US008060550B2

12 United States Patent

Fit-Florea et al.

US 8,060,550 B2
Nov. 15, 2011

(10) Patent No.:
45) Date of Patent:

(54) METHOD AND APPARATUS FOR INTEGER 5,923,888 A * 7/1999 Benschopcccc........ 713/300
TRANSFORMATION USING A DISCRETE 7,171,435 B2* 172007 Allred ..., 708/277
LOGARITHM AND MODULAR OTHER PURIICATIONS

FACTORIZATION
A. Fit-Florea, D.W. Matula, “A Digit-Serial Algorithm for the Dis-

(75) Inventors: é}gialll)(:;;l dF‘l{;- Fhl/;:fl?ljaf)%;ilst:j:f;A c.rete Logarithm Modulo 21(?’, Pfoceedjn.gs of the IEEE lStE Interna-
(US) tional Conference on Application-specific Systems, Architectures,
and Processors, IEEE, 2004, pp. 236-246.%*
(73) Assignee: Southern Methodist University, Dallas, Yi Wan, Chin-Long Wey, “Efficient algorithms for binary logarith-
1X (US) mic conversion and addition,” Proceedings of the 1998 IEEE Inter-
(*) Notice: Subject to any disclaimer, the term of this national Symposium on Circuits and Systems, vol. 5, pp. 233-236,
patent 1s extended or adjusted under 35 gﬁiﬂﬁiﬁ&l Earl E., et al., “The Sign/Logarithm Number System”
U.S.C. 154(b) by 1131 days. IEEE Transactions on Computers, vol. C-24, pp. 1238-1242, Dec.
(21) Appl. No.: 11/535,607 1975.
Arnold, Mark G., et al., “Applying Features of IEEE 754 to Sign/
(22) Filed: Sep. 27, 2006 Logarithm Arithmetic”, IEEE Transactions on Computers, vol. 41,
No. 8, pp. 1040-1050, Aug. 1992.
(65) Prior Publication Data Lewis, David M., “An Accurate LNS Arithmetic Unit Using Inter-
US 2007/0266068 Al Nov. 15, 2007 Zle?;zgv;d Memory Function Interpolator”, 1063-6889/93, pp. 2-9,
Related U.S. Application Data (Continued)
(60) ggozlgggnal application No. 60/721,559, filed on Sep. Primary Examiner — Lewis Bullock, Jr.
’ | Assistant Examiner — Matthew Sandifer
(51) Int.Cl. (74) Attorney, Agent, or Firm — Baker Botts L.L.P.
Gool 1/02 (2006.01)
GO6F 7/00 (2006.01) (57) ABSTRACT
GoOol 7/38 (2006.01) Transforming an integer comprises receiving the integer,
GO61 15/00 (2006.01) where the integer can be expressed as a modular factorization.
(52) US.CL ... 708/517;, 708/277; 708/491; 708/492 The modular factorization comprises one or more factors,
(58) Field of Classification Search 708/277, where each factor has an exponent. The integer 1s expressed as
708/491, 517 a product of residues. A discrete logarithm of the integer 1s
See application file for complete search history. established from a sum corresponding to the product of resi-
dues. A value for an exponent of a factor 1s determined from
(56) References Cited the discrete logarithm. The integer 1s represented as the

modular factorization comprising the one or more factors,

U.S. PATENT DOCUMENTS where each factor has a value for the exponent.

4,366,549 A * 12/1982 Katayama 708/625

5,008,849 A * 4/1991 Burgessetal. 708/491 15 Claims, 3 Drawing Sheets

(START

RECEIVE INPUT l

SET PRODUCT P
AND VARIABLE &'

114~

‘(UPDATE ¢ ‘

LUPDATE P

130

z‘ CALCULATE RESULT |

(4 PHGVIDE RESULT |
(END)

US 8,060,550 B2
Page 2

OTHER PUBLICATIONS

Fit-Florea, Alex., et al., “A4 Digit-Serial Algorithm for the Discrete
Logarithm Modulo 2*, Proceedings of the 15th IEEE International
Conference on Application-Specific Systems, Architectures and Pro-

cessors, The Computer Society, 11 pages, 2004.
Fit-Florea, A., et al., “Addition-based exponentiation modulo 27,
Electronics Letters, vol. 41, No. 2, pp. 56-57, Jan. 20, 2005.

Fit-Florea, A., et al., “Additive bit-serial algorithm for discrete loga-
rithm modulo 27, Electronics Letters, vol. 41, No. 2, 2 pages, Jan. 20,
2005.

Matula, David W., et al., “Table Lookup Structures for Multiplicative

Inverses Modulo 2%,”, Proceedings of the 17th IEEE Symposium on
Computer Arithmetic, 8 pages, 2005.

* cited by examiner

U.S. Patent Nov. 15, 2011 Sheet 1 of 3 US 8,060,550 B2

FIG.]

(" START)
N RECEVE INPUT l

114 SET PRODUCT P
AND VARIABLE ¢

120N UppaTE e I‘l

|
UPDATE P
130

134 FIG. 2

/l CALCULATE RESULT I (START)
210~
PROVIDE RESULT RECE\VE INPUT |

(END) SET PRODUCT P
214~] "AND VARIABLE
EXPONENT e

2N upoaEe | |
* UPDATEP
230 2

PROVIDE RESULT

11NS3Y = NOILVILNINOJX3 NOILVZI VI LINI

1IN NOILLVINHOASNVHL I3SH3AN

US 8,060,550 B2

o
S
-
&
E
—
79
= : -
S | - . .
<
2 S | a INAWT1aNOD
z o “ o| 7" ["aao | wnowanoo ["aao | WO [fago | NOUVZIVARON
NM LINM NOILVINHO4SNVHL
¢ DIH N

U.S. Patent

U.S. Patent Nov. 15, 2011 Sheet 3 of 3 US 8,060,550 B2

SHIFTER

US 8,060,550 B2

1

METHOD AND APPARATUS FOR INTEGER
TRANSFORMATION USING A DISCRETE
LOGARITHM AND MODULAR
FACTORIZATION

RELATED APPLICATION

This application claims benefit under 35 U.S.C. §119(e) of

U.S. Provisional Application Ser. No. 60/721,559, entitled

“Method And Apparatus For Integer Conversion Using The
Discrete Logarithm And Modular Factorization,” filed Sep.
2’7, 20035, by Alexandru Fit-Florea, et al.

TECHNICAL FIELD

This invention relates generally to the field of circuits for
performing mathematical operations and more specifically to
a method and apparatus for integer transformation using a
discrete logarithm and modular factorization.

BACKGROUND

A k-bit integer n satisfying 0=n=2"-1 has a modular
factorization n=I(-1)273°|,x. Integer n may be represented by
an exponent representation such as the exponent triple (s,p,e),
where 0=s=1, 0=p=k, and 0=e=2%2-1. A discrete loga-
rithmic system (DLS) may represent mtegers n by their cor-
responding exponent triples (s,p,e). By doing this, integer
multiplication may be reduced to addition of corresponding,
terms of the triples.

Known techniques for determining the exponent triple for
a k-bit integer ivolve tables that grow exponentially with
respect to k. These tables, however, are of limited use for
representation of k-bit integers for k==16. Accordingly, these
known techniques are not efficient 1n certain situations.

SUMMARY OF THE DISCLOSUR.

(L]

According to one embodiment of the present ivention,
transforming an integer comprises receiving the integer,
where the integer can be expressed as a modular factorization.
The modular factorization comprises one or more factors,
where each factor has an exponent. The integer 1s expressed as
a product of residues. A discrete logarithm of the integer 1s
established from a sum corresponding to the product of resi-
dues. A value for an exponent of a factor 1s determined from
the discrete logarithm. The integer i1s represented as the
modular factorization comprising the one or more factors,
where each factor has a value for the exponent.

Certain embodiments of the invention may provide one or
more technical advantages. A technical advantage of one
embodiment may be that the exponent triple for ak-bit integer
may be determined 1n a manner scalable with respect to k.
Moreover, the exponent triple may be efficiently determined
for k=16, such as k=32, 64, or 128.

Certain embodiments of the invention may include none,
some, or all of the above technical advantages. One or more
other technical advantages may be readily apparent to one
skilled in the art from the figures, descriptions, and claims
included herein.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present mven-
tion and its features and advantages, reference 1s now made to
the following description, taken in conjunction with the
accompanying drawings, 1n which:

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 1 illustrates an embodiment of a method for perform-
ing a transformation to determine a triple (s,p,e) for a given
k-bit integer n;

FIG. 2 illustrates an embodiment of a method for perform-
ing an inverse transformation to determine a k-bit integer n for
a given triple (s,p,e);

FIG. 3 illustrates one embodiment of a transformation unit
that may be used to perform binary-to-discrete log transior-
mation according to the method described with reference to
FIG. 1;

FIG. 4 illustrates one embodiment of an inverse transior-
mation unit that may be used to perform discrete log-to-
binary inverse transformation according to the method
described with reference to FIG. 2; and

FIG. 5 1llustrates one embodiment of a circuit that may be
used with the transformation unit of FIG. 3 or the inverse
transformation unit of FIG. 4.

DETAILED DESCRIPTION OF THE DRAWINGS

Embodiments of the present invention and 1ts advantages
are best understood by referring to FIGS. 1 through 5 of the
drawings, like numerals being used for like and correspond-
ing parts of the various drawings.

FIGS. 1 and 2 1llustrate embodiments of methods for trans-
forming between binary and discrete log representations of
integers. A k-bit integer n satisfying 0=n=2*-1 has a modu-
lar factorization n=I(-1)"273%| ,«. Integer n may be represented
by an exponent representation such as the exponent triple
(s,p,e), where 0=s=1, 0=p=k, and 0=e=2"">-1. The expo-
nent triple (s,p,e) may be uniquely specified by further limait-
ing the range of e and s, depending on the value of p. Binary-
to-discrete log transformation refers to determining the triple
(s,p,e) for a given k-bit integer n, and discrete log-to-binary
inverse transformation refers to determining the integer n for
a given triple (s,p,e). In one embodiment, a discrete logarith-
mic system (DLS) may represent integers n by their corre-
sponding exponent triples (s,p,e). By doing this, integer mul-
tiplication may be reduced to addition of corresponding terms
of the triples.

According to one embodiment, for 0=n=2*-1, p may be
determined using a right-shift normalization step, and s may
be determined by conditional complementation to obtain a
normalized n congruent to 1 or 3 (mod 8). Transformation
may then be reduced to determination of the discrete log
e=dlg(n) for n congruent to 1 or 3 (mod 8), with 0=e=22_-1.
According to the embodiment, the mmverse transiformation
may then be reduced to evaluating the exponential residue
operation to determine |3°] .z,

FIG. 1 1llustrates an embodiment of a method for perform-
ing a transformation to determine the triple (s,p,e) for a given
k-bit mnteger n. According to one embodiment, integer n may,
if possible, be expressed as a product of a particular set of
residues. For example, n may be expressed as a product of
two-ones residues: n=II1(2°+1)|.+, for selected i’s. The dis-
crete logarithm may then be computed as the corresponding
sum: dlg(n)=dlg(T1(2°+1))=1Zdlg(2"+1)| .

According to one embodiment, integers n that can be
expressed as a product of residues may be 1dentified, and the
corresponding unique set of two-ones residues may be deter-
mined. In one embodiment, the set of two-ones residues may
be given by {(2°+1)1=i=k-1, i»2}, and a k-bit odd integer n
congruent to 1 or 3 modulo 8 can be expressed as a product of
a unique subset of these two-ones residues. For the remaining
odd residues corresponding to n congruent with 5 or 7 modulo
8, the additive inverses |-nl,+ are congruent with 1 or 3

US 8,060,550 B2

3

modulo 8. A bit serial additive method may then be used to
identify the set of two-ones residues.

According to one embodiment, the method transforms an
odd k-bitinteger n=a,_,.;_, ..., 0, 0, to the discrete log of

4

with 1 or 3 modulo 8, that 1s, a.,=1, then s may be set to s:=1
(as 1llustrated at lines [.,2-1.,3). The discrete log of the
complement |2°~nl .+ may then be determined to set P:=|-P|.
(as illustrated at line L., 3). If |P|,5=001, that 1s, the three low
order bits are binary 001, €' may be adjusted according to
le'l,1:=1 to yield e'=1, and product P may be updated accord-
ing to P:=IP+Px2|,x to yield P,=3xP (as illustrated at lines

Variable €' 1s updated at step 126. For p~=1, where p, rep-
resents the 1th bit of P, variable €' may be updated by subtract-
ing the corresponding values dlg(2'+1) (which may be
obtained from a table) from variable €'. For example, variable
e' may be updated according to e'=le'-dlg(2'+1)l .- (as illus-
trated at lines L.,9-L /11). Product P 1s updated at step 130.
Product P may be updated according to P, ,=P,x(2°+1), for
p~1 (asillustrated at line L -12). For example, product P may
be updated according to P=IP+Px2’|.«.« The updating at
steps 126 and 130 may be performed concurrently or sequen-
tially 1n any suitable order.

There may be a next bit to process at step 134. If there 1s a

next bit, the method returns to step 126 to update variable ¢'
for the next bit. If there 1s no next bit, the method proceeds to

The result 1s calculated at step 140. The result may com-
prise (s, €) (as 1llustrated at line L.-15). The result 1s provided
at step 144. After providing the result, the method ends.

Modifications, additions, or omissions may be made to the
method without departing from the scope of the invention.

The method may include more, fewer, or other steps. Addi-
tionally, steps may be performed in any suitable order without
departing from the scope of the mnvention.

FIG. 2 1llustrates an embodiment of a method for perform-
ing an inverse transformation to determine the k-bit integer n
for a given exponent triple (s,p.e). According to one embodi-
ment, exponent ¢ may be recoded as a sum of elements
e=12a,l,=2. In this embodiment, 13°|,+ may be computed as
13°],=13%| . The o, and/or corresponding powers {3%} may
be precomputed and available by table lookup. An exponent e
may be expressed as a sum of dlg(2°+1) termed two-ones
discrete logs. Moreover, 378 +D=2"4 1 50 the corresponding
multiplications may be performed as a series of shift-and-add
operations. To do this, the two-ones discrete logs may be
pre-computed and stored in a table, such as a k-entry table

n expressed as (s, €), where n=I(-1)*3°l,+. The time complex- >
ity may be related to k dependent shift-and-add modulo 2*
operations.

For purposes of illustration, an example of the method 1s L.S-L.,7).
provided by lines L1 though L.-15 below:

Stimulus: k, n=c,,_,a,_, ... a,q,0, where a.,=1. 10

Response: discrete log of n, expressed as (s, €), where
nzl(_l)53elzk.

15
Lrl: P:=n;le'|, :=0;5:=0;
Ly2:1f (a; = 1), then:
Lr3: S 1= 1;P::|—P|2k;
I+4: ff 20
Lyd:at |Pl,3 =001, then:
L76: €', :=1;

: step 140.

L7 P:=|P+Px2; 25
LTSZ ﬁ
Lr9: fori from3 to (k—1), do:
L+10: 1if (p; = 1), where p; represents the ith bit of P, then:

30
Lr11: e’ =le’ —dlg(2 + Dl -2
Lr12: P=|P+|PX2 |l
Lr13: It
LT14Z E:Ild; 35
L715: Result: (s, &').

Referring to lines L1 though .15 and FIG. 1, the method
starts at step 112, where input 1s received. The mput may 4q
comprise an odd k-bit integer n=c.,_,a,_,, Uy. Prod-
uct P and variable ¢' are set at step 114. Product P represents
integer n, and variable e' may be given as |P|,3=13°1,3. Product
P may be 1nitialized as P:=n, vaniable ¢' may be mitialized as
le'l,:=0 (which corresponds to P,=1), and exponent s may be 45

iitialized as s:=0 (as illustrated at line L.-1).
If n can be expressed as a two-ones residue product, then
the s1ign may be considered. For example, 11 n 1s not congruent

indexed by wvalue 1 for 0=1=k-1. TABLE 1 illustrates

examples of values that may be stored 1n a two-ones discrete
log table for k=16. The unique set of discrete logs dlg(2°+1)
that have sum modulo 2% equal to e may be established.

TABLE 1
27+ 1 dlg(2* + 1)

1 Binary Decimal Binary Decimal check

0 0000 0000 0000 0001 1 00 0000 0000 0000 0 13%,16=1

1 0000 0000 0000 0011 3 00 0000 0000 0001 1 13Y516=3

2 0000 0000 0000 0101 5 N/A N/A N/A

3 0000 0000 0000 1001 9 00 0000 0000 0010 2 [34l,16=9

4 0000 0000 0001 0001 17 011101 1011 0100 7604 13799 ,16=17

5 0000 0000 0010 0001 33 1111100010 1000 15912 1319912116 =33

6 0000 0000 0100 0001 65 100111 0101 0000 10064 (31908416 = 65

7 0000 0000 1000 0001 129 11 1010 1010 0000 15008 13298 ,16=129
8 0000 0001 0000 0001 257 100101 0100 0000 9536 13923616 = 257

9 0000 0010 0000 0001 513 00 1010 1000 0000 2688 [32688) 16 = 513
10 0000 0100 0000 0001 1025 01 0101 0000 0000 5376 13°77¢,16 = 1025
11 0000 1000 0000 0001 2049 10 1010 0000 0000 10752 13197°2),16 = 2049
12 0001 0000 0000 0001 4097 01 0100 0000 0000 5120 13°191,16 = 4097
13 0010 0000 0000 0001 8193 10 1000 0000 0000 10240 (319949,16 = 8193

US 8,060,550 B2

~
TABLE 1-continued
2+ 1 dlg(2’ + 1)
1 Binary Decimal Binary Decimal check
14 0100 0000 0000 0001 16385 01 0000 0000 0000 4096
15 1000 0000 0000 0001 32769 10 0000 0000 0000 8192

Modifications, additions, or omissions may be made to the
TABLE 1 without departing from the scope of the invention.
For example, TABLE 1 may be determined for the discrete
logarithmic base g=13’|,+2 for any odd integeri. TABLE 1 may
include more, fewer, or other fields or entries. Additionally,
the fields or entries may be organized 1n any suitable manner
without departing from the scope of the mnvention.

For purposes of illustration, an example of the method 1s
provided by lines L, 1 though L,,15 below. In the example,
bit index 1 denotes a bit of the standard binary representation.

Stimulus: k, e=¢,_se,_, ... ¢e,e,€,.

Response: [3°],z.

Lirl: P:=1;1€'|| i=e;
Lip2: it (e = 1), then:
L3 (e =’ = 1), P:=11;
Lird: fi

Lyrd: for bit index { from 1 to (kK — 3), do:

L76: if (e; = 1), then:

L7 ¢’ :=le’ — dlg(2"* + 1)| 2
L;78: P:=|PX(27 + D

Lr9: fi;

L7 10: end;

Lir1l: Result: P.

Referring to lines L,-1 though L, 11 and FIG. 2, the
method starts at step 210, where iput 1s received. The input
may comprise integer e=e,_,€,_. . . . €,€,€,. Product P and
variable €' are set at step 214. Product P represents integer n,
and variable €' may be given as |P|3=13¢,s. Product P may be
set to either 1 or 11, corresponding to €',=1 or ¢',=0, respec-
tively (asillustrated at lines L, -1-L.,,/3). Variable €' may be set
such that, for each iteration, P corresponds to 3°7¢ and the
least significant 1 bits of €' are Os.

Variable €' 1s updated at step 226. Vaniable €' may be
updated by subtracting the corresponding values dlg(2°**+1)
from variable ¢'. For example, variable €' may be updated
according to e':=le'-dlg(2"**+1)l.+ (as illustrated at lines

Discrete Log

10

15

20

25

30

35

40

45

50

Number System

(DLS) Encoding

00001
00011
00101
00111
01001
01011

3499016 = 16385
3519216 = 32769

L., 7). Product P 1s updated at step 230. Product P may be
updated to retlect the changes 1n the exponent. For example,
product P may be updated according to P:=IPx(2"**+1)l.« (as
illustrated at line L,,8). The updating at steps 226 and 230

may be performed concurrently or sequentially 1mn any suit-
able order.

There may be a next bit to process at step 234. If there 1s a
next bit, the method returns to step 226 to update variable ¢
for the next bit. If there 1s no next bit, the method proceeds to

step 240.

The result 1s calculated at step 240. The result may com-
prise P. After (k-2) steps, €' becomes 0 and P corresponds to
13°7%1 3=13°| . The values dlg(2"**+1) may be stored in a
lookup table. The table size grows quadratically with k, so the
method may be practical for large k=64, 128, j

..... ‘he result
1s provided at step 244. After providing the result, the method
ends.

Modifications, additions, or omissions may be made to the
method without departing from the scope of the ivention.
The method may include more, fewer, or other steps. Addi-
tionally, steps may be performed 1n any suitable order without
departing from the scope of the mnvention.

According to one embodiment, the exponent triple (s,p,e)
for a k-bit integer n may be stored as a k-bit string using
variable width fields. For 0=n=2*-1, the value of p deter-
mined by the right-shift normalization satisfies O=p=k-1.
Value p may be represented by the (p+1)-bit value 2¢ right
adjusted in the k-bit field. For 0=p=2*-2, exponent e satisfies
0=e=2"7"2_1. Exponent e may be stored in a (k-p-2)-bit
field left adjusted 1n the k-bit field.

According to the embodiment, the lengths of the fields for
¢ and 2¢ may be variable. In the embodiment, the lengths of
the fields for e and 2 may total (k—1) bits, where a bit between
the fields for e and 2 may provide sign bit information. For
example, the bit between the fields may be assigned the value
(e, xor s). Accordingly, the length of the e field may be longer
and the 27 field may be shorter when more bits are needed to
store entries of the e field than to store entries of the 27 field.
The length of the 2¢ field may be longer and the ¢ field may be
shorter when more bits are needed to store entries of the 27
field than to store entries of the e field.

According to one embodiment, the one-to-one mapping
between 5-bit discrete log numbers comprising a 5-bit dis-
crete log representations and 5-bit integers may be given by

TABLE 2.

TABLE 2
Partitioned DLS
Bit Strings Integer Value Standard Integer
e &g XOI' S 27 [(=1)°273°|;5, Binary Parity
000 0 1 00001 Odd
000 1 31 11111
001 0 29 11101
001 1 3 00011
010 0 9 01001
010 1 23 10111

US 8,060,550 B2

7
TABLE 2-continued

Discrete Log Partitioned DLS

Number System Bit Strings Integer Value Standard
(DLS) Encoding e €y XOT S 27 [(—1)7 23%];, Binary
01101 011 0 5 00101
01111 011 1 27 11011
10001 100 0 17 10001
10011 100 1 1 15 01111
10101 101 0 1 13 01101
10111 101 1 1 19 10011
11001 110 0 1 25 11001
11011 110 1 1 7 00111
11101 111 0 1 21 10101
11111 111 1 1 11 01011
00010 00 0 10 2 00010
00110 00 1 10 30 11110
01010 01 0 10 26 11010
01110 01 1 10 6 00110
10010 10 0 10 18 10010
10110 10 1 10 14 01110
11010 11 0 10 10 01010
11110 11 1 10 22 10110
00100 0 0 100 4 00100
01100 0 1 100 28 11100
10100 1 0 100 20 10100
11100 1 1 100 12 01100
01000 0 1000 8 01000
11000 1 1000 24 11000
10000 10000 16 10000
00000 00000 0 00000

Modifications, additions, or omissions may be made to
TABLE 2 without departing from the scope of the invention.
TABLE 2 may include more, fewer, or other fields or entries.

FI1G. 3 illustrates one embodiment of a transformation unit
10 that may be used to perform binary-to-discrete log trans-
formation according to the method described with reference
to FIG. 1. Transformation unit 10 may include one or more
clements operable to perform the operations of transforma-
tion unit 10, for example, an 1nterface, logic, memory, other
suitable element, or any suitable combination of any of the
preceding. An interface may receive mput for the component,
send output from the component, process the mnput and/or
output, perform other suitable operation, or perform any suit-
able combination of any of the preceding. An interface may
comprise one or more ports and/or conversion software.

A memory may store mformation. A memory may com-

prise one or more of any of the following: a Random Access
Memory (RAM), a Read Only Memory (ROM), a magnetic

disk, a Compact Disk (CD), a Digital Video Disk (DVD), a
media storage, any other suitable information storage
medium, or any suitable combination of any of the preceding.

Logic may process information for the component by
receiving input and processing the input to generate output
from the mput. Logic may include hardware, software, other
logic, or any suitable combination of any of the preceding.
Certain logic, such as a processor, may manage the operation
ol a component. Examples of a processor may include one or
more computers, one or more miCroprocessors, One or more
applications, other logic operable to manage the operation of
a component, or any suitable combination of any of the pre-
ceding.

According to the illustrated embodiment, transformation
unit 10 1s coupled to fields 40 storing values for exponents ¢,
s, and p as 1illustrated. Transformation unit 10 includes a
normalization portion 20, a sign portion 24, a conditional
complement portion 28, and a DLG portion 32 coupled as
illustrated. According to the embodiment, normalization por-
tion 20 detects whether the operand 1s even or odd. If the

Integer

Parity

Singly

Even

Doubly

Even

Triply

Even

Quadruply Even

Zero

30

35

40

45

50

55

60

65

integer 1s even, p may be established from the truncated
trailing zeros. The number of trailing zeros represents the 27
factor. The value of p may also be used as a left-shiit amount
for the adjustment of the final result 1n the 1verse transior-
mation unit.

Si1gn portion 24 and conditional complement portion 28
detect the sign bit to establish s. The sign bit may be the third
Least Significant Bit (LSB) of the normalized operand. If the
sign bit 1s asserted, conditional complement portion 28 may
complement the normalized operand by the mput operand.
DLG portion 32 accepts the complemented operand and cal-
culates the discrete logarithm to yield e. DLG portion 32 may
comprise a shifter and adder circuit and a read-only memory
(ROM) lookup table as 1illustrated 1n FIG. 5.

Modifications, additions, or omissions may be made to
transformation unit 10 without departing from the scope of
the invention. The components of transformation unit 10 may
be integrated or separated according to particular needs.
Moreover, the operations of transformation umt 10 may be
performed by more, fewer, or other modules. Additionally,
operations of transformation unit 10 may be performed using
any suitable logic.

FIG. 4 1llustrates one embodiment of an 1nverse transior-
mation unit 50 that may be used to perform discrete log-to-

binary inverse transformation according to the method
described with reference to FIG. 2. Inverse transformation
umt 50 may include one or more elements operable to per-
form the operations of inverse transformation unit 50, for
example, an interface, logic, memory, other suitable element,
or any suitable combination of any of the preceding. Accord-
ing to the illustrated embodiment, inverse transformation unit
50 1includes an in1tialization portion 60 and an exponentiation
portion 64 coupled as illustrated.

Initialization portion 60 performs initialization proce-
dures, for example, according to lines L,1-L,,4. Exponen-
tiation portion 64 calculates exponentiation, for example, for
example, according to lines L,.5-L,-10. According to one

US 8,060,550 B2

9

embodiment, portions 60 and 64 may be based on shift-and-
add modulo 2* operations and may share resources.
Modifications, additions, or omissions may be made to
inverse transformation unit 50 without departing from the
scope of the mvention. The components of inverse transior-
mation unit 50 may be 1ntegrated or separated according to
particular needs. Moreover, the operations of inverse trans-
formation unit 50 may be performed by more, fewer, or other
modules. Additionally, operations of imnverse transformation
unit 50 may be performed using any suitable logic.
FI1G. 5 illustrates one embodiment of a circuit 90 that may
be used with transformation umt 10 of FIG. 3 or inverse
transformation unit 50 of FIG. 4. As an example, circuit 90
may be used 1n DLG portion 32 of transformation unmit 10. As
another example, circuit 90 may be used i exponentiation
portion 64 of inverse transformation unit 50.
Modifications, additions, or omissions may be made to
circuit 90 without departing from the scope of the invention.
The components of circuit 90 may be integrated or separated
according to particular needs. Moreover, the operations of
circuit 90 may be performed by more, fewer, or other mod-
ules. Additionally, operations of circuit 90 may be performed
using any suitable logic.
Although this disclosure has been described 1n terms of
certain embodiments and generally associated methods,
alterations and permutations of the embodiments and meth-
ods will be apparent to those skilled 1n the art. Accordingly,
the above description of example embodiments does not con-
strain this disclosure. Other changes, substitutions, and alter-
ations are also possible without departing from the spirit and
scope of this disclosure, as defined by the following claims.
What 1s claimed 1s:
1. A method for transforming an integer using a processor
comprising hardware and configured to perform the method,
the method comprising:
receiving a k-bit integer expressible as a modular factor-
ization, the modular factorization comprising one or
more factors, each factor having an exponent, wherein
one of the factors has a base of 3;

expressing, by a shifter and a first adder of the processor,
the integer as a modulo product of a plurality of residues,
a residue being a two-ones residue of the form (2°+1),
wherein i is an integer satisfying {1=i=k-1, i»2};

obtaining, by the processor, a discrete log of each of the
plurality of residues from a lookup table, wherein the
lookup table 1s indexed by the value 1;

iteratively calculating a modulo sum using the plurality of
residue discrete logs in a second adder of the processor;

establishing, by the processor, a discrete log of the integer
from the sum, the sum corresponding to the product of
the plurality of residues;
determining, by the processor, a (k=2) bit value for the
exponent of the base-3 factor from the discrete log; and

representing the integer as the modular factorization com-
prising the one or more factors, each factor having a
value for the exponent.

2. The method of claim 1, wherein a residue of the plurality
of residues comprises a value, the value comprising a plural-
ity of digits.

3. The method of claim 1, wherein a residue of the plurality
of residues comprises a value, the value comprising a plural-
ity ol non-zero digits.

10

15

20

25

30

35

40

45

50

55

60

10

4. The method of claim 1, wherein a residue of the plurality
of residues comprises a value, the value comprising a plural-
ity of non-zero digits, the plurality of non-zero digits com-
prising a unit digit in a least significant position.

5. The method of claim 1, wherein:

the product of the plurality of residues comprises a product

of at most k residues.

6. The method of claim 1, wherein a value of an exponent
of a factor comprises a sum corresponding to the product of
the plurality of residues.

7. The method of claim 1, wherein a value of an exponent
of a factor comprises a first sum corresponding to the product
ol the plurality of residue discrete logs, the first sum compris-
ing a second sum of a plurality of residues associated with the
product of the plurality of residues, the first sum being a
modular sum.

8. The method of claim 1, further comprising:

obtaining the residue discrete logs from a lookup table by

looking up values from a least significant bit to a most
significant bit.

9. The method of claim 1, further comprising:

performing the method using dedicated hardware.

10. A method for inverse transforming an integer using a
processor comprising hardware and configured to perform
the method, the method comprising:

recerving a (k—2) bit value for an exponent of a factor with

a base of 3 of a modular factorization of a k-bit integer,
the modular factorization comprising one or more fac-
tors, each factor having an exponent;
partitioning, by a first adder of the processor, the value into
a modulo sum of discrete logs of a plurality of residues,
a residue being a two-ones residue of the form (2°+1),
wherein i is an integer satisfying {0=i=k-1, i»2}, and
wherein the discrete log of each of the plurality of resi-
dues 1s obtained from a lookup table indexed by the
value 1;

iteratively calculating, by a shifter and a second adder of
the processor, a modulo product of the plurality of resi-
dues from the plurality of residue discrete logs obtained
from the lookup table; and

determiming, by the rocessor, an integer from the product of

the plurality of residues, wherein the integer 1s the
base-3 factor of the modular factorization of the k-bit
integer.

11. The method of claim 10, wherein a residue of the
plurality of residues comprises a value, the value comprising
a plurality of non-zero digits, the plurality of non-zero digits
comprising a unit digit 1n a least significant position.

12. The method of claim 10, wherein:

the product of the plurality of residues comprises a product

of at most k residues.

13. The method of claim 10, further comprising:

obtaining the residue discrete logs from a lookup table by

looking up values from a least significant bit to a most
significant bit.

14. The method of claim 10, further comprising;:

performing the method using dedicated hardware.

15. The method of claim 10, further comprising;:

obtaining the residue discrete logs from a lookup table by

looking up entries corresponding to values of 2°**+1.

% o *H % x

	Front Page
	Drawings
	Specification
	Claims

