US0080547765B2
a2y United States Patent (10) Patent No.: US 8.054.765 B2
Passey et al. 45) Date of Patent: Nov. 8, 2011
(54) SYSTEMS AND METHODS FOR PROVIDING g%ggaggg i 1 % iggi 112/1161_1011 etlal*
,, ,, cin ¢t al.
VARIABLE PROTECTION 5,359,594 A 10/1994 Gould et al.
5,403,639 A 4/1995 Belsan et al.
(75) Inventors: Aaron J. Passey, Scattle, WA (US); Neal 5459.871 A 10/1995 Van Den Berg
T. Fachan, Seattle, WA (US) 5481,699 A 1/1996 Saether
5,548,724 A 8/1996 Akizawa et al.
: . : * 5,548,795 A 8/1996 Au
(73) Assignee: EMC Corporation, Hopkinton, MA 5568629 A 10/1996 Gentry et al.
(US) 5,596,709 A 1/1997 Bond et al.
5,606,669 A 2/1997 Bertin et al.
(*) Notice: Subject to any disclaimer, the term of this 5,612,865 A 3/1997 Dasgupta
patent is extended or adjusted under 35 gagggaigg i ;; iggg ?eblaﬂ% elt al.
657, ones et al.
U.5.C. 154(b) by 29 days. 5668943 A 9/1997 Attanasio et al.
5,680,621 A 10/1997 Korenshtein
(21) Appl. No.: 12/484,905 5,694,593 A 12/1997 Baclawski
5,696,805 A 12/1997 Hemphill et al.
(22) Filed: Jun. 15, 2009 5,734,826 A 3/1998 Olnowich et al.
5,754,756 A 5/1998 Watanabe et al.

(65) Prior Publication Data (Continued)

US 2009/0252066 Al Oct. g, 2009 FOREIGN PATENT DOCUMENTS

Related U.S. Application Data EP 0774723 5/1997
(63) Continuation of application No. 11/256,410, filed on (Continued)
Oct. 21, 2005, now Pat. No. 7,551,572. OTHER PURBI ICATIONS
(51) Inmt.ClL. Nov. 15, 2002 Int’l Search report PCT/US02/24728, 2 pages.
HO4L 12/28 (2006.01) (Continued)
(52) US.CL .., 370/256; 370/382
(58) Field of Classification Search 370/217, Primary Examiner — Andrew Lai

370/256, 379, 382, 408; 707/7, 100, 101, (74) Attorney, Agent, or Firm — Knobbe Martens Olson &
707/103; 711/162; 714/36, 718 Bear LLP

See application file for complete search history.

(37) ABSTRACT
(56) References Cited The systems and methods maintain varying protection levels
U.S. PATENT DOCUMENTS of related objects, such as when nodes of a data structure are

protected at the same or greater protection level as their chil-

5,163,131 A~ 11/1992" Row et al. dren nodes. In one embodiment, the nodes store data to track

5,181,162 A 1/1993 Smuth et al.

5.212.784 A 5/1993 Sparks protection levels of their children nodes.
5,230,047 A 7/1993 Frey et al.
5,251,206 A 10/1993 Calvignac et al. 14 Claims, 8 Drawing Sheets
700
g
o
X1 i
10 20
/v 750 n
),
o e AN
—_y A 2 4
31 - v 2X: 2 i
04 07 : 46 75
770 T
d e

¥, o , ELTIUR I, 4 /

Xz 2 3X: 1 2X:1

00 | 01 | 08 21 | 24 | 46

oo | AT B wy | o |z

LA 2R 3X 1X 2X 1X

US 8,054,765 B2

Page 2
U.S. PATENT DOCUMENTS 6,618,798 Bl 9/2003 Burton et al.
| 6631411 Bl 10/2003 Welter et al.
gﬂg%gigi gﬁggg Eeggm - 6.658.554 Bl 12/2003 Moshovos et al.
5799305 A /1998 Bortvedt et al. 0,002,184 Bl 1272003 Friedberg
199, . 6.671.686 B2 12/2003 Pardon et al.
5,805,578 A 971998 Stirpe et al. 6.671.704 Bl 12/2003 Gondi et al.
2*282*322 i gﬁggz Eiifgtetal* 6.671.772 Bl 12/2003 Cousins
5822790 A 10/1998 Mehrotra g*ggg*ggg E:“ %ggj g“l’r‘ml
5,862,312 A 1/1999 Mann St ; rey etal
5.870.563 A 2/1999 Roper et al. 0,732,125 Bl 5/2004 Autrey et al,
i . . 6,742,020 Bl 5/2004 Dimitroft et al.
5,878,410 A 3/1999 Zbikowski et al. 6.748.420 Bl 6/2004 Talluri et al.
>,878414 A 3/1999 Hsiao etal 6.801.949 Bl 10/2004 Bruck et al.
5,884,046 A 3/1999 Antonov 6,848,029 B2 1/2005 Coldewey
2*22}% i %ggg ﬁiﬁ;ﬂ Ir. 6.856.591 Bl 2/2005 Ma et al.
5.890,147 A 3/1999 Peltonen et al. g’ggé’igg Ef %882 gll“‘ﬂlnf”l‘ |
5917.998 A 6/1999 Cabrera et al. o7 ackmon et al.
Tonssd A 91000 Ao 6,895,534 B2 52005 Wong et al.
5.043.690 A 8/1999 Dorricott et al. g’ggg’gé}) Eé ggggg %Mff et al.
5963963 A 10/1999 Schmuck et al. £0l70m Bl 75008 B?lrrilsyet .
5.966.707 A 10/1999 Van Huben et al. 6920494 B2 7/2005 Heitman ef al
g%gggg% i i%ggg Iﬁiﬁ“g ol 6,922,696 B1* 7/2005 Lincoln etal. 707/101
6,014,669 A 1/2000 Slaughter et al. g’géi’;gg gé ;gggg E;dlar
934, assa et al.
6021414 A 2/2000 Fuller 6940066 B2 9/2005 Lec
6,029,168 A 2?2000 Frey | 6954435 B2 10/2005 Billhartz et al.
oo A e e etal 6,990,604 B2 1/2006 Binger
6.052,759 A 4/2000 Stallmo et al. g’ggg’gﬂl Ef %882 Eﬁ?jﬁretm
6,055,543 A 4/2000 Christensen et al. 720072097 R1 2/2006 Huffiman et‘al.
2583(5)’?% i g‘gggg Ehﬂal 7017.003 B2 3/2006 Murotani et al.
6081833 A 62000 Okamoto et al. oA o %882 %/Ia“i;y ctal.
6.081.883 A 6/2000 Popelka et al. 060320 Bl 6006 Cf“ am
| ,069, ang et al.
6,108,759 A 8/2000 Orcutt et al. 7.103.597 B2 9/2006 McGoveran
6,117,181 A QZZOOO Dearth et all* 7.111.305 B2 9/2006 Solter et al.
grgéqgg i 135888 Iﬁﬂﬁ e 7.113.938 B2 9/2006 Highleyman et al.
138, * 7.124.264 B2 10/2006 Yamashita
6,154,854 A 11/2000 Stallmo 7.146.524 B2 12/2006 Patel et al.
6,173,374 B1 1/2001 Heil et al. 7.152.182 B2 12/2006 Jiet al.
2’383’823 Er %88* gigfz?;”l* 7.177.295 Bl 2/2007 Sholander et al.
6,219,693 Bl 4/2001 Napolitano et al. }}ﬁ’zg? E.z %882 E‘fﬁy@?&ft al.
6,226,377 Bl 5/2001 Donaghue, Jr. 7"194’487 Bih 17007 Kekre et*al
6279.007 Bl 82001 Uppala 154, ! -
ot _ - PP 7,206,805 Bl 4/2007 McLaughlin, Jr.
6,321,345 Bl 11/2001 Mann 7225204 B2 5/2007 Manley et al.
g%g’;‘ﬂgg Et“ 1%885 El"”“ et al. 7228299 Bl 6/2007 Harmer et al.
9995 . hmat 7.240,235 B2 7/2007 Lewalski-Brechter
g%g’;‘ﬂggg E_z g//ggg% Isai et al*l 7249.118 B2 7/2007 Sandler et al.
303483 BRI 2500 Liﬁlg tezla* 7,257,257 B2 82007 Anderson et al.
993,485 Bl * 7.290,056 Bl 10/2007 McLaughlin, Jr
6,397,311 Bl 5/2002 Capps 7313.614 B2 12/2007 Considine et al.
2’383%2 g_z g//ggg% gﬁfe‘it:tl*al 7318.134 Bl 1/2008 Oliveira et al.
6,415,259 Bl 7/2002 Wolfinger et al. ;:gjg%g Eg %882 %;Elil;n
6,421,781 Bl 7/2002 Fox et al. 7370.064 B2 5/2008 Yousefi’zadeh
g,ﬁg,;gg gi gggg% 542’1 Ift al. 7373426 B2 5/2008 Jinmei et al.
6,453,380 Bl 9/2002 Weinberger et al. ;’ggg’ggg gf ggggg Eﬁ;a; .
6457.139 Bl 9/2002 D’Errico et al. 0066 By 109008 Adkins oo
6463.442 Bl 10/2002 Bent et al. A, | '
403, | 7451341 B2 11/2008 Okaki et al.
6,496,842 Bl 12/2002 Lyness 7.509.448 B2 3/2009 Fachan et al.
gﬂ’;‘gg@% Ei 3@883 Eﬁfgsteﬂ 7.509.524 B2 3/2009 Patel et al.
£205 174 BI 15500 Be;"—?(igsle 7.533,298 B2 5/2009 Smith et al.
002,174 Bl . y 7546354 Bl 6/2009 Fan et al.
2*232*43‘; Er %88; %ﬁé‘mﬂn et al. 7546412 B2 6/2009 Ahmad et al.
6546443 Bl 42003 Kakivaya et al. 7,351,572 B2 6/2009 Passey etal
6540513 B. 4/2003 Chao ef al 7,558,910 B2 7/2009 Alverso_n et al.
655573114 Bi 4/7003 Mann ‘ 7,571,348 B2 8/2009 Deguchi et al.
635673894 Bl 5/2003 Hsu et al. 7,577,258 B2 8/2009 Wisemanetal. 380/281
6.571.244 B1* 5/2003 LAISON ovvevovooeveoesooni 707/753 7,590,652 B2 9/2009 Passey et al.
6,571,349 Bl 5/2003 Mann 7,593,938 B2 9/2009 Lemar et al.
6,574,745 B2 6/2003 Mann 7,596,713 B2 9/2009 Mani-Meitav et al.
6,594,655 B2 7/2003 Tal et al. 7,631,066 Bl 12/2009 Schatz et al.
6,594,660 Bl 7/2003 Berkowitz et al. 7,605,123 Bl 2/2010 Szor et al.
6.594.744 Bl 7/2003 Humlicek et al. 7676.691 B2 3/2010 Fachan et al.
6,598,174 Bl 7/2003 Parks et al. 7,680,836 B2 3/2010 Anderson et al.

US 8,054,765 B2

Page 3
7,680,842 B2 3/2010 Anderson et al. 2004/0117802 Al 6/2004 Green
7,685,126 B2 3/2010 Patel et al. 2004/0133670 Al 7/2004 Kaminsky et al.
7,685,162 B2 3/2010 Heider et al. 2004/0143647 Al 7/2004 Cherkasova
7,689,597 Bl 3/2010 Bingham et al. 2004/0153479 Al 8/2004 Mikesell et al.
7,707,193 B2 4/2010 Zayas et al. 2004/0158549 Al 8/2004 Matena et al.
7,716,262 B2 5/2010 Pallapotu 2004/0174798 Al 9/2004 Riguidel etal. 369/111
7,734,603 Bl 6/2010 McManis 2004/0189682 Al 9/2004 Troyansky et al.
7,739,288 B2 6/2010 Lemar et al. 2004/0199734 Al 10/2004 Rajamani et al.
7,743,033 B2 6/2010 Patel et al. 2004/0199812 Al 10/2004 Earl et al.
7,752,402 B2 7/2010 Fachan et al. 2004/0205141 A1 10/2004 Goland
7,756,898 B2 7/2010 Passey et al. 2004/0230748 Al 11/2004 Ohba
7,779,048 B2 8/2010 Fachan et al. 2004/0240444 Al 12/2004 Matthews et al.
2001/0042224 Al 11/2001 Stanfill et al. 2004/0260673 Al 12/2004 Hitz et al.
2001/0047451 Al 11/2001 Noble et al. 2004/0267747 Al 12/2004 Choi et al.
2001/0056492 Al 12/2001 Bressoud et al. 2005/0010592 Al 1/2005 Guthrie
2002/0010696 Al 1/2002 Izumu 2005/0033778 Al 2/2005 Price
2002/0029200 Al 3/2002 Dulin et al. 2005/0044197 Al 2/2005 Lai
2002/0035668 Al 3/2002 Nakano et al. 2005/0066095 Al 3/2005 Mullick et al.
2002/0038436 Al 3/2002 Suzuki 2005/0114402 Al 5/2005 Guthrie
2002/0049778 Al 4/2002 Bell et al. 2005/0114609 Al 5/2005 Shorb
2002/0055940 Al 5/2002 FElkan 2005/0125456 Al 6/2005 Hara et al.
2002/0072974 Al 6/2002 Pugliese et al. 2005/0131860 Al 6/2005 Livshits
2002/0075870 Al 6/2002 de Azevedo et al. 2005/0131990 Al 6/2005 Jewell
2002/0078161 Al 6/2002 Cheng 2005/0138195 Al 6/2005 Bono
2002/0078180 Al 6/2002 Miyazawa 2005/0138252 Al 6/2005 Gwilt
2002/0083078 Al 6/2002 Pardon et al. 2005/0171960 Al 8/2005 Lomet
2002/0083118 Al 6/2002 Sim 2005/0171962 Al 8/2005 Martin et al.
2002/0087366 Al 7/2002 Collier et al. 2005/0187889 Al 8/2005 Yasoshima
2002/0095438 Al 7/2002 Rusing et al. 2005/0188052 Al 8/2005 Ewanchuk et al.
2002/0107877 Al 8/2002 Whiting et al. 2005/0192993 Al 9/2005 Messinger
2002/0124137 Al 9/2002 Ulrich et al. 2005/0289169 Al 12/2005 Adya et al.
2002/0138559 Al 9/2002 Ulrich et al. 2005/0289188 Al 12/2005 Nettleton et al.
2002/0156840 Al 10/2002 Ulrich et al. 2006/0004760 Al 1/2006 Clift et al.
2002/0156891 Al 10/2002 Ulrich et al. 2006/0041894 Al 2/2006 Cheng
2002/0156973 Al 10/2002 Ulrich et al. 2006/0047713 Al 3/2006 Gornshtein et al.
2002/0156974 Al 10/2002 Ulrich et al. 2006/0047925 Al 3/2006 Perry
2002/0156975 Al 10/2002 Staub et al. 2006/0053263 Al 3/2006 Prahladetal. 711/162
2002/0158900 Al 10/2002 Hsieh et al. 2006/0059467 Al 3/2006 Wong
2002/0161846 Al 10/2002 Ulrich et al. 2006/0074922 Al 4/2006 Nishimura
2002/0161850 Al 10/2002 Ulrich et al. 2006/0083177 Al 4/2006 Iyer et al.
2002/0161973 Al 10/2002 Ulrich et al. 2006/0095438 Al 5/2006 Fachan et al.
2002/0163889 Al 11/2002 Yemum et al. 2006/0101062 Al 5/2006 Godman et al.
2002/0165942 Al 11/2002 Ulrich et al. 2006/0129584 Al 6/2006 Hoang et al.
2002/0166026 Al 11/2002 Ulrich et al. 2006/0129631 Al 6/2006 Na et al.
2002/0166079 Al 11/2002 Ulrich et al. 2006/0129983 Al 6/2006 Feng
2002/0169827 Al 11/2002 Ulrich et al. 2006/0155831 Al 7/2006 Chandrasekaran
2002/0170036 Al 11/2002 Cobb et al. 2006/0206536 Al 9/2006 Sawdon et al.
2002/0174295 Al 11/2002 Ulrich et al. 2006/0230411 Al 10/2006 Richter et al.
2002/0174296 Al 11/2002 Ulrich et al. 2006/0277432 Al 12/2006 Patel
2002/0178162 Al 11/2002 Ulrich et al. 2006/0288161 Al 12/2006 Cavallo
2002/0191311 Al 12/2002 Ulrich et al. 2006/0294589 Al 12/2006 Achanta et al.
2002/0194523 Al 12/2002 Ulrich et al. 2007/0038887 Al 2/2007 Witte et al.
2002/0194526 Al 12/2002 Ulrich et al. 2007/0091790 Al 4/2007 Passey et al.
2002/0198864 Al 12/2002 Ostermann et al. 2007/0094269 Al 4/2007 Mikesell et al.
2003/0005159 Al 1/2003 Kumbhyr 2007/0094277 Al 4/2007 Fachan et al.
2003/0009511 Al 1/2003 Giotta et al. 2007/0094310 Al 4/2007 Passey et al.
2003/0014391 Al 1/2003 Evans et al. 2007/0094431 Al 4/2007 Fachan
2003/0033308 Al 2/2003 Patel et al. 2007/0094449 Al 4/2007 Allison et al.
2003/0061491 Al 3/2003 Jaskiewicz et al. 2007/0094452 Al 4/2007 Fachan
2003/0109253 Al 6/2003 Fenton et al. 2007/0124337 Al 5/2007 Flam
2003/0120863 Al 6/2003 Lee et al. 2007/0168351 Al 7/2007 Fachan
2003/0125852 Al 7/2003 Schade et al. 2007/0171919 Al 7/2007 Godman et al.
2003/0126522 Al 7/2003 Englishetal. 714/718 2007/0192254 Al 8/2007 Hinkle
2003/0131860 Al 7/2003 Ashcraft et al. 2007/0195810 Al 8/2007 Fachan
2003/0135514 Al 7/2003 Patel et al. 2007/0233684 Al 10/2007 Verma et al.
2003/0149750 Al 8/2003 Franzenburg 2007/0233710 A1 10/2007 Passey et al.
2003/0158873 Al 8/2003 Sawdon et al. 2007/0244877 Al 10/2007 Kempka
2003/0161302 Al 8/2003 Zimmermann et al. 2007/0255765 Al 11/2007 Robinson
2003/0163726 Al 8/2003 Kiuddoovvviiieiiiiiinnn, 713/200 2008/0005145 Al 1/2008 Worrall
2003/0172149 Al 9/2003 Edsall et al. 2008/0010507 Al 1/2008 Vingralek
2003/0177308 Al 9/2003 Lewalski-Brechter 2008/0021907 Al 1/2008 Patel et al.
2003/0182312 Al 9/2003 Chen et al. 2008/0031238 Al 2/2008 Harmelin et al.
2003/0182325 Al 9/2003 Manley et al. 2008/0034004 Al 2/2008 Cisler et al.
2003/0233385 A1 12/2003 Srinivasa et al. 2008/0044016 Al 2/2008 Henzinger
2004/0003053 Al 1/2004 Williams 2008/0046432 Al 2/2008 Anderson et al.
2004/0024731 Al 2/2004 Cabrera et al. 2008/0046443 Al 2/2008 Fachan et al.
2004/0024963 Al 2/2004 Talagala et al. 2008/0046444 Al 2/2008 Fachan et al.
2004/0078680 Al 4/2004 Huetal.oooooeii, 714/36 2008/0046445 Al 2/2008 Passey et al.
2004/0078812 Al 4/2004 Calvert 2008/0046475 Al 2/2008 Anderson et al.

US 8,054,765 B2
Page 4

2008/0046476 2/2008 Anderson et al.
2008/0046667 2/2008 Fachan et al.
2008/0059541 3/2008 Fachan et al.
2008/0059734 3/2008 Mizuno
2008/0126365 5/2008 Fachan et al.
2008/0151724 6/2008 Anderson et al.
2008/0154978 6/2008 Lemar et al.
2008/0155191 6/2008 Anderson et al.
2008/0168304 7/2008 Flynn et al.
2008/0168458 7/2008 Fachan et al.
2008/0243773 10/2008 Patel et al.
2008/0256103 10/2008 Fachan et al.
2008/0256537 10/2008 Fachan et al.
2008/0256545 10/2008 Fachan et al.
2008/0294611 11/2008 Anglin et al.
2009/0055399 2/2009 Lu et al.
2009/0055604 2/2009 Lemar et al.
2009/0055607 2/2009 Schack et al.
2009/0125563 5/2009 Wong et al.
2009/0210880 8/2009 Fachan et al.
2009/0248756 10/2009 Akidau et al.
2009/0248765 10/2009 Akidau et al.
2009/0248975 10/2009 Daud et al.

10/2009 Daud et al.
12/2009 Passey et al.

2009/0249013
2009/0327218

A S ANAAAAAANAAAAAAA AN A A AN AN AN AN A A

2010/0011011 1/2010 Lemar et al.
2010/0122057 5/2010 Strumpen et al.
2010/0161556 6/2010 Anderson et al.
2010/0161557 6/2010 Anderson et al.
2010/0185592 7/2010 Kryger
2010/0223235 9/2010 Fachan
2010/0235413 9/2010 Patel
2010/0241632 9/2010 Lemar et al.
2010/0306786 12/2010 Passey
2011/0016353 1/2011 Mikesell et al.
2011/0022790 1/2011 Fachan
2011/0035412 2/2011 Fachan
2011/0044209 2/2011 Fachan
2011/0060779 3/2011 Lemar et al.

FOREIGN PATENT DOCUMENTS

EP 1421520 5/2004
EP 1563411 8/2005
EP 2284735 2/2011
EP 2299375 3/2011
JP 04096841 3/1992
JP 2006-506741 6/2004
JP 4464279 5/2010
JP 4504677 7/2010
WO WO 94/29796 12/1994
WO WO 00/57315 9/2000
WO WO 01/14991 3/2001
WO WO 01/33829 5/2001
WO WO 02/061737 8/2002
WO WO 03/012699 2/2003
WO WO 2004/046971 6/2004
WO WO 2008/021527 2/2008
WO WO 2008/021528 2/2008
WO WO 2008/127947 10/2008

OTHER PUBLICATTONS

Apr. 20, 2004 Int’l Search report PCT/US03/36699, 10 pages.

Aug. 6, 2004 Int’l Search report PCT/US03/33704, 11 pages.

May 21, 2007 European Search Report EP 02756944.1-2201, 8
pages.

Feb. 22, 2008 Int’] Search report PCT/US07/018326, 20 pages.
May 8, 2008 Int’l Search report PCT/US07/018324, 13 pages.
Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman,
Concurrency Control and Recovery in Database Systems, Addison-
Wesley, 370 pages, 1987.

Kenneth P. Birman, Building Secure and Reliable Network Applica-
tions, Manning, 1996, pp. 1-327.

Kenneth P. Birman, Building Secure and Reliable Network Applica-
tions, Manning, 1996, pp. 328-619.

Birk, Y., Deterministic load-balancing schemes for disk-based video-
on-demand storage servers, Mass Storage Systems 1995; Storage—
At the Forefront of Information Infrastructures’, Proceedings of the

Fourteenth IEEE Symposium on Monterey, CA, Sep. 11-14, 1995,

pp. 17-25.

Coulouris etal., Distributed Systems Concepts and Design; Addison-
Wesley, Second Edition, 1994, pp. 353-371 and 377-405.

Jim Gray and Andreas Reuter, Transaction Processing: Concepts and
Techniques, Morgan Kaufmann, 1993, pp. 1-328.

Jim Gray and Andreas Reuter, Transaction Processing: Concepts and
Techniques, Morgan Kaufmann, 1993, pp. 329-664.

Jim Gray and Andreas Reuter, Transaction Processing: Concepts and
Techniques, Morgan Kaufmann, 1993, pp. 665-1105.

Kumar, Akhil, “An analysis of borrowing policies for escrow trans-
actions 1n a replicated data environment™, Institute of Electrical and
Electronics Engineers; Proceedings of the International Conference
on Data Engineering, Los Angeles, Feb. 5-9, 1990; Los Alamitos,
IEEE, Comp. Soc. Press, US. vol. Cont. 6, Feb. 5, 1990, pp. 446-454,
XPO10018185 ISBN: 978-0-8186-2025-6 p. 446, left-hand column,
line 1-p. 447, last line.

Nancy A. Lynch, Distributed Algorithms, Morgan Kautmann, 1996,
pp. 1-409.

Nancy A. Lynch, Distributed Algorithms, Morgan Kaufmann, 1996
pp. 410-871.

Sape Mullender, editor, Distributed Systems (2nd Ed.), ACM Press/
Addison-Wesley Publishing Co., New York, NY, USA, 1993, pp.
1-327.

Sape Mullender, editor, Distributed Systems (2nd Ed.), ACM Press/
Addison-Wesley Publishing Co., New York, NY, USA, 1993, pp.
328-604.

Gibson, Garth A. et al., The Scotch Parallel Storage System, IEEE,
1995, pp. 403-410.

Gerhard Weitkum, et al., Transactional Information Systems: Theory,
Algorithms, and the Practice of Concurrency Control and Recovery,
Morgan Kaufmann, 2002, pp. 1-450.

Gerhard Weilkum, et al., Transactional Information Systems: Theory,
Algorithms, and the Practice of Concurrency Control and Recovery,
Morgan Kaufmann, 2002, pp. 451-863.

Sanjay Ghemawat et al., The Google File System, Symposium on
Operating Systems Principles, Oct. 19-22, 2003, 15 pages, Bolton
Landing, NY.

Pe1 Cao et al., The TickerTAIP parallel RAID architecture, 1993, 12
pages, Princeton, NJ.

Pe1 Cao et al., The TickerTAIP parallel RAID architecture, ACM
Transactions on Computer Systems, vol. 12, No. 3, Aug. 1994, 34
pages, Palto Alto, California.

Duzett, Bob et al., An Overview of the nCube 3 Supercomputer, IEEE,
Jul. 1992, pp. 458-464.

Hartman, John Henry, The Zebra Striped Network File System, (Sc.B.
(Brown University) 1987, pp. 1-148.

Long, Darrell D.E., et al., Swift/RAID: A Distributed RAID System,

Computing Systems, vol. 7, No. 3 Summer 1994, pp. 333-359.
Stallings, William, Operating Systems, Prentice Hall, Fourth Edition;
2001, pp. 197-253 and 265-293.

Michael Stonebraker et al., Distributed Raid: A New Multiple Copy
Algorithm, Proc. Sixth Int. Conf. Data Eng., IEEE Service Center,
Piscataway, NJ (IEEE cat No. 90CH2840-7), pp. 430-437, Feb. 5,
1990.

United States Court of Appeals, Federal Circuit, Seachange Interna-
tional, Inc. vs. nCUBE, Corp., Oct. 26, 2004, 28 pages.

United States Court of Appeals, Federal Circuit, Seachange Interna-
tional, Inc. vs. C-Corp, Inc., Jun. 29, 2005, 22 pages.

United States District Court, Delaware, Seachange International,
Inc. vs. nCUBE, Corp., Apr. 7, 2004, 13 pages.

United States District Court, Delaware, Seachange International,
Inc. vs. nCUBE, Corp., Aug. 29, 2000, 12 pages.

Steven M. Bauer, Letter to Steve Goldman, Jul. 31, 2006 (including
the first page of the patents), 8 pages.

Arthur S. Rose, Letter to Steven M. Bauer, Aug. 7, 2006, 2 pages.
Steven M. Bauer, Letter to Arthur S. Rose, Sep. 25, 20006, 2 pages.
Steven M. Bauer, Letter to Arthur S. Rose, Oct. 31, 2006, 1 page.
Arthur S. Rose, Letter to Steven M. Bauer, Nov. 9, 2006, 2 pages.
Steven M. Bauer, Letter to Arthur S. Rose, Feb. 6, 2007, 2 pages.
Arthur S. Rose, Letter to Steven M. Bauer, Feb. 23, 2007, 1 page.
Steven M. Bauer, Letter to Arthur S. Rose, Jun. 7, 2007(1including

claim chart), 28 pages.

US 8,054,765 B2
Page 5

Arthur S. Rose, Letter to Steven M. Bauer, Jun. 22, 2007, 1 page.
Todd A. Gerety, Letter to Arthur S. Rose, Jun. 26, 2007 (exhibits

listed separately below), 1 page.

Isilon Systems, “Istlon IQ Plateform Overview”, 4 pages, 2007
(Exhibit A).

Isilon Systems, “Uncompromising Reliability through Clustered
Storage”, Sep. 2006, 10 pages (Exhibit B).

Byteandswitch, “Discovery Chooses Isilon,” Apr. 23, 2007, 1 page
(Exhibit C).

Taneja Group Technology Analysts, “The Power of InfiniBand and
Clustered Storage”, Dec. 2005, 8 pages (Exhibit E).

Arthur S. Rose, Letter to Steven M. Bauer, Aug. 31, 2007, 4 pages.
Ramez Elmasri, Fundamentals of Database Systems 3rd ed, Sep. 30,
1999, Addison-Wesley, pp. 155, 169, 171, 172, 173, 178, 181, 182,
381, 771.

MCSA/MSCE/MCDBA Self Paced Traimning Kit: MS SQL Server
2000 System Admunistration, May 14, 2003, Microsoft Press, Second
Edition, 12 pages.

Supp EPO Search Report, App. No. EP 03 78 3599, dated Apr. 29,
2008, 2 pages.

Levy E., Ed.—Institute of Electrical and FElectronics Engineers:
“Incremental restart (database management)” Proc. Int. Conf. Data
Eng., Kobe, JP, Apr. 8-12, 1991; IEEE Comp. Soc. Press, U.S., vol.
Cont. 7, Apr. 8, 1991, pp. 640-648.

Haerder T et al: “Principles of Transaction-Oriented Database
Recovery” ACM Computing Surveys, ACM, New York, NY, US, vol.
15, No. 4, Dec. 1, 1983, pp. 287-317.

Gray J et al: “Transaction processing: concepts and techniques
(excerpt), Passage” Transaction Processing: Concepts and Tech-
niques, Jan. 1, 1993, pp. 373-445.

Garcia-Molina H et al: “Database System Implementation, passage”
Database System Implementation, Jan. 1, 2000, pp. I-V, 423-509.
Wedde H. F., et al.: “A universal framework for managing metadata in
the distributed Dragon Slayer System”, Proceedings of the
Euromicro Conference. Euromicro. Informatics: Inventing the
Future, Proceedings of Euromicro Workshop on Multimedia and
Telecommunications, vol. 2, Sep. 5, 2000, pp. 96-101.

Tanenbaum, Andrew S., Minix Operating System, Japan, Apr. 21,
1989, 1st Edition, pp. 328, 505; Also attached 1s what Applicant
believes 1s the English language version: Tanenbaum, Andrew S.,
Operating Systems: Design and Implementation, Prentice-Hall,
1987, pp. 279, 347, 348.

Yamashita, Hirofumi, et al., “Development of RAID Filesystem
VAFS/HR,” The Special Interest Group Notes of IPSJ, Japan, Infor-
mation Processing Society of Japan, Sep. 16, 1994, vol. 94, No. 80, p.
9-16.

Oct. 8, 2008 European Supplemental Search Report EP 02 75 6944,
O pages.

Jan. 23, 2009 Examination Report EP 02 75 6944, 5 pages.

May 18, 2009 Int’l Search report PCT/US08/059798, 18 pages.
Oct. 22, 2009 Int’]l Preliminary Report on Patentability PCT/US08/
059798, 10 pages.

Keidar, et al.: Increasing the Resilience of Distributed and Replicated
Database Systems (1998) pp. 1-25.

Lougher P. et al., *“Scalable storage servers for digital audio and
video,” International Conference on Storage and Recording Systems,
1994, Keele, UK, Jan. 1, 1994, pp. 140-143.

Reddy, P. Krishna et al., Reducing the blocking in two phase commut
with backup sites Apr. 15, 2003, Elsevier, pp. 39-47.

IOS Commands, Feb. 6th, 2005, Pantz.org, [online], <web.archive.
org/web/20050206184604/http://pantz.org/os/10s/10scommands.
shtml>, pp. 1-12 as printed.

IP Forwarding with Cisco Routers Lab Exercises, Jun. 15th, 1999
[online], <ws.edu.1soc.org/datal999/1481713642400at6a2de65a/

ip__twd_ cisco__config.ppt>, pp. 1-11 as printed.

Hisayuki Aoki, Parallel Filesystem MEFES, IPSJ SIG Technical
Reports, Japan, Information Processing Society of Japan, Aug. 26,
1996, vol. 96, No. 79, pp. 31 to 36 (stamped Citation 1 / English
Translation attached) total 23 pages.

Yoshitake Shinkai, Cluster File System: HAMES, Fujitsu, Japan,
Fujitsu Limited, Jul. 9, 1999, vol. 50, No. 4, pp. 210 to 214 (stamped
Citation 2 / English Translation attached) total 16 pages.

Jul. 28, 2008 Non-Final Rejection in U.S. Appl. No. 11/256,310, filed
Jan. 30, 2006.

Nov. 14, 2008 Non-Final Rejection in U.S. Appl. No. 11/256,310,
filed Jan. 30, 2006.

Dec. 16, 2008 Response to Nov. 14, 2008 Non-Final Rejection 1n
U.S. Appl. No. 11/256,310, filed Jan. 30, 2006.

Mar. 23, 2009 Notice of Allowance in U.S. Appl. No. 11/256,310,
filed Jan. 30, 2006.

Jim Gray and Andreas Reuter, Transaction Processing: Concepts and
Techniques, Morgan Kaufmann, 1993, pp. 1-328.

Jim Gray and Andreas Reuter, Transaction Processing: Concepts and
Techniques, Morgan Kaufmann, 1993, pp. 329-664.

Jim Gray and Andreas Reuter, Transaction Processing: Concepts and
Techniques, Morgan Kaufmann, 1993, pp. 665-1105.

Sape Mullender, editor, Distributed Systems (2nd Ed.), ACM Press/
Addison-Wesley Publishing Co., New York, NY, USA, 1993, pp.
1-327.

Sape Mullender, editor, Distributed Systems (2nd Ed.), ACM Press/
Addison-Wesley Publishing Co., New York, NY, USA, 1993, pp.
328-604,

Gerhard Weitkum, et al., Transactional Information Systems: Theory,
Algorithms, and the Practice of Concurrency Control and Recovery,
Morgan Kaufmann, 2002, pp. 1-450.

Gerhard Weilkum, et al., Transactional Information Systems: Theory,
Algorithms, and the Practice of Concurrency Control and Recovery,
Morgan Kaufmann, 2002, pp. 451-863.

Lougher P. et al., “Scalable storage servers for digital audio and
video,” International Conference on Storage and Recording Systems,
1994, Keele, UK, Jan. 1, 1994, pp. 140-143.

Reddy, P. Krishna et al., Reducing the blocking in two phase commut
with backup sites Apr. 15, 2003, Elsevier, pp. 39-47.

IOS Commands, Feb. 6th, 2005, Pantz.org, [online], <web.archive.
org/web/20050206 184604/ http://pantz.org/os/10s/10scommands.
shtml>, 12 pages.

IP Forwarding with Cisco Routers Lab Exercises, Jun. 15th, 1999
[online], <ws.edu.1soc.org/datal999/1481713642400at6a2de65a/
ip__ftwd__cisco__config.ppt>, 11 pages.

Hisayuki Aoki, Parallel Filesystem MES, IPSJ SIG Technical
Reports, Japan, Information Processing Society of Japan, Aug. 26,
1996, vol. 96, No. 79, pp. 31 to 36 (stamped Citation 1 / English
Translation attached, 23 pages).

Yoshitake Shinkai, Cluster File System: HAMES, Fujitsu, Japan,
Fujitsu Limited, Jul. 9, 1999, vol. 50, No. 4, pp. 210 to 214 (stamped
Citation 2 / English Translation attached, 16 pages).

Duchamp, Dan: “Analysis of Transaction Management Perfor-

mance”, ACM Symposium on Operating Systems Principles, Dec.
1989, pp. 177-190.

Silaghi, Raul et al.: “Porting OMTTs to CORBA”, Lecture Notes In
Computer Science, vol. 2888/2003, Nov. 2003, pp. 1521-1542.
Dorai et al.:, “Transport Threads: Resource Sharing in SMT Proces-
sor for High Single-Thread Performance”, proceedings of the 2002
International Conference on Parallel Architectures and Complication
Techniques, Sep. 2002, 12 pages.

Peterson, Zachary Nathaniel Joseph, “Data Placement for Copy-On-
Write Using Virtual Contiguity,” Master of Science in Computer
Science Thesis, University of California, Santa Cruz, Sep. 2002, 67

pages.

* cited by examiner

U.S. Patent Nov. 8, 2011 Sheet 1 of 8 US 8,054,765 B2

150

130 140

170
v [

/ 180 190

l 2X: 1 2X:2

FIGURE 1A

U.S. Patent

Nov. 8, 2011

Sheet 2 of 8

FIGURE 1B

US 8,054,765 B2

150

2X
3X:1

[/,f 170

[

h 4
x|
2X:1
1X:1
//,~ 180 190
- |
2X | 2X
2X:1 ' 2X:5
1X:10

U.S. Patent

Sheet 3 of 8

Nov. 8, 2011

US 8,054,765 B2

MP_COUNT ZERO?

YES

l DETERMINE MAXIMUM PROTECTION OF NODE’S ITEMS

: 225

R

DETERMINE NUMBER OF ITEMS AT THE MAXIMUM
PROTECTION

fzw l
|

235

YES
CURRENT PROTECTION=

MAXIMUM PROTECTION?

NO

SET CURRENT PROTECTION TO MAXIMUM PROTECTION

/ 240

=
__ o E—

/ 245

SET COUNT TO NUMBER OF ITEMS AT THE MAXIMUM

PROTECTION

250
YES

MODIFY PROTECTION LEVEL OF PARENT NODE
(FIGURE 3)

U.S. Patent Nov. 8, 2011 Sheet 4 of 8 US 8,054,765 B2

/ 300

[310
START
— : 315

el el iy - P T b,

|‘ RECEIVE NODE, ITEM; AND NEW PROTECTION

ITEM'S PROTECTION ==
MAXIMUM PROTECTION?

NEW PROTECTION==
MAXIMUM PROTECTION?

[335

INCREMENT NODE’S COUNT

/ 340
NO

NEW PROTECTION >
MAXIMUM PROTECTION?

345
YES /

' SET MAXIMUM PROTECTION TO NEW PROTECTION

l K 350

SET NODE’S COUNT TO 1

. T T [

il L . S .
T T

355

CHECK NODE
(FIGURE 2)

360

END
FIGURE 3

U.S. Patent Nov. 8, 2011 Sheet 5 of 8 US 8,054,765 B2

400

/ K 410
START
: 415

RECEIVE NODE AND ITEM

ITEM’S PROTECTION =
MAXIMUM PROTECTION?

INCREMENT NODE'’S COUNT |

NO ITEM’S PROTECTION >
MAXIMUM PROTECTION?
/ 435
SET MAXIMUM TO ITEM’S PROTECTION
L . — i
I / 440
F SET COUNT TO |

445

CHECK NODE
(FIGURE 2)

450

FIGURE 4

U.S. Patent Nov. 8, 2011 Sheet 6 of 8 US 8,054,765 B2

.

ITEM’S PROTECTION ==
MAXIMUM PROTECTION?

540

YES

CHECK NODE
(FIGURE 2)

545

Q

FIGURE 5

US 8,054,765 B2

Sheet 7 of 8

!

Nov. 8, 2011

U.S. Patent

09 H

N HOIAHA HOVIOLS

g 2INS1,]

C HOIAHA HOVHOLS

00S SSHOOAd A1dTdd
00 SSHO0dd AV

00t S5d00dd AJIAOWN
00C 55H00dd A0HH)
HIIJOW NOILLOHILOYd

[HDIAEA FOVIOLS _

b
09 H

WALSAS NOLLOALOWd

U.S. Patent

Nov. 8, 2011

Sheet 8 of 8

Data

US 8,054,765 B2

B | YYY
3X | 1X

FIGURE 7

Data

217 |

1X

US 8,054,765 B2

1

SYSTEMS AND METHODS FOR PROVIDING
VARIABLE PROTECTION

REFERENCE TO RELATED APPLICATTONS

This application 1s a continuation of and claims benefit of
priority under 35 U.S.C. §120 to U.S. patent application Ser.
No. 11/256,410 now U.S. Pat. No. 7,551,572, filed Oct. 21,
2005, entitled “SYSTEMS AND METHODS FOR PROVID-
ING VARIABLE PROTECTION,” which 1s hereby incorpo-
rated by reference herein 1n 1ts entirety. The present disclo-

sure relates to U.S. patent application Ser. No. 11/255,817,
titled “SYSTEMS AND METHODS FOR DISTRIBUTED

SYSTEM SCANNING,” U.S. patent application Ser. No.
11/255,346, titled “SYSTEMS AND METHODS FOR
MANAGING CONCURRENT ACCESS REQUESTSTO A
SHARED RESOURCE,” U.S. patent application Ser. No.
11/255,818, titled “SYSTEMS AND METHODS FOR
MAINTAINING DISTRIBUTED DATA,” U.S. patent appli-
cation Ser. No. 11/256,317, titled “SYSTEMS AND METH-
ODS FOR USING EXCITEMENT VALUES TO PREDICT
FUTURE ACCESS TO RESOURCES,” and U.S. patent
application Ser. No. 11/255,337 titled “SYSTEMS AND
METHODS FOR ACCESSING AND UPDATING DIS-
TRIBUTED DATA.” each filed on Oct. 21, 2005 and each

hereby incorporated by reference herein in their entirety.

FIELD OF THE INVENTION

This invention relates to systems and methods for provid-
ing protection within a data structure where the objects of the
data structure have different protection requirements.

BACKGROUND

Various protection techniques may be used to protect data.
These techniques may 1nclude, for example, error correction,
redundancy, and mirroring so that if one set of the data 1s not
inaccessible, the data can be recovered. It 1s often difficult to
determine what level of protection 1s required for the data.

SUMMARY

Systems and methods are disclosed that determine what
level of protection 1s required for a data structure where the
objects of the data structure have diflerent protection require-
ments. In one embodiment, the data structure is protected by
protecting objects of the data structure at the same or greater
protection level as their children. In another embodiment, the
objects store data to track the protection requirements of their
chiuldren.

In one embodiment, a method 1s provided that protects data
of vaniable protection levels. The method may include, for
cach leal node, determining a protection level for the leaf
node; for each non-leaf node, determining a protection level
for each non-leat node based on a maximum of the protection
levels of each child of each of the non-leaf nodes; protecting
cach of the leaf nodes at the protection level determined for
cach of the leal nodes; and protecting each of the non-leaf
nodes at the protection level determined for each of the non-
leal nodes.

In another embodiment, a protection system 1s provided for
protecting data of variable protection levels. The system may
include a set protection level module configured to determine
protection levels for each of a set of leal nodes and determine
protection levels for each of a set of non-leaf nodes based on
a maximum of the protection levels of children of each of the

10

15

20

25

30

35

40

45

50

55

60

65

2

non-leat nodes; and an implement protection level module, 1n
communication with the set protection level module, config-
ured to protect each leal node at the determined protection
level and protect each non-leaf node at the determined pro-
tection level.

In another embodiment, a method 1s provided that updates
data of variable protection levels. The method may include
determining a maximum protection level of an updated leaf
node, wherein the updated leal node comprises a plurality of
data sets; protecting the updated leal node at the maximum
protection level; determining a count of data sets that are at
the maximum protection level; and for each ascendant of the
updated leal node, determining a maximum protection level
of each ascendant, determiming a count of children of each
ascendant that are at the maximum protection level, and pro-
tecting each ascendant at the maximum protection level.

In another embodiment, a system 1s provided for updating,
data stored using variable protection levels. The system may
include an update leal module configured to determine a
maximum protection level of an updated leaf node, wherein
the updated leal node comprises a plurality of data sets, and
protect the updated leaf node at the maximum protection
level; an update non-leal module in communication with the
update leal module, the update non-leal module configured
to, for each ascendant of the updated leal node, determine a
maximum protection level of each ascendant and protect each
ascendant at a protection level greater than or equal to the
maximum protection level.

For purposes of summarizing this invention, certain
aspects, advantages and novel features of the invention have
been described herein. It 1s to be understood that not neces-
sarily all such advantages may be achieved in accordance
with any particular embodiment of the invention. Thus, the
invention may be embodied or carried out in a manner that
achieves or optimizes one advantage or group of advantages
as taught herein without necessarily achieving other advan-
tages as may be taught or suggested herein.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A illustrates one embodiment of a high-level block
diagram of one embodiment of a mirrored tree.

FIG. 1B illustrates another embodiment of a high-level
block diagram of one embodiment of a mirrored tree.

FIG. 21llustrates one embodiment of a flow chart of a check
protection information process.

FIG. 3 illustrates one embodiment of a flow chart of an add
node process.

FIG. 4 1illustrates one embodiment of a flow chart of a
delete node process.

FIG. 5 1illustrates one embodiment of a flow chart of a
modify node process.

FIG. 6 illustrates one embodiment of a protection system.

FIG. 7 illustrates one embodiment of a high-level block
diagram of one embodiment of a mirrored index tree.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

Systems and methods which represent one embodiment
and example application of the mvention will now be
described with reference to the drawings. Variations to the
systems and methods which represent other embodiments
will also be described.

For purposes of illustration, some embodiments will be
described in the context of a tree and example environments
in which the tree may be used will also be described. The

US 8,054,765 B2

3

inventors contemplate that the present invention 1s not limited
by the type of environment 1n which the systems and methods
are used, and that the systems and methods may be used 1n
various environments. It 1s also recognized that in other
embodiments, the systems and methods may be implemented
as a single module and/or implemented 1n conjunction with a
variety of other modules and the like. Moreover, the specific
implementations described herein are set forth 1 order to
illustrate, and not to limit, the imvention. The scope of the
invention 1s defined by the appended claims.

These and other features will now be described with refer-
ence to the drawings summarized above. The drawings and
the associated descriptions are provided to illustrate embodi-
ments of the invention and not to limit the scope of the
invention. Throughout the drawings, reference numbers may
be re-used to indicate correspondence between referenced
clements. In addition, the first digit of each reference number
generally indicates the figure in which the element first

appears.
I. Overview

The systems and methods of the present invention provide
protection for data structures with nodes of various protection
levels. In one embodiment, data 1s stored 1n a tree where nodes
without children are referred to as leat nodes and the top node
of the tree 1s referred to as a root node. Nodes of the tree may
be protected at various protection levels. In one embodiment,
the various protection levels represent the number of mirrored
copies of the nodes.

In some embodiments, the nodes have at least the maxi-
mum protection level as their children. Accordingly, when a
modification 1s made to one node 1n a tree, the protection level
of that node and its ancestors (e.g., parent node, grandparent
node, etc.) are checked to determine whether their protection
levels need to be updated. For example, when a node 1s added
the tree, the protection level for that node 1s determined, the
appropriate number of copies of the node are created, and the
node’s ancestors are checked to determine whether their pro-
tection levels need to be updated. When anode 1s deleted from
the tree, the node’s ascendants are checked to determine
whether their protection levels need to be updated.

II. Mirrored Tree
A. Example Mirrored Tree

FIG. 1A illustrates an example mirrored tree 100 that
includes nine nodes 110, 120, 130, 140, 150, 160, 170, 180,

190. Node 110 1s the root node, and nodes 130, 140, 160, 180,
190 are leal nodes (because they have no children). Root node
110, node 120, and node 160 are mirrored five times (e.g.,
5x); node 150 and node 170 are mirrored three times (e.g.,
3x);node 130, node 180, and node 190 are mirrored two times
(e.g., 2x); and node 140 1s mirrored one time (e.g., 1x). In one
embodiment, mirrored copies of a node are distributed and
stored among a set of devices.

In accordance with one embodiment, each node 1s at a
protection level at least the maximum protection level of 1s
children. For example, node 170 has two children, both with
protection level 2x 180. Thus, the maximum protection level
of the children of root node 170 1s 2x. Accordingly, node 170
1s protected at protection level 2x which 1s at least the maxi-
mum protection level of 1ts children. As another example, root
node 110 has four children, one with protection level 5x 120,
one with protection level 3x 150, one with protection level 2x
130, and one with protection level 1x 140. Thus, the maxi-
mum protection level of the children of root node 110 chail-
dren 1s 5x. Accordingly, root node 110 1s protected at protec-
tion level Sx which 1s at least the maximum protection level of
its children.

10

15

20

25

30

35

40

45

50

55

60

65

4

B. Protection Level Data

In one embodiment, the different protection levels are man-
aged using protection level information. Protection level
information may include, for example, the protection level of
anode’s children, the maximum protection level of the node’s
children, the count of children at each protection level, the
count of the children with the maximum protection level,
protection levels of data entries, the count of data entries at
one or more protection levels, and so forth. In FIG. 1A, the
protection level information includes the maximum protec-
tion level of the node’s children followed by the count of the
children with the maximum protection level as follows:

[maximum protection level]:[count of children with
the maximum protection level]

For example, the protection level information for the root
node 170 1s: 5x:1 idicating that the maximum protection
level of the root node’s children 1s 5x and the number of
chuldren at that protection level 1s 1. As another example, the
protection level information for the node 170 1s: 2x:2 1ndi-
cating that the maximum protection level of the root node’s
children 1s 2x and the number of children at that protection
level 1s 2. In FIG. 1A, the leaf nodes provide the maximum
protection level of their data entries and the number of data
entries at that protection level.

A varnety of protection level information may be used. For
example, FIG. 1B illustrates the same tree 100 wherein dii-
ferent protection level information 1s stored. In FIG. 1B, the
protection level information includes protection level of the
node, the protection levels used by the children, and the count
of the children with the each of the protection levels.

For example, the protection level information for the root
node 170 includes: 5x indicating that the root node 110 1s
stored at 5x; 5x:1 indicating that one of the root node’s
chuldren 1s stored at the protection level 5x; 3x:1 indicating
that one of the root node’s children 1s stored at the protection
level 3x; 2x:1 indicating that one of the root node’s children
1s stored at the protection level 2x; and 1x:1 indicating that
one of the root node’s children 1s stored at the protection level
Sx. As another example, the protection level information for
the node 170 includes: 2x indicating that node 170 1s stored at
protection level 2x; 2x:2 indicating that two of the root node’s
children are stored at protection level 2x. From this informa-
tion, the total number of children may be determined by
summing the counts. Similarly, protection information for the
leat nodes includes the protection levels of the data entries as
well as the number of data entries at that protection level. In
the example, the leal nodes may store multiple data entries,
though it 1s recognized that in other embodiments, the leaf
nodes may store one data entry or a fixed number of data

entries.
C. Nodes

1. Leaf Nodes

The protection level of the leal nodes may be predeter-
mined, may be set for each leaf node, and/or may be set for a
subset of leal nodes. In addition, a minimum protection level
of the leal nodes may also be set. In one embodiment, where
the leat nodes store data, the protection level may be deter-
mined by using the protection level of the data stored 1n or
referenced by the leat node. For example, 1n one embodiment,
it leat node 180 includes two sets of data, Data A and Data B,
the protection level of leal node 180 1s MAX (Data A, Data
B).

In one embodiment, the protection level information for
the leal node indicates the maximum protection level of the
data stored 1n or referenced by the leat node. In other embodi-
ments, the protection level information for the leat node 1ndi-

US 8,054,765 B2

S

cates the protection level of the leal node, such as in FIGS. 1A
and 1B. In other embodiments, the protection level informa-

tion for the leat node 1s NULL.

2. Non-Leaf Nodes

In order to preserve the protection of the data sets, non-leaf >
nodes are protected at a level at least that of the maximum
protection level of the children of the non-leaf nodes. For
example, the protection level of root node 110 1s MAX(Node

120, Node 130, Node 140, Node 150)=MAX(5x, 2x, 1x,
3x)=5x%. The protection level of node 120 1s MAX(Node
160)=MAX(5x)=5x. The protection level of node 150 1s
MAX(Node 170)=MAX(3x)=3x. The protection level of
node 170 1s MAX(Node 180, Node 190)=MAX(2x, 2x)=2x.

In one embodiment, the protection level information for
the non-leal nodes may include the protection level of a
node’s children, the maximum protection level of the node’s
chuldren, the count of children at each protection level, the
count of the children with the maximum protection level, and
so forth. It 1s recognized that a variety of protection level 3¢
information could be used. For example, the protection level
information could include the maximum protection level
without any counts.

It 1s recognized that in other embodiments, the tree may
track other protection information 1 addition to the maxi- 25
mum protection level and the maximum protection level
count. For example, the tree may also track information about
the protection levels of each of the node’s children 1n addition
to or instead of the maximum protection level and keep a
count of the number of children at each protection level. In
other embodiments, the tree may also store information about
a subset of the protection levels and counts related to those
protection levels.

D. Various Embodiments 15

It 1s recognized that a variety of embodiments may be used
to implement a data structure with variable protection and that
the example provided herein are meant to 1llustrate and not
limit the scope of the invention.

1. Data Structures 40

While the examples discuss the data as being stored 1n a
tree, 1t 1s recognized that a variety of data structures known to
those of ordinary skill in the art may be used to organize the
data including, for example, balanced trees, binary trees,
other trees, graphs, linked lists, heaps, stacks, and so forth. 45

2. Protection Techmiques

In one embodiment, data may be protected using a variety
of protection schemes, such as, error correction, redundancy,
and so forth. The examples discussed below illustrate an
embodiment 1n which the tree 1s protected using mirroring, 50
though it 1s recognized that other protection technmiques may
be used.

While some mirrored trees may be implemented such that
the entire tree 1s always mirrored the same number of times
(¢.g., all of the nodes are mirrored two times; all of the nodes 55
are mirrored five times, etc.), such an implementation often
requires storing extra, unnecessary copies of nodes. Thus, the
systems and methods described herein allow different nodes
of the tree to be stored using different protection levels while
maintaining the protection levels of descendant nodes. In 60
addition, nodes that do not need any protection do not have to
use any protection level.

It 1s recognized that a combination of techniques may be
used to implement the tree. For example, the tree may require
that every node 1s mirrored at least two times but that addi- 65
tional mirroring may be implemented to protect nodes that
have children that are mirrored more than two times.

10

15

30

6

I11. Operations

Operations for checking the protection information, modi-
tying protection information, adding an i1tem, and removing
an 1tem are set forth below. It 1s recognized that examples
below provide various embodiments of the processes and that
other embodiments may be used.

A. Check Protection Information of a Node

To check the protection information of a node of a mirrored

tree, a node 1s received and the maximum protection count 1s
determined. If the maximum protection count for the node 1s
zero, then the maximum protection level of the node’s items
are determined, and the count 1s updated to reflect the number
of 1tems at that protection level. In one embodiment, items for
non-leaf nodes are 1ts children nodes, and items for leat nodes
are the data entries 1n the leaf node.

One example set of pseudocode to check, and 11 necessary,
update the protection information of a node 1s as follows:

fixup_ node(node) {
if (node.mp__count == 0) {
node.max_ protection = MAX(items’ protections)
node.mp_ count = count(items at max protection)

h

if (node.current_ protection != node.max_ protection) {
set__mirror_ count{node, node.max_ protection)
node.current_ protection = node.max__protection
if (node != root)
modify__item_ protection(get_ parent(node), &node,
node.max__protection);

FIG. 2 illustrates one embodiment of a check process 200.
Beginming at a start state 210, the check process 200 proceeds
to the next block 215. In block 215, the check process 200
receives a node. It 1s recognized that in some embodiment the
check process 200 may receirve a reference to the node, infor-
mation from the node, a pointer to the node, and so forth.
Proceeding to block 220, the check process 200 determines
whether the node’s count of maximum protection items 1s
zero. I not, then the check process 200 proceeds to block 235.
If so, then the check process 200 determines the maximum
protection of the node’s items 223 and the number of items at
that maximum protection 230.

Proceeding to the next block 235, the check process 200
determines whether the current protection of the node 1s the
same as the maximum protection. I so, then the check pro-
cess 200 proceeds to an end state 260. I1 not, then the check
process 200 sets the current protection of the node to the
maximum protection 240 and sets the current maximum
count to the count of the number of 1tems at that maximum
protection 245, and proceeds to block 2350.

In block 2350, the check process 200 determines whether
the current node 1s the root. If so, the check process 200
proceeds to the end state 260. I1 not, then the check process
200 calls the modity process to modily the protection infor-
mation of the node’s parent using the node and the new
maximum protection and proceeds to the end state 260.

B. Moditying Protection Information of an Item

To modily protection information of an item, a node, an
item 1s received, and anew protection 1s recerved. I the item’s
previous protection 1s the same as the node’s protection, then
the node’s maxim-m protection level count 1s decremented. IT
the new protection 1s the same as the node’s protection, then
the node’s maximum protection level count is incremented. IT
the new protection 1s higher than the node’s maximum pro-
tection, then the node’s protection 1s set to the new protection,

US 8,054,765 B2

7

and the node’s maximum protection count 1s set to 1. Then,
the check protection process 1s called on the node.

One example set of pseudocode to modily protection infor-
mation 1s as follows:

modify__item_ protection(node, item, new__prot) {

if (1item.protection == node.max__protection)
——node.mp__count

if (new__prot == node.max__protection) {
++node.mp__count

} else if (new__prot > node.max__protection) {
node.max__ protection = new__prot
node.mp__count =1

;

fixup_ node(node)

FI1G. 3 illustrates one embodiment of a modify process 300.
Beginning at a start state 310, the modity process 300 pro-
ceeds to the next block 315. In block 315, the modity process
300 receives a node, an item, and a new protection. It 1s
recognized that 1n some embodiments, the modily process
300 may recerve a reference to the node, information from the
node, a pointer to the node, and so forth. Proceeding to block
320, the modity process 300 determines whether the node’s
maximum protection is equal to the item’s protection. If not,
then the modity process 300 proceeds to block 330. If so, then
the modily process 300 decrements the node’s count 325 and
proceeds to block 330.

In block 330, the modity process 300 determines whether
the new protection 1s the same as the node’s maximum pro-
tection. If not so, then the modity process 300 proceeds to
block 340. If so, then the modity process 300 increments the
node’s count 335 and proceeds to block 355.

In block 340, the modity process 300 determines whether
the new protection 1s greater than the node’s maximum pro-
tection. If not, then the modify process 300 proceeds to block
355. If so, then the modily process sets the node’s maximum
protection to the new protection 345, sets the node’s count to
1, and proceeds to block 355.

In block 3355, the modify process 300 calls the check pro-
cess 200 with the node and proceeds to an end state 360.

C. Adding an Item

To add an 1tem, a node and an item are received. The 1tem
1s added to the node. For leal nodes, this would include adding
a data entry. For non-leaf nodes, this would include adding a
child node. If the item’s protection 1s the same as the node’s
protection, then the node’s count 1s incremented. If the 1item’s
protection 1s greater than the node’s protection, then the
node’s protection 1s set to the 1tem’s protection, the node’s
count 1s set to one, and protection information of the node 1s
checked using, for example, the process described above.

One example set of pseudocode to add an item to the
mirrored tree 1s as follows:

add__item(node, item) {

add__1tem_ to_ node(node, item)

if (item.protection == node.max__ protection) {
++node.mp__count

} else if (item.protection > node.max__ protection) {
node.max__protection = item.protection
node.mp_ count =1
fixup__node(node)

10

15

20

25

30

35

40

45

50

55

60

65

8

FIG. 4 1llustrates one embodiment of an add process 400.
Beginning at a start state 410, the add process 400 proceeds to
the nextblock 415. In block 415, the add process 400 receives

a node and an 1tem. It 1s recogmized that 1n some embodiment
the add process 400 may receive a reference to the node
and/or 1tem, information from the node and/or 1tem, a pointer

to the node and/or 1item, and so forth. Proceeding to block 420,
the add process 400 determines whether the item’s protection
1s equal to the node’s maximum protection. If not, then the

add process 400 proceeds to block 430. It so, then the add
process 400 increments the node’s count 425 and proceeds to
an end state 450.

In block 430, the add process 400 determines whether the
item’s protection 1s greater than the node’s maximum protec-
tion. If not, then the add process 400 proceeds to the end state
450. If so, then the add process 400 sets the node’s maximum
protection to the 1tem’s protection 435, sets the node’s count

to 1 440, calls the check process 200 with the node 445, and

proceeds to the end state 450.

D. Deleting an Item

To delete an 1item, a node and an 1item are receirved. The item
1s removed from the node. For leaf nodes this may include
removing a data entry. For non-leat nodes, this may include
removing a child node. If the 1tem’s protection was the same
as the node’s protection, then the node’s count 1s decre-
mented. If the node’s new count 1s zero, then the protection
information of the node 1s checked using, for example, the
process described above.

One example set of pseudocode to delete an 1tem from the
mirrored tree 1s as follows:

remove__item(node, item) {
remove__1tem_ from_ node(node, item)
if (item.protection == node.max__protection) {
——node.mp__count
if (node.mp__count == 0)
fixup__node(node)

FIG. § illustrates one embodiment of a delete process 500.
Beginning at a start state 510, the add process 500 proceeds to
the next block 515. In block 515, the delete process 500
receives a node and an 1tem. It 1s recognized that in some
embodiment the add process 500 may receive a reference to
the node and/or item, information from the node and/or 1item,
a pointer to the node and/or 1tem, and so forth. Proceeding to
block 520, the delete process 300 removes the item from the
node. Proceeding to block 5235, the delete process determines
whether the 1item’s protection 1s equal to the node’s maximum
protection. If not, then the delete process 300 proceeds to an
end state 540. It so, then the delete process 500 decrements
the node’s count 530, and proceeds to block 535. In block
535, the delete process 500 determines whether the node’s
count 1s zero. I not, then the delete process 500 proceeds to
the end state. If so, then the delete process 500 calls the check
process 200 with the node 540, and proceeds to the end state
540.

IV. Protection System

FIG. 6 1llustrates one embodiment of a protection system
600 which includes a protection module 610 in communica-
tion with a set of storage devices 620. In one embodiment, the
protection module 610 includes the check process 200, the
modily process 300, the add process 400, and the delete
process S00.

US 8,054,765 B2

9

It 1s recognized that the module may be located apart from
the set of storage devices 620 and/or may be located on one or
more of the storage devices 620. In other embodiments, one
or more of these modules may be spread among the set of
storage devices 620.

The protection module 610 communicates with the set of
storage devices 620 using a variety of communication tech-
niques that are well known 1n the art. Such commumnication
may include local communication, remote communication,
wireless communication, wired communication, or a combi-
nation thereof.

In one embodiment, the set of storage devices 620 may
include any type of memory that allows for the storing of
nodes, protection level information, and/or count informa-
tion. In some embodiments, the storage device 620 retains
data even after power 1s turned oif, however, 1n other embodi-
ments, the storage device 620 may be implemented using
volatile memory. The storage devices 620 may be, for
example, a standard hard drive, a cache, ROM, RAM, flash
memory, as well as other types of memory as 1s know by those
of ordinary skill 1n the art.

In some embodiments, the protection system 600 may be
accessible by one or more other systems, modules, and/or
users via various types of communication. Such communica-
tion may include, for example, the Internet, a private network
for a hospital, a broadcast network for a government agency,
an 1nternal network of a corporate enterprise, an intranet, a
local area network, a wide area network, and so forth. It 1s
recognized that the protection system 600 may be used 1n a
variety of environments in which data 1s stored. For example,
the protection system 600 may be used to store records in a
database, content data, metadata, user account data, and so
torth.

In one embodiment, the protection system 600 runs on a
variety of computer systems such as, for example, a com-
puter, a server, a smart storage unit, and so forth. In one
embodiment, the computer may be a general purpose com-
puter using one or more microprocessors, such as, for
example, a Pentium processor, a Pentium II processor, a Pen-
tium Pro processor, a Pentium IV processor, an xx86 proces-
sor, an 8031 processor, a MIPS processor, a Power PC pro-
cessor, a SPARC processor, an Alpha processor, and so forth.
The computer may run a variety of operating systems that
perform standard operating system functions such opening,
reading, writing, and closing a file. It 1s recognized that other

operating systems may be used, such as, for example,
Microsoft® Windows® 3.X, MicrosofiR Windows 98,

Microsoft® Windows® 2000, Microsoft® Windows® NT,
Microsoft® Windows® CE, Microsoft® Windows® ME,
Palm Pilot OS, Apple® MacOS®, Disk Operating System
(DOS), UNIX, IRIX, Solaris, SunOS, FreeBSD, Linux®, or
IBM® OS5/2® operating systems.

As used herein, the word module reters to logic embodied
in hardware or firmware, or to a collection of software instruc-
tions, possibly having entry and exit points, written 1n a
programming language, such as, for example, C or C++. A
soltware module may be compiled and linked 1nto an execut-
able program, installed 1n a dynamic link library, or may be
written 1 an interpreted programming language such as
BASIC, Perl, or Python. It will be appreciated that software
modules may be callable from other modules or from them-
selves, and/or may be invoked 1n response to detected events
or interrupts. Software istructions may be embedded in firm-
ware, such as an EPROM. It will be turther appreciated that
hardware modules may be comprised of connected logic
units, such as gates and tlip-tlops, and/or may be comprised of
programmable units, such as programmable gate arrays or

5

10

15

20

25

30

35

40

45

50

55

60

65

10

processors. The modules described herein are preferably
implemented as software modules, but may be represented 1n
hardware or firmware.

It 1s also recognized that in some embodiments, the sys-
tems and methods may be implemented as a single module
and/or implemented in conjunction with a variety of other
modules and the like. Moreover, the specific implementations
described herein are set forth to 1llustrate, and not to limit, the
present disclosure.

V. Example Environment

The following provides an example environment in which
a distributed mirrored index tree may be used. It 1s recognized
that the systems and methods disclosed herein are not limited
to the example environment and that the example 1s only
meant to 1llustrate embodiments of the invention.

A. Indexing Tree

In one embodiment, the indexing tree 1s an mdex tree
wherein the copies of the nodes of the tree are stored across
devices in a distributed system. The nodes of the indexing tree
are stored using at least the same level of protection of data
stored 1n the indexing data structure. In one embodiment,
nodes that are stored on an offline device are restored, offline
devices that come back online are merged into the distributed
system and given access to the index tree, and the index tree
1s traversed to locate and restore nodes that are stored on
offline devices. Additional description of an indexing tree
structure 1s set forth in U.S. Patent Applications entitled “Sys-
tems and Methods for Maintaining Distributed Data,” and
“Systems and Methods for Updating Distributed Data,” filed
concurrently herewith, which are incorporated by reference
above.

In one embodiment, data stored 1n the tree includes meta-
data that represents the protection level of the data. In addi-
tion, each node, including the root node, the internal nodes,
and the leal nodes, also includes protection information. FIG.
7 1llustrates one embodiment of an index, where the index tree
includes different mirroring levels, such that different nodes
in the index tree are mirrored a different number of times. For
example, Data B 1s stored with a protection level of 3x.
Accordingly, the branches of the index tree 740, 750 that lead
to Data B are also protected at a protection level of at least 3x.

1. Leal Nodes

In the example, leat node 770 has 2 copies, leal node 780
has 3 copies, and leaf node 790 has 2 copies. In addition, the
number of data entries that have the maximum level of pro-
tection for leat node 770 1s 2; the number of data entries that
have the maximum level of protection for leat node 780 1s 1;
and the number of data entries that have the maximum level of
protection for leaf node 790 1s 1.

2. Non-Leaf Nodes

In the example, the protection level of internal node 750 1s
MAX(Leal Node 770, Leal Node 780, Other Children
Nodes)=MAX(2x, 3x, 2x)=3x; the protection level of inter-
nal node 760 1s MAX(Leal Node 790, Other Children
Nodes) =MAX(2x, 2x)=2x; and the protection level of root
node 740 1s MAX(Internal Node 750, Internal Node 760,
Other Children Nodes)=MAX(3x, 2x, 2x)=3x. In addition,
the number of children that have the maximum level of pro-
tection for internal node 750 1s 1; the number of children that
have the maximum level of protection for internal node 760 1s
2: and the number of children that have the maximum level of
protection for root node 740 1s 1.

Thus, the index information for each node 1s protected at
least as much as the node’s children. In addition, unnecessary
replication 1s avoided. For example, only the nodes 1n the path

US 8,054,765 B2

11

to the data set that has a protection level 3x are copied three
times, thereby saving on resources while maintaining the
integrity of the data.

In one embodiment, the data in the indexing system 1s used
to store 1dentifiers for files and/or directories, and where the
data entries provide the actual address of the metadata data
structure, or inode, of the files and/or directories.

V1. Conclusion

While certain embodiments of the invention have been
described, these embodiments have been presented by way of
example only, and are not intended to limait the scope of the
present invention. Accordingly, the breadth and scope of the
present invention should be defined 1n accordance with the
following claims and their equivalents.

What 1s claimed 1s:

1. A method of protecting nodes within a hierarchical data
structure at vaniable protection levels, the hierarchical data
structure comprising leal nodes and non-leal nodes, the
method comprising:

determining a protection level for each of one or more leaf
nodes, wherein each protection level corresponds to a
level of protection against loss of data, and wherein each
level of the protection against the loss of the data corre-
sponds to at least one of a number of mirrored copies, a
level of error correction, and a level of parity protection
of the leal node;

determining, by a computer processor, a protection level
for a non-leat node, wherein the non-leat node has one or
more children with corresponding protection levels, and
wherein the protection level of the non-leal node 1s
based on a maximum of the protection levels of current
children of the non-leat node;

identifying an increase in the maximum of the protection
levels of the current children of the non-leaf node;

as a result of identitying the increase in the maximum of the
protection levels of the current children of the non-leaf
node, determining, by a computer processor, an
increased protection level for the non-leaf node; and

increasing at least one of a number of mirrored copies of
the non-leal node, a level of error correction of the
non-leat node, and a level of parity protection of the
non-leat node to correspond to the increased protection
level for the non-leaf node.

2. The method of claim 1, further comprising;

storing the protection level for each of the one or more leaf
nodes; and

storing the protection level for the non-leaf node.

3. The method of claim 1, wherein each of the one or more
leat nodes 1s associated with one or more sets of data, and
determining the protection level for the each of the one or
more leal nodes 1s based on a maximum of the protection
levels of the one or more sets of the data associated with the
leal nodes.

4. The method of claim 1, further comprising, for the non-
leal node, storing protection level information, the protection
level information comprising the number of the current chil-
dren of the non-leal node having the protection level of the
non-leaf node.

5. The method of claim 4, wherein the protection level
information further comprises the number of the current chil-
dren of the non-leaf node at each protection level other than
the protection level of the non-leat node.

5

10

15

20

25

30

35

40

45

50

55

60

65

12

6. A protection system for protecting data of variable pro-

tection levels, the system comprising:

at least one computer processor;

at least one memory;

a hierarchical data structure stored on the at least one
memory and accessible by the at least one computer
processor, the hierarchical data structure comprising
leal nodes and non-leal nodes; and

at least one executable software module, the computer
processor configured to execute the at least one execut-
able software module, the at least one executable soft-
ware module configured to:

determine protection levels for each of one or more of the
leaf nodes;

determine a protection level for a non-leat node, wherein
the non-leal node has one or more children with corre-
sponding protection levels, wherein the protection level
for the non-leaf node 1s based on a maximum of the
protection levels of current children of the non-leaf
node, wherein each protection level corresponds to a
level of protection against loss of data, and wherein each
level of the protection against the loss of the data corre-

sponds to at least one of a number of mirrored copies, a
level of error correction, and a level of parity protection
of the leal node;

identify an increase in the maximum of the protection
levels of the current children of the non-leaf node; and

increase at least one of a number of mirrored copies of the
non-leatf node, a level of error correction of the non-leaf
node, and a level of parity protection of the non-leaf
node to correspond to the 1dentified increase 1n the maxi-
mum of the protection levels of the current children of
the non-leal node.

7. The system of claim 6, wherein the at least one execut-

able software module 1s further configured to:

store a protection level indicator on the at least one memory
for each of the leat nodes; and

store a protection level indicator on the at least one memory
for the non-leaf node.

8. The system of claim 6, wherein each of the leat nodes 1s
assoclated with one or more sets of data, and the at least one
executable software module 1s further configured to deter-
mine the protection levels for each of the one or more leaf
nodes based on a maximum of the protection levels of the one
or more sets of the data associated with the leat node.

9. The system of claim 6, wherein the at least one execut-
able software module 1s further configured to, for the non-leaf
node, store protection level information, the protection level
information comprising the number of the current children of
the non-leal node having the protection level of the non-leaf
node.

10. The system of claim 9, wherein the protection level
information further comprises the number of the current chil-
dren of the non-leal node at each protection level other than
the protection level of the non-leaf node.

11. A system for updating data stored using variable pro-
tection levels, the system comprising:

at least one computer processor;

at least one memory;

a hierarchical data structure stored on the at least one
memory and accessible by the at least one computer
processor, the hierarchical data structure comprising
leal nodes and non-leaf nodes, the leat nodes comprising
one or more references to one or more data sets; and

at least one executable software module, the computer
processor configured to execute the at least one execut-

US 8,054,765 B2

13 14
able software module, the at least one executable soft- node, and a level of parity protection of the ancestor
ware module configured to: node to correspond to the increased protection level of

the ancestor node.
12. The system of claim 11, wherein the at least one execut-
5 able software module 1s further configured to:

determine a first protection level of a leaf node based on a
maximum of protection levels of the data sets referenced

by the leat node, wherein each protection level corre- store a protection level indicator on the at least one memory
sponds to a level of protection against loss of the data, for the leaf node: and

and wherein each level of the protection against the loss store a protection level indicator on the at least one memory
of the data corresponds to at least one of a number of for the ancestor node of the leaf node.

mirrored copies, a level of error correction, and alevelof 13. The system of cliaim 11, wherein the at least one execut-
parity protection of the leaf node; able software module 1s further configured to, for the ancestor

node of the leaf node, store protection level information, the
protection level imnformation comprising the number of the

determine an increased protection level of an ancestor node

of the leal_node, wherein the ancestor node has one or current children of the ancestor node having the protection
more children with corresponding protection levels, and level of the ancestor node.

wherein the protection level of the ancestor node is 1° 14. The system of claim 13, wherein the protection level
based on a maximum of the protection levels of current information turther comprises the number of the current chil-
children of the ancestor node; and dren of the ancestor node at each protection level other than

. . . th tection level of th t de.
increase at least one of a number of mirrored copies of the © Pro1eclion Ievel 01 LHe dneestor Hode

ancestor node, a level of error correction of the ancestor £k k% %

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 8,054,765 B2 Page 1 of 1
APPLICATION NO. : 12/484905

DATED : November 8, 2011

INVENTORC(S) . Aaron J. Passey et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Specifications
At Column 6, Line 63, Change “maxim-m” to --maximum--.
In the Claims

At Column 13, Line 13 (Approx.), In Claim 11, change “leaf_node,” to --leaf node,--.

Signed and Sealed this
Twenty-e1ghth Day of May, 2013

Teresa Stanek Rea
Acting Director of the United States Patent and Trademark Olffice

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

