12 United States Patent

US008065567B1

(10) Patent No.: US 8,065,567 B1

Conover et al. 45) Date of Patent: Nov. 22, 2011
(54) SYSTEMS AND METHODS FOR RECORDING 2008/0072325 Al* 3/2008 Repasietal. 726/23
BEHAVIORAIL INFORMATION OF AN 2008/0256619 Al* 10/2008 Neystadtetal. 726/11
2008/0295181 Al™ 11/2008 Dotanoocovvvivinninninninns 726/27
UNVERIFIED COMPONENT 2009/0064309 Al* 3/2009 Boodaeretal. 726/12
2009/0138956 Al* 5/2009 Schneideroocovvvvnnen, 726/12
(75) Inventors: Matthew Conover, Palo Alto, CA (US); 2009/0158260 Al* 6/2009 Moon et al.ccccoo........ 717/133
Tzi-cker Chiueh, Setauket, NY (US) 2010/0077476 A1* 3/2010 Adamsc..ccoeeviennnenn 726/22
2010/0077481 Al* 3/2010 Polyakovetal. 726/24
73) Assignee: Symantec Corporation, Mountain View,
(73) . Y P OTHER PUBLICATIONS

CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 134(b) by 290 days.

(21) Appl. No.: 12/397,009

(22) Filed: Mar. 3, 2009
(51) Imt. CL.
GO6F 21/00 (2006.01)
(52) US.CL ... 714/45;°714/38.1; 726/22; 726/23;
726/24; 726/25
(58) Field of Classification Search 714/38.1,

714/45; 726/22
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,832,208 A * 11/1998 Chenetal. 726/24
7,213,246 B1* 5/2007 wvan Rietschoteetal. 718/1
7,373,632 B1* 5/2008 Kawaguchietal. 717/100
7,698,606 B2* 4/2010 Laddetal. 714/48
2002/0133630 Al* 9/2002 Navareetal. 709/250
2002/0178381 Al* 11/2002 Leeetal.ccoccoevvnnniinnn, 713/201
2006/0021029 Al* 1/2006 Brickelletal. 726/22
2007/0174915 Al1* 7/2007 Grbbleetal. 726/24

400 \

Stokes et al., “ALADIN: Active Learning of Anomalies to Detect

Intrusion.”, Mar. 4, 2008, Microsofit Tech Report.*

Website: http.//products.enterpriseitplanet.com/security/anti-virus/
1111512716 .html, GreenBorder, Arnti-Malware Protection Via
Internet Access Isolation, Jun. 2, 2009 (3 pgs.).

Website: http.www.sandboxie.com/, Introducing Sandboxie, May
26, 2009 (3 pgs.).

* cited by examiner

Primary Examiner — Scott Baderman

Assistant Examiner — Chae Ko
(74) Attorney, Agent, or Firm — Holland & Hart LLP

(57) ABSTRACT

A computer-implemented method for recording behavioral
information of an unverified component 1s described. Inter-
actions between a first process and an unverified component
loaded 1n the first process are monitored. A fault 1s detected
from the monitored interactions. Information associated with
an event 1s sent to a proxy module loaded 1n a second process.
The execution of the event 1n the second process 1s verified.
Information associated with the behavior of the unverified
component during the execution of the event 1s recorded.

14 Claims, 7 Drawing Sheets

Load an unverified component into a first process 402

Mark the address space of the unverified compenent in the first 404

process as inaccessible

Create a second process and load the unverified process into the 4086
second process

Load a first proxy module into the first process and a second proxy 408
module into the second process

-

Monitor interactions between the unmapped unverified component| 410
and the first procass

NO

Fault Detected?

Yes

Send information about an unexecuted event to the second proxy 414
module in the second process

Receive verification from the second proxy module that the event
has been executed in the second process

—— 410

Record behavior of the unverified component in the second 418
process during the execution of the event

US 8,065,567 B1

Sheet 1 of 7

Nov. 22, 2011

U.S. Patent

chi

3|INPOIN AXOl4 pU0IaS

0Ll

Jusuodwon palIBAUN

30 SS920.14 91eb01INQ

} Old

142

0!

yOL

a|NPON Ax0ud 15114

Jusuoduwion) YO0

Z0L SS92014 1SOH

Hoor

US 8,065,567 B1

Sheet 2 of 7

Nov. 22, 2011

U.S. Patent

9c¢Z ®INPON
BuIpi029y PUOIB]

vZcZ SINPON
UOIINISX] PU0ISS

22Z 3INpPon
UOI}23)a(] pU0I3]

ZLc 9|INPON AXOld puodsg

O L7 Jusuodwon paljliaAaun

0Z SS9201d 91eboung

¢ 9ld

1474

0ZZ INPON
Buipli0oay 15414

81¢ ®INpo
uoINOaXJ 1814

9L 2INPON
uona}e(114

0 3INPO\ Ax0ud 1S

F07 1usauodwon Yoo

Z0Z SS920.d 1SOH

H 002

U.S. Patent Nov. 22, 2011 Sheet 3 of 7 US 8.065.567 B1

300 \

Monitor interaction between a first process and an unverified
. . 302
component loaded in the first process

Fault Detected?

Yes

Send information about an unexecuted event associated with the
. 3006
detected fault to a second proxy module in a second process

Recelve verification that the event has been executed In the 308

second process

Record behavior of the unverified component during the execution 310
of the event

FIG. 3

U.S. Patent Nov. 22, 2011 Sheet 4 of 7 US 8,065,567 B1

400 \

Load an unverified component into a first process 402

Mark the address space of the unverified component in the first

. . 404
process as inaccessible
Create a second process and load the unverified process into the 406
second process
Load a first proxy module into the first process and a second proxy 408
module into the second process
Monitor interactions between the unmapped unverified component 410
and the first process
Fault Detected?
Yes
Send information about an unexecuted event to the second proxy 414
module In the second process
Recelve verification from the second proxy module that the event 416
has been executed in the second process
Record behavior of the unverified component in the second 118
process during the execution of the event

FIG. 4

U.S. Patent Nov. 22, 2011 Sheet 5 of 7 US 8.065.567 B1

500 l

Load an unverified component into a first process 502

Mark the address space of the unverified component in the first

. . 504
process as inaccessible

Create a second process and load the unverified process into the 506

second process
Load a first proxy module into the first process and a second proxy 508

module into the second process

Monitor interactions between the unverified component and the 510

second process

Fault Detected?
Yes
Send parameters for an unexecuted event associated with the 514
detected fault to the first proxy module in the first process
Receive verification from the first proxy module that the event has 516
been executed In the first process

Record behavior of the unverified component in the second 518

process during the execution of the event

FIG. 5

US 8,065,567 B1

Sheet 6 of 7

Nov. 22, 2011

U.S. Patent

£€9 c€9
921N (] 9921A9(]
obe.0]g obelo)s
dnyoeg Alewid

7€9
9oBLI9)U|
obe.o)g

229
50eLI9)U|
UONEOIUNW WO

029

19[|0AUOD O/

0€9
9JBLIa)U|
1nduj

819
19]|0JJU0D
AJOWDN

919

929
181depy
Aeidsi

AJOWB|N WoISAS

Cl9

¥19

10SS9920.4

019

US 8,065,567 B1

Sheet 7 of 7

Nov. 22, 2011

U.S. Patent

(N)06Z

S92IA3(]
abe.o1g

(1061

S92IAD(]
abel01g

G6/
Aelly abelo1s
sl

N/QL.
S9IIA3(]
obelo)s
Z Old
(1)077
S9IA3(]
abelolg
Sv/
JEEVNE T o5/
Ual|d
0c/
I
0L/
— U3l
ov/
JOAIBS

(N)09Z

S3JIA3(]
abe.lo)g

(1)097

S92IAS(]
obel01Q

o

US 8,065,567 Bl

1

SYSTEMS AND METHODS FOR RECORDING
BEHAVIORAL INFORMATION OF AN
UNVERIFIED COMPONENT

BACKGROUND

The use of computer systems and computer-related tech-
nologies continues to increase at a rapid pace. This increased
use of computer systems has intluenced the advances made to
computer-related technologies. Indeed, computer systems
have increasingly become an integral part of the business
world and the activities of individual consumers. Computer
systems are used to carry out several business, industry, and
academic endeavors.

A user of a computer system typically interacts with com-
puter soltware running on the system via a user interface on a
screen. Computer software may interact with additional soft-
ware programs. For example, a host computer program may
interact with a computer plug-in application. A plug-in may
provide a certain function to the host application on demand.
In some instances, the host application provides services
which the plug-in can use. For example, the host application
may provide a way for plug-ins to register themselves with the
host application as well as a protocol for the exchange of data
with the plug-ins.

Plug-ins and other components interacting with computer
soltware depend on the services provided by the host appli-
cation. Open application programming interfaces (APIs)
typically provide a standard interface, allowing third parties
to create plug-1ins that interact with the host application. How-
ever, third parties may create malicious plug-ins and other
components that impede the performance of the computer
software, extract sensitive information about the user of the
computer software (e.g., financial information, identification,
etc.), and engage 1n other malicious activities. As such, ben-
efits may be realized by providing improved systems and
methods for monitoring and recording the behavior of
unknown components (such as plug-ins) as they execute an
event. The monitored and recorded behavior may then allow
a determination to be made as to whether the plug-in or other
unknown component 1s a malicious or non-malicious com-
ponent.

SUMMARY

A computer-implemented method for recording behavioral
information of an unverified component 1s described. Inter-
actions between a first process and an unverified component
loaded 1n the first process may be monitored. A fault may be
detected from the monitored interactions. Information asso-
ciated with an unexecuted event may be sent to a proxy
module loaded in a second process. Verification may be
received from the proxy module that the event has been
executed 1n the second process. Information associated with
the behavior of the unverified component during the execu-
tion of the event may be recorded.

In one embodiment, the unverified component 1s a plug-in
application. A copy of the unverified component may be
created and the memory of the created copy of the unverified
component may be marked as inaccessible. In one configu-
ration, the created copy of the unverified component may be
loaded 1n the second process.

A Tault may be detected when the unverified component
requests the first process to execute an event. In addition, a
fault may be detected when the second process requests the
created copy of the unverified component to execute a
request. Information associated with an unexecuted event

10

15

20

25

30

35

40

45

50

55

60

65

2

may be sent to a proxy module loaded 1n the first process.
Verification may be received from the proxy module that the
event has been executed in the first process. Further, informa-
tion associated with the behavior of the unverified component
during the execution of the event may be recorded. In one
embodiment, the second process 1s a copy of the first process.
The second process may be 1solated and separated from the
first process.

A computer system configured to record behavioral infor-
mation of an unverified component 1s also described. The
computer system includes a processor and memory 1n elec-
tronic communication with the processor. The computer sys-
tem further includes a first proxy module loaded 1n a first
process. The first proxy module may be configured to monitor
interactions between the first process and an unverified com-
ponent loaded 1n the first process and detect a fault from the
monitored interactions. The first proxy module may also be
configured to send information associated with an unex-
ecuted event to a second proxy module loaded 1n a second
process and receive verification from the second proxy mod-
ule that the event has been executed 1n the second process. In
addition, the first proxy module may be configured to record
information associated with the behavior of the unverified
component during the execution of the event.

A computer-program product for recording behavioral
information of an unverified component 1s also described.
The computer-program product may comprise a computer-
readable medium having instructions thereon. The nstruc-
tions may comprise code programmed to monitor interactions
between a first process and an unverified component loaded in
the first process. The instructions may also comprise code
programmed to detect a fault from the monitored interactions
and code programmed to send information associated with an
unexecuted event to a proxy module loaded 1n a second pro-
cess. In addition, the mnstructions may comprise code pro-
grammed to receive verification from the proxy module that
the event has been executed 1n the second process and code
programmed to record information associated with the
behavior of the unverified component during the execution of
the event.

Features from any of the above-mentioned embodiments
may be used 1n combination with one another 1n accordance
with the general principles described herein. These and other
embodiments, features, and advantages will be more fully

understood upon reading the following detailed description in
conjunction with the accompanying drawings and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings 1llustrate a number of exem-
plary embodiments and are a part of the specification.
Together with the following description, these drawings dem-
onstrate and explain various principles of the instant disclo-
sure.

FIG. 1 1s a block diagram 1llustrating one embodiment of a
monitoring environment 1n accordance with the present sys-
tem and methods;

FIG. 2 1s a block diagram 1llustrating a further embodiment
of the monitoring environment;

FIG. 3 15 a flow diagram 1llustrating one embodiment of a
method for recording the behavior of an unverified compo-
nent;

FIG. 4 15 a flow diagram 1llustrating one embodiment of a
method for monitoring interactions between an unverified
component and a process;

US 8,065,567 Bl

3

FIG. 5 1s a flow diagram illustrating another embodiment
of a method for monitoring interactions between an unveri-

fied component and a process;

FIG. 6 1s a block diagram of an exemplary computing
system capable of implementing one or more of the embodi-
ments described and/or illustrated herein; and

FIG. 7 1s a block diagram of an exemplary network archi-
tecture 1n accordance with the present systems and methods.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

FIG. 1 1s a block diagram 1llustrating one embodiment of a
monitoring environment 100. In one example, the environ-
ment 100 includes a host process 102. The host process 102
may include a mock component 104 and a first proxy module
106. In one embodiment, the host process 102 may be a
program or an application that 1s executed on a computing
device. For example, the host process 102 may be a web
browser, such as Internet Explorer. In one embodiment, the
mock component 104 may be a mock of an unverified com-
ponent 110 that 1s loaded 1n a surrogate process 108. The
surrogate process 108 may be separate and i1solated from the
host process 102. In one embodiment, the surrogate process
108 may be similar in purpose and design as the host process
102.

In one embodiment, the unverified component 110 and the
mock component 104 may be a plug-in. For example, the
components 104, 110 may be computer programs that interact
with the host process 102 and the surrogate process 108 in
order to provide a particular function to the processes 102,
108. One difference between the mock component 104 and
the unverified component 110 1s that the memory of the mock
component 104 may be unmapped so that requests from the
host process 102 to access the mock component 104 may
cause a fault to occur. However, the memory of the unverified
component 110 may be mapped so that the surrogate process
108 may be enabled to interact with the unverified component
110.

In one example, the mock component 104 1s identical to the
unverified component 110 with the difference being that the
memory of the mock component 104 1s unmapped which
causes an error to occur when interactions between the host
process 102 and the mock component 104 are detected. The
host process 102 and the surrogate process 108 may include a
first proxy module 106 and a second proxy module 112,
respectively. The first proxy module 106 may monitor the
interactions between the host process 102 and the mock com-
ponent 104. Similarly, the second proxy module 112 may
monitor the interactions between the surrogate process 108
and the unverified component 110.

In one embodiment, the first proxy module 106 may detect
faults that occur when the host process 102 attempts to inter-
act with the mock component 104. For example, the host
process 102 may attempt to communicate with the mock
component in order to request the component 104 to carry out
a certain event. For example, the host process 102 may be
Internet Explorer and the mock component 104 may be an
Internet Explorer plug-in (known as a “browser help object”
(BHO)). In one embodiment, Internet Explorer (i.e., the host
process 102) may make calls to the plug-in (i.e., the mock
component 104) in order to notily the plug-in of new events.
For example, Internet Explorer may call the plug-in when a
web page 1s about to be loaded when a web page has finished
loading.

Because the mock component 104 1s unmapped, an error
occurs when the host process 102 attempts to communicate

10

15

20

25

30

35

40

45

50

55

60

65

4

with the mock component 104. Upon detecting a fault, the
first proxy module 106 may communicate 114 with the sec-
ond proxy module 112. In one embodiment, the first proxy
module 106 may communicate 114 information regarding the
event the host process 102 attempted to have the mock com-
ponent 104 carry out.

In one embodiment, the second proxy module 112 may
monitor the interactions between the surrogate process 108
and the unverified component 110. In one configuration, the
unverified component 110 may function as 1t 1t were loaded
into the host process 102. In other words, when the unverified
component 110 attempts to interact with the surrogate pro-
cess 108, the component 110 functions as 1t it were attempt-
ing to iteract with the host process 102 to carry out a certain
event. Because the surrogate process 108 1s 1solated from the
host process 102, a fault may occur when the unverified
component 110 attempts to teract with the surrogate pro-
cess 108. The second proxy module 112 may detect these
faults. The second proxy module 112 may then commumnicate
114 these faults and information about the unexecuted event
to the first proxy module 106. Details regarding the proxy
modules 106, 112 will be discussed 1n further details below.

FIG. 2 1s a block diagram 1llustrating a further embodiment
of the monitoring environment 200. In one example, the
monitoring environment 200 includes a host process 202 and
a surrogate process 208. As previously explained, the surro-
gate process 208 may be similar 1n design and function as the
host process 202, but the surrogate process 208 may be 1so-
lated and separate from the host process 202. In one configu-
ration, the host process 202 includes a mock component 204.
The mock component 204 may be a plug-in, however, the
memory of the mock component 204 may be unmapped so
that interactions between the host process 202 and the mock
component 204 may cause a fault to occur. The host process
202 may also 1nclude a first proxy module 206.

In one embodiment, the first proxy module 206 includes a
first detection module 216, a first execution module 218, and
a first recording module 220. In one example, the first detec-
tion module 216 may detect faults that occur when the host
process 202 attempts to interact with the mock component
204 1n order to request the mock component 204 to execute an
event. When the first detection module 216 detects a fault, the
first proxy module 206 may communicate 214 with a second
proxy module 212 that1s loaded on the surrogate process 208.
In one example, the first proxy module 206 communicates
214 miormation about the unexecuted event. The second
proxy module 212 may recerve the information from the first
proxy module 206.

In one embodiment, the second proxy module 212 may
include a second execution module 224 that may interact with
the unverified component 1n order to execute the event that
was originally requested by the host process 202. When the
event 1s completed, the second proxy module 212 may com-
municate 214 the results back to the first proxy module 206.
In one embodiment, the first recording module 220 records
the results. For example, the first recording module 220 may
record the actions taken by the unverified component 210
during the execution of the event.

The second proxy module 212 may also include a second
detection module 222 and a second recording module 226. In
one embodiment, the second detection module 222 detects
errors or faults that occur between the surrogate process 208
and the unverified component 210. For example, the unveri-
fled component 210 may be a plug-in component that
attempts to interact with the surrogate process 208 to carry out
a certain event. The unverified component 210 may mistak-
enly believe that 1t 210 1s interacting with the host process

US 8,065,567 Bl

S

202. However, application programming interfaces (APIs)
may not exist between the host process 202 and the unverified
component 210 because the component 210 1s functioning 1n
an 1solated process (1.e., the surrogate process 208). A fault
may be generated 11 the unverified component 210 attempts to
interact with the surrogate process 208 to carry out an event.
When the second execution module 224 detects a fault, the
second proxy module 212 may communicate 214 to the first
proxy module 206 details regarding the unexecuted event. In
other words, the second proxy module 212 may communicate
214 the event that the unverified component 210 attempted to
execute on the surrogate process 208. Upon recerving the
communication 214 from the second proxy module 212, the
first execution module 218 may facilitate the execution of the
event on the host process 202. When the event has been
executed, the first proxy module 206 may communicate 214
the results of the event back to the second proxy module 212.
The second recording module 226 may record the results of
the event as well as the actions taken by the host process 202
during the execution of the event.

FI1G. 3 15 a tlow diagram 1illustrating one embodiment of a
method 300 for recording the behavior of an unverified com-
ponent. In one example, the method 300 may be implemented
by a proxy module. In one configuration, interaction between
a first process and an unverified component loaded in the first
process may be monitored 302. For example, requests from
the first process to interact with the unverified component
may be monitored 302. Similarly, requests from the unveri-
fied component to interact with the first process may also be
monitored 302. The monitored requests may be requests to
execute a particular event.

In one embodiment, a determination 304 may be made as to
whether a fault 1s detected. In one example, a first proxy
module loaded in the first process may determine 304
whether a fault 1s detected. A fault may be detected when
certain interactions between the first process and the unveri-
fied component occur. For example, a request from the first
process to the unverified component to carry out a certain
event may cause a faultto occur. If 1t 1s determined 304 that no
fault 1s detected, the method 300 may continue to monitor 302
interactions between the first process and the unverified com-
ponent. However, if 1t 1s determined 304 that a fault 1s
detected, information about the unexecuted event associated
with the detected fault may be sent 306 from the first proxy
module to a second proxy module. In one embodiment, the
second proxy module may be loaded 1n a second process that
1s separate and 1solated from the first process. The second
proxy module may facilitate the execution of the event upon
receiving the information from the first proxy module.

In one configuration, verification may be recerved 308 that
the event has been executed 1n the second process. In addition,
the behavior of the unverified component during the execu-
tion of the event may be recorded 310. In other words, when
an event 1s executed, the behavior of the unverified compo-
nent may be recorded 310 for future analysis. For example,
the application programming interfaces (APIs) called by the
unverified component may be recorded. In addition, the glo-
bal variables (i.e., external data) that the unverified compo-
nent attempts to read or modily may also be recorded. The
APIs and global vaniables used by the unverified component
may provide behavioral characteristics of the unverified com-
ponent. For example, if the unverified component 1s an Inter-
net Explorer plug-in, the component may attempt to direct a
web browser to a fake website of a financial institution (such
as a bank). In this example, the APIs and the uniform resource
locator (URL) of the malicious website that are called by the

10

15

20

25

30

35

40

45

50

55

60

65

6

unverified component are recorded to provide behavioral
characteristics of the component.

FIG. 4 15 a flow diagram 1llustrating one embodiment of a
method 400 for monitoring interactions between an unveri-
fled component and a process. In one embodiment, the
method 400 may be implemented by a proxy module as
described above.

In one configuration, an unverified component, such as a
plug-in, may be loaded 402 into a first process. The first
process may be a web browser, an e-mail exchange applica-
tion, etc. In one embodiment, the address space of the unveri-
fied component 1n the first process may be marked 404 as
inaccessible. In other words, from the perspective of the first
process, the unverified module 1s loaded and functioning
properly. However, because the address space of the unveri-
fied component 1s marked as 1naccessible, requests sent by the
first process to the component requesting that the component
execute an event, may cause a fault to occur.

In one embodiment, a second process may be created 406,
and the unverified component may be loaded 1nto the second
process. When the unverified component 1s loaded into the
second process, the address space of the component may
remain accessible. In one configuration, a first proxy module
may be loaded 408 1nto the first process and a second proxy
module may be loaded 408 into the second process. In one
example, the second process may be 1solated and separated
from the first process.

In one embodiment, 1nteractions between the unmapped
unverified component and the first process may be monitored
410. For example, calls originating from the first process to
the unmapped unverified component may be monitored 410.
In one example, the first proxy module loaded 1n the first
process monitors 410 these interactions. A determination 412
may be made as to whether a fault 1s detected while the
interactions are being monitored 410. If 1t 1s determined 412
that a fault 1s not detected, the method 400 may continue to
monitor 410 the interactions between the unmapped unveri-
fied component and the first process. However, 1t 1s deter-
mined 412 that a fault 1s detected, information about an unex-
ecuted event may be sent 414 to the second proxy module 1n
the second process. In one embodiment, verification from the
second proxy module that the event has been executed in the
second process may berecetved 416. In addition, the behavior
of the unverified component during the execution of the event
in the second process may be recorded 418. For example,
requests for data by the unverified component, data accessed
by the unverified component, etc. during the execution of the
event may be recorded 418.

FIG. 5 15 a flow diagram 1llustrating another embodiment
of a method 500 for monitoring interactions between an
unverified component and a process. In one embodiment, the
method 500 may be implemented by a proxy module as
described above.

In one configuration, an unverified component, such as a
plug-in, may be loaded 502 into a first process. The first
process may be a web browser, an e-mail exchange applica-
tion, etc. In one embodiment, the address space of the unveri-
fied component 1n the first process may be marked 504 as
inaccessible. In other words, from the perspective of the first
process, the unverified module 1s loaded and functioming
properly. However, because the address space of the unveri-
fied component 1s marked as inaccessible, requests sent by the
first process to the component requesting that the component
execute an event, may cause a fault to occur.

In one embodiment, a second process may be created 506,
and the unverified component may be loaded 1nto the second
process. When the unverified component 1s loaded into the

US 8,065,567 Bl

7

second process, the address space of the component may
remain accessible. In one configuration, a first proxy module
may be loaded 508 into the first process and a second proxy
module may be loaded 508 into the second process. In one
example, the second process may be 1solated and separated
from the first process.

In one embodiment, interactions between the unverified
component and the second process may be monitored 510.
For example, calls originating from the unverified component
to the second process may be monitored 510. In one example,
the second proxy module loaded 1n the second process moni-
tors 510 these interactions. A determination 512 may be made
as to whether a fault 1s detected while the interactions are
being monitored 510. A fault may be detected 1f the unverified
component requests the second process to carry out a particu-
lar event. If 1t 1s determined 512 that a fault 1s not detected, the
method 500 may continue to monitor 5310 the interactions
between the unverified component and the second process.
However, 1t 1s determined 512 that a fault 1s detected, infor-
mation about an unexecuted event may be sent 514 to the first
proxy module 1n the first process. In one embodiment, veri-
fication from the first proxy module that the event has been
executed 1n the first process may be recetved 516. In addition,
the behavior of the unverified component and the first process
during the execution of the event in the first process may be
recorded 518. For example, requests for data, data accessed,
etc. during the execution of the event may be recorded 518 for
tuture analysis.

FIG. 6 1s a block diagram of an exemplary computing
system 610 capable of implementing one or more of the
embodiments described and/or illustrated herein. Computing
system 610 broadly represents any single or multi-processor
computing device or system capable of executing computer-
readable 1nstructions. Examples of computing system 610
include, without limitation, workstations, laptops, client-side
terminals, servers, distributed computing systems, handheld
devices, or any other computing system or device. In its most
basic configuration, computing system 610 may comprise at
least one processor 614 and system memory 616.

Processor 614 generally represents any type or form of
processing unit capable of processing data or interpreting and
executing instructions. In certain embodiments, processor
614 may receive mstructions from a software application or
module. These 1nstructions may cause processor 614 to per-
form the functions of one or more of the exemplary embodi-
ments described and/or 1llustrated herein. For example, pro-
cessor 614 may perform and/or be a means for performing,
either alone or 1n combination with other elements, one or
more of the monitoring, detecting, sending, veriiying, and
recording steps described herein. Processor 614 may also
perform and/or be a means for performing any other steps,
methods, or processes described and/or illustrated herein.

System memory 616 generally represents any type or form
of volatile or non-volatile storage device or medium capable
ol storing data and/or other computer-readable 1nstructions.
Examples of system memory 616 include, without limitation,
random access memory (RAM), read only memory (ROM),
flash memory, or any other suitable memory device. Although
not required, in certain embodiments computing system 610
may comprise both a volatile memory unit (such as, for
example, system memory 616) and a non-volatile storage
device (such as, for example, primary storage device 632, as
described 1n detail below).

In certain embodiments, exemplary computing system 610
may also comprise one or more components or elements in
addition to processor 614 and system memory 616. For
example, as 1llustrated 1n FIG. 6, computing system 610 may

5

10

15

20

25

30

35

40

45

50

55

60

65

8

comprise a memory controller 618, an Input/Output (I/0)
controller 620, and a communication interface 622, each of
which may be interconnected via a communication inira-
structure 612. Communication infrastructure 612 generally
represents any type or form of infrastructure capable of facili-
tating communication between one or more components of a
computing device. Examples of communication infrastruc-
ture 612 include, without limitation, a communication bus
(such as an ISA, PCI, PCle, or similar bus) and a network.

Memory controller 618 generally represents any type or
form of device capable of handling memory or data or con-
trolling communication between one or more components of
computing system 610. For example, in certain embodiments
memory controller 618 may control communication between
processor 614, system memory 616, and I/O controller 620
via communication infrastructure 612. In certain embodi-
ments, memory controller 618 may perform and/or be a
means for performing, either alone or in combination with
other elements, one or more of the steps or features described
and/or 1llustrated herein, such as monitoring, detecting, send-
ing, verifying, and recording.

I/0O controller 620 generally represents any type or form of
module capable of coordinating and/or controlling the input
and output functions of a computing device. For example, 1n
certain embodiments I/O controller 620 may control or facili-
tate transfer of data between one or more elements of com-
puting system 610, such as processor 614, system memory
616, communication intertace 622, display adapter 626, input
interface 630, and storage interface 634. I/O controller 620
may be used, for example, to perform and/or be a means for
monitoring, detecting, sending, recerving, and recording
steps described herein. 1/0 controller 620 may also be used to
perform and/or be a means for performing other steps and
teatures set forth 1n the instant disclosure.

Communication mterface 622 broadly represents any type
or form of communication device or adapter capable of facili-
tating communication between exemplary computing system
610 and one or more additional devices. For example, 1n
certain embodiments communication interface 622 may
facilitate communication between computing system 610 and
a private or public network comprising additional computing
systems. Examples of communication interface 622 include,
without limitation, a wired network interface (such as a net-
work iterface card), a wireless network interface (such as a
wireless network interface card), a modem, and any other
suitable interface. In at least one embodiment, communica-
tion 1interface 622 may provide a direct connection to a remote
server via a direct link to a network, such as the Internet.
Communication interface 622 may also indirectly provide
such a connection through, for example, a local area network
(such as an Ethernet network or a wireless IEEE 802.11
network), a personal area network (such as a BLUETOOTH
or IEEE Standard 802.15.1-2002 network), a telephone or
cable network, a cellular telephone connection, a satellite
data connection, or any other suitable connection.

In certain embodiments, communication interface 622
may also represent a host adapter configured to facilitate
communication between computing system 610 and one or
more additional network or storage devices via an external
bus or communications channel. Examples of host adapters
include, without limitation, SCSI host adapters, USB host
adapters, IEEE 1394 host adapters, SATA and eSATA host
adapters, ATA and PATA host adapters, Fibre Channel inter-
tace adapters, Ethernet adapters, or the like. Communication
interface 622 may also allow computing system 610 to
engage 1n distributed or remote computing. For example,
communication interface 622 may recerve mstructions from a

US 8,065,567 Bl

9

remote device or send instructions to a remote device for
execution. In certain embodiments, communication interface
622 may perform and/or be a means for performing, either
alone or 1n combination with other elements, one or more of
the monitoring, detecting, sending, recerving, and recording,
steps disclosed herein. Communication interface 622 may
also be used to perform and/or be a means for performing
other steps and features set forth in the 1nstant disclosure.

As 1llustrated 1 FIG. 6, computing system 610 may also
comprise at least one display device 624 coupled to commu-
nication infrastructure 612 via a display adapter 626. Display
device 624 generally represents any type or form of device
capable of visually displaying information forwarded by dis-
play adapter 626. Similarly, display adapter 626 generally
represents any type or form of device configured to forward
graphics, text, and other data from communication infrastruc-
ture 612 (or from a frame buffer, as known 1n the art) for
display on display device 624.

As 1llustrated 1n FIG. 6, exemplary computing system 610
may also comprise at least one 1nput device 628 coupled to
communication inirastructure 612 via an input interface 630.
Input device 628 generally represents any type or form of
input device capable of providing input, either computer or
human generated, to exemplary computing system 610.
Examples of mnput device 628 include, without limitation, a
keyboard, a pointing device, a speech recognition device, or
any other input device. In at least one embodiment, 1nput

device 628 may perform and/or be a means for performing,
either alone or 1n combination with other elements, one or
more of the monitoring, detecting, sending, verifying, and
recording steps disclosed herein. Input device 628 may also
be used to perform and/or be a means for performing other
steps and features set forth 1n the mstant disclosure.

As 1llustrated 1n FIG. 6, exemplary computing system 610
may also comprise a primary storage device 632 and a backup
storage device 633 coupled to communication infrastructure
612 via a storage interface 634. Storage devices 632 and 633
generally represent any type or form of storage device or
medium capable of storing data and/or other computer-read-
able instructions. For example, storage devices 632 and 633
may be a magnetic disk drive (e.g., a so-called hard drive), a
floppy disk drive, a magnetic tape drive, an optical disk drive,
a flash drive, or the like. Storage interface 634 generally
represents any type or form of interface or device for trans-
ferring data between storage devices 632 and 633 and other
components ol computing system 610.

In certain embodiments, storage devices 632 and 633 may
be configured to read from and/or write to a removable stor-
age unit configured to store computer software, data, or other
computer-readable information. Examples of suitable remov-
able storage units include, without limitation, a tloppy disk, a
magnetic tape, an optical disk, a tflash memory device, or the
like. Storage devices 632 and 633 may also comprise other
similar structures or devices for allowing computer software,
data, or other computer-readable instructions to be loaded
into computing system 610. For example, storage devices 632
and 633 may be configured to read and write software, data, or
other computer-readable information. Storage devices 632
and 633 may also be a part of computing system 610 or may
be a separate device accessed through other interface sys-
tems.

Storage devices 632 and 633 may also be used, for
example, to perform and/or be a means for performing, either
alone or in combination with other elements, one or more of
the monitoring, detecting, sending, receiving, and recording,
steps disclosed herein. Storage devices 632 and 633 may also

5

10

15

20

25

30

35

40

45

50

55

60

65

10

be used to perform and/or be a means for performing other
steps and features set forth 1n the instant disclosure.

Many other devices or subsystems may be connected to
computing system 610. Conversely, all of the components
and devices illustrated in FIG. 6 need not be present to prac-
tice the embodiments described and/or 1llustrated herein. The
devices and subsystems referenced above may also be inter-
connected in different ways from that shown 1n FIG. 6. Com-
puting system 610 may also employ any number of software,
firmware, and/or hardware configurations. For example, one
or more of the exemplary embodiments disclosed herein may
be encoded as a computer program (also referred to as com-
puter software, soltware applications, computer-readable
instructions, or computer control logic) on a computer-read-
able medium. The phrase “computer-readable medium”™ gen-
erally refers to any form of device, carrier, or medium capable
of storing or carrying computer-readable instructions.
Examples of computer-readable media include, without limi-
tation, transmission-type media, such as carrier waves, and
physical media, such as magnetic-storage media (e.g., hard
disk drives and floppy disks), optical-storage media (e.g.,
CD- or DVD-ROMs), electronic-storage media (e.g., solid-
state drives and tlash media), and other distribution systems.

The computer-readable medium containing the computer
program may be loaded into computing system 610. All or a
portion of the computer program stored on the computer-
readable medium may then be stored 1n system memory 616
and/or various portions of storage devices 632 and 633. When
executed by processor 614, a computer program loaded nto
computing system 610 may cause processor 614 to perform
and/or be ameans for performing the functions of one or more
of the exemplary embodiments described and/or illustrated
herein. Additionally or alternatively, one or more of the exem-
plary embodiments described and/or illustrated herein may
be implemented in firmware and/or hardware. For example,
computing system 610 may be configured as an application
specific integrated circuit (ASIC) adapted to implement one
or more of the exemplary embodiments disclosed herein.

FIG. 7 1s a block diagram of an exemplary network archi-
tecture 700 1n which client systems 710, 720, and 730 and
servers 740 and 745 may be coupled to a network 750. Client
systems 710, 720, and 730 generally represent any type or
form of computing device or system, such as exemplary com-
puting system 610 in FIG. 6. Similarly, servers 740 and 745
generally represent computing devices or systems, such as
application servers or database servers, configured to provide
various database services and/or to run certain software appli-
cations. Network 750 generally represents any telecommuni-
cation or computer network; including, for example, an 1ntra-
net, a wide area network (WAN), a local area network (LAN),
a personal area network (PAN), or the Internet.

As 1llustrated 1n FIG. 7, one or more storage devices 760
(1)-(N) may be directly attached to server 740. Similarly, one
or more storage devices 770(1)-(N) may be directly attached
to server 743. Storage devices 760(1)-(N) and storage devices
770(1)-(N) generally represent any type or form of storage
device or medium capable of storing data and/or other com-
puter-readable instructions. In certain embodiments, storage
devices 760(1)-(N) and storage devices 770(1)-(N) may rep-
resent network-attached storage (NAS) devices configured to
communicate with servers 740 and 745 using various proto-
cols, such as NFS, SMB, or CIFS.

Servers 740 and 745 may also be connected to a storage
area network (SAN) fabric 780. SAN fabric 780 generally
represents any type or form of computer network or architec-
ture capable of facilitating communication between a plural-
ity of storage devices. SAN fabric 780 may facilitate commu-

US 8,065,567 Bl

11

nication between servers 740 and 745 and a plurality of
storage devices 790(1)-(N) and/or an intelligent storage array
795. SAN fabric 780 may also facilitate, via network 750 and
servers 740 and 745, communication between client systems
710, 720, and 730 and storage devices 790(1)-(N) and/or
intelligent storage array 795 1n such a manner that devices
790(1)-(N) and array 795 appear as locally attached devices
to client systems 710, 720, and 730. As with storage devices
760(1)-(N) and storage devices 770(1)-(N), storage devices
790(1)-(N) and intelligent storage array 793 generally repre-
sent any type or form of storage device or medium capable of
storing data and/or other computer-readable 1nstructions.

In certain embodiments, and with reference to exemplary
computing system 610 of FIG. 6, a communication interface,
such as communication interface 622 in FIG. 6, may be used
to provide connectivity between each client system 710, 720,
and 730 and network 750. Client systems 710, 720, and 730
may be able to access information on server 740 or 745 using,
for example, a web browser or other client software. Such
soltware may allow client systems 710, 720, and 730 to
access data hosted by server 740, server 745, storage devices
760(1)-(N), storage devices 770(1)-(N), storage devices 790
(1)-(N), or mtelligent storage array 795. Although FIG. 7
depicts the use of a network (such as the Internet) for
exchanging data, the embodiments described and/or 1llus-
trated herein are not limited to the Internet or any particular
network-based environment.

In at least one embodiment, all or a portion of one or more
of the exemplary embodiments disclosed herein may be
encoded as a computer program and loaded onto and executed
by server 740, server 745, storage devices 760(1)-(N), storage
devices 770(1)-(N), storage devices 790(1)-(N), intelligent
storage array 795, or any combination thereof. All or a portion
of one or more of the exemplary embodiments disclosed
herein may also be encoded as a computer program, stored in
server 740, run by server 743, and distributed to client sys-
tems 710, 720, and 730 over network 750. Accordingly, net-
work architecture 700 may perform and/or be a means for
performing, either alone or 1n combination with other ele-
ments, one or more of the monitoring, detecting, sending,
veritying, and recording steps disclosed herein. Network
architecture 700 may also be used to perform and/or be a
means for performing other steps and features set forth in the
instant disclosure.

As detailed above, computing system 610 and/or one or
more of the components of network architecture 700 may
perform and/or be a means for performing, either alone or in
combination with other elements, one or more steps of the
exemplary methods described and/or illustrated herein. For
example, computing system 610 and/or one or more of the
components of network architecture 700 may perform and/or
be a means for performing a computer-implemented method
for recording behavioral information of an unverified com-
ponent that may comprise: 1) monitoring interactions
between a first process and an unverified component loaded in
the first process, 2) detecting a fault from the monitored
interactions, 3) sending information associated with an event
to a proxy module loaded 1n a second process, 4) verilying
that the event has been executed in the second process, and
then 5) recording information associated with the behavior of
the unverified component during the execution of the event.
The network resource may represent a networked device or a
network service.

While the foregoing disclosure sets forth various embodi-
ments using specific block diagrams, flowcharts, and
examples, each block diagram component, flowchart step,
operation, and/or component described and/or 1illustrated

5

10

15

20

25

30

35

40

45

50

55

60

65

12

herein may be implemented, individually and/or collectively,
using a wide range of hardware, software, or firmware (or any
combination thereol) configurations. In addition, any disclo-
sure of components contained within other components
should be considered exemplary 1n nature since many other
architectures can be implemented to achieve the same func-
tionality.

The process parameters and sequence of steps described
and/or 1illustrated herein are given by way of example only
and can be varied as desired. For example, while the steps
illustrated and/or described herein may be shown or discussed
in a particular order, these steps do not necessarily need to be
performed 1n the order illustrated or discussed. The various
exemplary methods described and/or illustrated herein may
also omit one or more of the steps described or illustrated
herein or include additional steps 1n addition to those dis-
closed.

Furthermore, while various embodiments have been
described and/or illustrated herein in the context of fully
functional computing systems, one or more of these exem-
plary embodiments may be distributed as a program product
in a variety of forms, regardless of the particular type of
computer-readable media used to actually carry out the dis-
tribution. The embodiments disclosed herein may also be
implemented using software modules that perform certain
tasks. These software modules may include script, batch, or
other executable files that may be stored on a computer-
readable storage medium or 1n a computing system. In some
embodiments, these software modules may configure a com-
puting system to perform one or more ol the exemplary
embodiments disclosed herein.

The preceding description has been provided to enable
others skilled 1n the art to best utilize various aspects of the
exemplary embodiments disclosed herein. This exemplary
description 1s not intended to be exhaustive or to be limited to
any precise form disclosed. Many modifications and varia-
tions are possible without departing from the spirit and scope
of the instant disclosure. The embodiments disclosed herein
should be considered in all respects illustrative and not
restrictive. Reference should be made to the appended claims
and their equivalents 1n determining the scope of the instant
disclosure.

Unless otherwise noted, the terms “a” or “an,” as used 1n
the specification and claims, are to be construed as meaning
“at least one of” In addition, for ease of use, the words
“including” and “having,” as used 1n the specification and
claims, are interchangeable with and have the same meaning
as the word “comprising.”

What 1s claimed 1s:

1. A computer-implemented method for recording behav-
ioral information of an unverified component, the method
comprising;

monitoring for interactions between a first process and a

copy of an unverified component loaded 1n the first pro-
CESS;

marking memory of the copy of the unverified component

as 1naccessible;

detecting an error from the momtored interactions,

wherein the error 1s a result of the first process requesting
access to the memory of the copy of the unverified com-
ponent;

sending information associated with the access request to a

proxy module loaded 1n a second process;

verilying that the access request has been executed by the

unverified component, wherein the unverified compo-
nent 1s loaded 1n the second process; and

US 8,065,567 Bl

13

recording information associated with the behavior of the
unverified component loaded 1n the second process dur-
ing the execution of the access request.

2. The method of claim 1, wherein the unverified compo-
nent 1s a plug-in application.

3. The method of claim 1, further comprising detecting a
fault when the unverified component requests the second
process to execute an event.

4. The method of claim 1, further comprising detecting a
fault when the second process requests the unverified com-
ponent to execute a request.

5. The method of claim 4, further comprising sending
information associated with an unexecuted event to a proxy
module loaded 1n the first process, recerving verification from
the proxy module that the event has been executed in the first
process, and recording information associated with the
behavior of the first process during the execution of the event.

6. The method of claim 1, wherein the second process 1s a
copy of the first process.

7. The method of claim 1, wherein the second process 1s
isolated and separated from the first process.

8. A computer system configured to record behavioral
information of an unverified component, the computer sys-
tem comprising:

a Processor;

memory 1n electronic communication with the processor;
and
a first proxy module loaded 1n a first process configured to:

monitor for interactions between the first process and a
copy ol an unverified component loaded 1n the first
Process;

mark memory of the copy of the unverified component
as 1naccessible;

detect an error from the monitored interactions, wherein
the error 1s a result of the first process requesting
access to the memory of the copy of the unverified
component;

send information associated with the access request to a
second proxy module loaded 1n a second process;

verily that the access request has been executed by the
unverified component, wherein the unverified compo-
nent 1s loaded 1n the second process; and

record information associated with the behavior of the
unverified component loaded 1n the second process
during the execution of the access request.

10

15

20

25

30

35

40

45

14

9. The computer system of claim 8, wherein the unverified
component 1s a plug-in application.

10. The computer system of claim 8, wherein the first proxy
module 1s further configured to detect a fault when the unveri-
fied component requests the second process to execute an
event.

11. The computer system of claim 8, wherein the second
proxy module 1s further configured to detect a fault when the
second process requests the unverified component to execute
a request.

12. The computer system of claim 11, wherein the second
proxy module 1s further configured to send information asso-
ciated with an unexecuted event to the first proxy module
loaded 1n the first process, receive verification from the first
proxy module that the event has been executed 1n the first
process, and record information associated with the behavior
of the first process during the execution of the event.

13. The computer system of claim 8, wherein the second
process 15 a copy of the first process and 1s 1solated and
separated from the first process.

14. A computer-program product for recording behavioral
information of an unverified component, the computer-pro-
gram product comprising a non-transitory physical com-
puter-readable medium having instructions thereon, the
instructions comprising:

code programmed to monitor for interactions between a

first process and a copy of an unverified component
loaded 1n the first process;

code programmed to mark memory of the copy of the

unverified component as maccessible;

code programmed to detect an error from the monitored

interactions, wherein the error 1s a result of the first
process requesting access to the memory of the copy of
the unverified component;

code programmed to send information associated with the

access request to a proxy module loaded 1n a second
process;

code programmed to verify that the access request has been

executed by the unvernified component, wherein the
unverified component 1s loaded 1n the second process;
and

code programmed to record information associated with

the behavior of the unverified component loaded 1n the
second process during the execution of the access
request.

	Front Page
	Drawings
	Specification
	Claims

