US008055848B2
a2y United States Patent (10) Patent No.: US 8,055,848 B2
Aciicmez et al. 45) Date of Patent: Nov. 8, 2011
(54) METHOD AND SYSTEM FOR SECURING (58) Field of Classification Search 711/125,
INSTRUCTION CACHES USING 711/202, E12.017
SUBSTANTIALLY RANDOM INSTRUCTION See application file for complete search history.
MAPPING SCHEME
(56) References Cited

(75) Inventors: Onur Aciicmez, San Jose, CA (US);

Jean-Pierre Seifert, San Jose, CA (US); U.S. PATENT DOCUMENTS
Qingwei Ma, Fremont, CA (US); 7,788,650 B2* 82010 Johnsonetal. ... 717/140

2
Xinwen Zhang, San Jose, CA (US) 2008/0229052 Al 9/2008 Ozeretal. 711/202
* cited by examiner

(73) Assignee: Samsung Electronics Co., Ltd., Suwon

(KR) Primary Examiner — Yong Choe

(74) Attorney, Agent, or Firm — Beyer Law Group LLP

(*) Notice: Subject to any disclaimer, the term of this (57) ABSTRACT

patent 1s extended or adjusted under 35

U.S.C. 154(b) by 647 days. A method and system is provided for securing micro-archi-

tectural instruction caches (I-caches). Securing an I-cache
involves maintaimng a different substantially random
instruction mapping policy into an I-cache for each of mul-
tiple processes, and for each process, performing a substan-
tially random mapping scheme for mapping a process instruc-
tion into the I-cache based on the substantially random

(21) Appl. No.: 12/183,689

(22) Filed: Jul. 31, 2008

(65) Prior Publication Data instruction mapping policy for said process. Securing the
US 2010/0030067 Al Feb. 4, 2010 [-cache may turther involve dynamically partitioning the
I-cache mnto multiple logical partitions, and sharing access to
(51) Int.CL the I-cache by an I-cache mapping policy that provides access
GO6F 12/08 (2006.01) to each I-cache partition by only one logical processor.
(52) US.CL ... 711/125;711/202; 711/E12.017 40 Claims, 9 Drawing Sheets
10
11-1 11-2
Physical CPU

Logical CPU L.ogical CPU

r-—--—————_—.—ﬂ—'_-I"‘.-“-_-ﬁ
Sy Emany TS -y any dlae TET TS AN I D S AR A GEE TN I e AT T S I T e e
A ks T wal s ey el by s gemy bl ok el etk ol il e e AR B S B Y mrary

Simultaneous Multithreading Core

2 iogical processors
with separate dedicated I-cache

U.S. Patent Nov. 8, 2011 Sheet 1 of 9 US 8,055,848 B2

Physical CPU
P PTmTmTmTTes ik
|
: Logical CPU | Logical CPU }
| | i
i {]
i | |
} l {
} l §
! | ¢
: : :
l ! i FIG. 1
: : : Prior art
i i :
| | 1
) { i
| | 1
) }
= =
i ! :
Simultaneous Multithreading Core
with 2 logical processors
10 and a shared I-cache 10
11-1 11-2 11-1 11-2 (
Physical CPU ((Physical CPU Z
(mTTTTTm s A : prrTTTTT e pmmT T '
i |
E Logical CPU | Logical CPU : | Logical CPU | Logical CPU :
: : : l : |
| !] |) i
! ! ! H | i
{ | ¢ | | {
| ; i } | i
l : | : | | :
| |] | | |
| l 1 i I |
i l 1 I l !
¢ t { } | i
112 : | : : :
|) 12-S't | 12-S2 . ; 12-P1 . 12-P2 .
| | | ' | 12 |
O S A |) :
preiLom Y AUNEEURRNS EUUURIPRIR SIURIIPR !
: : Separsate : Separate ! : % Partilioned | Partiioned (—/ :
% l-cache | I-cache L | l-cache l-cache !
:.-j.‘::..'_‘.’. o e e Vel Wy W e Wb -T-'-:._-Z.T..'.: . w— —— o — '_5... j {. ______________ b o o i o e e e - ——— J'
Simultaneous Multithreading Core Simuitaneous Multithreading Core
2 logical processors 2 logical processors
with separate dedicated I-cache with partitioned |-cache

FIG. 3 FIG. 4

U.S. Patent Nov. 8, 2011 Sheet 2 of 9 US 8,055,848 B2

il Rl S Y, S - Bl . S

I e N

e I.!"*F..'."-Fi_.' o kit '

[Ty | [T I J
W] ?h-l-

PE S a

Load/
store unit

3
3 =i
% 5 CE
TR

=

a T
L)
.IJ'.

e L A D P T

£
£af 'ag-"'"
Sallde g oyt
r
e Fuan

" - ."I ey Lh
"‘ﬂ ": flt*ﬁtﬁ‘H
L] T L L I -

F 3]
ii-i.rj' |'EJ'|..|..|-

——
u _F;{_:a
X

[l
‘:n..-

Lla
r

» P s By . e L T I SR T e el - Tl el T
” - -
- - L] N

il ey gl mllrdaler A I N BN S U oy Sl v e eyl gl ok g B

14

"'h""'a
e ol
R
T
e e
h a- F mL 'l,"‘l
- |_:'lll"_!:--i-"
m ‘i" L]
O v R
-+ - + A -
Uﬂ Tey it W
LI i PSS ol
o s o
T i "4 T -
Y [P S Sy ———— A= ot
e wr
M 5 nivaw !.-|‘:+1I‘=If-
Wl S]
o B 'i;'jﬁ Tl-‘_.":
" e
'.;,{:-) AL
- = .{L:L\.I
.-!.--._'. l,._-\}'e- _.t
o w Wy
Y it
- ! l"‘-

i ~w™ el S | ny egepyp——_—— e —r—k Sl -

12

PIeoqalods

“_‘#m
-t : : T
. P wnte A Ak e
. v LY A
FWETIL, R NET NG L L] ;
e el SR M ¢ Lasd
o LR ! s
Fi;'p}h"":' . :lli:q.-:l
. " h : LN | 1-.
S
' a d m
LI |
’ Ton
b}
' i + :_l
. I Wors
- y
! il T el B e PR Sl el T - - - e el e aleglh il ol BB u * T
¥ el .
]
e N s B il B, el e e B - AHE N W, | = rid '
' orabi ey | Lo
r ‘ (1 J
A% -
L
- >
‘ L}
L
T At T T i o et
A L+ bR, WAy . ot
}..h,.,"'.‘;. Chehe e £ N . | Lt
.-u-l"..ll-ndv.\r": I . A
= [IRy :
EA et LA RY | Ry
AT T e BT -

OFErANTFE T T F YA WL

[y gy oy

—E———— T - T T S e A — A P g —

anng-point
add unnt

g
3
5
=
%

E
5
g
-

ction

=
>
"
E
o5
—
Rttt

FIG. 2

O

-l

gAY
=k

. \\I
g
- LY
e

E

it s e o e s vt = — L Wit i iy b Bl Al Wl e e e

Fl

i —— = —— el e e g Tl -y s s gl kg, g

Lo . A ow . - wi [

rla™ Be s T im s mg m um

- - TP - Pl T B o ey Syl el Sl Sl o T -l L
-
-
r
.t A
*
A

k
,

E
F—

A kd Py n

]
’
Fry

.

3
"—
J--

-t
TR T
! :?;,"lu.t

L
-l

e

¥
L

W,

-
*

it}

2

T el Tl “ETEAT A N N T

LY

Multipher
1]

| W P e e RRA T R T R PR

x4

.
-
A"
ad

A

o
e,
=

e LT T
A

fr T T ey

L 3

unit

|
L)' T el

LT
brh Y 22N

& AL
:i'. [3;1.;‘1
L gabachn

i

Bit field

LR m. :l'.ll-ﬁ-'

gl . vy e ok el I -yl al

10

Tl s sl me B gy s iy L il
]
L
ay
2
'-‘-l-

Py
T AT
-

"'\-I"'.I"' -
T3

e

U.S. Patent Nov. 8, 2011 Sheet 3 of 9 US 8,055,848 B2

I Each of 4 ways IS ghared betwesn logical processors I .

Seto | 1 |
Sett | | 0y 4

Set2 | 4 o 1
Set3 | | 1 1

Set4 1 Lt 1

S10550004d [e3100] usaMjeq PEIBLS 318 S)OS S L0 IV

SetS1t1y{ i 4 1

FIG. S

U.S. Patent Nov. 8, 2011 Sheet 4 of 9 US 8,055,848 B2

11-1 11-2

Partition of logicat processor 1 [Partitlon of logical processor 2

l—— 2-way Set Associalive -—l— 2-way Set Associative —{

seo [T -
set1 | — B
seez |1 S
seta | —
seta || —

12-P2
12-P1

—_— - - —_ -
n

Set510 |
Set 511 |

. . .o \ . . .- . .) e e m . ey ke i — . o e . b e e cae e - e e -] . —— e)) _

Il ———_-——-——-—“_-—-*h__——ﬂﬁ'ﬁh‘h-—“*_—-

FIG. 6

U.S. Patent Nov. 8, 2011 Sheet 5 of 9 US 8,055,848 B2

11-1

Setl
Set 1
Set 2 !
sas [T 1
SO R R R R

12-P1

L J0ssEa0K] 22160] 10 vongiey

Se2esf | | 1 ¥ _|'7

?
:
N

2 s0as900ud penbo) O voyuey

FIG. 7

U.S. Patent Nov. 8, 2011 Sheet 6 of 9 US 8,055,848 B2

14

S
=

Multiplexor &

FIG. 8

a\
- g6 Ol
% V6 Ol
ﬂ, GE
s ﬁ GZ
<.
o ayoeo-| sjeredss \
- pajedIpap UMO S}l SBy 2100 Yoea pue SUoED-| PaIBYS € pue
$2100 feaisAyd z yum $8100 [edisAyd g yim

J08S8901d 8107 - NN 8¢ 10ssadnld 8100 - NN
: I emns] L]
&

g€
- S20IN0SOY POIRYS S20JN0SOY PaJeys
2
¥ »,
\ o
\ o
—
g
)
X
&
7
216D NdD . 2109 NdD 210D NJD 310D NdD

abeyoed 105580014 abeyord 1088820id

9¢
-9t 1-9¢ LE /

U.S. Patent
\

US 8,055,348 B2

Sheet 8 0f 9

Nov. 8, 2011

U.S. Patent

0L Old
A

ﬁ]"t.‘.’- i S 5L L L,

21607
uoneZILopURY

c
&

PR T T LN T et gt A g e T O A B A T A G T g =ty Pt ~uTuE Y L 1% "

T TR

e I-.-.l-.-‘t.-.-_l__l..u__.-_.l_ il it i‘i—lﬁ.—- i el bt A e R

_— [osTxepui] T

1>

N
3

-
v

U.S. Patent

Nov. 8, 2011 Sheet 9 0of 9

51

Generate a substantially
random value from a seed
value

Blend a basic I-cache index
with the substantially
random value to generate a
substantially random |-

cache index

53

Use the substantially
random |-cache index for
the l-cache instruction

mapping

FIG. 11

US 8,055,348 B2

US 8,055,848 B2

1

METHOD AND SYSTEM FOR SECURING
INSTRUCTION CACHES USING
SUBSTANTIALLY RANDOM INSTRUCTION
MAPPING SCHEME

FIELD OF THE INVENTION

The present mvention relates to instruction caches, and in
particular, to securing instruction caches.

BACKGROUND OF THE INVENTION

Current microprocessors employ an instruction cache
(I-cache) to increase the performance of a system. An I-cache
stores the most frequently executed 1nstructions and provides
the processor easy and fast access to these instructions. While
increasing the performance of the system, I-cache architec-
tures also create several security weaknesses.

One security weakness in conventional implementations of
I-cache structures involves shared I-cache units 1 simulta-
neous multi-threaded (SMT) and/or multi-core systems,
wherein I-cache units are shared between different logical or
physical microprocessors (FIG. 1). If two or more processes
are executing simultaneously on the same system and if the
I-cache 1s shared between these processes, then a malicious
process can mdirectly observe the execution of security criti-
cal applications and discover confidential values based
therein by analyzing I-cache modifications.

Another security weakness 1n conventional implementa-
tions of I-cache structures involves instruction mapping. The
mapping process (mapping policy) is performed when a new
instruction entry i1s to be written to I-cache, or an existing
I-cache entry needs to be searched 1n I-cache. The mapping
process decides where to store, and look for, I-cache entries in
the I-cache.

In typical processor architectures, a particular 1nstruction
can only be stored 1n a particularly small set of I-cache loca-
tions 1n a strictly deterministic way. In other words, 1t 1s trivial
to find out which locations of an I-cache can store a particular
instruction. Due to this predictability, a malicious process can
determine where a specific security-critical instruction can be
found in I-cache and thus observe the execution of such an
instruction. As such, the malicious process can discover when
a process executes critical istructions, and, therefore, reveal
the execution flow. The execution tlow can expose the secret
values used in the process.

BRIEF SUMMARY OF THE INVENTION

The present mvention provides a method and system for
securing micro-architectural instruction caches (I-caches).
One embodiment mvolves maintaining a different substan-
tially random 1nstruction mapping policy into an I-cache for
cach of multiple processes, and for each process, performing
a substantially random mapping scheme for mapping a pro-
cess 1nstruction into the I-cache based on the substantially
random 1nstruction mapping policy for said process.

The multiple processes may include security critical pro-
cess 1nstructions, such that maintaining a different substan-
tially random 1nstruction mapping policy into an I-cache for
cach of multiple processes imncludes maintaining a different
substantially random 1nstruction mapping policy into the
I-cache for each of multiple security critical processes.

Securing the I-cache may further involve dynamically par-
titioning the I-cache into multiple logical partitions, and shar-

10

15

20

25

30

35

40

45

50

55

60

65

2

ing access to the I-cache by an I-cache mapping policy that
provides access to each I-cache partition by only one logical
Processor.

These and other features, aspects and advantages of the
present mvention will become understood with reference to
the following description, appended claims and accompany-
ing figures.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a conventional instruction cache (I-cache)
shared between two logical processes.

FIG. 2 shows a processing system including an I-cache
system, according to an embodiment of the invention.

FIG. 3 shows an I-cache system including dedicated
[-cache modules.

FIG. 4 shows an I-cache system including a partitioned
I-cache module, according to an embodiment of the mven-
tion.

FIG. 5 shows an example 4-way set associative I-cache.

FIGS. 6-7 show examples of partitioning the I-cache of
FIG. § according to the invention.

FIG. 8 shows a block diagram of an I-cache system,
according to an embodiment of the invention.

FIG. 9A shows a block diagram of typical I-cache system
with a shared I-cache.

FIG. 9B shows a block diagram of an I-cache system with
dedicated I-cache modules, according to another embodi-
ment of the imvention.

FIG. 10 shows a block diagram of an I-cache system imple-
menting substantially randomized I-cache access policy,
according to another embodiment of the invention.

FIG. 11 shows a process 30 for substantially randomized
instruction mapping policy, according to an embodiment of
the mvention.

DETAILED DESCRIPTION OF THE INVENTION

The present mvention provides a method and system for
securing micro-architectural instruction caches. One embodi-
ment mvolves implementing partitioned or separate I-cache
modules 1n a processor to prevent I-cache analysis on logical
or physical multi-core microprocessors with simultaneous
multithreading. In one example, a single I-cache 1s parti-
tioned into separate partitions, wherein each partition 1s used
by a different processor. In another example, a dedicated
I-cache 1s used for each logical and physical processor.

Further, for additional security, an I-cache mapping policy
1s utilized to reduce predictability of instruction mapping in
conventional I-cache, wherein according to one embodiment
of the invention, a substantially random 1nstruction mapping
strategy 1s implemented.

FIG. 2 shows a functional block diagram of a computing
environment architecture 10 implementing an embodiment of
the present invention. The architecture 10 includes an I-cache
system 12 and a cache manager 14. The cache manager 14
controls the function of the I-cache. In one embodiment, the
cache manager 14 comprises the control logic of the I-cache
and 1s considered as a part of I-cache 1instead of separate logic.
This control logic implements dynamic detection of critical
code sections/processes (possibly 1n collaboration with the
operating system), and dynamic I-cache partitioning includ-
ing determining the number of I-cache partitions, size of
partitions, assignment of partitions, etc. Furthermore, the
I-cache manager implements generating substantially ran-
dom (e.g., random or pseudorandom) numbers for substan-
tially random I-cache instructing mapping, updating seeds,

US 8,055,848 B2

3

substantially randomizing the index section of the instruction
address, etc. The cache manager also implements mapping
policy, replacement algorithm, etc.

The I-cache system 12 may comprise one or more I-cache
modules. In one implementation, for each physical or logical
processor, different physical I-cache locations are used,
whether 1n the same I-cache module or as separate indepen-
dent I-cache modules.

FIG. 3 shows two separate (dedicated) I-cache modules
12-51 and 12-52 corresponding to the two logical processors
11-1, 11-2, respectively. FIG. 4 shows example implementa-
tion of the I-cache system 12 for a SMT processor with two
logical processors 11-1, 11-2, according to the invention.
Specifically, FIG. 4 shows a shared physical I-cache module
12 that 1s dynamically partitioned into two partitioned areas
12-P1, 12-P2, corresponding to the two logical processors
11-1,11-2, respectively. The partitioning can be implemented
in many ways without changing the size of the I-cache.
Dynamic partitioning of the I-cache 1s under the control of
I-cache management which utilizes detection of critical pro-
cesses and mstruction sections and upon detection, partitions
the I-cache and prohibits the usage of a partition assigned to
a critical process by other processes.

For example, a 4-way set associative I-cache 5 with 512
sets (FIG. 5) can be partitioned nto two 2-way associative
I-caches 12-P1 and 12-P2 (FIG. 6) with the same amount of
sets, or the I-cache 5 can be partitioned 1nto two 4-way asso-
ciative I-caches 12-P1 and 12-P2 (FIG. 7) with 256 sets.
During run-time, the cache manager 14 can switch between
one 4-way set associative I-cache and two 2-way associative
I-caches.

In one example, a software module such as the operating
system (OS) can set a flag to indicate whether a critical
application 1s running on a logical processor. If the flag 1s set,
the cache manager 14 does not allow sharing of the I-cache
between logical processors. Instead, the cache manager 14
dynamically partitions the I-cache such that different logical
processors do not use the same I-cache locations.

The partitioning need not be processor based, and 1t can be
tor example process based. The I-cache can be partitioned so
that a specific process can have exclusive access to a partition
and the remainder of the cache can be shared among other
processes. Another alternative 1s to combine both approaches.
For example, half of the I-cache can be assigned to a logical
processor and the other half to another logical processor.
Further, the first half of the I-cache can be repartitioned to
provide a critical process exclusive access to a partition in that
first half of the I-cache, and other processes running on the
first logical process can share the remaining part of the first
half of the I-cache.

In addition, the partitioning can be 1n various sizes (e.g.,
4™ of an I-cache is assigned to a logical processor and the
remaining ¥4” to another other logical processor). This is
useful for process-based partitioning. If there 1s a critical
process and several other non-critical processes are running,
on the system, 1t may be preferable (for performance) to
allocate a small I-Cache partition to the critical process and
leave the larger portion shared among non-critical processes.
One implementation involves using one bit for logical pro-
cessor ID and dynamically appending it to the index part of
the mstruction address to realize partitioning. If the length of
the appendable portion 1s kept dynamic and changing from 1
bit to N bits (under the control of the I-cache management
logic), then several partitions can be generated as small as 14"
of the original I-cache size. This approach may also imncorpo-
rate a management logic that makes several decisions during,
run time, including the number of partitions, the length of

10

15

20

25

30

35

40

45

50

55

60

65

4

partitions, the assignment of partitions (e.g. which process/
processor 1s assigned to which partition), etc.

The cache manager 14 1s implemented to allow dynamic
partitioning. For example, in FI1G. 7, there are 512 cache sets
in total. When said flag 1s not set by the OS, 512 cache sets can
be used by both logical processors (1.e., shared). When said
flag 1s set by the OS, the cache manager 14 implements
dynamic switching, wherein half of the 512 cache sets are
used by one logical processor and the other half of the 512
cache sets are used by the other logical processor (1.e., parti-
tioned).

The dynamic switching between shared and partitioned

modes can be achieved by the cache manager 14 as a logic
module to handle the mndex of the I-cache system 12 1n FIG.
8. An example implementation in FIG. 8 1s now described.
Each cache location has a virtual address for an instruction,
wherein the virtual address comprises different fixed sections
(1.e., Tag, Index, BO).

If said OS flag i1s set, then the 1dentification (ID) of the
logical processor (e.g., either O or 1, assuming there are only
2 logical processors) that access the I-cache can be appended
in front of the Index of the I-cache access to generate a new
Index.

The new Index can be either less than 256 (e.g., maps to the
upper halt 12-P1 of the I-cache, FIG. 7) if 1t comes from

logical processor 0 (e.g., logical processor 11-1), or 1t can be
higher than 255 (e.g., maps to the lower half 12-P2 of the
I-cache) if 1t comes from logical processor 1 (logical proces-
sor 11-2). The Size and Tag logic of the I-cache can be
modified accordingly. For example, assume that the length of
the tag 1s A bits and the index 1s B bits. In this case, a cache has
2% sets. If the I-cache is partitioned by half into two, each
partition will need an index of B-1 bits. In this example,
processor ID 1s appended (1.e., either a O or 1), 1n front of the

index. In this case, this bit determines the partition (e.g. upper
of lower half 1n FIG. 7) and the rest of the index (1.e., B-1 bits)

specifies the index of that partition. The first bit of the original
un-appended 1index (the first bit of the B-bit index section) 1s
not used, and this necessitates enlarging the tag section by 1

bit. For example, 11 the address of an mstruction 1s:
0001 . . . 0101 1001 . . . 0001 where original tag=

(0001 . .. 0101), oniginal index=(1001 . . . 0011) and
offset=01,

then the I-cache 1s partitioned mto 2 equal parts, the new
tag would be (0001 . . . 0101 1) and the new index should
become (x 001 . .. 0011) where x 1s the appended processor
ID.

To partition the I-cache into four equal parts, then the
tag=(0001 . .. 0101 10) and original index=(xy 01 ... 0011).
To partition the I-cache into eight equal parts, then the tag=
(0001 ...0101 100) and original index=(xyz 1 ...0011). And,
SO On.

In a typical multi-core system 25 shown in FIG. 9A, there
are multiple physical processor cores 26 1n the same package
2’7 and resources including a typical I-cache 28 that 1s shared
between these cores. According to an example dual-core sys-
tem 35 1 FIG. 9B according to the present invention, two
physical processor cores 36-1, 36-2 reside 1n a single proces-
sor package 37 and separate dedicated unshared I-cache mod-
ules 38-1, 38-2, are implemented 1n the I-cache system 12,
wherein each processor core only uses a dedicated unshared
I-cache module.

For further security safeguarding of I-caches, the invention
turther provides substantially randomized I-cache mapping
policy. The replacement policies of the I-cache are random-
1zed (substantially randomized), to prevent malicious deter-
mination 1n advance of which I-cache locations can store a
given instruction. Substantially randomizing I-cache map-

US 8,055,848 B2

S

ping policy 1s implemented 1n one example by substantially
randomizing the outcome of I-cache mapping.

In conventional I-cache architectures, the virtual address of
an mstruction (a static value) which comprises different fixed
sections (Tag, Index, BO), can be easily determined. The
conventional fixed Index leads to a deterministic mapping
policy. The location of an instruction in an I-cache can be
determined by this fixed static value of the conventional
Index.

According to an embodiment of the present mvention,
however, a substantially randomized mapping policy 1s
implemented for the Index, to provide a mapping policy that
1s not deterministic. An observer cannot determine which
istructions of a process are located 1n which locations of
I-cache because the Index 1s substantially randomized. Such
substantially randomization can also be used 1n the replace-
ment policy of an I-cache.

One implementation of substantially randomized mapping
policy 1s now described. FIG. 10 shows an implementation of
the cache system 12 with substantially randomized nstruc-
tion mapping policy. Instead of using the basic Index 30
section of a virtual address 32 directly, the Index 30 1s sub-
stantially randomized and the substantially randomized Index
34 15 used for the I-cache instruction mapping.

FIG. 11 shows a process 50 for substantially randomized
instruction mapping policy, according to an embodiment of
the invention. The cache manager 14 includes a substantially
randomization logic 40, which performs a randomization of
the basic Index 30 using a random (or substantially random)
value generated by the logic 40. The substantially random-
1zation logic 40 uses a (substantially) random seed 42, which
can be supplied by the OS, to mnitiate substantially random
number generation (step 51). There are many ways to gener-
ate substantially random values. One way 1s to consecutively
compute the hash values from an 1nitial seed for each different
I-cache access and select certain bits of the hash value to
generate a substantially random number (alternatively, Lin-
car-Feedback-Shift-Registers (LFSR) may be used to gener-
ate substantially random numbers). Updating the substan-
tially random value for each access may not be required as a
different substantially random value for each active process
provides suilicient protection.

Therelore, 1n another example, the OS provides an 1denti-
fication of the currently running process (process 1dentifica-
tion (PID)) 44 to the processor (e.g., by setting a dedicated
register) and an 1nitial substantially random seed. The pro-
cessor includes the cache system 12. The substantially ran-
domization logic 40 generates substantially random values
(which are different for different processes running on the
processor, but the same for a particular process) using a
function of both PID and the seed. The seed 1s preferably
updated frequently, but not as frequently as in each I-cache
access. This can be handled either by the OS or by the sub-
stantially randomization logic itself.

The output of the substantially randomization logic
depends on the mput values PID and seed, and changing even
a single bit 1n these mputs would (preferably) cause signifi-
cant changes 1n the output. Since this 1s substantially random
generation, the randomization logic 40 should (preferably)
generate the same output for the same PID and seed input
values.

A basic I-cache index 1s then blended (combined) with the
substantially random value to generate a substantially ran-
dom I-cache index (step 52). In one example, the randomiza-
tion logic 40 performs an XORing operation 41 of the basic
Index 30 with a random (or substantially random) value gen-
erated by the logic 40. Specifically, the operator 41 performs

10

15

20

25

30

35

40

45

50

55

60

65

6

a bitwise exclusive-or (XOR) operation (e.g., 0110 XOR
1100=1010). An XOR operation i1s not the only operation that
can be used to combine (blend) the Index 30 and the output of
the randomization logic 30. In this example, the OS provides
the PID value to the processor including the cache system 12.
Software layers above the OS need not be aware of the sub-
stantially randomization process and can function properly
without any changes. An example of blending the index 1is:
011041100=10010 (mod 2*) which results in 0010. Other
examples can be used, imvolving operations that generate a
mathematical group over the operand. The substantially ran-
domized I-cache index 1s the used for mapping instructions
into the I-cache (step 53).

The I-cache partitioning process and/or the I-cache sub-
stantially randomized mapping process may be implemented
for the same I-cache system 12, depending on the level of
security desired. To use I-cache partitioning and I-cache sub-
stantially randomized mapping together, the I-cache system
can be implemented with substantially randomization logic in
place (as 1 FIG. 9), and also uses an index with a dynamic
length for partitioning (1.e., dynamically expanding/shrink-
ing index length for defining partition areas).

Static partitioning for dedicated I-caches imvolves placing
different individual I-caches in the processor chip. For
example, for two dedicated I-caches, control logic of a 4-way
set associative I-cache (including, e.g., replacement and evic-
tion logic) can be changed to two 2-way associative I-caches
of the same size.

For dynamic I-cache partitioning, during run-time the sys-
tem can switch between one 4-way set associative I-cache and
two 2-way associative I-caches. For example, the OS can set
a flag to indicate whether a critical application 1s running on
a logical processor.

If said OS flag 1s set, the I-cache should not be shared
between the logical processors because the process (which
can be malicious) on a logical processor can attack the critical
application running on the other logical processor. The pro-
cessor architecture can be designed 1n a way to allow such
dynamic partitioning. For static partitioning, there 1s no need
to change any software. For dynamic partitioning, the OS (or
similar soitware that controls the system) needs to be aware of
the I-cache manager operations.

In another example, partitioning the I-cache further
includes partitioning the I-cache into multiple logical parti-
tions corresponding to multiple logical processors. Providing
access to each I-cache partition includes providing access to
cach I-cache partition only by a corresponding logical pro-
CESSOL.

Upon detecting execution of a critical process instruction
on a logical processor, access to the corresponding I-cache by
other logical processors 1s prevented. Preventing access to the
I-cache partition by said other logical processors further
includes dynamically repartitioning the I-cache to only allow
access to a corresponding I-cache partition by the processor
executing the critical process.

Partitioning the I-cache may mvolve modifying the map-
ping index of the I-cache to include a logical processor 1den-
tification, and sharing access to the I-cache may involve
allowing access to different partitions of the I-cache by an
I-cache mapping policy based on the logical processor 1den-
tification. In addition, a substantially random I-cache map-
ping policy may be implemented for each cache partition. A
substantially random I-cache mapping policy for each cache
partition involves substantially randomizing the index section
of each virtual I-cache address.

I-cache replacement comprises a method to 1dentify a can-
didate I-cache block, content of which will be evicted to write

US 8,055,848 B2

7

new data into the I-cache. I-cache mapping comprises a
method by which the data in main memory 1s brought 1nto the
I-cache and referenced by the processor. I-cache mapping
involves determining which I-cache sets can store the content
of a given memory location. The present invention provides
substantially random mapping and dynamic partitioning

methods along with optional cache replacement approaches.

As 1s known to those skilled 1n the art, the atforementioned
example architectures described above, according to the
present invention, can be implemented 1n many ways, such as
program 1instructions for execution by a processor, as logic
circuits, as an application specific integrated circuit, as firm-
ware, etc. The present invention has been described 1n con-
siderable detail with reference to certain preferred versions
thereot; however, other versions are possible. Therefore, the
spirit and scope of the appended claims should not be limited
to the description of the preferred versions contained herein.

What 1s claimed 1s:

1. A method of istruction cache (I-cache) management,
comprising;

maintaiming a different substantially random 1nstruction

mapping policy mnto an I-cache for each of multiple
processes; and

for each process, performing a substantially random map-

ping scheme for mapping a process instruction into the
I-cache based on the substantially random 1nstruction
mapping policy for said process;

wherein said multiple processes include security critical

process instructions, such that maintaimng a different
substantially random 1nstruction mapping policy into an
I-cache for each of multiple processes includes main-
taining a different substantially random instruction map-
ping policy into the I-cache for each of multiple security
critical processes.

2. The method of claim 1, wherein performing a substan-
tially random mapping scheme further includes detecting
execution of security critical processes on one or more pro-
cessors, and upon recerving an instruction from a security
critical process, performing a substantially random mapping
scheme for mapping the instruction into the I-cache accord-
ing to the substantially random instruction mapping policy
for the security critical process.

3. The method of claim 1, wherein performing a substan-
tially random I-cache mapping policy includes substantially
randomizing an index portion of each virtual I-cache address.

4. The method of claim 3, wherein partitioning the I-cache
turther includes partitioning the I-cache into multiple logical
partitions corresponding to multiple logical processors.

5. The method of claim 4, wherein providing access to each
I-cache partition further includes providing access to each
I-cache partition only by a corresponding logical processor.

6. The method of claim § further including the step: upon
detecting execution of a critical process mstruction on a logi-
cal processor, preventing access to a corresponding I-cache
partition by other logical processors.

7. The method of claim 1 further comprising;:

partitioning an I-cache into multiple logical partitions; and

sharing access to the I-cache by an I-cache mapping policy

that provides access to each I-cache partition by only one
logical processor.

8. The method of claim 1, further comprising;

partitioning the I-cache into multiple logical partitions cor-

responding to multiple logical processors including
dynamically modifying a mapping index of the I-cache
to include a logical processor 1dentification; and

il

5

10

15

20

25

30

35

40

45

50

55

60

65

8

sharing access to the I-cache includes allowing access to
different partitions of the I-cache by an I-cache mapping
policy based on the logical processor 1dentification.

9. The method of claim 8 further including implementing a
substantially random I-cache mapping policy for each cache
partition.

10. The method of claim 9, wherein a substantially random
I-cache mapping policy for each cache partition includes
substantially randomizing the index section of each virtual
I-cache address.

11. The method of claim 10, wherein substantially random-
1zing the index section of each virtual I-cache address
includes XORing the address with a substantially random
value.

12. The method of claim 10 further including obtaining a
different substantially random value for each active process
running on a logical processor, for substantially randomizing
the I-cache mapping policy for the I-cache partitions.

13. The method of claim 1, wherein the instruction pro-
cessing 1s 1mplemented on a simultaneous multithreading
(SMT) processor.

14. A method of instruction cache (I-cache) management,
comprising;

maintaining a different substantially random instruction

mapping policy mto an I-cache for each of multiple
processes; and for each process, performing a substan-
tially random mapping scheme for mapping a process
instruction into the I-cache based on the substantially
random 1nstruction mapping policy for said process;
partitioning the I-cache into multiple logical partitions cor-
responding to multiple logical processors; and
upon detecting execution of a critical process instruction
on a logical processor, preventing access to a corre-
sponding I-cache partition by other logical processors;

wherein preventing access to the I-cache partition by said
other logical processors includes dynamically reparti-
tioning the I-cache to only allow access to the corre-
sponding I-cache partition by the processor executing,
the critical process.

15. The method of claim 14, further wherein said multiple
processes nclude security critical process instructions, such
that maintaining a different substantially random instruction
mapping policy into an I-cache for each of multiple processes
includes maintaining a different substantially random
instruction mapping policy into the I-cache for each of mul-
tiple security critical processes.

16. The A method of instruction cache (I-cache) manage-
ment, comprising:

maintaining a different substantially random instruction

mapping policy mnto an I-cache for each of multiple
processes; and

for each process, performing a substantially random map-

ping scheme for mapping a process mstruction into the
I-cache based on the substantially random 1nstruction
mapping policy for said process;

wherein performing a substantially random I-cache map-

ping policy includes substantially randomizing an index
portion of each virtual I-cache address by:

generating a substantially random value from a seed value;

blending the basic I-cache index with the substantially

random value to generate a substantially random I-cache
index; and

using the substantially random I-cache index for the

I-cache 1nstruction mapping.

17. The method of claim 16, wherein generating a substan-
tially random value from a seed includes consecutively com-
puting hash values from an imtial seed for each different

US 8,055,848 B2

9

I-cache access and selecting a set of bits of the hash value to
generate a substantially random number.

18. The method of claim 16, further wherein said multiple
processes nclude security critical process instructions, such
that maintaimng a different substantially random 1nstruction
mapping policy into an I-cache for each of multiple processes
includes maintaining a different substantially random
instruction mapping policy into the I-cache for each of mul-
tiple security critical processes.

19. An mstruction cache system, comprising:

an 1nstruction cache; and

a cache manager configured for maintaimng a different

substantially random 1nstruction mapping policy into an
I-cache for each of multiple processes, and for each
process, performing a substantially random mapping
scheme for mapping a process instruction mto the
I-cache based on the substantially random instruction
mapping policy for said process;

wherein said multiple processes include security critical

process instructions, such that the cache manager 1s con-
figured for maintaining a different substantially random
istruction mapping policy into the I-cache for each of
multiple security critical processes.

20. The system of claim 19, wherein the cache manager 1s
turther configured for detecting execution of security critical
pProcesses on one or more processors, and upon recerving an
instruction from a security critical process, performing a sub-
stantially random mapping scheme for mapping the instruc-
tion mto the I-cache according to the substantially random
instruction mapping policy for the security critical process.

21. The system of claim 19, wherein the cache manager 1s
turther configured for substantially randomizing an index
portion of each virtual I-cache address.

22. The system of claim 21, wherein the cache manager 1s
configured for partitioming the I-cache into multiple logical
partitions corresponding to multiple logical processors.

23. The system of claim 22, wherein the cache manager 1s
configured for providing access to each I-cache partition only
by a corresponding logical processor.

24. The system of claim 23, wherein the cache manager 1s
configured for detecting execution of a critical process
instruction on a processor, and preventing access to a corre-
sponding I-cache partition by other processes.

25. The system of claim 19, wherein the cache manager 1s
turther configured for partitioning an I-cache into multiple
logical partitions, and providing access to the I-cache by an
I-cache mapping policy that provides access to each I-cache
partition by only one logical processor.

26. The system of claim 19, wherein the cache manager 1s
turther configured for partitioming the I-cache by dynamically
moditying the mapping index of the I-cache to include logical
processor 1dentification, and allowing access to different par-
titions of the I-cache by an I-cache mapping policy based on
logical processor 1dentification.

27. The system of claim 26, wherein the cache manager 1s
configured for implementing a substantially random I-cache
mapping policy for each cache partition.

28. The system of claim 27, wherein the cache manager 1s
turther configured for a substantially random I-cache map-
ping policy for each cache partition by substantially random-
1zing the index section of each virtual I-cache address.

29. The system of claim 28, wherein the cache manager 1s
turther configured for substantially randomizing the index
section of each wvirtual I-cache address by XORing the
address with a substantially random value.

30. The system of claim 28, wherein the cache manager 1s
turther configured for obtaining a different substantially ran-

5

10

15

20

25

30

35

40

45

50

55

60

65

10

dom value for each active process running on a logical pro-
cessor, for substantially randomizing the I-cache mapping
policy for the I-cache partitions.

31. An instruction cache system, comprising;

an instruction cache; and

a cache manager configured for maintaining a different

substantially random instruction mapping policy into an
I-cache for each of multiple processes, and for each
process, performing a substantially random mapping
scheme for mapping a process instruction into the
I-cache based on the substantially random instruction
mapping policy for said process;

wherein the cache manager i1s configured for partitioning

the I-cache 1into multiple logical partitions correspond-
ing to multiple logical processors and the cache manager
1s configured for dynamically repartitioning the I-cache
to only allow access to the corresponding I-cache parti-
tion by the processor executing a critical process.
32.The system of claim 31 wherein said multiple processes
include security critical process instructions, such that the
cache manager 1s configured for maintaining a different sub-
stantially random instruction mapping policy into the I-cache
for each of multiple security critical processes.

33. The system of claim 31, wherein the cache manager 1s
turther configured for detecting execution of security critical
Processes on one or more processors, and upon receiving an
instruction from a security critical process, performing a sub-
stantially random mapping scheme for mapping the instruc-
tion into the I-cache according to the substantially random
instruction mapping policy for the security critical process.

34. The system of claim 31, wherein the cache manager 1s
further configured for substantially randomizing an index
portion ol each virtual I-cache address.

35. A method of mstruction cache (I-cache) management,
comprising;

maintaining a different substantially random instruction

mapping policy mnto an I-cache for each of multiple
processes; and

for each process, performing a substantially random map-

ping scheme for mapping a process instruction into the
I-cache based on the substantially random 1nstruction
mapping policy for said process;

partitioning the I-cache includes dynamically modifying

the mapping index of the I-cache to include a logical
processor 1dentification; and

sharing access to the I-cache includes allowing access to

different partitions of the I-cache by an I-cache mapping
policy based on the logical processor 1dentification.

36. The method of claim 35, wherein performing a sub-
stantially random mapping scheme further includes detecting
execution of security critical processes on one or more pro-
cessors, and upon recerving an instruction from a security
critical process, performing a substantially random mapping
scheme for mapping the instruction into the I-cache accord-
ing to the substantially random instruction mapping policy
for the security critical process.

37. An struction cache system, comprising;

an instruction cache; and

a cache manager configured for maintaining a different

substantially random 1nstruction mapping policy into an
I-cache for each of multiple processes, and for each
process, performing a substantially random mapping
scheme for mapping a process instruction into the
I-cache based on the substantially random instruction
mapping policy for said process;

wherein the cache manager 1s further configured for parti-

tioning the I-cache by dynamically modifying the map-

US 8,055,848 B2

11 12
ping index of the I-cache to include logical processor I-cache based on the substantially random 1nstruction
identification, and allowing access to different partitions mapping policy for said process;
of the I-cache by an I-cache mapping policy based on wherein the cache manager 1s configured to perform a
logical processor identification. substantially random I-cache mapping policy including,
38. The system of claim 37, wherein the cache manager is 3 substantially randomizing an mdex portion of each vir-
turther configured for detecting execution of security critical tual I-cache address by:

generating a substantially random value from a seed value;
blending the basic I-cache index with the substantially
random value to generate a substantially random I-cache
10 index; and
using the substantially random I-cache index for the
I-cache 1nstruction mapping.
40. The system of claim 39, wherein generating a substan-
tially random value from a seed includes consecutively com-
15 puting hash values from an i1mitial seed for each different
I-cache access and selecting a set of bits of the hash value to
generate a substantially random number.

Processes on one or more processors, and upon recerving an
instruction from a security critical process, performing a sub-
stantially random mapping scheme for mapping the instruc-
tion into the I-cache according to the substantially random
instruction mapping policy for the security critical process.
39. An instruction cache system, comprising:
an 1nstruction cache; and
a cache manager configured for maintaiming a different
substantially random 1nstruction mapping policy into an
I-cache for each of multiple processes, and for each
process, performing a substantially random mapping
scheme for mapping a process instruction into the I I

	Front Page
	Drawings
	Specification
	Claims

