 and endpoint B creates delta B2 before receiving delta A3.
The resulting deltas are said to be “independent.”

One possible way to indicate the dependencies would be to
stamp each delta with the delta sequences of all deltas that had
been previously executed. If this 1s done 1n the example given
above, the dependency set on each delta would be as indicated
in brackets 1n the following delta list:

Al {}

A2 (A1

Bl {A1,A2}

A3 {A1,A2,B1}

B2 {A1,A2,B1}

C1 {A1,A2, B1, A3, B2}

As more and more deltas are created, the set of dependen-
cies will continue to grow. In order to reduce the number of
dependencies, implied dependencies are eliminated. For
example, delta B1 depends on delta A2 and delta A2 depends
on delta Al. Therefore, the dependency of delta B1 on delta
Al 1s already implicit in the A2 dependency of delta B1. The
climination of these implicit dependencies results 1n the fol-
lowing explicit dependencies on the deltas:

Al 17

A2 {A1}

B1 {A2]

A3 (B1}

B2 (B1}

Cl {A3, B2}

As afurther optimization, an implicit dependency of a delta
on a previous delta from the same creator can be assumed. For
example, 1t can be assumed that delta A2 implicitly depends
on delta Al. With this further optimization, the resulting
dependencies for these deltas 1s:

Al {}

A2 {}

B1 {A2]

A3 (B1}

B2 17

Cl {A3, B2}

Note that, 1t may be necessary for a delta to have multiple
dependencies, such as the case of independent deltas. For
example, 1n the latter dependency list, delta C1 depends on
both deltas A3 and B2, but because there 1s no relationship
between those two deltas, delta C1 must explicitly include the
dependency on both of them.

Maintaining a list of dependencies for the next delta cre-
ated by an endpoint 1s straightforward. The dynamics man-
ager 420 keeps a set of new dependencies. Each time a new

10

15

20

25

30

35

40

45

50

55

60

65

18

delta 1s committed, or assimilated, this set 1s updated by
removing any dependencies of the new delta and then adding
the new delta. For example, 11 another endpoint, D, exists in
the example given above, its new dependency set would
appear as follows after receiving each of the deltas generated
by the other endpoints A, B and C above:

Al (A1}
A2 {A2]
B1 (B1}
A3 {A3]
B2 {A3, B2}
C1 {C1}

If endpoint D created a new delta after recerving delta C1,
then delta C1 would need to be the only explicit dependency
of the new delta. At the time when dependencies are added to
the new delta, a check 1s made for any dependency on a
previous delta from the same creator, because that depen-
dency 1s always implied.

Before each delta 1s sent to other collaborators, 1t must be
“secured.” This mvolves encrypting and integrity protecting
the delta. Because these operations can be a relatively com-
plex and time-consuming, the dynamics manager 420 per-
forms these operations asynchronously (not on the main line
ol execution) when there are no transactions on the shared
space database. This prevents encryption from interfering
with other operations 1n the shared space. In order to secure a
delta asynchronously, 1t 1s necessary to store some security
information in the delta at this time. This security information
will be used later by the security manager 414 to secure the
delta. In step 319, the dynamics manager 420 engages the
security manager 414 to store any information that will later
be needed to encrypt the delta.

The asynchronous encryption and forwarding of the delta
to other collaborators (called *“dissemination™) 1s actually
implemented by a disseminator component 423 1n the dynam-
ics manager 420. This component 425 imncludes a dissemina-
tor queue element 426 1n the XML document 440 where
deltas and other messages that are to be disseminated are
enqueued. An element with an attribute set to the sequence
number of the new delta 1s enqueued to the disseminator
clement 426 1n step 320. The enqueueing generates an event
that will result in the dynamics manager 420 being called
asynchronously on a different thread of execution to actually
perform the dissemination. When the dynamics manager 420
1s later 1s called back asynchronously, it, 1n turn, calls the
disseminator component 4235 to process any deltas in the
queue 426. The disseminator 425 will dequeue the element,
read the sequence number attribute, open the corresponding
delta from the delta log and process 1t. After the delta 1s
enqueued for asynchronous processing, the transaction onthe
shared space database that was started when the delta was
created 1s commuitted.

Belore being sent to other collaborators, each delta 1s
secured by encryption and integrity protection. Encryption
prevents anyone who intercepts the delta message from
obtaining usetful information. Integrity protection allows the
dynamics manager to detect 1f another party modifies the
delta. When processing a delta, the disseminator component
425 of the dynamics manager 420, 1n step 322, uses the
security manager 414 to secure the delta with the previously
stored information. The delta 1s secured in a two-phase pro-
cess. The first phase 1s inttiated with the shared space database
locked. During this phase the relevant security information,
such as keys, are read from the shared space database. During




US 8,073,905 B2

19

the second phase, which happens without the shared space
database locked, the delta 1s actually secured.

Only part of the delta will be sent to other collaborators,
and only that part 1s secured. Any information in the local
delta element 1s not disseminated or secured. Also any com-
mand undo information that 1s relevant only to the local
endpoint 400 and 1s not disseminated or secured. Securing a
delta leaves the delta element 1tself, which contains the group
number, the sequence number and the dependencies, unen-
crypted (but integrity protected). This information may be
needed betfore the delta can be decrypted, so 1t must be sent
unencrypted. The command elements are encrypted and sent
as content of the security process. A local delta element also
has a content element that the security manager 414 can use to

store any local data that must stored for the delta. A secured
delta looks like the following:

10

15

20

406 that sends the delta to other endpoints 1n the shared space.
The process then ends 1n step 328.

FIGS. 10A and 10B, when placed together, illustrate the
steps 1n a process for recerving a delta 1n a destination end-
point 402 from a source endpoint 400. This process starts in
step 1000 and proceeds to step 1002 where at a destination
endpoint 402 1n the shared space, a serialized delta 1s recerved
by the communications manager 410 1n that endpoint 402.
The communications manager 410 then locates the correct
shared space to handle the delta, and calls the dynamics
manager 422 in that shared space to process the received
delta.

The dynamics manager 422 then de-serializes the delta 1n
step 1004. This process converts the delta data back into XML
code that 1s stored 1n the XML document 423 1n the dynamics
manager 422. At this point, the dynamics manager 422 can

<urn:groove.net:Del CR="Ywyi15Fkw” DepSeq="6C58D518236030D3BEA50001”" Gp

=*352" Seq="1E3F58465D4741E945370003” Version="1,0,0,0">
<urn:groove.net:SE Version="3,0,0,0">
<urn:groove.net:EC EC

="mk1 Blal etosZ{GOtnsUPsIN7Nud4ZI1z860p+MO0Ojci8OwQEVbTXrIBR8Pnakl.71cFOS4
TqLMRwU|7yloV2C5IA1 XGVvP/zM1 XEF2pUPYHISh+Pry JIxmQ9w+EItEnOll 1 vyP9RZN7Ne
N2v/l/mrhzeSv6oY 9awd+qTWhilluZ4TLVeomVIS611GVIOVnKo DOM2wpP+CsK9GEKOtK
cuhK4AmTYspQgAvBGOdIoqi5I1gvGUWmly1C9eW rCMP7+V9k2SqXgOzTHGM1 EXsy
tVI4kKin5eazhNI49TDPGuB3cgFRXzA19s1dhlZWX1g4VA24UHI TpOL6¢cet7ThgMNO4gB
DvubtbUTIpcS9BtsMKHtv3EZVIaqR0C/ti Ael SX+NKGSTaZher7rMI PAXNjx9M4jurdjUrUK
6xMRnnxcHPD1vI1pV|PSUR2{C1hFeKPaZ13QvIcB101SaGglyvTDrLgw6 MzEF6nSL7r
LtLMz+1MvxmmQCk9alL. B7UuudZ0ygp4eOnOep+COLEipOyW GUCbEKkNSKhn4PcGCS|d
Pc21JVXa9nw4BAkCeVkpESMUaXpGhcYtSBbATXCNDzrY YmOHVUAXhknQAAHwWPOC
27195 Tze71V4vpz+cb ANOYs2zCcindohCV+tTClbwPc+kzgbbWgmciIsd+QulwmdV4op
ZD/1STQaM91C9hR Rpvoddg6 IMIxX 1 CUNDKkOwGDOtcfU+kOONgU3S1a7+qUp2UXal5K

kOpIxEfsysd2QY2bak8aaEFRIAVCW

Cw2UBer+y8aRITIgMY 9 mvz2 ZIEASYU7qmVp

bT7ncNexQ00IXbD9s++PVC+nNSEQXH4WSABLDDpKcEFgpqpQLWk1 Ra+1KpfPtGmim
YnqveKM/d1x/oKwiMad4zxo9qhvIQd55KrT)l7knHORZalKiNbantVilyIPn9HIxF6GSyn+cQ
TgstmecNOhKHyAmMmAraOe54ydGChHOW 3rGTERVEIxbz+Bhp TMIUCqP4ehFqtjsESGUV4
1ILFHNgdUpKXd4H8b61w4ZpHakVPgtaqRhrpVgzge TuOQhRQ9Ug3HE6koNwQKcW 8d
hVCZbCorVW6mR3PhzGO3R358+zI X TwNIXxInRhwASLOkHnZJywEjeZb2hGDUtyWV

hc:!'!

[V="0dERAZ31JCWDIlo1WeZbmEI+Lxv+PoBF” KID="368BCO6A9DB273B133A80002”

KV
=I: 525!/::_
<urn:groove.net: Auth PTSig

="11alU0dLC70Ycrmmdzelc+uTnAGv2AK1RESoVIAZyotylULSyb TRIUVXIGNVISWtZS57
BwPrirgnGQbQcVI/N+duGYGAOc4zLAMpOL4Vnotzwo LZPRelU1TDDztpenzZ G4zkIcLt
vhinEp82VIU923FnTotv4PeSQOFkpwvciZAkpwd8NsmctR41 ULc7c8fafl MlqdYEF41QfW

01Alpz7Bo9nO5{0TOHnlcCWEOtLp3 21 EIHh2gMn AIDbt3 B4zW™/>
</urn:groove.net:SE>
<furn:groove.net:Del>

Here Del 1s the delta element, with attributes as explained
below. The SE element 1s the secured element with a single
attribute that 1s the version of security used for the delta. The
EC element 1s the encrypted content that 1s the result of
encrypting the commands in the delta. The EC element con-
tains a base64 encoding of the encrypted commands (1f the
encrypted commands are very large, a binary document will
be used instead of a binary attribute). The IV element 1s an
initialization vector used 1n the encryption algorithm, the KID
clement 1s the security key ID and the KV element 1s the key
version number. The Auth element contains the authenticator
that 1s used to mtegrity protect the delta. The PTSi1g element
1s a base64-encoded signature for the delta.

After being secured, the delta 1s serialized in step 324. For

example, 1n one embodiment, the data 1s serialized as
WBXML, a standard binary encoding for XML. It the delta
has any binary documents, they can be bundled together as a
MIME message.

Finally, 1n step 326, the serialized delta 1s forwarded to an
outbound delta queue 408 1n the communications manager

50

55

60

65

recognize that this 1s a delta element. All new inbound deltas
are placed in an inbound delta queue 434 1n the dynamics
manager XML document 423. This queue 434 serves as a
temporary holding place until the dynamics manager 422 1s
ready to process them. Often the dynamics manager 422 will
wait until 1t has received all deltas from other sources, such as
a relay server, before beginning to process the deltas. Once
the dynamics manager 422 1s ready to process the data, the
delta 1s removed from the inbound delta queue 434.

In step 1006, a check 1s made whether the endpoint that
sent the delta 1s 1n an “active” state (endpoint states are
discussed below.) The delta 1s “pended™ 1n step 1008 1f the
endpoint that sent 1t 1s not 1n an active state. This 1s required
because the delta that added the endpoint to the shared space

may not have been executed and received deltas cannot be
processed until 1t has been executed. Thus, all deltas received
from an endpoint are pended until the delta that created the
endpoint 1s obtained. Similarly, if an endpoint that generated
the deltas has been “uminvited” from the shared space, then
the system will not process a delta from that endpoint unless




US 8,073,905 B2

21

another endpoint that 1s still active 1n the shared space has also
executed that delta. Pending deltas are stored in a pending
deltas element 428 under the appropriate creator, until a deci-
s10n 1s made to execute the delta. The pending deltas element
428 1s periodically purged. If the pending deltas are not
executed, they are deleted when the group that contains them
1s purged from the pending deltas element 428.

If the delta 1s not pended as determined in step 1006, the
sending endpoint 1s known and the delta can be integrity
checked 1n step 1010 by the security manager 416. It is
important to verily that the delta has not been tampered with
at this stage, before continuing to read the dependencies and
other information from the delta. If the delta fails an integrity
check, 1t 1s discarded 1n step 1014 and the process proceeds,
via off-page connectors 1018 and 1022, to finish in step 1032.

If the delta passes the integrity check in step 1012, the
process proceeds, via off-page connectors 1016 and 1020, to
step 1024 where an attempt 1s made to decrypt the delta. It 1s
possible to decrypt the delta at step 1024, if the correct key 1s
available. Because the dependencies of the delta have not
been checked, 1t 1s possible that certain keys for the delta are
missing. If that 1s the case, the delta 1s decrypted later. The
decryption step converts the SE element in the encrypted
delta back into the commands in the delta.

Next, 1n step 1026, the dependencies of the delta are
retrieved by the dynamics manager 422 by examining the
dependency attribute of the delta. Since the dependency
attribute 1s not encrypted, the dependencies can still be
retrieved even if decryption was not possible i step 1024.
The dependencies are then assimilated as shown in more
detail in FIGS. 11A and 11B, which when placed together
form a flowchart that i1llustrates the steps in the process.

Dependency processing begins in step 1100 and proceeds
to step 1102 where the list of explicit dependencies 1s opened
from the attribute 1n the delta. If this 1s not the first delta from
a creator, the previous delta from the creator 1s added to the
beginning of the dependency list. In step 1104, a determina-
tion 1s made whether all of the deltas that are dependencies
have been processed. I so, dependency processing proceeds,
via off-page connectors 1116 and 1124, to finish 1n step 1130.

Alternatively, 1f 1n step 1104, it 1s determined that not all
dependencies have been processed, then in step 1106, the
dynamics manager 422 retrieves the next dependency from
the list of dependencies. For each of these dependency deltas,
a check 1s made, 1 step 1108 to determine whether that
dependency delta has been assimilated as described below. If
that dependency delta has already been assimilated, then the
process returns to step 1104 to check 1f any further dependen-
CIes remain.

If any of the deltas 1n the dependency set have not been
assimilated, then, 1 step 1110, a determination 1s made
whether the next delta has been pended. If the delta has not
been pended, then the process proceeds, via off-page connec-
tors, 1116 and 1124 to finish in step 1130 because the next
delta 1s missing. Alternatively, 1 the next delta has been
pended as determined 1n step 1110, then the process proceeds,
via off-page connectors 1114 and 1120, to step 1126 where an
attempt 1s made to assimilate the pended delta. I the attempts
1s successiul as determined 1n step 1128, then the process
proceeds, via off-page connectors 1118 and 1112, back to
step 1104 to determine whether additional dependencies must
be processed. Alternatively, 11 the pended delta cannot be
assimilated as determined in step 1128, then the process
finishes 1n step 1130 because the dependency 1s missing.

If the new delta cannot be assimilated because some of its
dependencies cannot be processed, 1t 1s placed 1n a delta

holder 442. The delta holder 1s an XMIL. data structure in the

10

15

20

25

30

35

40

45

50

55

60

65

22

XML document 423 associated with the dynamics manager
422. It has a structure 1200 as shown 1n FIG. 12. The delta
holder 1200 includes a DelHIdr element 1202 representing
the delta holder. This element has an ActiveBlockNum
attribute that holds the number of the currently active block.
The DelHIldr element 1202, 1n turn, includes one or more
HldGrp elements, each of which represents a group of held
deltas and endpoint pulses that are all waiting for the same
dependency. Each of these elements has a Dep attribute that
specifies the dependency for which all the held deltas and
pulses are waiting. Each HldGrp element includes one or
more LDel elements, each of which represents a held delta
and one or more EptPul elements, each of which represents a
held pulse. The new delta 1s stored in a HIdGrp element of the
delta holder 442 corresponding to the missing dependency
delta.

If the missing dependency delta 1s not pended as deter-
mined 1n step 1110, then the dynamics manager 422 attempts
to fetch the dependency delta from other endpoints in the
shared space. In particular, a fetch request 1s sent to another
endpoint 1n an attempt to retrieve the delta. In order to
increase elficiency, fetch requests may be batched for all
deltas and requested with one request.

Since the number of deltas that must be fetched from
another endpoint can be large and, therefore, occur over a
significant time period, 1t 1s necessary to prevent an endpoint
from making multiple fetch requests for the same deltas while
it 1s still recerving the deltas from a previous request. Multiple
re-fetching 1s prevented by associating a sequence number
with each fetch request. If an incoming fetch request does not
have a high enough sequence number, then an endpoint
receiving the request will not send the requested deltas. A
fetch response sequence number 1s stored for each endpoint
and used when a fetch request 1s recerved by that endpoint. In
addition, a fetch request sequence number 1s stored for each
endpoint and used when that endpoint generates a fetch
request to another endpoint. These sequence numbers both
start at zero and are used 1n the following manner.

The fetch process 1s 1llustrated in FIG. 13, which begins 1n
step 1300 and proceeds to step 1302 where a fetch request 1s
generated 1n a first endpoint, for example, endpoint A and sent
to another endpoint, for example endpoint B 1n step 1304.
When such a fetch request 1s generated, 1t includes the fetch
request sequence number. When a fetch requestisreceived, in
step 1306, the fetch request sequence 1n the request 1s com-
pared with the stored fetch response sequence number 1n the
receiving endpoint. If the two sequence numbers are equal,
then the fetch request 1s valid and, in step 1308, the requested
deltas are forwarded back to endpoint A. The receiving end-
point then increments 1ts stored value of the fetch response
sequence as set forth 1n step 1310. Next, the receiving end-
point sends a fetch sequence number update message con-
taining the value of the fetch response sequence number to the
requesting endpoint 1n step 1312. However, if the fetch
request was ivalid as determined in step 1306, then the
requested deltas are not sent. Instead, only the update mes-
sage 1s sent 1n step 1312.

When the fetch sequence update message 1s recerved at the
sending endpoint, the sending endpoint updates 1ts fetch
request sequence number as set forth in step 1314. In particu-
lar, 11 the fetch response sequence number 1n the recerved
message 1s larger than current fetch request sequence number
being used by the sending endpoint, then the endpoint sets its
tetch request sequence number to the sequence number in the
update message. Otherwise, the sending endpoint does not
change 1ts fetch request sequence number. The process then
finishes 1n step 1316.




US 8,073,905 B2

23

The following 1s an example of the use of these sequence
numbers. Assume that there exist two endpoints A and B each
with internal stored values of fetch request sequence numbers
and fetch response sequence numbers with values of zero.
Endpoint A realizes 1t 1s missing deltas 1-100 and sends a
tetch request for these deltas to endpoint B. This fetch request
has fetch request sequence number with a value of zero.
Endpoint B receives the fetch request, compares the sequence
number therein to 1ts stored fetch response sequence number
(with a value of zero) and determines that the fetch request 1s
valid. Endpoint B then sends the requested deltas to endpoint
A and increments 1ts stored fetch response sequence for end-
point A to a value of one. Endpoint B also sends to endpoint
A, a fetch sequence update message carrying a sequence
number of one.

Assume that endpoint A receives deltas 1-20 but decides to
request deltas 21-100 again even though these deltas and the
fetch sequence update message are still 1n transit. Endpoint A
sends another request with a fetch request sequence number
with a value of zero. Endpoint B receives the new fetch
request from endpoint A and realizes that the request 1s invalid
since the fetch request sequence number 1n 1t (with a value of
zero) 1s less then 1ts current fetch response sequence number
for endpoint A (with a value of one). Therefore, endpoint B
does not re-send deltas 21-100, but instead sends another
fetch sequence update message carrying an update sequence
number with a value of one.

Endpoint A then finishes receiving deltas 21-100, and also
receives the first fetch sequence update message. Accord-
ingly, endpoint A updates 1ts internal fetch request sequence
number to a value of one. Endpoint A ignores the second fetch
sequence update message since the update sequence number
value carried by it 1s less than or equal to its stored fetch
request sequence number. Therefore, the same deltas are not
sent twice.

The fetch request and fetch response sequence numbers are
stored 1n and endpoints data structure that 1s part of the XML
document 423. A sample XML data structure for holding
endpoint information 1s shown 1 FIGS. 14A and 14B, when
placed together show an 1illustrative XML structure 1400 for
storing 1nformation regarding endpoints. The structure 1s
comprised of a number of XML elements. The Epts element
1402 represents the collection of endpoints. This element
1402 has an NDeps attribute that holds the new dependencies
that need to be set on the next delta that this endpoint creates.
The Epts element contains one or more Ept elements 1404,
1406, cach of which represents a single endpoint.

Each Ept element 1404 has a number of attributes includ-
ing a ContactURL attribute that holds the contact URL of the
endpoint. A Creationld attribute holds the sequence of the
delta that created the endpoint, or the notation “First” 1t this
endpoint created the shared space. A DeviceURL attribute
holds the device URL of the endpoint. A HGN attribute holds
the highest group number for that endpoint has declared 1n a
pulse or by creating a delta. The HIP attribute stores the
highest insertion point for a delta created by the endpoint. An
OldCreationlds holds sequences of deltas that had previously
invited this endpoint into the shared space.

An OutOfDateTime attribute 1s set to the time at which the
first local delta was created since the last message recerved
from the endpoint. A Pendingl.aggard attribute 1s set when
the endpoint 1s a laggard as described below. The PurGrp
attribute holds the highest group that this endpoint has
declared 1t 1s willing to purge. A Regs attribute stores deltas
that are needed to assimilate held deltas from the endpoint and
a ReqSeq attribute holds the fetch request sequence number to
be used when the next fetch request 1s recerved at the end-

10

15

20

25

30

35

40

45

50

55

60

65

24

point. A RespSeq attribute holds the last fetch response
sequence number sent to the endpoint after responding to one
of 1ts fetches.

The SPG attribute stores a secondary purge group used to
determine what to purge 1n edge conditions such as when an
endpoint has not created deltas. A State attribute holds the
state of the endpoint for use 1n purging decisions that are
discussed below. The UID attribute holds the unique ID of the
endpoint. In one embodiment, this 1s a hash of the values 1n
the ContactURL and DeviceURL attributes.

Each of the Ept elements, for example element 1404, con-
tains one or more Creator elements 1408-1418, each of which
represents a creator and a PndgDels element 1420 that 1s used
as a parent for pending deltas. Fach Creator element repre-
sents a creator. Each time an endpoint reopens a space it
creates a new creator to use when creating deltas. This creator
has a random 1d that 1s used to make sure delta sequences are
unique 1n the case of a crash or other event that may cause a
loss of information. Each Creator eclement has several
attributes including an HIP attribute that holds the insertion
point of the highest delta created by the creator. A LastUID
attribute holds the last sequence used 1n generating a unique
ID for this creator. A PurgeGrp attribute stores the number of
a group that when purged, permits the creator to be deleted. A
SubNum attribute holds the last sub-sequence number used
on an 1dentity targeted or asynchronous delta created by this
creator as described below.

The PndgDels element (434, FIG. 4) 1s the parent of any
pending deltas. As previously mentioned, pending deltas are
deltas that the dynamics manager may, or may not, want to
assimilate. Pending deltas only occur 1f deltas are recerved
betore an endpoint 1s added to the space or after an endpoint
has been removed. The PndgDels element 1420 contains one
or more LDel elements 1422, each representing a delta.

Returning to FIGS. 10A and 10B, after the dynamics man-
ager has attempted to assimilate all dependencies 1 step
1026, the process proceeds to step 1028 where a determina-
tion 1s made whether all dependencies have been assimilated.
IT not, the process proceeds to step 1030 where the original
delta 1s held. The process then finishes in step 1036.

Alternatively, 111t 1s determined 1n step 1028 that all depen-
dencies have been assimilated, then the process proceeds to
step 1032 where the new delta 1s also assimilated. Assimilat-
ing a delta consists of creating a transaction 1n the shared
space database and putting the delta 1in the delta log 444. As
discussed above, every delta has been previously stamped
with a group number and a sequence. Thus, the process of
inserting a delta into the delta log 444 starts with a determi-
nation of the correct group element 1n the delta log 444. I the
group does not exist, 1t1s created at this point. Then, the group
1s examined for a chain corresponding to the creator ID in the
delta sequence. Again, if the chain does not exist, then 1t 1s
created. The delta to be assimilated 1s added to the end of the
chain.

Once a delta has been assimilated, it will be executed
before the dynamics manager 422 commits the current trans-
action on the shared space database. Errors that occur during
delta execution are handled by rolling forward or rolling back
any commands that had been executed. In addition, the trans-
action that was started around the delta execution 1s aborted.
The delta execution errors are handled as each delta is
executed and before the current transaction 1s committed. To
limait roll back and roll forward, the dynamics manager 422
attempts to assimilate as many deltas as possible before
executing them. Therefore, the delta log 444 keeps track of




US 8,073,905 B2

25

how many deltas have been assimilated but not executed. This
count will be used to make sure that all of the deltas are
executed.

After assimilating the delta, 1t may now be possible to
assimilate additional deltas that depend on the assimilated
delta. These deltas are called “dependents.” This latter assimi-
lation 1s performed 1n step 1034. Specifically, within the delta
holder 442, deltas are grouped based on the delta that they are
waiting for. So whenever a delta 1s assimilated, a check 1s
made to determine 11 there are any deltas 1n the delta holder
442 that were waiting for that delta. If such deltas exist, then
an attempt 1s made to assimilate those deltas. During this
latter assimilation, a check 1s made on the dependencies on
those deltas, and 11 they are now all assimilated, the dependent
deltas can be assimilated as well. Delta processing then fin-
ishes 1n step 1036.

The execution process 1s 1llustrated 1n more detail 1n FIGS.
15A and 15B. This process begins in step 1500 and proceeds
to step 1502, where the dynamics manager 422 walks back-
ward through the delta log 444, starting from the end of the
delta log and proceeding to the beginning of the log. In
particular, because the log 1s arranged 1nto chains, groups and
blocks, the end of the log 1s the last delta in the last chain in the
last group 1n the last block. Each delta in the last chain 1s
examined moving towards the beginning of the chain. When
the beginning of the last chain 1s reached, the process contin-
ues with the last delta 1n the next-to-last chain and so on until
all deltas 1n the first chain in the group has been examined.
Then, the process continues with the last delta in the last chain
in the previous group. When the first group in a block 1s
reached, then the process continues with the last delta of the
last chain of the last group 1n the previous block. Operation
continues in this manner until all newly assimilated deltas are
found.

If a delta under examination has not been executed, as
determined 1n step 1504, process returns to step 1502 where
the next delta 1s examined. However, 11 the delta being exam-
ined has been executed, as determined in step 1504, the
dynamics manager 422 checks, i step 1506, to determine
whether 1t will conflict with any of the other assimilated
deltas. During the assimilation process described above, a set
ol the aforementioned contlict strings of all assimilated deltas
1s built. The conflict check 1s performed by comparing the
contlict string of the delta under examination with all conflict
strings 1n the contlict string set. It the strings 1n any pair of
strings are the same or if either string being compared 1s
empty, then the corresponding deltas conflict. If there 1s no
conilict, then the process returns to step 1502 where the next
delta 1s examined.

If there 1s a contlict as determined 1n step 1506, then, 1n step
1508, the dynamics manager rolls back the delta. As previ-
ously mentioned, the dynamics manager 422 must ensure that
different endpoints converge, by insuring that all of the deltas
are executed 1n a consistent order in each endpoint. It 1s
possible that one of the newly assimilated deltas was assimi-
lated at a position in the delta log 444 before the position of an
independent delta that has already been executed. If such a
situation occurs, 1n order to ensure convergence, the already-
executed delta must be “rolled back™ before the assimilated
deltas are executed, and then “rolled forward” after the
assimilated deltas are executed.

Rolling back a delta consists of iterating over the com-
mands 1n the delta 1n reverse order. When each command 1s
encountered, the engine 436 1s called to undo the effect of the
command. The engine 436 has access to the command ele-
ment and the command undo element 1n each delta that the
engine previously generated when the delta was last executed.

10

15

20

25

30

35

40

45

50

55

60

65

26

If there 1s an error during the rollback of a command 1n the
delta, the dynamics manager 422 will attempt to redo any
commands in that delta that had already been rolled back, so
that the delta 1s left 1n the executed state. The process then
proceeds to step 1510 where a determination 1s made whether
all new deltas have been examined. If not, the process pro-
ceeds back to step 1502 to continue examining deltas.

I1 all new deltas have been examined as determined 1n step
1510, the process proceeds, via ofl-page connectors 1512 and
1514, to step 1516 where the roll forward procedure begins.
In step 1516, the delta log 1s walked and each delta 1s again
examined. A determination 1s made in step 1518 whether the
delta being examined has been rolled back. If so, the process
proceeds to step 1520. Alternatively, if the delta was notrolled
back, either because there was no conflict as determined 1n
step 1506 or because an error occurred during rollback, the
dynamics manager 422 determines 1n step 1522 whether the
delta 1s a new delta. If the delta 1s not a new delta, the
dynamics manager 422 does nothing and the process pro-
ceeds to step 1528. However, 11 the dynamics manager deter-
mines in step 1522, that the delta 1s a new delta, then 1n steps
1524 and 1526, the new delta 1s decrypted and executed. The
process then proceeds to step 1528.

I1 the delta was successtully rolled back, as determined 1n
step 1518, then, in step 1520, the dynamics manager 422
begins a roll forward, or re-execution, of all the commands in
the delta. This process 1s exactly like the process of executing
the delta in the first place. During this roll forward operation,
the dynamics manager 422 will find all the newly assimilated
deltas, including the delta that mmitiated the processing.
Although the dynamics manager has already integrity
checked this latter delta, 1t was possible that 1t could not be
decrypted at that time as explained above. If the delta has not
previously been decrypted, then it 1s decrypted as part of the
roll forward process. At this point, any dependency deltas will
have been executed. Therelore, the key needed to decrypt the
delta will be available and the decryption should succeed.

The re-execution of the commands in the delta 1s per-
formed in the same manner as the execution of commands
described above 1n order to execute a delta on the endpoint
that created 1t. However, in the case of an error during the
execution, 1t 1s not possible to throw an exception to the tool
that created the delta, because the tool 1s on a different
machine. Instead, 1t such errors occur, after rolling back any
successiully executed commands and aborting the transac-
tions, the delta 1s just marked as having had an exception on
execution and the dynamics manager continues with the pro-
CEeSS.

Exceptions during the execution of deltas that add new
endpoints to the space are treated differently. If one endpoint
in the space successtully adds the new endpoint, 1n 1s neces-
sary for the dynamics manager to add the endpoint on all other
endpoints in the shared space. This can be a problem in certain
situations, for example 1f the add member permission was
removed from the inviter of the new endpoint independent of
the ivitation. To handle these cases, the dynamics manager
will continue to execute other commands in an add endpoint
delta after an exception.

In any case, the process then proceeds to step 1528 where
a determination 1s made whether the roll forward process 1s
complete. If not, the process returns to walking the delta log
in step 1516. 11 the roll forward operation 1s complete, the
process then ends 1n step 1530.

The processes described above illustrate the creation,
transmission and reception of normal deltas. However, in
accordance with the principles of the invention, special deltas
have been created 1n order to handle several special situations.




US 8,073,905 B2

27

These latter deltas include asynchronous deltas, identity dis-
seminated deltas and priority deltas. Asynchronous deltas are
not sent as part of the normal communications traffic within a
shared space. Instead, they are used for transferring very large
files to prevent the deltas that contain them from blocking the
transmission ol other deltas in the shared space for along time
period and for supporting the transier of asymmetric {files.
Asynchronous deltas have certain differences from normal
deltas. The most important of these differences i1s that no
tuture deltas can depend on an asynchronous delta. There-
fore, other deltas 1n the shared space can be executed before
the asynchronous delta arrives and asynchronous deltas will
not have to be executed to maintain consistency. In addition,
the dynamics manager will not fetch missing asynchronous
deltas from other endpoints and, thus, their delivery 1s not as
reliable as normal delta delivery. Finally, because no deltas
depend on an asynchronous delta, 1t 1s not necessary to send
asynchronous deltas to all endpoints in the shared space. This
property makes transmitting asynchronous deltas to specific
endpoints much simpler than normal deltas and allows sup-
port for asymmetric files.

However, asynchronous deltas have dependencies that per-
mit the dynamics manager to guarantee prior execution, that
1s, when an asynchronous delta 1s executed on a remote end-
point all non-asynchronous deltas that the creator had
executed at the creation time of the asynchronous delta will
also have been executed on the remote endpoint. Asynchro-
nous deltas also have a well-defined insertion point in the
delta log and can be rolled back before the execution of deltas
with lower delta log insertion points. Other deltas with a
higher delta log mnsertion point will be rolled back before
execution of an asynchronous delta. Asynchronous deltas are
not guaranteed to be executed 1n the same relative order on all
endpoints and, therefore, there 1s no convergence in the case
of asynchronous deltas.

Asynchronous deltas can be interleaved with other deltas in
the shared space and may be sent at a lower prionty. For
example, a large file may be transmitted with a combination
of normal and asynchronous deltas. Normal deltas will be
used to send the file descriptor and asynchronous deltas wall
be used to send the file contents. A GUID will be used to
match descriptors with contents at the destination. The asyn-
chronous delta containing the file contents may be sent as
soon as the file 1s added (symmetric files) or may be sent only
when a remote endpoint requests the file (asymmetric files).
The XML structure of an asynchronous delta 1s the same as a
normal delta as 1llustrated 1n FIG. 5, except an Async attribute
on the Del element 1s set when the delta 1s asynchronous.

Identity targeted deltas are designed to support unread
marks and other information that only needs to be known by
other 1mstances of the shared space for an identity. Identity
targeted deltas can only be targeted at the local identity. These
deltas are only sent to a subset of the endpoints 1n the shared
space where this subset consists of the endpoints of the mem-
ber that created the delta. As with asynchronous deltas, no
other deltas can depend on an 1dentity-disseminated delta, so
identity disseminated deltas do not support convergence or
reliability.

The dynamics manager 422 handles asynchronous and
identity disseminated deltas as “subdeltas.” Instead of being
identified by a delta sequence, subdeltas have a delta “sub-
sequence.” A sub-sequence 1s the sequence of the last delta
created by the creator followed by a sub-number. The sub-
number 1s incremented each time a new sub delta 1s executed.
For example, if creator A executes a delta, then two 1dentity
disseminated deltas, then another delta and finally another

10

15

20

25

30

35

40

45

50

55

60

65

28

identity disseminated delta, these deltas and subdeltas would
have the following sequences and subsequences:
Al,Al.1,A1.2, A2, A2.]

Like normal deltas, sub-deltas are always inserted at the
end of the delta log and have a fixed group number and
insertion point 1n the delta log. In the above example, Al.1 1s
always mserted after A1 and before A2. It could be in the same
group as Al, in the same group as A2 or 1n a group between
the two. Because sub-deltas may not be sent to all endpoints,
there 1s a much greater chance for other endpoints to create
deltas that are independent in relation to sub-deltas. This
greatly increases the chance that a sub-delta will be rolled
back. However, because there are a limited number of deltas
per group, an endpoint generating independent deltas wall
advance the group number and then the independent deltas
will come after the sub-deltas. This limits the number of times

that sub-deltas are rolled back.

Dependencies are set on a sub-delta 1n a manner similar to
a normal delta. Because the sub-delta 1s not sent to all end-
points, the dependencies are not removed from the new
dependency set after setting the dependencies on a sub-delta.
In the example above, the deltas would have the following
dependencies.

Al 17

Al.1 {A1}
Al.2 {A1}
A2 {A1}
A2.1 {A2]

Note that because they are all on previous deltas from this
endpoint, these dependencies are not explicitly set on the
deltas. Because sub-deltas are not sent to all endpoints, they
cannot contain new security keys for the space. When secur-
ing deltas, the dynamics manager does not send a rekey 1n a
sub-delta.

An XML file of an 1dentity-disseminated delta 1s shown 1n
FIG. 16. This delta 1600 includes one command and undo
information for that command and an execution nested delta
with one command and undo information for that command.
The IdDiss attribute 1602 of the Del element 1604 1s set when
the delta 1s an 1dentity disseminated delta. The SubSeq
attribute 1606 of the Del element 1604 holds a sub-sequence
of the delta.

Priority deltas are used to address two situations that occur
in the delta dissemination system described above. The first
situation 1s that when a new endpoint 1s mnvited to a shared
space, 1t must be sent the contents of a delta log containing all
the previous deltas generated in the shared space because
deltas executed independently with deltas that the inviter had
executed prior to the invite could cause the rollback of those
prior deltas. For that reason, the newly invited endpoint
requires all of those prior deltas. The contents of a delta log
are often much larger than the actual data 1n the shared space
and the transmission of such contents can result 1n a signifi-
cant time delay 1n the startup of a new endpoint.

The second situation can be illustrated 1n a shared space 1n
which there are ten endpoints. One endpoint goes offline and
executes a delta. The remaining nine endpoints are all online
and each execute one hundred deltas. When the offline end-
point comes back online, the other endpoints will all receive
the delta executed when the endpoint was oftline and the
(now) online endpoint will recerve the deltas generated when
that endpoint was oflline. To achieve convergence, there are
two possibilities. If the delta from the endpoint that 1s offline




US 8,073,905 B2

29

comes aiter the other deltas, the endpoint that went offline
would need to rollback that delta, do the nine hundred deltas
from the other endpoints, and then roll forward that delta.
None of the other endpoints would need to do rollback. How-
ever, 1f the delta from the offline endpoint came {first 1n the
delta log, the other nine endpoints would each have to roll-
back the nine hundred deltas, do the one delta, and then roll
forward the nine hundred deltas. Obviously, the former situ-
ation involves much less work, however, because of the man-
ner in which group numbers are assigned, the latter situation,
or at least one close to it would be the most likely to happen.

Both situations are addressed by priority deltas that pro-
vide a way to control the ordering of independent deltas.
These can be used to address the first situation by ordering
independent deltas so that deltas independent with an 1nvite
delta do not cause a rollback and therefore 1t 1s not necessary
to send the entire delta log to a new invitee. Stmilarly, such an
ordering can be used to reduce the amount of rollback 1n order
to address the second situation. Priority deltas are processed
so that a delta independent of a priority delta will be ordered
alter any deltas that the priority delta depends on. For
example, 11 independently A generates deltas Al and A2 and
A2 1s a prionty delta and B generates B1, then, because A2 1s
a priority delta, B1 will always be ordered after A1l. B1 might
come before or after A2.

To address the first situation mentioned above, any time a
new endpoint 1s added to a shared space, the delta that adds 1t
has the highest possible priority. Therefore, none of the prior
deltas will need to be rolled back. To address the second
situation, endpoints that are online and generating deltas will
periodically make one of the deltas a prionty delta. In the
example given above, this means that the nine hundred deltas
generated by the nine online endpoints will contain a number
of priority deltas. The offline endpoint will not generate a
priority delta, so very few of the nine hundred deltas will need
to be rolled back and the amount of work will be greatly
reduced.

In order to prevent interference between simultaneous pri-
ority deltas, the priority of a delta will be 1ignored if there 1s an
independent delta with a higher priority (or the same priority
but a lower 1nsertion point). This operation 1s problematic in
that, 11 there are two 1ndependent deltas that add a new end-
point to the space, one of the newly added endpoints will need
to do a rollback of deltas that it may not have. This latter
situation 1s addressed by marking one of the newly vited
endpoints as “out of sync” and requiring 1t to be re-1nvited to
the shared space.

Priority deltas are implemented by adding a layer of struc-
ture to the delta log called a delta “block.” Delta blocks are the
largest division in the delta log. Blocks contain groups,
groups contain chains, and chains contain deltas. A group
may actually be split among multiple blocks. Each block
contains any number of groups and each block has one par-
ticular delta that 1s the priority delta that caused that block to
be created. When a new priority delta arrives, 1t will cause a
new block to be created as long as that new block does cause
the re-assimilation of another delta with a higher priority. Any
assimilated independent deltas are removed from the previ-
ous block and moved to the new block (this requires a roll
back to the previous location of an independent delta and then
a roll forward with the independent delta in the new position).
These independent deltas can be detected 1f prionity deltas
contain a complete representation of the delta log state. The
delta log state consists of a list representing the highest
sequence recerved from each endpoint. Note that 1t will be

10

15

20

25

30

35

40

45

50

55

60

65

30

possible for a group to be split between different blocks so
that absolute delta ordering by group and sequence will no
longer be true.

Referring to the XML implementation of the a delta log as
illustrated in FIGS. 9A and 9B, delta blocks are implemented

by including one of more DelBlk elements 1n the delta log. A
block 1s defined as a set of deltas with a block delta, which 1s
the highest priority delta 1n the block. All deltas that the block
delta depends on are located 1n previous blocks. All deltas that
are independent of the block delta are 1n 1ts block. Deltas that
depend on the block delta may be 1n 1ts block or in subsequent
blocks. This arrangement ensures that all deltas independent
of the block delta are assimilated after all deltas on which the
block delta depends.

A DelBlk element, such as element 904 has several
attributes including a DelSeq attribute that holds a sequence
number of the priority delta for this block. This sequence
number 1s constructed as described above. A HighGrpNum
attribute holds the number of the highest group 1n the block.
A NoUndo attribute 1s set when deltas in this block cannot be
undone by a user. Each DelBlk element 904 has one of more
DelGrp elements contained within 1t. These DelGrp elements
represent the delta groups.

With this implementation, the aforementioned problem
that occurs with independent add endpoint operations can be
detected when two add endpoint deltas have the same block
number. In this case, one new endpoint 1s declared the “win-
ner” and the other endpoint 1s declared “out of synch.”

Priority deltas are processed with the steps illustrated 1n
FIG. 17. When a priority delta 1s going to be assimilated, a
decision must first be made whether 1ts priority will be
ignored. As described above, the priority will be 1gnored
when there 1s an independent delta with a higher priority.
Theretfore, the process begins 1n step 1700 and proceeds to
step 1702 where all of the independent deltas are located.
Each priority delta has an attribute that describes the state of
the delta log on the endpoint that created 1t. This latter state 1s
compared to the state of the delta log on the endpoint that 1s
assimilating the delta. From this information, the independent
deltas can be located.

Then 1n step 1704, the priorities of the independent deltas
are compared. If, as determined 1n step 1706, none of the
located independent deltas has a higher prionity than the pri-
ority delta being assimilated, then the priority of the new delta
will be honored. In step 1708, each priority delta will begin a
new block 1n the delta log. Prionty deltas divide the delta log
into blocks such that all deltas that the priority delta depends
on are assimilated 1nto blocks earlier than deltas 1n the block
of the priority delta. Then, in step 1712, all deltas independent
of the priority delta and deltas that depend on the priority
deltas are assimilated 1n the same block or a later block.

In particular, after the new block 1s created, any delta
independent of the priority delta must be re-assimilated into
its new position 1n the delta log. During the rollback phase, 1t
1s necessary to roll these deltas back i their old position and
then roll them forward in the new position to maintain con-
vergence. The process then finishes 1n step 1714.

Alternatively, 11, 1n step 1706, a delta with higher priority 1s
located, then the priority of the priority delta being assimi-
lated will not be honored. In this case, the process proceeds to
step 1710 where the delta 1s assimilated into the existing
current block. The process then finishes 1n step 1714.

In order to prevent delta logs in each endpoint from con-
tinually growing 1n size due to new deltas being added, the
logs are periodically purged. However, to prevent the prema-
ture destruction of delta information, the purging process 1s a
two-step process. First, each endpoint declares the group that




US 8,073,905 B2

31

it 1s willing to purge (based on the highest group 1n each
endpoint). Then, all endpoints purge deltas in groups selected
by comparing the groups that the endpoints have declared that

they are willing to purge. This process 1s illustrated in FIG.
18.

The process starts 1n step 1800 and proceeds to step 1802.
In particular, in step 1802, all endpoints periodically broad-
cast purge information in transmissions called endpoint
pulses. Each pulse contains information identitying the high-
est group number for that endpoint and information identify-
ing a group for which a pending for purge decision has been
made. Further, each endpoint pulse has dependencies 1n the
same way that deltas have dependencies. If the dependencies
are missing irom the endpoint recerving the pulse, the pulse
will be held just like a delta would be held. In step 1804, the
highest group numbers for the endpoints are compared. In
step 1806, one less than the mimimum of the highest group
numbers for all active endpoints 1s identified as the group that
1s pending for purge. Finally, 1n step 1808, each endpoint then
purges up to the minimum of the pending groups of all active
endpoints. The process then ends in step 1810.

In a similar manner, endpoints themselves may be purged
from the endpoints XML structure depending on whether
they are active or not. Each endpoint has a state that 1s stored
in the State attribute of the EPT element 1n the endpoints
XML structure discussed above. The State attribute can have
any of the following values:

Value State Definition

The current user on his current device. Each
endpoint considers 1tself the only local endpoint.
The remaining states are in reference to this

local endpoint.

Another endpoint with which a local endpoint has
decided it can synchronize. Deltas are always
assimilated and executed from active endpoints if
the dependencies are available.

A new endpoint is implicitly added to the shared
space because an inbound delta has been received
from it before 1t has been added to the shared
space. These latter deltas are stored 1n the
pending deltas element until the new endpoint

is actually added to the shared space.

An endpoint with which the local endpoint has
ceased synchronizing. It may be necessary

to execute deltas recerved from a

disconnecting endpoint if deltas recerved

from active endpoints depend on these

deltas.

An endpoint with which the local endpoint has
ceased synchronizing. An endpoint is
disconnected when no deltas recerved from

active endpoints can depend on deltas

recerved from the disconnected endpoint.

0 Local

1 Active

2 New

6 Disconnecting

7 Disconnected

Each endpoint moves between these defined states depend-
ing on selected conditions. A state diagram for the various
states and the transitions between states 1s shown 1n FI1G. 19.
For example, an endpoint enters the Local state 1902 as
illustrated by arrow 1912 upon the creation of a new shared
space. An endpoint other than the local endpoint enters the
Active state 1904, as illustrated by arrow 1914, when an
AddMember delta (1invitation) for that endpoint 1s executed or
when an AddDeviceForMember delta for that endpoint
(shared space fetch)1s executed. Similarly, an endpoint enters
the New state 1906 as indicated by arrow 1916 when a delta
1s recerved from that previously unknown endpoint.

An endpoint transitions from the Local state 1902 to the
Active state 1904 as indicated by arrow 1918 when senializing,

10

15

20

25

30

35

40

45

50

55

60

65

32

of a space for a different endpoint 1s begun. In this case, the
local endpoint 1s changed to the Active state 1904. Similarly,
an endpoint transitions from the Active state 1904 to a Local
state 1902, as indicated by arrow 1920, when a space on an
endpoint 1s de-serialized. In that case, that endpoint 1s transi-
tioned to the local state 1902. This latter transition can happen
when an account 1s re-imported to a device on which 1t had
previously been 1nstalled.

An endpoint can transition from the Active state 1904 to the
New state 1906 as indicated by arrow 1924 when an account
1s re-imported to a device on which 1t had previously been
installed. An endpoint can transition ifrom an Active state
1904 to a Disconnecting state 1908, as indicated by arrow
1930, when the active endpoint 1s declared to be a “laggard”
by the local endpoint. A laggard endpoint 1s defined as an
endpoint from which no deltas have been assimilated for a
specified period of time. The time check 1s typically per-
formed during the purge declaration process mentioned
above. This transition can also happen when a delta from the
active endpoint 1s executed informing the local endpoint that
the active endpoint deleted the space. It can further happen
when a delta uninviting the active endpoint from the space 1s
executed. Finally, this transition can be produced when a
disconnect notification 1s received by the local endpoint
informing it that the active endpoint 1s now disconnected.

A New state 1906 to Active state 1904 transition occurs, as
indicated by arrow 1923, when an AddMember delta (invita-
tion) for that endpoint 1s executed or when an AddDevice-
ForMember delta (shared space fetch) 1s executed. This tran-
sition can also happen when an AddEndpoint delta (account
import) 1s executed.

A New state 1906 to Disconnecting state 1908 transition
can occur, as indicated by arrow 1926 when a delta 1s recerved
from a new endpoint whose 1nsertion point has been marked
as pending for purge. It can also occur when the local end-
point declares the msertion point of a delta from the new
endpoint as “pending for purge”. In addition, this transition
can occur when a disconnect notification 1s received by the
local endpoint mforming 1t that the new endpoint 1s now
disconnected.

A New state 1906 to Disconnected state 1910 transition can
occur, as 1ndicated by arrow 1938 when a delta 1s recerved
from a new endpoint whose 1nsertion point has purged. It can
also occur when the 1insertion point of a delta received from by
the local endpoint from the new endpoint has been purged by
the local endpoint.

A Disconnecting state 1908 to Active state 1904 transition,
as indicated by arrow 1932 can occur when an AddMember
delta (1invitation) 1s executed or when an AddDeviceForMem-
ber delta (shared space fetch) 1s executed. Such a transition
can also occur when an AddEndpoint delta (account import)
1s executed.

A Disconnecting state 1908 to New state 1906 transition
can occur, as indicated by arrow 1926 when an account 1s
re-imported to a device on which 1t had previously been
installed. A Disconnecting state 1908 to Disconnected state
1910 transition can occur as indicated by arrow 1934 when
the msertion point of a delta recerved by the local endpoint
from the disconnecting endpoint 1s purged by the local end-
point. A Disconnected state 1910 to Active state 1904 transi-

tion can occur as indicated by arrow 1922 when the local

endpoint executes an AddMember delta (invitation) or an
AddDeviceForMember delta (shared space fetch) or an
AddEndpoint delta (account import).




US 8,073,905 B2

33

A Disconnected state 1910 to a New state 1906 transition
can occur as indicated by arrow 1936 when an account 1s
re-imported to a device on which 1t had previously been
installed.

A software implementation of the above-described
embodiment may comprise a series of computer instructions
either fixed on a tangible medium, such as a computer read-
able media, for example, a diskette, a CD-ROM, a ROM
memory, or a fixed disk, or transmittable to a computer sys-
tem, via a modem or other interface device over a medium.
The medium either can be a tangible medium, including but
not limited to optical or analog commumnications lines, or may
be implemented with wireless techniques, including but not
limited to microwave, inirared or other transmission tech-
niques. It may also be the Internet. The series of computer
instructions embodies all or part of the functionality previ-
ously described herein with respect to the mvention. Those
skilled 1n the art will appreciate that such computer instruc-
tions can be written 1n a number of programming languages
for use with many computer architectures or operating sys-
tems. Further, such instructions may be stored using any
memory technology, present or future, including, but not
limited to, semiconductor, magnetic, optical or other memory
devices, or transmitted using any communications technol-
ogy, present or future, including but not limited to optical,
inirared, microwave, or other transmission technologies. It 1s
contemplated that such a computer program product may be
distributed as a removable media with accompanying printed
or electronic documentation, e.g., shrink wrapped software,
pre-loaded with a computer system, e.g., on system ROM or
fixed disk, or distributed from a server or electronic bulletin
board over a network, e.g., the Internet or World Wide Web.

Although an exemplary embodiment of the invention has
been disclosed, 1t will be apparent to those skilled 1n the art
that various changes and modifications can be made which
will achieve some of the advantages of the invention without
departing from the spirit and scope of the mnvention.

What 1s claimed 1s:

1. Apparatus for maintaining consistency of a shared space
across multiple endpoints 1n a collaborative computer system
wherein each endpoint has a local data copy and endpoints
transmit data change commands to each other 1n order to
update the local data copies, the apparatus comprising:

a first tool 1n one endpoint that 1s responsive to user actions
at the endpoint for creating a first delta container to
transmit data change commands to other endpoints and
for adding data change commands to the first delta con-
tainer:;

a second tool 1n the one endpoint that 1s called by the first
tool to add data change commands to the first delta
container:;

a nesting component in the second tool for creating a sec-
ond delta container, adding the second delta container to
the first delta container and adding data change com-
mands to the second delta container;

a data change engine for executing the data change com-
mands 1n the first delta container and the data change
commands 1n the second delta container and a dynamics
manager for adding the data change commands 1n the
second delta container and undo information corre-
sponding to the data change commands in the second
delta container to the beginning of the first delta con-
tainer.

2. The apparatus of claim 1 wherein at least one of the data

change commands includes undo information for reversing
the data change performed by the command.

10

15

20

25

30

35

40

45

50

55

60

65

34

3. The apparatus of claim 1 wherein the data change engine
executes data change commands added to the first delta con-
tainer before the second delta container was added to the first
delta container after the data change commands 1n the second
delta container are executed and added.

4. The apparatus of claim 3 wherein the data change
engine, in response to the occurrence of an error during the
execution of the data change commands in the first delta
container, aborts the execution of the data change commands
in the second delta container.

5. A method for maintaining consistency of a shared space
across multiple endpoints 1n a collaborative computer system
wherein each endpoint has a local data copy and endpoints
transmit data change commands to each other 1n order to
update the local data copies, the method comprising:
with at least one processor:

(a) using a first tool to create a first delta container in
response to user actions at one endpoint to transmait data
change commands to other endpoints;

(b) using the first tool to add data change commands to the
first delta container;

(¢) calling a second tool 1n the one endpoint with the first
tool to add data change commands to the first delta
container:;

(d) creating a second delta container with the second tool;

(e) using the second tool to add the second delta container
to the first delta container and to add data change com-
mands to the second delta container; and

(1) executing the data change commands 1n the second delta
container and the data change commands in the first
delta container, wherein the data change commands 1n
the second delta container are executed before the data
change commands 1n the first container.

6. The method of claim 5 wherein at least one of the data
change commands includes undo information for reversing
the data change performed by the command.

7. The method of claim 5 further comprising;:

(g) after executing the data change commands 1n the sec-
ond delta container, adding the data change commands
in the second delta container and undo information cor-
responding to the data change commands 1n the second
delta container to the beginning of the first delta con-
tainer.

8. The method of claim 7 wherein step () comprises
executing the data change commands added to the first delta
container before the second delta container was added after
step (g) 1s performed.

9. The method of claim 7 further comprising;:

(h) aborting the execution of the data change commands in
the second delta container upon the occurrence of an
error during the execution of the data change commands
in the first delta container.

10. A computer-readable storage apparatus that contains
instructions which, when executed by a processor, cause the
processor to perform a method, the method comprising;:

(a) using a first tool to create a first delta container in
response to user actions at one endpoint to transmit data
change commands to other endpoints;

(b) using the first tool to add data change commands to the
first delta container;

(¢) calling a second tool 1n the one endpoint with the first
tool to add data change commands to the first delta
container:;

(d) creating a second delta container with the second tool;

(¢) using the second tool to add the second delta container
to the first delta container and to add data change com-
mands to the second delta container; and



US 8,073,905 B2

35

(1) executing the data change commands 1n the second delta
container before execution of the data change com-
mands 1n the first delta container.

11. The computer-readable storage apparatus of claim 10,
wherein at least one of the data change commands includes
undo information for reversing the data change performed by
the command.

12. The computer-readable storage apparatus of claim 10
comprising;
(g) executing the data change commands 1n the first delta
container; and

(h) after executing the data change commands 1n the sec-
ond delta container, adding the data change commands
in the second delta container and undo information cor-

5

10

36

responding to the data change commands 1n the second
delta container to the beginning of the first delta con-
tainer.

13. The computer-readable storage apparatus of claim 12
wherein step (g) comprises executing the data change com-
mands added to the first delta container before the second
delta container was added after step (h) 1s performed.

14. The computer-readable storage apparatus of claim 12
turther comprising:

(1) aborting the execution of the data change commands in
the second delta container upon the occurrence of an
error during the execution of the data change commands
in the first delta container.

¥ ¥ H ¥ H



	Front Page
	Drawings
	Specification
	Claims

